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Abstract

Fabric, expressed by means of an evolving deviatoric fabric tensor F, plays a very
important role in the anisotropic mechanical response of granular materials. The
Anisotropic Critical State Theory (ACST) addresses fabric anisotropy by rendering
dilatancy a function of F, in addition to other state variables. In this paper, 3D DEM is
used to guide the specific definition of F, the formulation of its continuum evolution
equation and its effect on anisotropic dilatancy within ACST. DEM provides stress-
ratio and shear strain variations as input for ACST analytical calculations of evolving
fabric tensor and dilatancy, which are then favourably compared with totally
independent direct measurements of these quantities by DEM. Dilatancy is shown to be
strongly affected by the contact normal-based fabric tensor F, whose evolution is best
described by a continuum equation within ACST that also includes a particle
orientation-based fabric quantity. The aforementioned favourable comparison of the
results for fabric tensor and dilatancy obtained independently by ACST and DEM,
confirms the validity of the core framework of ACST irrespective of any constitutive

model that addresses the deviatoric stress-strain relations.

Keywords: Anisotropic critical state theory, fabric evolution, dilatancy, DEM
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1. Introduction

Fabric and its evolution play a very important role in the mechanical response of
granular materials and are, therefore, an integral component of the corresponding
constitutive relations that address the so-called fabric anisotropy. Fabric quantification
is commonly achieved by the means of a fabric tensor F which can be defined by and
associated with the statistical distribution of the orientation of unit vectors along the
major axis of elongated particles, contact normal directions, void vectors, scan-line
directions or other micromechanical oriented entities. In most continuum theories the
notion of a fabric tensor is not necessarily associated with a specific microscopic entity.
While F has been included in various ways into several constitutive relations in the past
(e.g. Tobita, 1987; Oda, 1993; Wu, 1998; Wan and Guo, 2001, 2004; Li and Dafalias,
2002; Dafalias et al., 2004; Yao et al., 2017; Ueda and Iai, 2018), its fundamental role
as an element of a general framework for constitutive relations rather than specific
constitutive models, was only recently recognized with the development of Anisotropic
Critical State Theory (ACST) by Li and Dafalias (2012). ACST extends the classical
Critical State Theory (CSR) (Roscoe et al., 1958; Schofield and Wroth, 1968) that did
not consider fabric.

ACST achieves two tasks. First, it enriches the two conditions of CST regarding
stress and void ratios at Critical State (CS) by a third, related to the CS value of F in
combination with the deviatoric plastic strain rate unit norm direction n. This
combination is expressed by means of the Fabric Anisotropy variable (FAV) A=F:n,

TR L)

where “:” signifies the trace of the product of the adjacent tensors. With a proper
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normalization of the norm of F, the third CS condition yields 4 = A-=1. In the process
the very important rate equation of evolution for F must be formulated in a way that
satisfies the foregoing third CS condition. The foregoing conclusion was motivated by
DEM results in relation to a void based (Li and Li, 2009) and a contact normal based
(Fu and Dafalias, 2011) fabric tensor. It was later shown by Theocharis et al. (2017,
2019), that this third condition must be added to the two classical conditions of the CST
in order to render all three of them both necessary and sufficient for reaching and
maintaining CS without the additional assumption of fixity of the plastic strain rate
direction (or stress direction) at CS implied in classical CST.

The second task of ACST was to render the phase transformation stress ratio and
the ensuing dilatancy D, function of 4, hence of F, in addition to dependence on void
ratio e and mean pressure p by means of the state parameter y (Been and Jefferies,
1985). The ACST is mainly a theory on fabric dependent dilatancy, without addressing
the deviatoric stress-strain response that is delegated to any chosen specific constitutive
model formulated within the premises of ACST. By such dependence of D on F via 4,
it was possible to simulate the strongly anisotropic response of samples loaded at
various directions in regard to fabric tensor, as initially shown by Li and Dafalias (2012),
followed by numerous subsequent papers with various constitutive models within
ACST (Gao et al., 2014; Li and Dafalias, 2015; Woo and Salgado, 2015; Zhao and Gao,
2016; Petalas et al., 2018; Papadimitriou et al., 2018; Yang et al., 2018). The
dependence of phase transformation stress ratio, thus of dilatancy D, on fabric, has been

investigated earlier by Wan and Guo (2001, 2004) but differs fundamentally from the
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present development within ACST in two aspects. First, the assumed evolution of F is
not related to its convergence with specific CS values, as demonstrated by numerous
DEM studies, that constitutes the basis for showing the uniqueness of the Critical State
Line (Li and Dafalias, 2012). Second, the dilatancy D depends not only on F, e and p
as in ACST, but also on a modified cumulative plastic shear strain that given a sample
1s impossible to measure, as opposed to F, e and p that can all be measured in principle.

