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@ Motivation for Part 1

« Clear up discrepancies in the literature on the critical field E_,; for wide- and ultrawide-
bandgap materials of interest

* Determine the best power-lawfitto E_,;, ~ EZ, where y has been under question for
some time

— Use best available measured data across a wide range of non-WBG and WBG/UWBG
semiconductors

* Develop an avalanche-breakdown theory to explain the observed power law
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@ Part 1: Dependence of Critical Electric Field on
\ Semiconductor Bandgap

« Empirical fits are used to predict capabilities of emerging materials and devices: E_,.;; ~ Eg
« Fits by Hudgins et al. published in 2003 have been the only “standard”

Direct-Bandgap Semiconductors Indirect-Bandgap Semiconductors
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 Empirical fits to data from the literature (some questionable; no existing theory)
* Not normalized to doping, device structure, or temperature
 Subject to material and device quality
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@ Normalizing Literature E_; Data to a Level Playing Field *

rit
Non-Punch-Through Diode Punch-Through Diode
n n* n*
|E] Ecrit,pT
Ecrit NPT .
lope= qNp ~
slope= — —
>| X |<W—>|
Wier < T >|
WNPT' extrapolated

« Valid comparison of measured E_ ; values in different devices / materials requires

normalization of doping and structure (punch-through to non-punch-through)

g11/8

. : . 1/8
- Transformation equation: E crit NPT _ (ND,NPT) / . (1 _ qNppr Wpr )

Ecrit, PT Np pr €  Ecritpr
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[E]

Normalized Literature Cases *
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« This equation gives us the ability to normalize and compare E ., values measured in diodes made of different

materials and with different doping and field profiles:

* Slobodyan, et al., in preparation
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Corrections can be significant
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@ Derived E_,;, Values for Different Materials *

Critical-Field lValues (VIiecm)
f \

Semiconductor Bandgap at Type Sze Hudgins Wang " Our )
_ 300 K (eV) analysis
InSb 0.17 Direct - 1x103 1x103 a
InAs 0.354 Direct - 4x104 4x104 a
Ge 0.661 Indirect  2.5x108 1x105 1x105 2.0x10°
_ GaSb 0.726 Direct - 5x104 5x104 °
Conventional = Ing 55Gag 47AS 0.74 Direct - - - 2.8x105
Si 1.12 Indirect 4-37x10  3x10° 3x105 3.7x105
InP 1.344 Direct - 5x10° 5x10° 5.0x10%
_ GaAs 1.424 Direct 4-98x10  4x10° 6x105 5.4x105
_ GaP 2.26 Indirect 7-99x10  1x10° 1x108 b
Wide-Bandgap — 3C-SiC 2.36 Indirect i 13x106  1x10° o
_ 6H-SiC 3.0 Indirect - 2.4x106 5x108 2.9x106
. 4H-SiC 3.23 Indirect - 3.2x108 - 3.2x106
Ultrawide-Bandgap — GaN 3.45 Direct - 3x106 5x106 3.4x106
- Al Ga, N 3.45-6 Direct - - \ d )

-(3a.0 . 4.7 irect o . 1.5x107

aTu Fﬂ?ﬁ capnot be decisively exclu#% as a contributing factor.in br a%d n =
b Nogr ﬁﬁ% gﬁ(ﬁa in the Iitefétire was f&?i%?te.g. material quga'a(i%y?(iss susp?e‘ci()%y R0zl
¢ Insufficient device data to perform normalization

9 No experimental data confirming temperature-dependent behavior indicative of avalanche breakdown

» Correct normalization provides the most reliable values
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Correct Normalization Gives New Power Law *

Critical Electric Field (V/cm)

® Normalized data
1.84 Power Fit
R2=0.979

% Power Fit
R2=0.838

2.0 Power Fit
R%2=0.972
2.5 Power Fit
R2=0.856

3.0 Power Fit
R2 =0.595

Diamond

» Best-fit power-law slope gives E,;~Ey with
y =1.84

* No significant difference between direct- and
indirect-bandgap materials

0.6 1.0 20 30 40 6.0
Bandgap (eV)
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@ Developed an Avalanche-Breakdown Model *

