
LA-UR-21-32001
Approved for public release; distribution is unlimited.

Title: Container Mythbusters

Author(s): Jennings, Michael E.

Intended for: Sandia SSESS Seminar, 2021-12-08 (None (MS Teams), New Mexico, United
States)

Issued: 2021-12-10 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

12021-12-08Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Container Mythbusters
Debunking the Nonsense, Dissecting the Misconceptions,

and Distilling the Facts of High-Performance Containering

Michael Jennings (mej@lanl.gov)

High-Performance Computing Systems

Los Alamos National Laboratory

Scientific Software Engineering Seminar Series (SSESS)

Sandia National Laboratories
8 December 2021

LA-UR-21-32001

mailto:mej@lanl.gov

22021-12-08

MYTH: Containers are …insert definition here…

32021-12-08

“Container” sometimes refers to the entire stack/collection of individual layers and metadata that

compose a final, tagged filesystem tree.

• Docker calls each layer an “image” and the tagged grouping a “repository.”

• The latter is also referred to as an “image,” especially in day-to-day speech and in writing.

• Each tag points only to a single layer, but since layers are limited to a single parent, the terms

wind up being somewhat interchangeable even if a bit vague/confusing.

• Related to this, “container” is frequently used to refer to the merged/unified filesystem, often

composed by the container runtime, which acts as the root filesystem for the containerized

application.

FACT: “Container” is a term used somewhat indiscriminately to

mean different things to different people & projects!

“Container” is also used to refer to the process at runtime which is

invoked by the container runtime engine (e.g., Docker) and is

the entrypoint (usually PID 1) of the containerized application.

• This is generally considered the “correct” definition.

• I sometimes mess this up myself, and if I do (or you’re not

sure), feel free to stop me and ask!

Image credit: Red Hat

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers

42021-12-08

MYTH: Containers are the new chroot().

52021-12-08

Modern kernel features allow us to instruct the kernel to “lie” to our applications about various

attributes of the system, including filesystem mounts, process IDs, hostnames, network stacks, and

more.

• 7 Privileged Namespaces (require CAP_SYS_ADMIN to create)

• mount – Private filesystem mount points, recursion/propagation controls

• pid – Private view of process IDs and processes, init semantics

• uts – Private hostname and domainname values

• net – Private network resources (devices, IPs, routes, ports, etc.)

• ipc – Private IPC resources (SysV IPC objects, POSIX msg queues)

• cgroup – Private control group hierarchy (Linux 4.6+ only)

• time – Private offsets for MONOTONIC and BOOTTIME clocks (5.6+ only)

• 1 Unprivileged Namespace (requires no special capabilities to create)
• user – Private UID and GID mappings; can be combined with other namespaces, even if unprivileged

• System Call API: unshare(2), clone(2), setns(2)

FACT: Linux employs several kernel features, system calls, and

services to “containerize” processes.

62021-12-08

The Linux kernel has several additional subsystems that containers sometimes use:

• cgroups – Control hierarchical resource management and usage constraints
• Latest kernels (4.6+) even have namespaces for this!

• Schedulers/RMs use to track/control job resource utilization

• seccomp-bpf – Berkeley Packet Filter-based syscall filtering
• Frequently used to prevent containers from exceeding their scope

• prctl(PR_SET_NO_NEW_PRIVS) – Prevent privilege escalation
• Kernel-level flag that prevents execve() granting privileges.

• Persists across all calls to fork(), clone(), and execve()

• Privileged containerization is unsafe without this.

• SELinux – MLS/MAC Labeling system for files/processes
• Allows admins precise control over actions, roles of applications

• AppArmor – Profile-based MAC system for limiting apps’ abilities
• Similar to SELinux but without filesystem labeling features

FACT: Linux employs several kernel features, system calls, and

services to “containerize” processes.

72021-12-08

MYTH: Containers are lightweight/more efficient VMs.

MYTH: Containers should be used to replace/virtualize entire servers.

82021-12-08

In the Docker/OCI ecosystem, when you build an application container, you specify a “command” or an

“entrypoint:” the command to run when the container starts up.

• All other processes in the container are children of this single parent command.

• The analogue of an application container is an application, not a machine.

• The term “operating system virtualization” is often misunderstood; it simply means that containerized applications

have a unique/altered view of the underlying OS but not of the kernel!

• From the perspective of the kernel, containers are always a group of processes and their children.

• Some container runtimes allow for the creation of virtual networks, volume mounts, etc. At minimum, though,

containers have distinct views of the filesystem mount table, including the OS.