While the continuum theory embodied by a typical constitutive model for sands
within ACST yielded very good simulations based on the use of a generic macroscopic
F and its evolution, it still remains an open question as to which microscopically defined
fabric tensor is more appropriate for constructing the macroscopic entity F entering
ACST. Furthermore, the validity of the fundamental macroscopic analytical relations
of ACST for the evolution of F and the dependence of dilatancy on F via A4, has been
confirmed indirectly by successful simulations of data by the various models of all the
aforementioned references, but not directly in terms of measured or computed grain-
scale quantities. What has been done so far by the means of DEM (there are numerous
works with DEM addressing fabric but here only those related to ACST are considered),
is to confirm concepts used in ACST such as the convergence of fabric tensor with n at
CS and the anisotropic response of granular assemblages if loaded at various
orientations with different Lode angles as well as the effect of fabric anisotropy on
issues of controllability and instability (Li and Li, 2009; Fu and Dafalias, 2011; Guo
and Zhao, 2013; Zhao and Guo, 2013, Yang and Wu, 2016; Wang et al., 2017; Shi and

Guo, 2018; Lashkari at al., 2019). In some very recent papers, the DEM confirmation
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of the analytical relations of ACST was done half-way only, as follows. In Hu et al.
(2019) and Yuan et al. (2019) a rate equation of evolution for F, active even if no plastic
deformation takes place, was validated versus DEM measurements of a contact normal
based F. However, the dilatancy was not rendered function of F, hence, denying one of
the most important features of ACST, namely that of a fabric anisotropy dependent
dilatancy. In Wang et al. (2019a) the task was to confirm the validity of the analytical
dependence of dilatancy D on F via A4, as postulated by ACST. Hence, DEM loadings
at various orientations were carried out calculating stress, strain, fabric tensor and
dilatancy, and then using as input the DEM calculated fabric tensor F into the ACST
analytical expression for D in terms of F and other entities, favorable comparison of
the analytically calculated values of D with those obtained directly by DEM during the
loading sequence till critical state failure, was obtained.

It follows that up until now there is no DEM confirmation of both main ACST
analytical expressions for the rate of evolution of F and the dependence of D on F via
A. The present paper comes to cover exactly this missing link. The procedure is very
simple and straightforward. As in Wang et al. (2019a), a DEM loading sequence at
various orientations in regard to fabric, first drained and then undrained, is carried out,
and stress, deviatoric strain, fabric tensor, dilatancy and volume change are recorded.
Subsequently, instead of using as input to ACST the DEM calculated F, as done in
Wang et al. (2019a), appropriate rate equations of evolution within ACST are used to
calculate analytically F as an evolving internal variable, which then is used to calculate

D by the ACST analytical expression of the latter. In other words, unlike what has
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happened in prior publications, the calculations of F and D by means of analytical
relations within ACST are carried out totally independently from the DEM calculated
F and D, and subsequently compared with them. The only input to ACST from DEM is
the stress and deviatoric strain at each step of the loading process, that as mentioned
before are delegated to be obtained by an appropriate constitutive model. This approach
eliminates the need to rely the comparison on a specific constitutive model within
ACST and enables to focus on evolving fabric and dilatancy, the key features of ACST.

In the process of carrying out this task, other issues will also be addressed. One
will be the examination of the performance of various rate equations for F proposed in
past works, including their effect on dilatancy D. Another will be the sensitivity of the
dependence of D on the “exact” calculation of F. This DEM based investigation will
yield new insight for the optimal formulation of a novel continuum fabric tensor
evolution equation appropriate for ACST, involving contact normal and particle
orientation-based fabric tensors in combination. Overall it will be the most independent,

direct grain-level validation and calibration of ACST done so far by means of DEM.

2. DEM test scheme and typical observations

2.1 Stress-strain and dilatancy calculations by means of DEM

The open source code Yade (Smilauer et al., 2015) is used in this study for 3D
DEM numerical testing, to provide a basis for the formulation and validation of fabric
evolution and dilatancy equations in ACST. Sixteen drained constant-mean effective
stress (p) triaxial tests (meaning ‘“true-triaxial tests” in this work) with various

intermediate principal stress coefficient b values (0, 0.25, 0.5, 0.75, and 1)
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corresponding to various Lode angles, are conducted on specimens with various initial
void ratios (eo = 0.690+0.005, 0.656+0.005, and 0.570+0.005) and initial fabric
orientations. Two undrained triaxial compression tests are also conducted on two
specimens with the same void ratio (eo = 0.655) but different initial fabric orientations,
as listed in Table 1. Specimens with different initial fabric orientations are generated by
altering the bedding plane angle ¢ (0°, 30°, 60°, 90°), i.e. the angle between particle
deposition direction and the major principal stress axis (Fig. 1 (a)). Note in this study,
the minor principal stress is always parallel to the bedding plane.

