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Absorptive Weak Plume Detection on Gaussian and
Non-Gaussian Background Clutter

James Theiler

Abstract—For additive signals on Gaussian clutter, the optimal
detector is a linear matched filter that is adapted to the known signal
and the covariance of the background. This adaptive matched filter
is widely used for gas-phase plume detection, even though the effect
of the plume on the background is not strictly additive. Here, a
derivation of the matched filter for a strictly absorptive plume
produces, in the weak plume limit, a quadratic filter. This quadratic
matched filter is extended in two ways: an elliptically-contoured
multivariate ¢ distribution is used to generalize the Gaussian back-
ground clutter, and a generalized likelihood ratio test detector is
derived to extend applicability to stronger plumes. In addition to
detectors whose purpose is to identify presence versus absence of a
plume, expressions are also derived for estimating plume strength.
The performance of these various detectors is evaluated by im-
planting simulated plume into background images that are either
real hyperspectral images or simulated images based on different
(Gaussian, multivariate ¢, and lognormal) clutter distributions.

Index Terms—Adaptive signal detection, clutter, composite
hypothesis testing, elliptically-contoured distribution, gas-phase
plume detection, generalized likelihood ratio test, hyperspectral
imagery, lognormal distribution, matched filter.

I. INTRODUCTION

NE of the triumphs of modern hyperspectral imaging is the
O remote detection of low-concentration gas-phase plumes
on cluttered backgrounds [1]-[10]. Such plumes are often very
nearly invisible, and the difference between an ON-plume pixel
spectrum and an OFF-plume spectrum may be very small. But
the gas absorption spectrum is known to high precision, and
because the observations are made at multiple (often hundreds
of) wavelengths, it is possible to detect the presence of these
weak plumes even in cluttered backgrounds.

Plumes can be both absorptive and emissive, and although
emissive spectra in the thermal infrared can be extremely dis-
criminating, detection at visible wavelengths is much cheaper,
and requires less specialized hardware. The focus here is on
detection of plumes that are purely absorptive.

A modification of the additive target model is used to de-
scribe the physics of absorptive plume detection in the visible
(and near-ultraviolet) wavelengths of hyperspectral imagery.
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The physics in this regime is simple—exponential Beer’s Law
absorption [11]—but it is not linear. Conventional lore holds that
for a sufficiently weak plume, the exponential is approximately
linear, and so a linear matched filter is appropriate. But even
for this simple model, the target is not truly additive even in the
weak plume limit.

This problem also provides an exercise in composite hypoth-
esis testing. For such problems, a direct likelihood ratio test
cannot be employed, because there is a nuisance parameter (in
this case, the plume concentration) whose value is not a priori
known. The usual approach in this situation is to employ the
generalized likelihood ratio test (GLRT), but in the weak plume
limit the locally most powerful (LMP) test seems to make sense.
It bears remarking that more general Bayesian methods [12] (of
which LMP is a special case) or Clairvoyant Fusion [13]-[15]
(for which GLRT is a special case) can also be considered.

In the IGARSS conference paper [16] that this article follows,
the background was assumed to be Gaussian, and closed-form
solutions were derived for both the LMP and GLRT detec-
tors. Here, the background is extended to the multivariate ¢-
distributed background (of which the Gaussian is a special case),
and new closed-form expressions are derived. A lognormal back-
ground model is also considered, based on the observation that
treating the data in log space reduces the exponential attenuation
to an additive target model. Finally, numerical experiments are
carried out in order to evaluate the relative performance of these
various detectors in different background scenarios.

A. Organization and Notation

Section II derives the basic equations for the absorptive plume,
including the “classic” matched filter and a clairvoyant detector
that is theoretically optimal when the background distribution
is specified. Section IIT begins with the assumption that the
background is Gaussian, and derives both a quadratic matched
filter based on the LMP and a GLRT detector, the latter of which
requires a maximum likelihood estimate of the plume strength,
which is of interest in its own right (though it is not the focus of
this article). In Section IV, the Gaussian results are generalized
to the case of a multivariate ¢-distributed background, and in
Section V a lognormal background is considered (and this is
generalized to a log-multivariate ¢-distributed background). Im-
planted plumes on real and simulated hyperspectral backgrounds
are employed in Section VI to evaluate the various detectors that
have been derived in this article. Section VII concludes with a
summary of the main points of this article. Some further remarks
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TABLE I
BASIC NOTATION USED IN THIS EXPOSITION

Z
)
3
[¢]

Meaning

Number of spectral channels

wavelength index

Pixel spectrum in the absence of plume
Measured pixel spectrum

Gas absorption spectrum

Matrix form of gas absorption: diag(t)
Scalar measure of absorption strength: Trace(7T")
Plume strength

Mean of pixel spectra

Covariance matrix of pixel spectra
Parameter used in multivariate t-distribution

RTT oA N X N>

TABLE I
DEFINITIONS OF SOME USEFUL INTERMEDIATE QUANTITIES

Expression Definition Equation in text
Q(x) —(Tx)'R™*(x — ) Eq. (8)
A(x) (x—p)'R ' (x—p) Eq. (14)
E(x) (Tx)'R™Y(Tx)+ (T?*x)R~'(x—pn) Eq.(16)
Fu(x) Vv =1)/lv =2) + A(x)] Eq. (24)
CH) (v—=11/(v+d) Eq. (32)
ao L/||R=Y 2Ty Eq. (46)

on “characteristic” plume strength, and on why the LMP-based
detectors fare so poorly, are included in the Appendix.

Table I provides a brief summary of the main symbols used
in the text. Because the search for closed-form solutions often
requires unwieldy algebra, various intermediate quantities were
introduced; they are defined, as they arise, in the text, and are
summarized in Table II.

II. ABSORPTIVE PLUME

For an absorptive plume, we have from Beer’s Law that
the radiance observed at some wavelength A is given by x; =
z; exp(—at; ), where z; is the radiance that would observed in
the absence of plume, ¢, is the absorption coefficient of the plume
gas, and a is the plume strength. For a sensor with d wavelengths,
we can express this in vector form, with d-dimensional vectors
X, z, and t, whose components correspond, respectively, to x;,
zy, and ty:

x = exp(—aTl)z (D

where T = diag(t) is a diagonal matrix whose diagonal ele-
ments 7T}, are the absorption coefficients ¢; .

A. Linear Adaptive Matched Filter (AMF)

The classic AMF [17]-[19] was originally applied to radar
signal detection, but is widely used for plume detection. Its
derivation requires an additive model; i.e., a model of the form
X = z + at”* for some constant signature t*. For this purely addi-
tive model, assuming a Gaussian distribution for the OFF-plume
clutter z, the optimal (indeed, uniformly most powerful [12])
detector is given by Damr(x) = t*' R~ (x — p), where x is the
measured spectrum at a pixel (which may or may not have plume
present), and the prime symbol (') indicates transpose.
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To first order in a (i.e., assuming a weak plume), (1) looks
like x ~ z — aT'z, which suggests t* = —T'z ~ —T'x, but this
expression for ¢* is not constant, so the additive matched filter
is not applicable. A naive yet popular approximation (e.g.,
see [S5]-[7]) takes t* o< t; this is based on the argument that
the background varies much more slowly with wavelength than
the gas spectrum does, and so the approximation is that the
background is spectrally flat. A better approximation takes

t* = —Tu, where p = (x) is the mean background over the
image. In this absorptive plume context, then, the AMF becomes
Dryave(X) = —(Tp)' R~ (x — ). )

B. Likelihood Ratio and Clairvoyant Detector

Because (1) is not truly additive, the aim in this section is
to derive a detector that accounts for the multiplicative nature
of plume absorption. We begin by writing Pye(z) as the OFF-
plume background distribution and Pyjyme (%) as the distribution
of pixel values when plume is present. We can express the
relationship between these two using the usual formula for
change-of-variables in probability distributions

dz

Potume (X) = Poke(2) T

— Piyg(exp(aT)x) exp(aT)| ()

where | - | indicates the determinant. Note that the determinant
of the exponential can be expressed as the exponential of the
trace (since 7' is diagonal, this is readily verified)

lexp(aT)| = Hexp(at,\) = exp (CLZU>

= exp(aTrace(T)) = e*” 4)

where 7 = Trace(7'). Thus, the likelihood ratio for a pixel x is
given by

Ppume (x) _ Pyyg(exp(al’)x) exp(aT)
Pbkg(x) Poe (%) .