FACT: Containers couple applications to their OS environment.

Their flexibility allows them many uses, though.

Depending on the runtime, certain details may differ. Some runtimes actually are

intended to virtualize/abstract entire hosts! So there are exceptions:

• The systemd-nspawn container system expects to “boot” the container.

• LXD offers VM-/cloud-like functionality like replication and live migration.

• Even with Docker, it’s possible to convert hosts into containers. But if that’s the

goal, Docker may not be the best tool for that job. At least not by itself.

• HPC jobs & microservices use app containers; containerized hosts are a

different beast altogether and should use a different engine/runtime.

92021-12-08

MYTH: Containers contain.

MYTH: Containers don’t contain.

102021-12-08

Typical (privileged) containers are an abstraction & encapsulation tool, not a security measure.

• The Linux kernel does not go out of its way to prevent containerized processes from escaping

namespaces or crossing between them. In fact, it explicitly allows this (via the setns() syscall)!

• Additionally, numerous endpoints in the /proc filesystem offer opportunities to “escape” or cross

over the namespace boundary and move “outside” the container.

• That’s where the additional kernel features come in. Privileged containers need additional

security measures to be “safe” (e.g., SELinux/AppArmor, seccomp-bpf).

FACT: Containers contain passively, not actively.

Think buckets, not prisons.

Unprivileged containers get safety measures imposed by the kernel.

• Capabilities-based, kernel-enforced policies govern interaction/

movement between namespaces.

• Extensive testing and R&D has gone into user namespaces to

make them usable & secure.

• Something must manage the privilege boundary between

contained process(es) and the system.

112021-12-08

MYTH: “Container” is shorthand for “Docker Container.”

122021-12-08

Docker did popularize Linux containers by making them portable, reproducible, and composable.

• Other players in the space took exception to certain design choices Docker, Inc., made and revolted.

• A global standards body was set up under The Linux Foundation as a Collaborative Project.

• The Open Container Initiative publishes Runtime and Image specifications, bootstrapped by Docker

but developed and governed openly by representatives from key member organizations.

FACT: There are many container runtimes and related

technologies; most are built around/leverage the OCI standards.

132021-12-08

FACT: There are many container runtimes and related

technologies; most are built around/leverage the OCI standards.

High-Performance Computing has a unique set of challenges not seen in the web-app world. Docker’s

client/server architecture and root-only access model is not well suited to address them.

• NERSC’s Shifter came first; it uses a privileged runtime and parallel filesystem storage to scale.

• LANL’s Charliecloud went the other direction, using user namespaces to facilitate unprivileged

runtime; backend image distribution at scale is left up to the user (only safe due to lack of privilege).

• Singularity began as a non-container chroot()-based amalgamation of old technologies with

poorly understood behavior, was rewritten, and has since incompatibly reproduced much of the

greater container community’s standards.

• While not focused on the use cases of HPC, Red Hat’s podman offers runc-based OCI compliance

and addresses many of Docker’s “issues.” Unprivileged containers/builds are now fully supported.

142021-12-08

MYTH: Containers are hard & require complex tools like Docker or Rkt.

152021-12-08

Namespace directives are also supported in systemd unit files,

making it easy to containerize services.

As long as you’re using an existing (unprivileged whenever

possible) runtime, containers are pretty straightforward. Even

using those existing building blocks to create something larger

isn’t terribly difficult. The gory details of writing a runtime,

however, is very complex and nuanced! Use an existing

runtime, and understand the technical rationale for your choice.

Recall the system call API is only 3 functions:

• unshare(2): Creates one or more new namespaces and moves the current process into them;

• clone(2): Creates a new process/thread, optionally putting it in one or more new namespaces; and

• setns(2): Places the calling process/thread into the specified new namespace.

Recent versions of util-linux include 2 shell commands that wrap 2 of the 3 calls:

• unshare(1): Runs a new program with one or more namespaces unshared from the parent; and

• nsenter(1): Enters the namespace(s) of other process(es), then executes shell/specified program.

Image Credit: Toca do Tux

FACT: Setting up, running, and using containers is easy; you

can even write your own container-based solutions in BASH!

https://www.youtube.com/watch?v=-GaTqVmMf7I

162021-12-08

MYTH: Docker is insecure.

172021-12-08

Since early 2017, there have been ~30 vulnerabilities that could lead to kernel panics, host information

leaks, and privilege escalation inside or outside the container!

• One particular release fixed a total of SIX vulnerabilities, including 2 buffer overflows. No CVE IDs.