Elongated particles with aspect ratio of 1.5:1 are used in this study for pronounced
anisotropic behaviour. The details of the particle and contact law specifications have
been reported in Wang et al. (2019 a). Constant p triaxial loading is achieved by servo-
controlled loading on rigid frictionless walls, while undrained triaxial loading is
achieved by enforcing a constant-volume condition, which has been successfully
applied in several studies (Kuhn et al., 2014; Wang et al., 2016; Wang et al., 2019 b).
The specimens are consolidated under 100kPa confining stress. The homogeneity of
the specimens after consolidation are verified rigorously by examining the consistency
of stress and density in different regions within the specimen. Largely uniform
deformation without the appearance of significant global shear bands and strain
localization is observed in the tests, verified via the method proposed by Wang et al.
(2017). During loading, the inertial number / is restricted within 107, to achieve quasi-

static conditions (MiDi GDR, 2004).

Table 1. DEM test scheme

Test Initial void Intermediate Bedding plane
number ratio eo principal stress angle ¢ (°)

Loading
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coefficient b

1 0.693 0 0
2 0.685 0 30 )

3 0.692 0 60 drained, constant p
4 0.690 0 90

5 0.655 0 0

6 0.658 0 30 )

7 0.654 0 60 drained, constant p
8 0.655 0 90

9 0.658 0.25 0

10 0.656 0.5 0 .

11 0.658 0.75 0 drained, constant p
12 0.656 1 0

13 0.570 0 0

14 0.570 0 30 )

15 0.570 0 60 drained, constant p
16 0.569 0 90

17 0.655 0 0 undrained

18 0.655 0 90 undrained

In DEM, stress is computed as the per-volume summation of the tensor product of
contact force vectors and corresponding contact branch vectors (Bagi, 1996). Strain is
calculated from the displacements of particles at the vertices of a Delaunay tessellation
of the granular assembly (Fu and Dafalias, 2012; Xue et al., 2019). Stress and strain are
denoted positive in compression, following traditional soil mechanics sign conventions.
The mean effective stress p is tr(6)/3, where tr(o) is the trace of the effective stress
tensor 6. The deviatoric stress g is [3/2(e-pl):(c-pI)]"/?, where I is the second order
identity tensor; #=q/p is referred to as the deviatoric stress ratio. The volumetric strain
&v 1s the trace tr(e) of the strain tensor €, while the deviatoric strain ¢, equals [2/3(e-
&/31):(g-&,/31)]"2. Corresponding definitions apply to strain rates. The dilatancy D is
defined as the ratio of the volumetric to deviatoric plastic strain increments, i.e.
D=(dg’/ dg; ). The plastic strain increment de” is calculated by subtracting the
elastic strain increment de¢ from the total strain increment following the procedure
suggested by Wan and Pinheiro (2014) and Wang et al. (2019 a).

The stress-strain results from two typical drained DEM triaxial tests under /=0 on
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specimens with ep=0.656+0.005, and bedding plane angle p=0° and 90°, respectively,
are presented in Fig. 1. Significant anisotropic behaviours are observed for the two
specimens with different bedding plane angle ¢. Fig. 1 (b) and (c) show that the
specimen with ¢=0° exhibits higher peak shear strength and stronger tendency to dilate
compared with the specimen with ¢=90°, though both specimens converge toward the
same critical state in terms of deviatoric stress ratio # and void ratio e at large deviatoric
strain, consistent with findings in the literature (Oda, 1972; Guo, 2008; Fu and Dafalias,
2011b; Tong et al., 2014; Yang et al., 2016; Cao et al., 2016; Wang et al., 2017).

The variations of dilatancy D with respect to # for the specimens in the two tests
are directly compared in Fig. 1 (d). The specimen with p=90° is significantly more
contractive in the early stage of loading at low 7. At higher 5 values, the D-5
relationship converges towards the same point, denoted as the “critical state” in the
figure, while the dilatancy at peak stress ratio, also called peak dilatancy (negative in
dilation), is significantly greater in absolute value for the specimen with p=0°. At the
critical state, D = 0 at same critical stress ratio for both specimens, as expected from
CST and its extension by ACST. Also observe that D = 0 instantaneously during loading
when 7 crosses the phase transformation, such crossing is indicated in the D-7 plot of
Fig. 1(d) by dashed circles; this happens at quite different values of # for the two
specimens, smaller for the specimen with ¢=0°. The comparison of the stress-strain
behaviour of the specimens with p=0° and ¢=90° is analogous to that between a denser

and a looser specimen, respectively.
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Fig. 1 Typical drained DEM tests on two specimens with ¢p=0.656+0.005, and bedding plane angle
»=0° and 90°: (a) DEM specimen and loading schematic; (b) deviatoric stress ratio # - deviatoric

strain gg; (¢) void ratio e-gg; (d) dilatancy D-.