If we somehow did know the plume strength a (while at the same
time not knowing whether or not there even was a plume), then
this would be the optimal detector of that plume. It is known
as the clairvoyant detector [20] and is useful both conceptually
(as a starting point for detectors that do not require knowledge
of plume strength) and experimentally (as a best-case baseline
against which to compare other detectors).

L(a,x) = )

III. GAUSSIAN BACKGROUND
For a Gaussian background, we have Py (x) o exp[—2 (x —
p)' R~ (x — p)];incorporating this expressionin (5), and taking
logarithms, we have

log L(a,x) = log Pye(exp(aT’)x) + aT — log Pyg(x)

! ) R~ (exp(aT)x — p)

= —5(exp(al)x —

+ at
+3(x—p)R'(x—p) (©6)
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which provides a clairvoyant detector of absorptive plume on a
Gaussian background. And although our interest in this exposi-
tion is with weak plumes, note that (6) is optimal for all positive
values of a.

A. Quadratic Matched Filter (QMF)

Because we care about weak plumes, we will derive an LMP
detector [20] that is optimal for a — 0. Note that a direct
substitution of @ = 0 into (6) leads to log £(0,x) = 0, which
cannot be used as a detector. But we can always take a monotonic
transform of any detector without affecting its performance, and
as long as a > 0 (which is the case for absorptive plumes), the
transform log £(a, x)/a is monotonic. We, therefore, define

log L{a,x) 0
= % log L(a,x)

(N

DQAMF (X) = (lllm

—0 a a=0

with the expression on the right evaluated at a = 0. Define

Q) = lim < [~ 4(exp(aT)x — ) R~ (exp(aT)x o)

—tiny |~ L (e | B explaT)x - )

= ¢111£((1) [~ exp(aT)Tx]' R (exp(aT)x — p)

— L (Tx) R (x— p) @®)

as a quadratic expression of interest, and observe that

. log L(a,x)
D = lim ———
awr(x) = liny 5

=Q(x)+7 ©)
is the “quadratic matched filter.” Note that the additive term 7
has no influence on the performance of the QMF as a detector,
and could safely be discarded. One advantage of keeping it in the
definition, however, is that the expected value of Doamr(z) over
non-plume pixels is zero. As a further aside, comparison with
(2) shows that the quadratic Q(x) looks like the linear matched
filter, but the match is to T'x instead of Tu.

B. Generalized Likelihood Ratio Test

The GLRT formulation recognizes the dependence of the
detector on plume strength a. The abovementioned LMP for-
mulation considered the small a limit; by contrast, the GLRT
formulation takes two steps: first an estimated plume strength @
is computed and then the likelihood is evaluated at that estimate.
These steps can be combined into a single expression that defines
the GLRT for any background distribution Pg

max, P (exp(aT’)x) exp(at)
Bog (x) '

The maximum likelihood estimator for the plume strength @ is
the value of a that achieves the maximum in (10)

Déirr(x) = (10)

a = argmax , Py, (exp(aTl)x) exp(at)/Poxg(X). (11)

For the Gaussian distribution, the logarithm provides a conve-
nient monotonic transform

Dgrrr(x) = 21log D gr(X)
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= max, [2log P, (exp(aT)x) + 2a7 — 21og Py (x)]
(12)

= max, [— (exp(aT)x — p) R~ (exp(aT)x — p)
+2a7 + (x — p)' R (x — p)] . (13)

Note that (13) is a transcendental equation, and an exact closed-
form solution is beyond the algebraic skills of this author.
However, since we are interested in small a, we can approximate
the solution using a Taylor series expansion up to quadratic terms
in a. First, let us define

Ax) = (x — ) R (x = p)

which is the Mahalanobis distance from x to the centroid of the
distribution, and the basis of the RX anomaly detector [21]. Note
that

A(exp(aT)x) = A(x+aTx + 1a°T°x + O(a®))
— (x— )R (x— ) + 20(Tx)V R~ (x — o)
+a®(Tx)'R™Y(Tx) + a*(T?*x)' R (x — ) + O(a®)

(14)

= A(x) — 2aQ(x) + a*£(x) + O(a®) (15)
where Q(x) is defined in (8) and
E(x) = (Tx)R'Tx + (T°x)R™ ' (x — ) (16)

is defined here for convenience. By combining (13)-(15), we
have

Dairr(x) = max, [—A(exp(aT)x) + 2a7 + A(x)]
= max, [2a(Q(x) + 1) — a*E(x) + O(a®)] .

(17)
In this formulation, (17) is maximized at a = @, where
- Qx)+7 —(Tx)R Y (x—p)+7 (18)
- E(x)  (Tx)RTx+ (T?x)R1(x — )

though we should properly restrict @ > 0; i.e., reset negative
quantities to zero: @ < max(0,a).
Substituting this @ into (17) leads to the GLRT detector

Q) +7
£(x)
_ IRMx-wer o)
V(Tx)R1Tx + (Tx)TR Y (x — p)

1) Brief Remark on Quadratic Detector Functions: In (17),
we see a monotonic rescaling of the likelihood ratio expressed
in terms of a Taylor series of the form [2a4 — a®B + O(a®)].
This is a pattern will arise again in Section IV-D, and is
fairly common in general. Taking the derivative and setting
to zero produces a = A/B, but restricting to nonnegative a
makes that @ = max(0, A)/B. Inserting this expression back
into the quadratic [2aA — a®B] gives a GLRT that looks like
[max(0, A)%/B]. We can further rescale with the monotonic
f(z) = sign(x)+/]z|, and that leads to max(0, A)/v/B. As a
detector, though, we can cheat and simply write A/+/B since
negative values of the detector will not count as detections,

Dgirr (X) =
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anyway. And weirdly, the cheat is often better in the region of the
ROC curve we do not usually care about, getting better results
in the high false alarm rate regime. (One author has interpreted
this weirdness as a flaw in the GLRT itself [13].)

2) Some Remarks on Albedo-Corrected (AC) Estimates of
Plume Strength: In Foote et al. [22], an AC estimate of a
is suggested. To explain it, we begin with a non-AC (NAC)
estimate, based on the matched filter in (2). From the expres-
sion x = z — aTu, where z is the plume-free pixel spectrum,
assumed to be distributed as a Gaussian with mean p and
covariance R, we can obtain a best estimate of a at a pixel x

—(Tp)'R ' (x — p)
(Tp) R (Tp)
Based on the observation that this estimate is biased high for

high-albedo ground pixels, Foote et al. [22] proposed an AC
estimate

anac = (20)

-1
 “Ip)R(x — p) 21
(Tp)' R~ (Th)
where the scalar factor 7 is given by r = x'u /' .