o] @ [Indirect Ba”dgap} Calculated Points Semiconductor Bandgap Corrected Simulated
A Direct Bandgap (eV) data (V/cm)
—— 1.84 Power Fit
— . . InSb 0.17 3.41x104
------ Simulated Fit
£ wht it ol InAs 0.354 8.70x10
S Ge 0.661  2.0x105  1.88x10°
T e GaSb 0.726 : 2.20x105
2 Ing 53Gag 47AS 0.74 2.8x105  2.35x10°
¥ Si 1.12 3.7x105  4.83x105
5 InP 1.344  50x105  6.65x10°
= GaAs 1424  54x105  7.36x105
T .. GaP 2.26 : 1.73x108
=17 3C-SiC 2.36 1.89x106
O 6H-SiC 3.0 2.9x106  2.94x108
4H-SiC 3.23 3.2x106  3.36x10°
GaN 3.45 3.4x106  3.80x108
K B'Gazos 47 ) 671X106
4 s 0
o 0.3 07 1.0 20 30 40 60 100 C (diamond) 5.5 1.0x107 9.27x10°
Bandgap (eV)
Critical Field Values Slope R?2 . : .
Sl 184 0.979 Slobodyan, et al., in preparation
Simulation 1.67 0.990
« Built an avalanche-breakdown model based on Ridley’s ‘lucky-drift’ theory 1
- Power-law fits to normalized data and simulated values of E,;; are in good agreement
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@ Different Cases for “Johnson” FOM

E B Depletion region C « Uniform, rectangular field profile
2 Vuax = Ec Lerr

> Johnson FOM (for BJTs): Vyax fr = 1;5;71:‘:

Johnson FOM:
(actually done for Ec
|E|

BJTs)

\ 4

A
4
b

I'EFF,BD
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@ Different Cases for “Johnson” FOM

E B Depletion region C . . . .
Johnson FOM: Uniform, rectangular field profile (low or
undoped collector)
(actually done for Ec
BITS) IEl [ 2 Vmax = Ec Lerr

p - - Johnson FOM (for undoped-collector BJTs):

LEFF,BD V f . VsAT EC

MAXJT = —5 -
Quasi-Johnson FOM: E B Depletion region C  Field prof"e for dﬂ'EEd collector

2 Vmax < Ec Lgrr

EC
IEIX l\‘ - Johnson FOM (for doped-collector BJTs):
R Vsar E¢

~ Vmax fr < =~

I'EFF,BD

prtoal Fleld: 12 Lerr g = effective gate length at Vi, LINCOLN LABORATORY
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@ Different Cases for “Johnson” FOM

E B Depletion region C
Johnson FOM:
(actually done for Ec
BJTs) |E| [
I-EFF,BD X
S Gate D
First-order 1 [ ' 1

Johnson/Hollis:
|E]| [

v

« LG,EFF,BD

« Uniform, rectangular field profile
2 Vuax = Ec Lerr

> Johnson FOM (for BJTs): Vyax fr = 1;5;71:‘:

« Triangular field profile, for non-gate-overlapping FETs
2 Vmax = Ec Lgrr / 2

- Johnson/Hollis FOM for FETs: Vyx fr = v*‘iiff

Critical Field- 13 .
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@ Different Cases for “Johnson” FOM

E B Depletion region C
Johnson FOM:
(actually done for Ec
BJTs) |E| [
I-EFF,BD X
S Gate D
First-order | [ ' 1
Johnson/Hollis: PaN"
IE| [

« LG,EFF,BD

Field plate

S
Field-Plated FET: 1 [ 1

EMAX < EC

44—
I'G,EFF,BD

\ 4

« Uniform, rectangular field profile
2 Vmax = Ec Lerr

> Johnson FOM (for BJTs): Vyax fr = 1;5;71:‘:

« Triangular field profile, for non-gate-overlapping FETs
2 Vmax = Ec Lgrr / 2

- Johnson/Hollis FOM for FETs: Vyx fr = v*‘iiff

- Field plate can suppress peak |E|, raise Vyax
- EC‘. LEFF ]2 < VMAX < EC LEFF

> FOM for FETs: “S4L%¢ <V, fr <

« HRL GaN HEMTs* are at 60% of Johnson FOM

— Also due to AIN barrier and higher quasi-ballistic velocity
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Be Careful with FOMs

HTFOM*

U

O'thermal Permittivity, € | E_;;, MV/iem | Oy.ormal! (€ E)
Si 145 11.9 ~ 0.37 33
GaN 253 10.4 ~ 3.4 7.1
Ga,0, 11 - 27 10 ~ 8.0 0.24
AIN 319 9.8 ~11.7 2.8
Diamond 3450 ('2C) 5.7 ~10 60

« Si gets biased toward the “good” by a low E

— Not as useful for advanced switching

* Important to understand the fundamental physics behind FOMs
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@ Summary

* A new power law E(_.,,,-ta—vE;,-84 has been derived for semiconductors based on fitting to
normalized measured data

— Normalized to the non-punch-through condition for Np = 1x10'®* cm-3

 Developed an avalanche model which correlates well

— Valid for E; 2 0.6 eV where tunneling is absent

» Historical Johnson FOM only applies to BJTs / HBTs with rectangular E field
— Can be lower for FETs and even BJTs / HBTs due to non-uniform field profile
— Partly explains why surface FETs exhibit lower values for Johnson FOM
— There is not just one Johnson FOM

— Important to understand the fundamental physics behind FOMs
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