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Part 1
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Motivation for Part 1
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Part 1:  Dependence of Critical Electric Field on 
Semiconductor Bandgap

Direct-Bandgap Semiconductors Indirect-Bandgap Semiconductors

• S. M. Sze and G. Gibbons, Appl. Phys. Lett. 8, 111 (1966)
• Hudgins et al., IEEE Trans. Power Elec. 18(3), 907 (2003)

• Empirical fits to data from the literature (some questionable; no existing theory)
• Not normalized to doping, device structure, or temperature
• Subject to material and device quality
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Normalizing Literature Ecrit Data to a Level Playing Field *

Non-Punch-Through Diode Punch-Through Diode

• Valid comparison of measured Ecrit values in different devices / materials requires 
normalization of doping and structure (punch-through to non-punch-through)

   Transformation equation:

* Slobodyan, et al., in preparation
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Normalized Literature Cases *

Reference DRIFT-
LAYER 

MATERIAL

ND 
(cm-3)

WPT 
( m)

VBD 
(V)

WNPT   
extrapolated 

( m)

Armstrong et al. GaN 3x1015 30 3930 2.2 2.2 37.9 2.5
Allerman et al. Al0.3Ga0.7N 5x1016 4.3 1627 5.9 5.9 6.0 4.8

Ohta et al. GaN 9x1015 22 4700 3.1 3.1 31.3 3.4
Hu et al. GaN 2.5x1015 8 1406 1.9 1.8 53.0 2.3

Nishikawa et al. GaN 2x1016 0.225 52 2.4 2.0 5.25 1.8
Nishikawa et al. Al0.29Ga0.71N 2x1016 0.225 84 3.8 3.0 7.7 2.8
Nishikawa et al. Al0.34Ga0.66N 2x1016 0.225 91 4.1 3.3 8.25 3.0
Nishikawa et al. Al0.46Ga0.54N 2x1016 0.225 113 5.1 3.9 9.81 3.6
Nishikawa et al. Al0.52Ga0.48N 2x1016 0.225 139 6.2 4.7 11.7 4.3
Nishikawa et al. Al0.57Ga0.43N 2x1016 0.225 182 8.1 6.0 14.7 5.5

Volpe et al. C (diamond) 1.6x1016 13.6 9800 11.0 11.0 19.8 10
Yang et al.  -Ga2O3 6.1x1015 8 1900 2.8 2.8 25.3 3.0

• A. M. Armstrong et al., Elec. Lett. 52, 1170 (2016)
• A. A. Allerman et al., Elec. Lett. 52, 1319 (2016)
• H. Ohta et al., IEEE Elec. Dev. Lett. 36(11), 1180 (2015)

Corrections can be significant

• Z. Hu et al., App. Phys. Lett. 107, 243501 (2015)
• A. Nishikawa et al., Jap. J. Appl. Phys. 46(4B), 2316 (2007)
• Volpe et al., App. Phys. Lett. 97, 223501 (2010); Yang et al., ECS JSSST 8, Q3028 (2019) 

* Slobodyan, et al., in preparation
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Derived Ecrit Values for Different Materials *

Semiconductor Bandgap at 
300 K (eV)

Type Sze Hudgins Wang Our 
analysis

InSb 0.17 Direct - 1 103 1 103 a

InAs 0.354 Direct - 4 104 4 104 a

Ge 0.661 Indirect 2.5 105 1 105 1 105 2.0 105

GaSb 0.726 Direct  - 5 104 5 104 b

In0.53Ga0.47As 0.74 Direct  - - - 2.8 105

Si 1.12 Indirect 4.37 10
5

3 105
3 105 3.7 105

InP 1.344 Direct  - 5 105 5 105 5.0 105

GaAs 1.424 Direct 4.98 10
5

4 105
6 105 5.4 105

GaP 2.26 Indirect 7.59 10
5

1 106
1 106 b

3C-SiC 2.36 Indirect  - 1.3 106 1 106 c

6H-SiC 3.0 Indirect  - 2.4 106 5 106 2.9 106

4H-SiC 3.23 Indirect  - 3.2 106 - 3.2 106

GaN 3.45 Direct  - 3 106 5 106 3.4 106

AlxGa1-xN 3.45-6 Direct  - - - d

 -Ga2O3 4.7 Direct  - - 1.5 107 d

C (diamond) 5.5 Indirect  - 5.7 106 2.2 107 1.0 107
a Tunneling cannot be decisively excluded as a contributing factor in breakdown 
b No reliable data in the literature was found (e.g. material quality is suspect)
c Insufficient device data to perform normalization
d No experimental data confirming temperature-dependent behavior indicative of avalanche breakdown