We observe that the @ defined in (18) has a similar AC charac-
ter, although albedo correction was never explicitly incorporated
into it; rather, the form of the expression in (18) arose naturally
from the maximum likelihood estimate, based on exponential
absorption.

~ 1 1
aac = — X ANAC = —
T T

IV. ELLIPTICALLY CONTOURED (EC) MULTIVARIATE
t-DISTRIBUTED BACKGROUND

The detectors above for GLRT in (19) and LMP in (9), as
well as the linear matched filter in (2), were all derived under
the assumption that the background distribution is Gaussian. In
this section, these expressions are generalized for elliptically-
contoured fat-tailed backgrounds given by the multivariate ¢
distribution, which is often more descriptive of actual hyper-
spectral clutter [23], [24]. The multivariate ¢ is a fatter-tailed
distribution than the Gaussian, but like the Gaussian, depends
on x though the elliptical term A(x) = (x — p)' R~ (x — p).
It is given by

d+v

Pog(x) =c[(v =2) + AX)] =

where d is the dimension of x and c is a constant prefactor.

The scalar parameter v characterizes how fat the tails are. The

limit ¥ — oo corresponds to the Gaussian, and smaller values

of v describe distributions with fatter tails. Aslong as v > 2, the

second moment exists (and so the covariance is well defined).

We can estimate v from the data using either an exceedance
plot [24] or a moment method [25].

The extension of AMF to elliptically-contoured multivariate
t-distributed backgrounds was developed in [26]

(22)

Drc(v,x) = Fu(x) Damr(x) (23)
where
(v-1)
i ey ey
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can be thought of as a kind of “fattening” factor. Observe that
in the ¥ — oo limit, we have that 7, = 1, and (23) reverts to
the standard AMF in (2). At the other extreme, as v — 2, we
obtain the ACE detector (which is usually derived under other
assumptions [27]-[29])

Dack(x) = F2(x) Damr(x) = Damr(x)// A(x).

The extension of the quadratic matched filter to this fatter-
tailed background begins with the likelihood ratio

(25)

Poyme (%) _ P (exp(aT)x) exp(aT)

£(a)X) - Pbkg(x) Pbkg (X)
_ [v—24 A(exp(a T)x)]f% « explar). (26)
=2+ Ax)] *
Thus,
0 x) -2/ D) _ (v —2) + A(exp(a T)x) " ox —2at
Sl = T g A »(757)
B A(exp(aT)x) — A(x) —2ar
‘(l+ (v =2) + AX) )X“m<u+d>

Q+5@W4mmnmmm)

v—1
y —2art
ex .
P v+d

A. Clairvoyant Detector for EC Distribution

27

If @ is known, then the optimal detector is given by a mono-
tonic rescaling of the likelihood ratio. Here, we can write

2at
D(a,x)=(v—1) (1 —exp <1/—|—d> ﬁ(a,x)z/(”+d)>
(28)
as the monotonic transform, and then use (27) for
L(a,x)~2/(r+4) to obtain the clairvoyant detector

D(a,x) = F2(x) [A(x) — A(exp(aT)x)] . (29)

B. Weak Plume Regime (Small a)

To derive the LMP and GLRT solutions for weak plumes,
we need to express the likelihood ratio in terms of small a, and
this will be done with Taylor series formula that expresses these
quantities as low-order polynomials in a. Recall from (15) that
we can write A(exp(aT)x) — A(x) as a polynomial in ¢ with
coefficients that depend on Q(x) and £(x). We can also expand
the exponential

o —2art 1
X =1-
P v+d

so the product in (27) becomes

2at 2a%72

u+d+(u+d)

5 +0(®)  (30)

L(a,x)"2/+d) =

2a
v—1

1—

[Fo(x)Q(x) +6,]
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TABLE III
TAXONOMY OF EXPRESSIONS FOR ABSORPTIVE PLUME DETECTORS

Gaussian (v — c0) EC Fat (v — 2)
Additive | Dawr(x) = —(T)' R~1(x — p) Fu (%) Dame(x) Damr(x)// A(x)
LMP Doawr(x) = Q(x) + 7 T2 (x)Q(x) Q(x)/A(x)
a a=(9(x)+7)/E(x) See Eq. (36) Eq. (36) with v =2
GLRT | Deirr(x) = (Q(x) + 7)//E(x) See Eq. (37) See Eq. (38)
10g | Diogav(x) = t'R~1(logx — 1) Fu(1ogX) Diganr(X)  Diog.awe(x)/1/ Allog x)

Clairvoyant | Dc(x) = A(x) — A(exp(aT)x) F2(x)Dc(x) Dc(x)/A(x)

TABLE IV

HYPERSPECTRAL DATASETS USED FOR EVALUATION OF ALGORITHMS

Bands  Parameter Plume Strength
Dataset d v alao ||Ax]/]x]|
(a) OMI SO2 320 5.75 5.21 0.0033
(b) OMI NO2 320 3.76 6.02 0.0052
(c) AVIRIS 2016 CHy 212 5.81 5.56 0.0026
(d) AVIRIS 2019 CHy4 213 6.44 4.57 0.0025
2 2
a 49(x)0 20 .
2 v v 3
+ x)E(x + + O(a
S FRS(x) + 2 4 22 4 0(e?)
(€1Y)
with
v—1)T
0, = ! (32)
v+d

So now a monotonic rescaling of the likelihood can be expressed
D(a,x) = (v—1)(1 — L(a,x)"¥¥*D)
— 20 [F2()Q(x) + 0,

49(x)0, + 202

—a® | FA(x)E(x) + 1

] +0(a®).
(33)

C. LMP Detector for EC Distribution

At this point, we can define the LMP detector in terms of the
limit
. D(a,x
Dorc(x) = lim Dlax) _ 0, = F2(x) Q(x). (34)
a—0 a
The ACE-ification of QMF is obtained by taking the v — 2 limit

of QEC

Daace(x) = Q(x)/A(x) (35)

D. GLRT Detector for EC Distribution

While the LMP detector required only terms linear in a, the
GLRT detector requires the quadratic terms as well. From the
formula for D(a, x) in (33), which can be expressed as 2a A —
a’B + O(a®), we can see that this expression is maximized at

~_ A F(XAx)+6,
T Fee ¢+ ez O

Substituting a into D(a,x) gives an expression of the form
A?/B. Following the same argument we used for the Gaussian

case, namely that the combination of a square root and the
imposition of @ > 0 yields the form A/ /B, we have

F2 o,
Dgrrrec(X) = (%) Q(x) + |
\/}—E(X)S(x) | 40(x)0,+202

v—1

(37

Observe thatin the v — oo limit, 7, — land ©,, — 7, which
reduces to a = (Q(x) + 7)/E(x), in agreement with (18) for a
Gaussian background. In this limit, (37) similarly reduces to
(Q(x) + 7)/4/E(x), which is the form in (19).

The v — 2 limit is also of interest; this is the ACE-ification
limit, and here it leads to

Dairr-ace(x) = 11/12% Dairrec(x)

_ Q(x)/A(x) + O3 (38)
VEX)/AX) +49(x)0, + 26072

with @y = T/(d+2)

V. LOGNORMAL BACKGROUND

A number of authors have recognized that exponential atten-
uation becomes linear when you are working in log space [30]—
[34]. That is to say, (1) becomes

logx = logz — at. (39)
In particular, Schaum [34] suggested the detector
Digg-amr(x) = t' R (logx — fu) (40)

where i and R are the mean and covariance, respectively, of the
background in log space. If the background is lognormal (that is:
if the background is Gaussian in log space), then this log matched
filter is the uniformly most powerful (UMP) detector [34].

