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Introduction

• Motivation

• Uncertainty quantification for high resolution numerical

models.

• fine mesh resolution
• many random parameters/variables

• Objective

• Develop scalable (numerical and parallel) algorithms to

quantify uncertainty in large-scale computational models.

• Methodology

• Exploit non-overlapping domain decomposition methods in

conjunction with an intrusive polynomial chaos approach.



Uncertainty Quantification Framework



Bayesian Estimation using Nonlinear Filtering

• Model Equation

uk+1 =  k (uk , fk ,qk) �� Forecast Step

• Measurement Equation

dk = hk (uk , ✏k) �� Assimilation Step

Sensors



Domain Decomposition Method for Stochastic PDEs

• Spatial decomposition
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• Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDEs
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Block Sparsity Structure

L = 3 and pu = 4, 5.

pu = 3 and L = 4, 5.



Extended Interface Problem

• The Extended Schur Complement System
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• Develop parallel iterative algorithms.

• Formulate scalable preconditioners.

• Application to 2D and 3D Stochastic PDEs with non-Gaussian

coe�cients.



Two-Level Domain Decomposition Methods for SPDEs
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Two-Level Domain Decomposition Methods for SPDEs

• Partitioning the interface nodes into remaining (⌅) and corner(•) nodes
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Probabilistic Balancing Domain Decomposition with Constraints2
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs
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a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.

Investigated numerical and parallel scalabilities:

Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A., CMAME, 2013

Desai, A., Khalil, M., Pettit, C., Poirel, D. and Sarkar, A., CMAME 2017



Implementational Framework



Problem Setup for Numerical Experiments

• Model Problem:

�r ·
�
cd(x, ✓) ru(x, ✓)

�
= F (x), ⌦⇥W ,

u(x, ✓) = 0, �⌦⇥W ,

• Di↵usion coe�cient cd modelled as a lognormal process with

the underlying a Gaussian process having mean µ, variance �2

and exponential covariance function C (on a 2D domain).

C (x1, y1; x2, y2) = �2
e
�|x2�x1|/b1�|y2�y1|/b2 ,



Block-Sparsity Structures

Fixed mesh resolution N ⇡ 150, Pu = 3 with L = 3 and L = 5.



Errors Analysis of PCE Coe�cients of Solution Process:

Intrusive Vs Non-Intrusive

3 4 5

Level of quadrature(l) / Order of expansion (p)
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coarse mesh (N ⇡ 150)



Scalability against Stochastic Dimensions:

Intrusive vs Non-Intrusive (Sparse Grid)

Fixed mesh resolution (52704 nodes and 105410 elements) and

third order PCE for intrusive. Smolyak sparse grid with l = 3 and

l = 4 for non-intrusive.



Scalability against Number of Random Variables: NNC/BDDC

Fixed mesh resolution (52704 nodes and 105410 elements), fixed

problem size per subdomain (⇡ 60,000) and third order PCE

(linear system of order max. ⇡ 93 million)



Scalability against Number of Random Variables: NNC/BDDC
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Parallel Scalability (Strong): NNC/BDDC
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Fixed global problem, mesh with (52704 nodes and 105410

elements) and number of PCE terms Pu = 1771.



Scalability using Large-Scale HPC Cluster

For the fixed mesh resolution (0.332 million nodes and 0.664

million elements.) and fixed number of PCE terms (Pu = 56).



Scalability using Large-Scale HPC Cluster

For the fixed mesh resolution (0.332 million nodes and 0.664

million elements.) and fixed number of PCE terms (Pu = 56).



Probabilistic Coarse Grid in Three Dimensions:

Extended Wirebasket Grid

(-) - the global interface edge, (•) - vertices (?) - interface-edges
and (•) - interface-faces.



Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based

Methods

Ref. Book by Smith, Bjorstad and Gropp, 2004

For the vertex-based method in two dimensions

  C (1 + log(H/h))2,

For the vertex-based method in three dimensions

  C (H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

  C (1 + log(H/h))2.



Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid
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Numerical Experiments: Wirebasket based BDDC/NNC solver

• Di↵usion equation

�r ·
�
cd(x, ✓) ru(x, ✓)

�
= F (x), ⌦⇥W ,

u(x, ✓) = 0, �⌦⇥W ,

• Di↵usion coe�cient cd - lognormal process having underlying

a Gaussian process with exponential covariance C

C (x1, y1, z1; x2, y2, z2) = �2
e
�|x2�x1|/bx�|y2�y1|/by�|z2�z1|/bz .



Characteristics of the Solution Process:

Di↵usion Equation

Mean and standard deviation.



Characteristics of the Solution Process

Selected PCE coe�cients.



Numerical Experiments: Wirebasket based BDDC/NNC solver for PDE System

• Linear Elasticity

�r · �
�
U(x, ✓)

�
= F (x) in D,

�
�
U(x, ✓)

�
· n̂ = bT on �1 = �D\�0,

U(x, ✓) = 0 on �0.

Stress tensor �:

�
�
U(x, ✓)

�
= �

�
r · U(x, ✓)

�
I + 2µ✏

�
U(x, ✓)

�
,

where � =
E⌫

(1+⌫)(1�2⌫) and µ =
E

2(1+⌫) are Lamé constants.

• Young’s modulus E - lognormal stochastic process (as before).



Characteristics of the Solution Process:

Linear Elasticity

Mean magnitude of the beam deflection subjected to self-weight.



Characteristics of the Solution Process:

Linear Elasticity

x , y and z components of the mean and standard deviation.



Characteristics of the Solution Process:

Linear Elasticity

x , y and z components of the selected PCE coe�cients.



Di↵usion



Elasticity



Stochastic Wave Equation

@2
u

@t2
(x, t, ✓) + ⌘

@u

@t
(x, t, ✓)�r.(c0(x, ✓)ru(x, t, ✓)) = f (x, t)

in D ⇥ (0,T )⇥ ⌦

u(x, 0, ✓) = u0(x)

@u

@t
(x, 0, ✓) = v0(x)

u(x, t, ✓) = uD = 0

where c0 and u are the random wave velocity and acoustic wave pressure.



M ü(✓) + C(✓)u̇(✓) +K(✓)u(✓) = f

"
M

s

II
M

s

I�

M
s

�I
M

s

��

#(
ü
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Numerical Experiments
A Gaussian pulse as the initial state with (x0, y0) = (0.7, 0.7),
� = 1 and ↵ = 0.01:

u0(x0, y0) = �exp
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(x � x0)
2
+ (y � y0)
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Stochastic aspects of scalability
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Stochastic aspects of scalability
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Conclusion

• Adaptation of two-level iterative substructuring techniques for

time-dependent SPDEs in order to handle large number of

random variables.

• Application to time-dependent SPDEs.
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