2.2 Contact normal and particle orientation-based fabric tensors

Denoting, henceforth, by superscript * a fabric tensor calculated by means of DEM,

the deviatoric fabric tensor F* can be calculated as (Satake, 1982):

. 1 |
F = —ZV Qv ——1I (1)
(1+e) N = 3
where N is the number of contacts, v¥ is the unit norm vector attributed to the ™ grain
scale entity used to define the fabric tensor, e is the void ratio. The term l+e is
introduced to define a per-volume measure of fabric tensor for thermodynamic
consistency required for the continuum definition of fabric as an internal variable (Li
and Dafalias, 2015).

Motivated by the notion of Fabric Anisotropy Variable (FAV) A=F:n introduced

in ACST, two quantities will be used to evaluate fabric anisotropy. First is the norm of

the deviatoric fabric tensor F*=||F*|| = /F :F that measures the intensity of fabric
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anisotropy. Second is the quantity N*= (F*/ F"):n , which is independent of the norm
and measures the orientation of the fabric tensor with respect to n, since F*/ F" is a unit
norm deviatoric tensor along F. Based on the foregoing definitions it follows that 4*
=F" :n= F" N'. It must be mentioned that in what follows in this section the DEM
calculated norms are not normalized by their CS values, hence, the 4* does not attain
unity at CS with no effect whatsoever on the basic premises of ACST (Dafalias, 2016).

Common examples of grain-scale features used to define the fabric tensor include
the contact normal vector and the particle orientation vector, which yield the contact
normal fabric tensor F* and particle orientation fabric tensor F*p, respectively. For the
two typical drained DEM tests in Fig. 1, F"c and N*; of the contact normal fabric tensor
and F, and N°;, of the particle orientation fabric tensor are plotted in Fig. 2 against both
deviatoric strain ¢, and deviatoric stress ratio 7. At the initial state, the norms F"¢ and
F"p are the same for the two specimens since they are independent of orientation, while
N*c and N°,, are distinctly different, reflecting the difference in bedding plane angle ¢.
The initial evolution of the contact normal fabric is faster than that of the particle
orientation fabric. The specimen with ¢p=0° experiences a peak F .. For the two tests,
the contact normal fabric tensor reaches the same stable state after ¢, > 0.4, while the
particle orientation fabric tensor converges to the same stable state after ¢, > 0.7 (Fig.
2 (a) and (c)). At ¢, > 0.7, stress, void ratio, and fabric anisotropy all reach their
respective constant values, confirming the reaching of critical state. At the critical state,
N*=1 while F". is unique under the same loading condition, complying with the basic

hypothesis of ACST. For the particle orientation fabric, F™, is also unique at the critical
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state under the same loading condition, though N*,= -1, since F*y/ Fy=-F "o/ F'¢ at CS.
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q
Fig. 2 Contact normal and particle orientation fabric evolution in drained DEM tests on two
specimens with e9=0.656+0.005, and bedding plane angle p=0° and 90°: (a) F"-&,; (b) F'-5; (c) N'-
g4, ;3 (d) N'-np; N'=(F":n)/F" is a measure of the relative orientation of the fabric tensor F* and unit-
norm deviatoric tensor-valued loading direction n. ¢ and p in the legend denote contact normal fabric
and particle orientation fabric, respectively.

A first hint as to which grain level-defined fabric tensor may be considered best
suited for representing the generic notion of such tensor in ACST, can be obtained from
Fig. 2. In Fig. 2 (b) and (d), the contact normal fabric tensor evolves continuously from
the initiation of loading, and N". of the two specimens becomes very close at high 7,
e.g. at #>1, similar to the convergence of D-# relationship at high # as seen in Fig. 1(d).
In comparison, the particle orientation fabric evolves significantly only as peak 7 is
reached. Therefore, as suggested in Wang et al. (2019a), it seems that the contact normal
based fabric tensor is better suited to address the dilatancy dependence on fabric in a

way that will be addressed in the sequel.
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3. Fabric evolution and dilatancy in ACST motivated by DEM results