Two natural extensions to this expression consider the case
that the log space is not Gaussian but multivariate ¢-distributed.
These expressions do not share the UMP property of the log-
AMF detector, even in when the background is accurately mod-
eled by a multivariate ¢, but they are better fits to these more
general background distributions. Here, following (23), we can
write

Diog-ec(x) = F, (log x) Diog-amr(X) (41)
and the ¥ — 2 limit provides
Diog-ack (%) = Diog-amr(x)/ A(logx). (42)
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TABLE V
PERFORMANCE OF VARIOUS DETECTORS OF PLUMES THAT ARE IMPLANTED ON REAL HYPERSPECTRAL DATA. BOLDFACE VALUES INDICATE THE BEST (OR
NEARLY BEST) NONCLAIRVOYANT PERFORMANCE FOR EACH STATISTIC

(a) OMI SO, (b) OMI NO»
Detector | FAR@DRSO  I-AUC _ I-DR@FARO5 Detector | FAR@DRSO  I-AUC __ I-DR@FARO5
t-AMF | 0.11893 0.09018 0.26088 t-AMF | 0.03983 0.04045 0.17865
t-ACE |  0.08527 0.08511 0.23474 t-ACE 001389  0.02709 0.11207
t-EC 0.08564 0.08513 0.23508 t-EC 0.01400  0.02715 0.11234
TuAMF | 0.01707 0.04856 0.16003 TuwAMF | 000282 0.01879 0.07615
Tu-ACE |  0.00561 0.04152 0.13030 Tu-ACE 0.00070  0.01222 0.04527
Tu-EC 0.00564 0.04161 0.13064 Tu-EC 0.00069  0.01226 0.04549
QAMF |  0.14044 0.07835 0.27786 QAMF | 0.05871 0.04501 0.22295
QACE |  0.07594 0.06334 0.22074 QACE 0.00807 0.02181 0.09330
QEC 0.07674 0.06355 0.22157 QEC 0.00820  0.02193 0.09399
GLRTAMF | 0.04280  0.03254 0.16442 GLRTAMF | 000552  0.00916 0.05368
GLRTACE | 001618 0.02333 0.10177 GLRT-ACE 0.00071 0.01102 0.04359
GLRT-EC 0.01636 0.02333 0.10239 GLRT-EC 0.00070  0.01095 0.04367
log-AMF | 0.01604 0.02122 0.01941 log-AMF | 0.00497 0.00588 0.00779
log-ACE |  0.00525 0.01600 0.04044 log-ACE 0.00012  0.00483 0.02074
log-EC 0.00524  0.01597 0.04022 log-EC 0.00012  0.00480 0.02059
Clairvoyant AMF | 0.00512 0.01363 0.08572 Clairvoyant AMF | 0.00031 0.00319 0.01052
Clairvoyant-:ACE | 0.00370  0.01187 0.08411 Clairvoyant-ACE 0.00059  0.00347 0.01804
Clairvoyant-EC 0.00374 0.01189 0.08415 Clairvoyant-EC 0.00058 0.00345 0.01791
(c) AVIRIS-NG 2016 CHy4 (d) AVIRIS-NG 2019 CHy4
Detector | FAR@DRSO  I-AUC __ I-DR@FARO5 Detector | FAR@DRS0  1-AUC  |-DR@FAR05
t-AMF | 0.00755 0.01539 0.07983 t-AMF | 0.00455 0.00772 0.02923
t-ACE |  0.00151 0.01019 0.04858 t-ACE 0.00163 0.00614 0.02621
t-EC 0.00154 0.01025 0.04900 t-EC 000162  0.00613 0.02617
Tu-AMF | 0.00450  0.00942 0.04910 Tu-AMF | 000219 0.00367 0.01156
Tu-ACE | 0.00045 0.00521 0.02535 Tu-ACE 0.00027  0.00245 0.01030
Tu-EC 0.00046 0.00526 0.02563 Tu-EC 0.00028  0.00245 0.01028
QAMF | 0.07289 0.04048 0.23644 QAMF | 0.01481 0.01366 0.04569
QACE |  0.02901 0.02409 0.14727 QACE 0.00283 0.00718 0.03298
QEC 0.02963 0.02436 0.14929 QEC 0.00289 0.00719 0.03293
GLRTAMF | 0.00301 0.00688 0.03439 GLRTAMF | 0.00180  0.00327 0.01056
GLRT-ACE |  0.00040  0.00474 0.02299 GLRT-ACE 0.00028  0.00231 0.00992
GLRT-EC 0.00042 0.00476 0.02313 GLRT-EC 0.00028  0.00231 0.00991
log-AMF | 0.00244 0.00333 0.00576 logAMF | 0.00147 0.00246 0.00464
log-ACE | 0.00029 0.00390 0.01698 log-ACE 0.00033  0.00282 0.01195
log-EC 0.00029 0.00387 0.01681 log-EC 0.00033  0.00280 0.01189
Clairvoyant AMF | 0.00067 0.00179 0.00547 Clairvoyant AMF | 0.00066  0.00158 0.00412
Clairvoyant-ACE | 0.00020  0.00122 0.00387 Clairvoyant-ACE 0.00018 0.00095 0.00287
Clairvoyant-EC 0.00021 0.00122 0.00388 Clairvoyant-EC 0.00019  0.00096 0.00287

Here, J’T: and A are essentially the same as 7, and A [defined,
respectively, in (24) and (14)], but using i and R in place of p
and R.

A taxonomy of all of these detectors is shown in Table III.
(Note that many of these detectors are expressed in terms of
intermediate quantities, which are summarized in Table II.)

VI. NUMERICAL EVALUATION

One way to measure the quality of a detection algorithm is
to implant a plume into a hyperspectral image, and see if the
algorithm can find it. We will do that here, but in a formalized
way that makes two copies of the hyperspectral data. The first
copy is untouched, while the second copy has plume implanted in
every pixel. Thus, if z is the pixel in the first (presumably plume-
free) copy, then the corresponding pixel in the ON-plume copy is

x = exp(—aT)z. The mean p and covariance R are estimated
from the OFF-plume data (in other words, we are neglecting
contamination effects, arguing that in an operational scenario,
the ON-plume pixels will be rare). This is a kind of matched-
pair approach [35], [36] that Rotman calls the two histogram
method [37]. The obtained detector is applied to both ON-plume
and OFF-plume pixels and from these a ROC curve is computed.
Three statistics of interest to us are as follows:
1) false alarm rate at threshold with detection rate of 80%
(FAR@DR&0);
2) detection rate at threshold with false alarm rate of 0.05
(DR@FARO05);

3) area under the ROC curve (AUC).