• S. M. Sze and G. Gibbons, Appl. Phys. Lett. 8, 111 (1966)
• Hudgins et al., IEEE Trans. Power Elec. 18(3), 907 (2003)
• L.-M. Wang, 25th IEEE Int. Conf. on Microelec. (2006)

Wide-Bandgap

Ultrawide-Bandgap

Conventional

Critical-Field Values (V/cm)

• Correct normalization provides the most reliable values

* Slobodyan, et al., in preparation
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Correct Normalization Gives New Power Law *

Ge

In0.53Ga0.47As
Si

InP

GaAs

6H-SiC
4H-SiC

GaN

Diamond

* Slobodyan, et al., in preparation
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Developed an Avalanche-Breakdown Model *

Semiconductor Bandgap 
(eV)

Corrected 
data

Simulated
(V/cm)

InSb 0.17 - 3.41 104

InAs 0.354 - 8.70 104

Ge 0.661 2.0 105 1.88 105

GaSb 0.726 - 2.20 105

In0.53Ga0.47As 0.74 2.8 105 2.35 105

Si 1.12 3.7 105 4.83 105

InP 1.344 5.0 105 6.65 105

GaAs 1.424 5.4 105 7.36 105

GaP 2.26 - 1.73 106

3C-SiC 2.36 - 1.89 106

6H-SiC 3.0 2.9 106 2.94 106

4H-SiC 3.23 3.2 106 3.36 106

GaN 3.45 3.4 106 3.80 106

 -Ga2O3 4.7 - 6.71 106

C (diamond) 5.5 1.0 107 9.27 106

Critical Field Values Slope R2

Empirical 1.84 0.979
Simulation 1.67 0.990

Calculated Points

* Slobodyan, et al., in preparation

1. B. Ridley, J. Phys. C--Solid State Phys. 16, 3373, 1983 
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Part 2
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Different Cases for “Johnson” FOM

|E|
EC 

Johnson FOM:

LEFF,BD 
x

(actually done for 
BJTs)

B   Depletion region CE

LEFF,BD = effective gate length at VBKDN 
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Different Cases for “Johnson” FOM

LEFF,BD = effective gate length at VBKDN 

Johnson FOM:
(actually done for 

BJTs)

Quasi-Johnson FOM:

|E|
EC 

LEFF,BD 
x

|E|
EC 

LEFF,BD 
x

B   Depletion region CE

B   Depletion region CE
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Different Cases for “Johnson” FOM

Gate

|E|
EC 

First-order 
Johnson/Hollis:

LG,EFF,BD 

S D

Johnson FOM:
(actually done for 

BJTs) |E|
EC 

LEFF,BD 
x

B   Depletion region CE

LG,EFF,BD = effective gate length at VBKDN 
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Different Cases for “Johnson” FOM

Gate

|E|
EC 

First-order 
Johnson/Hollis:

LG,EFF,BD 

LG,EFF,BD = effective gate length at VBKDN 

S D

Johnson FOM:
(actually done for 

BJTs)

Gate

|E|
EMAX < EC 

Field-Plated FET:
S D

LG,EFF,BD 

Field plate

|E|
EC 

LEFF,BD 
x

B   Depletion region CE

─ Also due to AlN barrier and higher quasi-ballistic velocity

*Y. Tang, et al., IEEE EDL 36, 549, 2015
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  σthermal Permittivity, ε Ecrit , MV/cm σthermal / (ε E)
Si 145 11.9 ~ 0.37 33
GaN 253 10.4  ~ 3.4 7.1
Ga2O3   11 - 27 10 ~ 8.0 0.24
AlN 319 9.8 ~ 11.7 2.8
Diamond 3450 (12C) 5.7 ~ 10 60

HTFOM*

• Si gets biased toward the “good” by a low EC 
─ Not as useful for advanced switching

• Important to understand the fundamental physics behind FOMs

Be Careful with FOMs

*Huang Thermal FOM in:  A. Huang, IEEE EDL 25, 298, 2004. 
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Summary