3.1 Fabric dependence of dilatancy within ACST

In the ACST framework (Li and Dafalias, 2012), the volume-related anisotropic
behaviour of granular materials is addressed by introducing the role of a deviatoric
fabric tensor F via the aforementioned Fabric Anisotropy Variable (FAV) A=F:n into
dilatancy as follows. A new state variable, the Dilatancy State Parameter (DSP) {
combines both the classical State Parameter (SP) y =e¢—e, by Been and Jefferies
(1985), with e. the critical state void ratio at current p, and FAV 4 in its definition as
follows:

g=y—eé,(4-1) (2)
where ¢, can be a function of the void ratio e and/or the mean effective stress p (Li
and Dafalias, 2012). The { substitutes for y in the definition of a variable with
phase transformation line (or dilatancy stress ratio), an idea originally proposed by
Manzari and Dafalias (1997). Therefore, a dilatancy based on the essence of Rowe’s
dilatancy theory (Rowe 1962), can be expressed as:

D=d(M exp(ml)-n) 3)
where M is the critical state stress ratio, d and m are material parameters or functions
that are often assumed to be constant (e.g. Dafalias and Manzari, 2004; Wang et al.,
2014). The exponential dependence of dilatancy stress ratio on ¢ is adopted from the
corresponding expression in Li and Dafalias (2000) for .

Normalization of F by its critical state norm F;, which depends on the Lode angle,
yields a third condition 4=4.=1 when reaching critical state, that in combination with

w =0 yields {=0and D = 0 at critical state according to Egs. (2) and (3). The foregoing
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normalization of a DEM calculated F* as in Eq. (1) by its norm F” it will henceforth be
adopted, hence, hereafter, a fabric tensor refers to its normalized version either as a
continuum variable within ACST or as a DEM calculated entity, i.e. F = F*/F i, unless
specifically otherwise indicated.

A key step in ACST is the formulation of the rate evolution equation of F towards
its critical state value. Li and Dafalias (2012) proposed an equation of F that reads:

F:<ﬂ,>c(n—rF):</1>%(n—rF):<ﬂ,>cC(%n—F) (4)
where F is the rate of evolution for F; A within the Macauley brackets <> is the plastic
multiplier which can be expressed as <A >=| é: |in terms of the plastic deviatoric
strain rate norm. With no loss of generality c. = rc was set in Eq. (4) with ¢, and r
constitutive parameters or functions, the former dictating the pace of fabric evolution
and the latter its peak value. The specific form of those two parameters were not
addressed in the original ACST formulation (Li and Dafalias, 2012).

In order to compare results obtained by DEM and ACST the following procedure
is adopted. The input to ACST from DEM calculations consists of a given stress ratio
n, its increment and the deviatoric plastic strain increment. A typical example of such
input was presented in Fig. 1 (b), but it is not necessary to show such input in all
subsequent cases. The output from ACST is obtained as follows: first, 4 is identified
based on the deviatoric plastic strain increment, then the fabric tensor is updated by
Eq.(4) using the n defined by the provided plastic strain increment tensor, followed by
calculation of the Fabric Anisotropy Variable (FAV) 4 and the ensuing Dilatancy State

Parameter (DSP) { from Eq.(2). Then dilatancy D is calculated from Eq. (3) that in turn
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is used to calculate the volumetric strain and ensuing void ratio changes based on the
deviatoric plastic strain increment provided. These steps are then repeated. The initial
values of void ratio and fabric tensor, and the corresponding critical state void ratio
used in the ACST calculations are also obtained from DEM measurements as a virtual
substitute of real experimental data. For the drained constant p=100 kPa triaxial tests,
e~0.761 is determined from the mean void ratio of sixteen drained tests, at 0.8
deviatoric strain. For the triaxial tests with 5=0, M=1.06 is determined from the mean
deviatoric stress ratio of the fourteen tests with 5=0, at 0.8 deviatoric strain. For
simplicity, it is assumed in this study thatd, m,and ¢, inEgs. (2) and (3) are constants.

3.2 Performance of two simple fabric evolution formulations

ACST does not specify which microscopically defined fabric tensor is more
appropriate for F in Egs. (2)-(4). Based on the observations from DEM results in this
study (Fig. 1-2), it would be reasonable to simulate the evolution of the contact normal
fabric tensor F. with various forms of Eq. (4) and use F. to address the anisotropic
dilatancy of granular materials via Egs. (2) and (3). One may rename in that case the
FAV A4 entering Eq. (2) as Ac=F.:n.

In the simplest form of Eq. (4) one considers c. to be constant, and » =1 to
guarantee that at critical state Eq. (4) resultsin F =0 and Fc = n; thus, one can write:

F =<A>c,(n—F) (5)

This simplified rate equation only requires one parameter to depict the evolution

of the fabric tensor. While it guarantees the eventual convergence of the fabric tensor

towards its critical state, Eq. (5) does not reflect the peak in F'; observed for the



328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

specimen with ¢=0° in Fig. 2. To capture this peak behaviour, the parameter » in Eq. 4
should be able to become smaller than unity before the critical state (Li and Dafalias,
2012), instead of being constant as in Eq. (5). Yang et al. (2018) suggested incorporating
dilatancy D in r of Eq. (4) in the form of »=1+D. This achieves an evolving r that can
be smaller than 1 for dense material with D<O0 in the dilative state while guaranteeing
r=1 at the critical state where D = 0. Extending the foregoing suggestion, a similar

approach is tested in this study using the following equation:

F =<A>c/( -F) (6)

(+e,D)
where a new parameter ccq is introduced to provide better control of the peak contact
normal fabric norm; ccq= 0 reduces Eq. (6) to Eq. (5).