The first statistic is more appropriate for most detection
scenarios (where low false alarm rates are crucial), but the
second statistic provides an alternative that might be relevant in
scenarios for which detections are crucial and some false alarms
can be tolerated. The AUC is widely employed, and arguably
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TABLE VI
IMPLANTED PLUMES IN GAUSSIAN BACKGROUNDS. BOLDFACE VALUES INDICATE THE BEST (OR NEARLY BEST) NONCLAIRVOYANT PERFORMANCE FOR EACH
STATISTIC. HERE, WE EXPECT (AND OBSERVE) THAT THE AMF AND EC VARIANTS OF THE VARIOUS DETECTORS PERFORM THE BEST, THOUGH OFTEN ONLY
MARGINALLY SO. FOR THESE DATASETS, THE GLRT-BASED DETECTORS ARE SUBSTANTIALLY BETTER THAN THE 7 pu-BASED MATCHED FILTERS, WHILE THE
LOG-BASED DETECTORS ARE MUCH WORSE

(a) OMI SO (b) OMI NO
Detector | FAR@DR80  1-AUC  1-DR@FARO05 Detector | FAR@DRS0  1-AUC _ I-DR@FARO5
t-AMF | 0.11318  0.10770 0.25312 tAMF | 004882 0.08216 0.19871
t-ACE | 0.11728  0.10843 0.25776 t-ACE | 005046  0.08243 0.20050
t-EC | 011318  0.10770 0.25312 t-EC | 004882  0.08216 0.19871
Tp-AMF | 001004 0.06988 0.14770 Tp-AMF | 0.00330  0.07040 0.13352
Tu-ACE |  0.01081 0.07004 0.14884 Tup-ACE | 000330  0.07036 0.13348
Tu-EC | 001004  0.06988 0.14770 Tp-EC | 000330  0.07040 0.13352
QAMF | 003115  0.02897 0.16010 QAMF | 0.08729  0.06047 0.23913
QACE | 0.03414  0.02979 0.16558 QACE | 008965  0.06114 0.24263
QEC | 003115  0.02897 0.16010 QEC | 008729  0.06047 0.23913
GLRT-AMF | 0.00016  0.00606 0.02849 GLRT-AME | 0.00110  0.02237 0.08441
GLRT-ACE |  0.00016  0.00614 0.02867 GLRT-ACE |  0.00111  0.02380 0.08711
GLRT-EC | 0.00016  0.00606 0.02849 GLRT-EC | 0.00110  0.02237 0.08441
log-AMF | 0.71157  0.46984 0.94950 log-AMF | 024037 020314 0.94614
log-ACE | 072343 047328 0.94603 log-ACE |  0.24141 0.16836 0.76399
log:EC | 072492 047318 0.94638 log-EC | 023987  0.18953 0.90676
Clairvoyant-AMF | 0.00006 __ 0.00139 0.00540 Clairvoyant-AMF | 0.00040  0.00499 0.03457
Clairvoyant-ACE | 0.00008  0.00140 0.00554 Clairvoyant-ACE | 0.00039  0.00504 0.03480
Clairvoyant-EC | 0.00006  0.00139 0.00540 Clairvoyant-EC | 0.00040  0.00499 0.03457
(¢) AVIRIS-NG 2016 CHy4 (d) AVIRIS-NG 2019 CH,4
Detector | FAR@DR80  1-AUC _ I-DR@FARO05 Detector | FAR@DRS0  1-AUC _ I-DR@FARO5
t-AMF | 000194  0.03043 0.08826 t-AMF | 0.00431 0.01655 0.07043
t-ACE | 000225  0.03057 0.08910 t-ACE | 000476  0.01683 0.07182
t-EC | 000194  0.03043 0.08826 t-EC |  0.00431 0.01655 0.07043
Tp-AMF | 0.00044 002388 0.06850 Tp-AMF | 0.00092  0.00933 0.03973
Tu-ACE | 0.00051 0.02393 0.06885 Tp-ACE | 000103  0.00942 0.04014
Tp-EC | 0.00044  0.02388 0.06850 Tp-EC | 0.00092  0.00933 0.03973
QAMF | 0.03311 0.04237 0.17340 QAMF | 001522  0.02327 0.11504
QACE | 003779  0.04362 0.18023 QACE | 001808  0.02440 0.12115
QEC | 003311 0.04237 0.17340 QEC | 001522 002327 0.11504
GLRT-AMF | 0.00040  0.01671 0.06113 GLRT-AMF | 0.00087  0.00866 0.03792
GLRT-ACE |  0.00044  0.01675 0.06143 GLRT-ACE |  0.00095  0.00871 0.03813
GLRT-EC | 0.00040  0.01671 0.06113 GLRT-EC | 0.00087  0.00866 0.03792
log-AMF | 029354  0.18789 0.76637 log-AMF | 0.33403  0.19260 0.68247
log-ACE | 029698  0.17510 0.67367 log-ACE | 034014  0.18823 0.64933
log-EC | 029658  0.17532 0.67593 log-EC | 034000  0.18822 0.64952
Clairvoyant-AMF | 0.00017 _ 0.00321 0.01940 Clairvoyant-AMF | 0.00063 _ 0.00283 0.01361
Clairvoyant-ACE | 0.00018  0.00324 0.01946 Clairvoyant-ACE | 0.00071 0.00287 0.01377
Clairvoyant-EC | 0.00017  0.00321 0.01940 Clairvoyant-EC | 0.00063  0.00283 0.01361

provides a kind of compromise between the first two, except
that it places most of its weight on performance at high false
alarm rates, so it is not usually a good choice in target detection
applications. All of these statistics are scalar values between 0
and 1; in the Tables, we have listed FAR, 1-AUC, and 1-DR so
that smaller values are always better.

As described in Table IV, four hyperspectral datasets, and
three different gas species (NOs, SO2, and CHy), were used to
evaluate the algorithms. These datasets are as follows.

a) An SO; plume is implanted into an image obtained from

the Ozone Monitoring Instrument (OMI) [32], and then
resampled to match the wavelengths available on the
Nanosat Atmospheric Chemistry Hyperspectral Observa-
tion System [38], [39] to produce a 320 band image with
320 x 1444 pixels.

b)

)

d)

An NO; plume implanted into a different OMI scene [40],
and again resampled to produce a 320 x 320 x 1444 pixel
image.

A plume of CHy is implanted into a a 598 x 1200 chip
of an AVIRIS-NG image of a landfill in India (scene
ang20160211t075004) [41]; although there are 425
total channels in the scene, we only use the 212 longer-
wavelength channels, that match the methane absorption
spectrum.

A CHy plume is implanted into a 213 x598 x 1500
chip of an AVIRIS-NG image acquired over an oil and
natural gas field near Carlsbad, New Mexico, USA (scene
ang20191023t151141) [41].