• More than once, a single CVE covered multiple vulnerabilities, including the ability to join and affect

the root namespace, test for arbitrary file existence as root, and add content to /usr/bin.

• 7 of the 9 releases in 2018 contained security fixes, almost all high severity. No CVEs until 7/2018.

• 2017-2021 (5 years), 38.3% of releases fixed vulnerabilities (~43% in 2017/2020, ~78% in 2018).

Security experts and container experts have expressed serious concerns about its design/code:

• “I found the code of the setuid binaries quite difficult to read. It feels like upstream somewhen lost the

focus on the "minimal and clean" design that set*id programs require.”

• “Mixing user controlled data with "trusted" data generated by the setuid binary itself in the same

registry makes the code hard to read or to trust, respectively.”

• “After fixing the major security issues and doing some additional hardening we can keep [it]…since

the binaries are only accessible to members of [its UNIX] group. I wouldn't like to see world access

for those setuid binaries.”

FACT: Docker’s security record is pretty scary.

https://www.openwall.com/lists/oss-security/2018/12/12/2

182021-12-08

Since early 2017, there have been ~30 vulnerabilities that could lead to kernel panics, host information

leaks, and privilege escalation inside or outside the container!

• One particular release fixed a total of SIX vulnerabilities, including 2 buffer overflows. No CVE IDs.

• More than once, a single CVE covered multiple vulnerabilities, including the ability to join and affect

the root namespace, test for arbitrary file existence as root, and add content to /usr/bin.

• 7 of the 9 releases in 2018 contained security fixes, almost all high severity. No CVEs until 7/2018.

• 2017-2021 (5 years), 38.3% of releases fixed vulnerabilities (~43% in 2017/2020, ~78% in 2018).

Security experts and container experts have expressed serious concerns about its design/code:

• “I found the code of the setuid binaries quite difficult to read. It feels like upstream somewhen lost the

focus on the "minimal and clean" design that set*id programs require.”

• “Mixing user controlled data with "trusted" data generated by the setuid binary itself in the same

registry makes the code hard to read or to trust, respectively.”

• “After fixing the major security issues and doing some additional hardening we can keep [it]…since

the binaries are only accessible to members of [its UNIX] group. I wouldn't like to see world access

for those setuid binaries.”

FACT: Docker’s security record is pretty scary.

https://www.openwall.com/lists/oss-security/2018/12/12/2

192021-12-08

Even so, it’s 2021! We have much better options today, especially unprivileged runtimes!

• Multiple schedulers & RMs support Docker, always by restricting direct user access to Docker API.

• Most security professionals agree using root-owned daemons or setuid binaries is unnecessarily risky.

• Current versions of all major Linux distributions, including RHEL & SLES, support user namespaces.

• Thanks to security expert Dan Walsh, Red Hat offers compatible/competing tools (podman, et al.).

• All major runtimes (almost?) now support unprivileged operations/workflows!

Docker is, by design, only accessible to the root user.

• Docker Enterprise Edition allows an authorization plugin to control access to the API.

• Most sites/users don’t bother exploring all the security features/options available in Docker, such as customized

seccomp-bpf filters, fine-grained capability control, privilege flag control, and more.

• As a result of the access model, true vulnerabilities in Docker are (arguably) limited to repo creators.

Looking at CVEs 2017-2021 (all 4 production quality), Docker compares favorably, though not great:

Charliecloud Docker Shifter Singularity

Vulnerability Count 0 <=23 0 29+

FACT: Most reports of Docker being “insecure” are “pilot

error.” The docker CLI requires privilege for a reason!

202021-12-08

MYTH: Containers (or specific container runtimes) solve the problem of

reproducibility in computational and data science.

212021-12-08

Docker and Singularity both offer solutions to prescriptive container image generation.

• The Dockerfile format is supported by almost all container build engines. Build instructions are

preserved in the output via JSON-encoded layer metadata along with labels, lineage, etc.

• Singularity supports an RPM-specfile-like “recipe” syntax (not to be confused with Chef’s) with similar,

but incompatible, format/purpose. User Guide seems to confuse “reproducible” with “immutable.”

• Docker’s format facilitates “reproducible” layered images; each build directive creates a new, unique

layer which directly depends on the previous layer and records the directive used to create it.

• Docker/OCI image format uses Content-Addressable Storage for content assurance/persistence.

Many challenges still exist around reproducibility that are not solved, or even addressed, by containers.

• There are no guarantees that build instruction artifacts/effects are consistent across time. Nothing

says that “yum install foo” or “FROM centos:7” will have the same result in 5 years…or 5

months…or even a week.