Using Egs. (2), (3), (5) and (6), with parameters listed in Table 2, fabric and void
ratio evolution results can be obtained independently from DEM under the same initial
and loading conditions. The value of the parameter c.q in Eq. (6) is set at 0.3, while the
other parameters for the simulations using Egs. (5) and (6) are exactly the same (Table
2). Fig. 3 plots the ACST and DEM contact normal fabric norm evolution results for
the two tests on specimens with eg=0.656+0.005, and bedding plane angle p=0°and 90°,
under 5=0.

It is evident that even the simplest form of Eq. (5) can capture the fundamental
behaviour of fabric tensor evolution towards its critical state values, irrespective of the
initial fabric, because this is built into the basic formulation. However, the difference
in the Fc-¢4 plots resulting from Eq. (5) for the two specimens with different ¢, is

significantly underestimated compared to the DEM results, as seen in Fig. 3 (a).



350

351

352

353

354

355

356

357

358
359

360
361

362

363

364

365

366

Although the evolution of the contact normal fabric in the F¢- space seems to be
reasonably well captured with Eq. (5) at low # values, it is observed that the peak of
fabric norm for p=0° observed in DEM results is not achieved (Fig. 3 (a) and (b)), and
significant discrepancies between ACST and DEM results develop at high #. Fig. 3 (c)
and (d) show that by introducing dilatancy into the rate Eq. (6), one can achieve a good
representation of the fabric norm peak for dense granular materials, however, the
difference in fabric evolution in the Fc-¢, space for the two specimens with different ¢

is still poorly represented.
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Fig. 3 Contact normal fabric evolution results from drained DEM tests and ACST simulations using
Eq. (5) and Eq. (6), for specimens with ¢p=0.656+0.005, and bedding plane angle p=0°and 90°: (a)
Fe-g4 from Eq. (5); (b) Fe-n1 from Eq. (5); (c) Fe-g, from Eq. (6); (d) Fe-n from Eq. (6) .

The discrepancy between fabric evolution in the Fe-¢, space in ACST calculations
using Eqgs. (5) and (6) and DEM has important consequences in volumetric behaviour.
It leads to significant underestimation of anisotropy differences in void ratio
development, as plotted in Fig. 4. The DEM results show that the specimen with ¢=0°

is much more dilative than that with ¢=90° for ¢, between 0.1-0.4 (Fig. 4), while the



367

368

369

370

371

372

373

374

375
376
377

378

379

380

381

382

383

difference between the two tests based on ACST is much smaller during the entire
loading process, using either Eq. (5) or (6), which cannot be overcome simply by
adjusting the parameters in Table 2. For example, if a smaller c. value is adopted,
although the difference between the fabric tensor norms of the two tests with different
@ would persist till later during loading, the overall fabric evolution would become
much slower compared to the DEM results. This suggests that even if the peak

behaviour of fabric is captured by Eq. (6), some key ingredient is still missing.
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q
Fig. 4 Void ratio development results from drained DEM tests and ACST simulations using Eq. (5)
and Eq. (6), for specimens with e;=0.656+0.005, and bedding plane angle p=0°and 90°: (a) e-g4

from Eq. (5); (b) e-g, from Eq. (6).

Table 2. Input parameters for various fabric evolution equations in ACST

Parameter Eq. (5) Eq. (6) Egs. (7) and (8)

é, 0.11 0.11 0.11

d 0.44 0.44 0.44

m 10 10 10

Ce 80 80 80
Ced / 0.3 0.55

s / / 0.3

Cp / / 4.5
Cpd / / 0.2

4. A combined fabric evolution equation and comparisons with DEM

4.1 Theoretical development

Wang et al. (2017) suggested that various fabric tensors defined based on different

grain scale quantities may be inter-dependent. In the two idealized configurations of a
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granular material in Fig. 5, the contact normal fabric tensors are the same (isotropic)
according to Eq. (1), while the particle orientation fabric tensors are clearly different.
Under the same vertical compression loading, the evolution of the contact normal fabric

would no doubt be different, influenced by the difference in particle orientation fabric.

Loading direction

VAV p——

N ) e g

Fig. 5 Illustration of the possible influence of particle orientation fabric on the evolution of the
contact normal fabric.