In all four cases, the plume strength was chosen to be several
times the characteristic strength a,, defined in (46). The direct
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TABLE VII
IMPLANTED PLUMES IN MULTIVARIATE ¢-DISTRIBUTED BACKGROUNDS, WITH v = 3.0. BOLDFACE VALUES INDICATE THE BEST (OR NEARLY BEST)
NONCLAIRVOYANT PERFORMANCE FOR EACH STATISTIC. HERE, WE EXPECT (AND OBSERVE) THAT THE EC AND ACE VARIANTS OF THE DETECTORS TO BE
BETTER, AND THEY ARE OFTEN SUBSTANTIALLY BETTER THAN THEIR AMF COUNTERPARTS. AS WITH THE GAUSSIAN BACKGROUND, THE LOG-BASED
DETECTORS PERFORM POORLY

(a) OMI SO2 (b) OMI NO2

Detector | FAR@DR80  1-AUC  1-DR@FARO05 Detector | FAR@DR80  1-AUC  1-DR@FARO5
t-AMF 0.02547 0.06596 0.13971 t-AMF 0.01305 0.05050 0.09814
t-ACE 0.01137 0.06199 0.14508 t-ACE 0.00183 0.04813 0.10869
t-EC 0.01116 0.06193 0.14464 t-EC 0.00177 0.04808 0.10834
T pu-AMF 0.00561 0.04294 0.07309 T p-AMF 0.00342 0.04324 0.06724
T u-ACE 0.00003 0.04168 0.08283 T'u-ACE 0.00000 0.04226 0.07504
Tu-EC 0.00003 0.04165 0.08261 Tu-EC 0.00000 0.04224 0.07488
QAMF 0.01575 0.01791 0.07259 QAMF 0.01462 0.03857 0.11397
QACE 0.02066 0.02644 0.14307 QACE 0.02885 0.04396 0.17166
QEC 0.01979 0.02611 0.14122 QEC 0.02788 0.04373 0.17043
GLRT-AMF 0.00163 0.00391 0.00917 GLRT-AMF 0.00103 0.01911 0.03655
GLRT-ACE 0.00000 0.00333 0.01553 GLRT-ACE 0.00000 0.01318 0.04676
GLRT-EC 0.00000 0.00331 0.01539 GLRT-EC 0.00000 0.01317 0.04660
log-AMF 0.62577 0.42527 0.94436 log-AMF 0.09564 0.11096 0.88316
log-ACE 0.61906 0.42711 0.93704 log-ACE 0.08109 0.07092 0.31299
log-EC 0.62118 0.42888 0.93694 log-EC 0.08958 0.09338 0.62267
Clairvoyant-AMF 0.00035 0.00191 0.00544 Clairvoyant-AMF 0.00019 0.00492 0.02121
Clairvoyant-ACE 0.00000 0.00041 0.00068 Clairvoyant-ACE 0.00000 0.00143 0.00632
Clairvoyant-EC 0.00000 0.00041 0.00068 Clairvoyant-EC 0.00000 0.00143 0.00631

(c) AVIRIS-NG 2016 CHy (d) AVIRIS-NG 2019 CH4

Detector | FAR@DR80O  1-AUC  1-DR@FARO05 Detector | FAR@DR80  1-AUC  1-DR@FARO5
t-AMF 0.00428 0.02424 0.04222 t-AMF 0.00679 0.01728 0.03205
t-ACE 0.00002 0.02395 0.05713 t-ACE 0.00023 0.01723 0.05544
t-EC 0.00002 0.02390 0.05675 t-EC 0.00021 0.01714 0.05486
T p-AMF 0.00307 0.02100 0.03489 T p-AMF 0.00423 0.01296 0.02207
Tu-ACE 0.00000 0.02090 0.04812 Tu-ACE 0.00002 0.01321 0.04123
Tu-EC 0.00000 0.02085 0.04783 Tu-EC 0.00001 0.01314 0.04082
QAMF 0.00916 0.02648 0.07234 QAMF 0.00652 0.02071 0.04731
QACE 0.02209 0.03858 0.15239 QACE 0.02416 0.03534 0.15178
QEC 0.02046 0.03807 0.14988 QEC 0.02231 0.03472 0.14856
GLRT-AMF 0.00155 0.01619 0.02996 GLRT-AMF 0.00186 0.01542 0.02562
GLRT-ACE 0.00000 0.01213 0.04078 GLRT-ACE 0.00001 0.01099 0.03897
GLRT-EC 0.00000 0.01210 0.04048 GLRT-EC 0.00001 0.01096 0.03862
log-AMF 0.02579 0.04005 0.03309 log-AMF 0.02173 0.03153 0.03552
log-ACE 0.00614 0.03412 0.08959 log-ACE 0.00516 0.03141 0.09613
log-EC 0.00620 0.02969 0.06215 log-EC 0.00506 0.02628 0.07257
Clairvoyant-AMF 0.00062 0.00354 0.01186 Clairvoyant-AMF 0.00113 0.00599 0.01476
Clairvoyant-ACE 0.00000 0.00117 0.00389 Clairvoyant-ACE 0.00000 0.00135 0.00519
Clairvoyant-EC 0.00000 0.00118 0.00389 Clairvoyant-EC 0.00000 0.00135 0.00520

effect of the plumes on the spectra x, however, was quite small,
typically less than about half a percent.

Table V shows the performance of the various algorithms in
detecting plume that has been implanted on the hyperspectral
data. In all four cases, we observe that T is always better than
t as a target vector. The QMF family of detectors, based on the
LMP hypothesis, is in all cases worse than the matched filters
based on the Ty targets. Although LMP is optimal for weak
plumes, that optimality does not hold up when the plumes are
strong enough to be detectable at reasonable false alarm rates
(see Appendix A-B). The GLRT detectors are almost always
better than the matched filter detectors (and the Clairvoyant
detectors are usually better still, but that detector requires a pri-
ori knowledge of plume strength, and in practice that is not
available). For these real datasets, the backgrounds were fatter
tailed than Gaussian, and the multivariate ¢ distribution provided

a better model, as is evidenced by the (often considerably)
better performance obtained by the ACE and EC variants of
these detectors. That the ACE and EC detectors were nearly
identical is a consequence of the 7 < d that was observed for
these datasets. The log-based detectors, especially log-ACE and
log-EC, perform fairly well on this data, even outperforming (in
the OMI NOs, case) the clairvoyant detectors; that can happen
because the clairvoyant detectors are optimized for specific
background distributions (Gaussian for AMF, multivariate ¢ for
EC) that may not correspond to the actual distribution of the real
hyperspectral data.

The log-transformed data provided interesting results. The
log-AMEF detector, which would be UMP if the background were
lognormal [34], was never as good as the GLRT-ACE or GLRT-
EC detectors. But the log-ACE and log-EC detectors provided
excellent performance, outperforming even the GLRT-ACE and
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TABLE VIII
IMPLANTED PLUMES IN LOGNORMAL BACKGROUND. BOLDFACE VALUES INDICATE THE BEST (OR NEARLY BEST) NONCLAIRVOYANT PERFORMANCE FOR EACH
STATISTIC. AS PREDICTED, THE LOG-AMEF IS OPTIMAL AGAINST THIS BACKGROUND. THE OTHER AMF-BASED DETECTORS, HOWEVER, ARE NOT AS GOOD AS
THE EC AND ACE VARIANTS

(a) OMI SO5 (b) OMI NO,

Detector | FAR@DRS0  1-AUC  I-DR@FARO5 Detector | FAR@DRS0  1-AUC _ 1-DR@FARO05
t-AMF 0.36872 0.21368 0.75528 t-AMF 0.13485 0.08147 0.47370
t-ACE 0.34334 0.18783 0.64374 t-ACE 0.06022 0.04587 0.22710
t-EC 0.34380 0.18806 0.64492 t-EC 0.05987 0.04571 0.22607
T-AMF 0.29800 0.17470 0.69792 Tu-AMF 0.05695 0.03547 0.22608
Tu-ACE 0.25362 0.14296 0.54207 Tu-ACE 0.00113 0.00315 0.01373
Tu-EC 0.25418 0.14318 0.54316 Tu-EC 0.00120 0.00332 0.01459
QAMF 0.36392 0.21461 0.77243 QAMF 0.10658 0.05992 0.41387
QACE 0.30146 0.16721 0.61189 QACE 0.00250 0.00468 0.02118
QEC 0.30262 0.16779 0.61451 QEC 0.00276 0.00505 0.02346
GLRT-AMF 0.44301 0.29732 0.93017 GLRT-AMF 0.02602 0.01744 0.06235
GLRT-ACE 0.28480 0.16518 0.63493 GLRT-ACE 0.00141 0.00330 0.01414
GLRT-EC 0.28609 0.16608 0.63854 GLRT-EC 0.00143 0.00335 0.01431
log-AMF 0.03981 0.03311 0.17067 log-AMF 0.00048 0.00166 0.00621
log-ACE 0.04024 0.03335 0.17224 log-ACE 0.00053 0.00171 0.00630
log-EC 0.03981 0.03311 0.17067 log-EC 0.00048 0.00166 0.00621
Clairvoyant-AMF 0.28590 0.18374 0.66012 Clairvoyant-AMF 0.00411 0.01179 0.03380
Clairvoyant-ACE 0.28076 0.15920 0.57173 Clairvoyant-ACE 0.00127 0.00296 0.01198
Clairvoyant-EC 0.28093 0.15937 0.57196 Clairvoyant-EC 0.00129 0.00297 0.01194