• As Aleksa Sarai points out, the tar archive format is fraught with reproducibility roadblocks.

• Using CAS hashes to identify layers/images consistently requires infinite, eternal artifact archive.

• Reproducibility via containers ignores the key differentiator of containers vs. VMs – the kernel!

FACT: Reproducible Builds is an area of study unto itself; no

single existing solution fully solves the reproducibility problem.

https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar

222021-12-08

MYTH: Containers are secure as long as the user’s UID inside the

container matches the user’s UID outside the container.

232021-12-08

The kernel/userspace interface for containers is simple; the security model, however, is not.

• A number of issues were found early on that revealed overlooked corner cases.

• Numerous strange/subtle quirks are needed to deal with combinations of namespaces and common

HPC use cases (e.g., in-memory rootfs). (Charliecloud examples document many of them.)

• The complex interplay of identity, privileges, permissions, capabilities, kernel settings, and so forth is

challenging enough to get correct without hiding crucial details from the ultimate arbiter of access!

Example: If I told you to do chmod 4755 /bin/bash and that it’s safe because you’d have the same

uid “inside” the shell as you had “outside” it, would you do it? or would you think I’d taken leave of my

senses?

• There’s a lot that happens between typing

bash and the shell prompt being displayed.

• There could be exploits that are useless on

their own but effective with root privileges.

• Privileged operations are privileged for

good reason; override at your own peril!

FACT: Container security is multifaceted and highly nuanced.

That claim reflects incomplete/insufficient understanding.

-bash-4.2$ ls -Fla /bin/bash

-rwsr-xr-x 1 root root 964608 Oct 30 17:07 /bin/bash*

-bash-4.2$ /bin/bash

bash-4.2$ id

uid=1000(mej) gid=1000(mej) groups=1000(mej)

bash-4.2$

242021-12-08

MYTH: User namespaces are too new to be considered secure.

252021-12-08

Vulnerabilities in user namespaces have been minimal recently:

• Last CVE attributable to the unprivileged user namespace implementation was CVE-2014-8989.

• Vulnerabilities enabled by user namespaces have happened, roughly 2-4 each year. (SELinux

typically, though not always, prevents exploitation of these.)

• Container solutions which leverage unprivileged user namespaces (Charliecloud, PodMan,

Rootless RunC) were unaffected by nested user namespace issue (CVE-2018-18955); they also

protect against the RunC binary replacement issue (CVE-2019-5736) when correctly configured.

Most experts working on end-user containers are focused on user namespaces.

• For all the reasons we already talked about: in particular, the kernel-based

trust and security model.

• The safest path is the one where the bulk of the brain trust has its focus.

• It’s fine to invent your own solution, but that’s a lot to own. Make sure

technical rationale is sound!

Standards are good for everyone!

FACT: User namespaces were introduced in Linux 3.8 (2013)

and have remained substantially unchanged since 3.19 (2015).

262021-12-08

• Charliecloud

LANL’s Container Runtime

• Available on GitHub: https://github.com/hpc/charliecloud

2018 R&D 100 Winner!

• Supercomputing 2017 Paper by Reid Priedhorsky and Tim Randles

• “Charliecloud: Unprivileged Containers for UDSS in HPC”

• Los Alamos Tech Report LA-UR-17-30438

• http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-30438

• ;login: Article “Linux Containers for Fun & Profit in HPC”

by Reid Priedhorsky

• https://www.usenix.org/publications/login/fall2017/priedhorsky

• “Minimizing privilege for building HPC containers”

• https://dx.doi.org/10.1145/3458817.3476187

• Documentation: https://hpc.github.io/charliecloud (includes tutorials!)

• Source Code: https://github.com/hpc/charliecloud

• Mailing List: charliecloud@groups.io || https://groups.io/charliecloud

• Contact Reid (reidpr@lanl.gov), Tim (trandles@lanl.gov),

or Michael (mej@lanl.gov, @mej0 on Twitter)

https://github.com/hpc/charliecloud
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-30438
https://www.usenix.org/publications/login/fall2017/priedhorsky
https://dx.doi.org/10.1145/3458817.3476187
https://hpc.github.io/charliecloud
https://github.com/hpc/charliecloud
mailto:charliecloud@groups.io
https://groups.io/charliecloud
mailto:reidpr@lanl.gov
mailto:trandles@lanl.gov
mailto:mej@lanl.gov
https://twitter.com/mej0

272021-12-08

Any Questions?

Michael Jennings

Los Alamos National Laboratory

mej@lanl.gov || mej@eterm.org

f/kainx || t/@mej0 || i/kainx