It is hence plausible to make the hypothesis that the particle orientation fabric
tensor, which converges with its critical state at a much slower rate compared with the
contact normal fabric (Fig. 2), can delay the evolution of the contact normal fabric at
relatively large strains. The lack of reference to the particle orientation fabric in Egs.
(5) and (6) may be the reason for their tendency to overestimate the convergence rate
of fabric towards the critical state. Therefore, the influence of the particle orientation
fabric on contact normal fabric evolution should be considered when formulating the
rate equation of F.. To this extent, a combined formulation for fabric evolution is
presented in the following equations for both contact normal and particle orientation-

based fabric tensors:

exp(—=f(1+4,)) N
l+c, D

F =<A>c( -F) (7

. 1
F =<A>c(———n+F (8)
? et
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where it is clear from Eq. (7) what is the expression for the coefficient » of the original
Eq. (4) proposed in Li and Dafalias (2012). The influence of the particle orientation
fabric 1s incorporated via the relevant FAV 4,=Fp:n, with the positive parameter 5 used
to adjust the amount of influence 4, imposes on the evolution of Fc. The parameter £ is
expected to be related to particle elongation or aspect ratio R and other factors. For
spherical particles, where particle orientation is non-existent resulting in isotropic
fabric, hence, F,= 0 and 4, = 0, f should be set equal to 0 so that F. = n from Eq. (7)
at critical state where D = 0; in fact =0 reduces Eq. (7) to the form of Eq. (6). The case
of spherical particles deserves a more detailed consideration addressed in the Appendix.
The F;, evolution Eq. (8) is similar to that of F. in Eq. (6), with parameters ¢, controlling
the pace of evolution and c,s the peak behaviour related to D. The expression +F,
instead of -F} is used in Eq. (8), because at critical state one has F,=-n, shown in Fig.
2, as opposed to F. = n for the contact normal fabric. Compared with the simplest form
of Eq. (5), the present combined formulation requires four additional parameters b, ccd,
¢p and cpa.

Using Egs. (7) and (8) in conjunction with Egs. (2) and (3), with parameters listed
in Table 2, one can obtain the simulations of fabric tensors evolution and dilatancy for
the various categories of tests in Table 1. Such simulations show in general a
satisfactory agreement with DEM results. These 18 tests include drained tests on
specimens with different bedding plane angles and initial void ratios, drained tests with
different intermediate principal stress coefficients b, and undrained tests on specimens

with different bedding plane angles. A description of these simulations follows.



425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

4.2 Simulations of DEM drained tests with different bedding plane angle ¢

The ACST results for contact normal fabric evolution calculated with Egs. (7) and
(8) are compared with the DEM test results in Fig. 6, for the four specimens with
€0=0.656+0.005, and bedding plane angle ¢p=0°, 30°, 60°, and 90°, under »=0. A distinct
feature observed in the ACST results using the combined fabric evolution formulation
is that the difference in contact normal fabric norm between the specimens with
different ¢ is preserved until much larger ¢4, due to the dependence of F. on F,. Better
simulation of fabric evolution in the Fc-n space is also achieved at at high # values
compared with the simulations in Fig. 3. The peaks in F. for the two specimens with
»=0° and 30° are captured, while the general difference in the evolution of F: during
the entire loading process for the four specimens with different bedding plane angles is
reflected in Figs. 6 (a) and (b). The calculated contact normal fabric tensor orientation,
represented by N., also shows good agreement with DEM results. In the Nc-¢, space,
the orientation of the fabric tensor and the loading direction quickly align in both ACST
calculations and DEM tests, which corresponds to the period of loading up to around
the peak deviatoric stress ratio (Fig. 6 (c¢) and (d)).

The good agreement of contact normal fabric evolution between ACST
calculations and DEM results in Fig. 6 is aided by the appropriate formulation for the
particle orientation fabric tensor evolution as per Eq. (8). Fig. 7 compares the particle
orientation fabric tensor norm and orientation of ACST and DEM results. The slower
evolution of F, compared with that of F. is well simulated. In both ACST and DEM

results, F, begins to evolve significantly only after peak stress is reached, with F,
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reaching the critical state near the end of the loading process.
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Fig. 6 Contact normal fabric evolution results from drained DEM tests and ACST simulations using
Egs. (7) and (8), for specimens with ¢p=0.656+0.005, and bedding plane angle ¢p=0°, 30°, 60°, and
90°: (a) Fe-tiy; (b) Ferrf; (€) Newt; (d) Neen.
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Fig. 7 Particle orientation fabric evolution results from drained DEM tests and ACST simulations
using Egs. (7) and (8), for specimens with ¢p=0.656+0.005, and bedding plane angle ¢p=0°, 30°, 60°,
and 90°: (a) Fy-e; (b) Fyrris () Np-ti: (d) Nper.