(¢) AVIRIS-NG 2016 CHy4 (d) AVIRIS-NG 2019 CH,

Detector | FAR@DRS0  I-AUC  I-DR@FARO05 Detector | FAR@DR80  1-AUC _ 1-DR@FARO05
t-AMF 0.03906 0.02398 0.14933 t-AMF 0.01457 0.01143 0.05130
t-ACE 0.00374 0.00520 0.02278 t-ACE 0.00323 0.00538 0.02386
t-EC 0.00395 0.00533 0.02332 t-EC 0.00324 0.00538 0.02382
T-AMF 0.02424 0.01576 0.08321 Tu-AMF 0.00609 0.00564 0.01978
Tu-ACE 0.00075 0.00205 0.00754 Tu-ACE 0.00065 0.00183 0.00651
Tu-EC 0.00082 0.00211 0.00774 Tu-EC 0.00066 0.00183 0.00654
QAMF 0.08747 0.05097 0.35074 QAMF 0.02981 0.01947 0.11121
QACE 0.00450 0.00729 0.03727 QACE 0.00154 0.00290 0.01065
QEC 0.00497 0.00769 0.03971 QEC 0.00155 0.00291 0.01071
GLRT-AMF 0.01531 0.00983 0.02669 GLRT-AMF 0.00443 0.00432 0.01268
GLRT-ACE 0.00066 0.00204 0.00770 GLRT-ACE 0.00068 0.00183 0.00644
GLRT-EC 0.00070 0.00208 0.00782 GLRT-EC 0.00067 0.00183 0.00645
log-AMF 0.00013 0.00075 0.00218 log-AMF 0.00039 0.00145 0.00503
log-ACE 0.00017 0.00081 0.00229 log-ACE 0.00047 0.00153 0.00523
log-EC 0.00013 0.00075 0.00218 log-EC 0.00039 0.00145 0.00503
Clairvoyant-AMF 0.00199 0.00383 0.01108 Clairvoyant-AMF 0.00151 0.00286 0.00877
Clairvoyant-ACE 0.00045 0.00153 0.00574 Clairvoyant-ACE 0.00058 0.00167 0.00588
Clairvoyant-EC 0.00047 0.00155 0.00585 Clairvoyant-EC 0.00058 0.00167 0.00588

GLRT-EC detectors in three of the four cases (and coming very
close in the fourth case).

In Tables VI-VIII, the background data are simulated from
known distributions, with mean and covariance adjusted to
match the mean and covariance of the original datasets. At a
minimum, this provides a sanity check that the algorithms that
are optimized for those distributions indeed perform best in those
cases. Beyond that, however, these experiments also provide
a measure of stability of the various algorithms to different
background distributions.

Table VI uses a Gaussian background distribution, and in
this case we see—as expected—that the AMF variants of the
different detectors achieve the best statistics. But we also see
that the ACE variants are nearly as good. For these datasets, the

GLRT-based detectors are substantially better than the linear
Tu-based matched filters. On the other hand, the log-based
detectors are much worse (the FAR @DRS80 statistic is hundreds
of times larger for the log-based detectors, compared to the
GLRT detectors).

Table VII uses a multivariate ¢-distributed background with
very small parameter (v = 3.0) corresponding to a very fat-tailed
elliptically-contoured distribution. Here, the ACE and EC de-
tectors are best, and the AMF-based detectors are often much
worse. The log-based detectors generally fare poorly here, as
well, though they are not as bad as they were against Gaussian
backgrounds (except for the OMI background with SO5 plume).
Interestingly, and somewhat counter-intuitively, the lowest false
alarm rates for these fat-tailed backgrounds are lower than the
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Fig. 1. Comparison of performance (based on the false alarm rate when detection rate is 80%) for different detectors against implanted CH4 plumes on different
backgrounds. (a) Hyperspectral background is based on the 2019 AVIRIS-NG image over Carlsbad, New Mexico [data set (d) in the text, and in Tables V=VIII]. (b)
Simulated Gaussian background with same mean and covariance as the AVIRIS-NG data. (c) Simulated multivariate ¢-distributed background; note, the missing
bars for Clairvoyant-EC and Clairvoyant-ACE correspond to zero false alarms. (d) Simulated lognormal background. For a Gaussian background, we expect the
AMF to perform best, and although that is what we observe, we also observe that the EC and ACE variants exhibit nearly identical performance. Against the
multivariate ¢ background, the EC variants are (as expected) best, and against the lognormal background, the log-AMF detector is (again, as predicted by theory)
best. Against the real hyperspectral background, we see the EC and ACE variants consistently and substantially outperforming their AMF counterparts. We also
see the simple Tp-based matched filters nearly identical to the GLRT, which in turn is nearly as good as the clairvoyant detectors. And the log-EC and log-ACE
detectors are also seen to do fairly well. Those log-based detectors, however, perform very poorly against the simulated Gaussian and multivariate ¢ backgrounds.
In every case, we see that the t-based matched filters are outperformed by the Tu-based detectors, and the LMP-based Quadratic detectors do not fare well at all.

lowest false alarm rates on Gaussian backgrounds (as reported background distribution. This explains, for instance, how
in Table VI), even though the plume strength is the same in both the clairvoyant-AMF (which assumes a Gaussian back-
cases. ground) can fare so poorly in a lognormal background.
Finally, Table VIII uses a lognormal background. The log of 4) Although the AMF detectors are provably optimal when
this data will have the same mean and covariance as the original the background is Gaussian, they are only slightly better
datain log space. As predicted by theory, the log-based detectors than the EC and ACE detectors in that scenario. And for
are best, and in particular the log-AMF lives up to its theoretical non-Gaussian backgrounds, the AMF detectors are often
optimality in this situation. In three of the four cases (b)—(d), substantially worse.
we see that the GLRT-EC detector, while not as good as the 5) Although EC detectors are theoretically better than both
log-AMEF, was still competitive, with only a few times as many AMF and ACE detectors, adapting themselves to the de-
false alarms at a fixed detection rate. gree of fat-tailed-ness in the background distribution, they
Fig. 1 illustrates the main results in these four tables, restrict- were found in these experiments to be only marginally
ing consideration to a single statistic (FAR @DR80) and to case better than the ACE detectors.
(d) abovementioned: a CH4 plume implanted in four different 6) The log-AMF detector, although it has nice theoretical
backgrounds with the same mean and covariance as the 2019 properties when the background distribution is lognor-
AVIRIS-NG dataset. mal [34], does not perform well under other background
Numerical results are necessarily anecdotal and, therefore, distributions. On the other hand, the log-EC and log-ACE
always somewhat tentative, but here are some general patterns detectors, although they also fare poorly with Gaussian
that can be discerned from these simulations: and multivariate ¢-distributed backgrounds, did surpris-
1) There can be orders-of-magnitude differences in the per- ingly well in the four real datasets.
formance of different plume detectors. 7) Although the GLRT detectors are designed to be better
2) One of the greatest sources of this variability in perfor- than the simple matched-filters, we find that the Tu-ACE
mance is differences in the background model, and how detector is very often competitive with the best GLRT
well the model matches the actual background. detector for a given scenario. This bears some emphasis
3) When including the clairvoyant detectors in these because that detector is algebraically very simple, but
comparisons, it is important to remember that what they still different from the more widely employed Tpu-AMF

are clairvoyant about is the plume strength, not the detector.
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8) The t-based matched filters were in virtually every case
outperformed by the Tmu-based equivalents.

