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Introduction

e Motivation

® Uncertainty quantification for high resolution numerical
models.

® fine mesh resolution
® many random parameters/variables

® Objective
® Develop scalable (numerical and parallel) algorithms to
quantify uncertainty in large-scale computational models.

® Methodology

® Exploit non-overlapping domain decomposition methods in
conjunction with an intrusive polynomial chaos approach.



Uncertainty Quantification Framework

Step 1
Case Selection

Characterization
Probabilistic Model :
Stochastic PDE > of "I’(:‘g;t:é“ty

Step 2

Simulation

Large-Scale Linear

SSFEM Discretization

FEM/PCE System Solver

DDM

Step 3
Analysis

Data Assimilation
Sensitivity Analysis

Response Statistics

PCE coefficients
mean/variance PCKF/GSA

DA



Bayesian Estimation using Nonlinear Filtering
® Model Equation

uii1 = ¥y (ug, fr,q,) — — Forecast Step
® Measurement Equation
dyi = hy (ug, €)

—— Assimilation Step
Sensors




Domain Decomposition Method for Stochastic PDFEs

® Spatial decomposition

3 A0 ) (8- (1)

® Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDFEs
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Domain Decomposition Method for Stochastic PDFEs
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Block Sparsity Structure
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Extended Interface Problem
® The Extended Schur Complement System

SUr = Ggr.

S= ZRZ[AH — A3 (A5) T AR

s=1

® Develop parallel iterative algorithms.
® Formulate scalable preconditioners.
® Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.




Two-Level Domain Decomposition Methods for SPDEs

M= HT[SE T HE + MY (S Ho,
s=1

® Condition Number Bound of Deterministic System
® One-level preconditioner

(M™1S) < Ci(l +lo ﬂ)2
" = e €h
® Two-level preconditioner
H 2
K(M™S) < C(1+ log =)



Two-Level Domain Decomposition Methods for SPDEs

® Ppartitioning the interface nodes into remaining (M) and corner(®) nodes




Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs
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Investigated numerical and parallel scalabilities:
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Implementational Framework
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Problem Setup for Numerical Experiments

® Model Problem:

—V - (ci(x,0) Vu(x,0)) = F(x), QxW,
u(x,0) = 0, 0Q X W,
e Diffusion coefficient c¢; modelled as a lognormal process with

the underlying a Gaussian process having mean p, variance o
and exponential covariance function C (on a 2D domain).

2

C(X]-’yl' X2’y2) — 0-2 e_|X2_X1‘/b1_|y2_yl‘/b27



Fixed mesh

Block-Sparsity Structures

resolution N ~ 150, P, = 3 with L =3 and L = 5.

N



Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Scalability against Stochastic Dimensions:

Intrusive vs Non-Intrusive (Sparse Grid)
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Scalability against Number of Random Variables: NNC/BDDC

Number of iterations
o
[

1
1
1
1
1
1
1
1
1

48 246 704 1520
Number of cores (subdomains)

Fixed mesh resolution (52704 nodes and 105410 elements), fixed
problem size per subdomain (= 60,000) and third order PCE
(linear system of order max. ~ 93 million)



Scalability against Number of Random Variables: NNC/BDDC
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Parallel Scalability (Strong): NNC/BDDC'
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Scalability using Large-Scale HPC' Cluster
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For the fixed mesh resolution (0.332 million nodes and 0.664

million elements.) and fixed number of PCE terms (P, = 56).



Scalability using Large-Scale HPC' Cluster
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Probabilistic Coarse Grid in Three Dimensions:

Extended Wirebasket Grid

(-) - the global interface edge, (®) - vertices (%) - interface-edges
and (e) - interface-faces.



Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based
Methods
Ref. Book by Smith, Bjorstad and Gropp, 2004
For the vertex-based method in two dimensions
k< C(1+log(H/h))?,
For the vertex-based method in three dimensions

K < C(H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

r < C(1+log(H/h))>.



Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid
Fww Uw = dw,

Fuw = Biy" (Stow — SielStel " Stw ) Biv.
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Modified BDDC/NNC Preconditioner:
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Numerical Ezperiments: Wirebasket based BDDC/NNC' solver

e Diffusion equation

—V - (c(x,0) Vu(x,0)) = F(x), QxW,
u(x, 0) 0, 0 x W,

e Diffusion coefficient ¢4 - lognormal process having underlying
a Gaussian process with exponential covariance C

Clxasy1, 215 X0, y2, 22) = 07 e~ Peal/belemnl/bymlz=al/b:




Characteristics of the Solution Process:

Diffusion Equation

u u
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Y, ‘.

Mean and standard deviation.



Characteristics of the Solution Process
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Selected PCE coefficients.



Numerical Exzperiments: Wirebasket based BDDC/NNC solver for PDE System

® Linear Elasticity

Stress tensor o
o (U(x,0)) = A(V - U(x,0)) ] + 2ue(U(x,0)),

E E 4
where \ = m and pu = i) are Lamé constants.

® Young's modulus E - lognormal stochastic process (as before).



Characteristics of the Solution Process:

i U Magnitude

Y2 29e-07 01 1.96-01

e .



Characteristics of the Solution Process:

Linear FElasticity

x,y and z components of the mean and standard deviation.



Characteristics of the Solution Process:

Linear FElasticity
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x,y and z components of the selected PCE coefficients.



Number of iterations
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Stochastic Wave Equation

?;;’(x t.0) +ng (x,1,0) — V.(co(x, 0)Vu(x,t,0)) = f(x, 1)
in Dx(0,T)xQ
u(x,0,60) = up(x)

)
af‘;(x,o,e) = vo(x)
u(x,t,0) =up =0

where ¢y and u are the random wave velocity and acoustic wave pressure.
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[K{u} = [7]
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Numerical Experiments

A Gaussian pulse as the initial state with (xo, y0) = (0.7,0.7),
6 =1and o =0.01:

(_ (X - X0)2 + (.y — )/0)2)

up(xo, yo) = fexp

(07




Stochastic aspects of scalability

Number of lterations (Mode of all timesteps)
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Stochastic aspects of scalability
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Conclusion

® Adaptation of two-level iterative substructuring techniques for
time-dependent SPDEs in order to handle large number of
random variables.

e Application to time-dependent SPDEs.
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