9) The LMP-based “quadratic matched filters” did not per-
form well at all, and are not recommended for practi-
cal use. Appendix A-B discusses this from a theoretical
perspective.

VII. CONCLUSION

It is often, if informally, asserted that a linear filter is appro-
priate for gas-phase plume detection because the exponential
in Beer’s law becomes linear in the weak plume limit. But a
more careful derivation shows that the linear matched filter is
not strictly appropriate even in the limit as plume strength goes
to zero.

Furthermore, this weak plume limit is itself not quite ap-
propriate if it implies that the plume is so weak that it is
undetectable. The LMP solution that corresponds to the weak
plume limit (¢ — 0) and that leads to the quadratic matched filter
is empirically found to be less effective than the GLRT solution
(indeed, it is often less effective than the linear matched filter)
when the plume is strong enough to be detected with reasonably
small false alarm rate.

In deriving, the GLRT solutions, estimates of plume strength
a are made along the way, and it is observed in Section III-B2
that these estimates provide a built-in albedo correction, similar
in flavor to the albedo correction in [22]. A useful future study
would be to evaluate the relative performance of these different
estimators.

As computers become faster and cheaper, the need for closed-
form solutions has arguably diminished. Particularly with mod-
ern machine learning tools, it is possible to produce detectors
that are adapted for virtually any physical situation that can be
modeled [35], [36], [42]; there is, therefore, less need for linear
approximations or simplifying assumptions. But even in this en-
vironment, simple expressions do still have advantages. They are
useful when computation is limited (e.g., on small space-borne
platforms [38], [39]), or when intuitive interpretation is desired.

APPENDIX A
CHARACTERISTIC PLUME STRENGTH a,,

The detectability of a plume certainly depends on its strength
a, butit also depends on the absorption spectrum t, and the mean
1 and covariance R of the clutter. For a given t, y, and R, we
seek a characteristic plume strength a,, that corresponds roughly
to a minimum detectable quantity. The actual MDQ will depend
on x as well (or, more properly, on z, the pixel spectrum in the
absence of plume), and of course on the level of false alarm rate
that you can tolerate with your detection.

We will go back to the approximation x = z — aTp. The de-
tector (Tp)' R~ (x — p) will, in the absence of plume (x = z),
be a scalar random variable with mean zero and variance given
by

Variance ((Tp) R (z — p))
= ((Tw) R (z — p)(z — p)'R™(Tp) )
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= (Tu)' R (Tp).

In the presence of plume of magnitude a, we have a mean value
for the detector of

Mean ((Tp)'R™' (x — p)) = ((Tp)' R} (z — aTp — p) )

(43)

= —a(Tp)' R (Tp). (44)
To obtain an “n sigma” detection requires
[Mean| = n+/ Variance (45)

which is to say that a(Tp) R~ (Tw) = n\/(Tp) R~ (Tw).

That is: a = n/+/(Tp)’ R~ (Tw). We will, therefore, take our
characteristic plume strength to be
ao = 1/\/(Tw) R (Tp) = 1/|R™*Tul|  (46)

and recognize that we will need plumes that are several times
stronger than this in order to get detections at low false alarm
rate.

Perhaps the main use of a, is to inform our choice of a in
simulations assessing algorithms for detecting weak plumes.
We may simulate multiple scenarios (e.g., different gases on
different backgrounds), but our baseline comparison is in terms
of the characteristic a,, for the different scenarios.

A. Remark on the Strength of Weak Plumes

It bears remarking that although a plume whose strength is
on the order of the characteristic strength a, is just detectable,
it is still a weak plume. Consider a typical pixel, for which
X = W, and notice that the magnitude of the difference between
OFF-plume and ON-plume is given by || exp(—a,T)p — u||. A
natural comparison is the magnitude of the pixel itself, which is
|l£e]], and the ratio is given by

[Ax]|  [lexp(zaT)p — p| _ [la Ty
bS] el el
| T 1
~ X . 47)
[pll  [|[RY2 T

A slightly (but only slightly) more accurate derivation yields

[Ax|  [lexp(=aoT)x —x|| _ [la.Tx]|

[ 1] [l
| Tpe||? + t' Rt 1 48)
2] + Trace(R) = |[R—/>Tp]’

We find in practice this ratio is often much—much less than one,
even when the plume to clutter ratio in the matched filter space
is of order one.

Observe that the covariance R typically has its maximum
eigen-direction along a vector that is roughly parallel to p;
but since the data values are positive, we can say that the
largest eigenvalue is roughly bounded by ||u/|?, and that most
eigenvalues tend to be quite a bit smaller than that. Thus,
the smallest eigenvalue of R~1 is of order 1/| pu||* with most
eigenvalues quite a bit larger than that. Thus, for most vectors u,
we expectu’ R~ lu/u'u > 1/||p||?. Taking u = T, we obtain:
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(Tp)' R~YTw/||Tp|* > 1/||p||? from which it follows:

[Tpe] 1
<1
el (R 2T

Thatis: || Ax|| < ||x||, which means that the effect of the a = a,
plume is small. Numerically, we find with the datasets used
here, that this ratio is less than one in a thousand. (Specifically,
[|Ax]|/[|x] = 0.00087 for the for OMI data with the NO.
plume, 0.00063 for OMI data with the SOz plume, 0.00047
for the 2016 AVIRIS-NG data with CHy plume, and 0.00054
for the 2019 CH, data. The values in Table IV are somewhat
larger than this because a > a, for those plumes.) Thus, the
multiplying effect of matched filters is considerable here. Plumes
that are virtually invisible in the raw data can be readily evident
in matched filter projections.

(49)

B. Remark on the Inadequacy of the QMF (And of the LMP
Generally)

This notion of a characteristic plume strength also allows us
to explain why the QMF, which is “optimized” for weak plumes,
does such a poor job of detecting weak plumes. In the derivation
of QMF, we neglect the O(a?) terms on grounds that a is small
for weak plumes. But small compared to what? In particular,
one of the quadratic terms that we neglected, as seen in (17),
was a?(Tx)'R~1(Tx). But in terms of the characteristic plume
strength a,, we see that

(a*(Tx)R Y (Tx)) > a®(Tp)' R *(Tp) = a*/aZ.  (50)
If our “weak” plume is at least strong enough to be detected,
then this term is greater than 1, and can hardly be assumed to
approach zero. Put another way, the QMF detector is optimized
for plumes that are too weak (i.e., for a < a,) to be effectively
detected.
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