As explained before, the fabric tensor is not taken from DEM calculations, but is
independently obtained from Eq. (7) whose better performance over Egs. (5) and (6)

for the evolution of F. results in better simulation of volumetric behaviour in Fig. 8§,
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compared to that in Fig. 4. The initial contraction tendency of specimens with greater
@ is stronger. At high #, the dilatancy-stress relationship begins to converge in the D-7
plot (Fig. 8 (a) and (b)), while specimens with smaller ¢ exhibit stronger peak dilatancy.
The anisotropic void ratio development in ACST and DEM results also show good

agreement (Fig. 8 (¢)).
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Fig. 8 Dilatancy and void ratio evolution results from drained DEM tests and ACST simulations
using Egs. (7) and (8), for specimens with ¢p=0.656+0.005, and bedding plane angle ¢p=0°, 30°, 60°,
and 90°: (a) D-x from DEM; (b) D-n from ACST; (c) e-g;, from DEM and ACST.

4.3 Simulations of DEM drained tests with different void ratio e

Simulations of fabric evolution and volumetric behaviour for specimens with
various densities are also conducted using the combined formulation of fabric evolution
within ACST, with the same set of parameters in Table 2. Although twelve triaxial tests
under b=0 on specimens with ep of 0.656+0.005, 0.690+0.005, and 0.570£0.005 and ¢
of 0°, 30°, 60°, and 90° are conducted, Fig. 9 only presents the contact normal and
particle orientation fabric tensor norm evolution for four tests for visual clarity,

including the tests on specimens with p=0° and 90° for the two different initial void
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ratios of 0.690+0.005 and 0.570+0.005. Using the same set of parameters, the evolution
of both contact normal and particle orientation fabric tensors during the entire loading
process for specimens with drastically different initial densities can be simulated using
ACST (Fig. 9). Not only is the greater peak contact normal fabric tensor norm of the
dense specimen captured through Eq. (7) (Fig. 9 (a) and (b)), the peak particle
orientation fabric tensor norm for the very dense specimen with eg=0.57040.005 and

»=0° is also captured with Eq. (8).

- - - 0.57-0°DEM  ———0.57-0°-ACST 0.57-90°-DEM 0.57-90°-ACST
- - - 0.69-0°-DEM  ——— 0.69-0°-ACST 0.69-90°-DEM 0.69-90°-ACST
1.8 1.8
1.2 1.2
Thy Thy
0.6 0.6
0 0
0 0.2 0.4 0.6 0.8 0 03 06 09 12 15 18
n
1.2
| =
we 08 g‘_~ "
0.6
(d)
0.4
0 0.2 0.4 0.6 0.8 0 03 06 09 12 15 18
& n

Fig. 9 Contact normal and particle orientation fabric evolution results from drained DEM tests and
ACST simulations using Egs. (7) and (8), for specimens with ey=0.570+0.005 and e;=0.690+0.005,
bedding plane angle p=0°and 90°: (a) Fe-y; (b) Fe-1; () Fp-gq; (d) Fo-1.

Fig. 10 shows the dilatancy and void ratio development results for these tests. The
dilatancy results from ACST and DEM agree quantitatively, with looser specimens
initially more contractive (Fig. 10 (a) and (b)) and having weaker peak dilatancy. The
void ratio development for specimens with different densities is also well simulated

using Egs. (7) and (8) (Fig. 10 (¢)). Initially, the looser specimens experience significant
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void ratio reduction, while the contraction of the denser specimens are barely visible.

Eventually, specimens with different ep end up with the same e..
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Fig. 10 Dilatancy and void ratio evolution results from drained DEM tests and ACST simulations
using in Eqgs. (7) and (8), for specimens with ey=0.570+0.005 and ¢,=0.690+0.005, bedding plane
angle p=0°and 90°: (a) D-n from DEM; (b) D-5 from ACST; (¢) e-¢; from DEM and ACST.

4.4 Simulations of DEM drained tests with different principal stress coefficient b

The results presented in the previous sections are all from tests under triaxial
compression with intermediate principal stress coefficient b/=0. Here, the performance
of the proposed ACST fabric evolution and dilatancy formulation is evaluated for
different b values that will have an effect on the values of the FAV A. = F. :n entering
Eq. (2) and 4,=F:n entering Eq.(7), due to the change of n. Fig. 11 illustrates the contact
normal and particle orientation fabric norm for specimens with ep=0.656+0.005 and
»=0°, under b=0, 0.25, 0.5, 0.75, and 1.

The DEM test results for fabric evolution are generally well simulated by the
relations of ACST (Fig. 11). Tests with greater b values exhibit lower peak F. values.

However, the difference in peak F. values is much more pronounced in ACST



509  simulations than DEM, possibly related to the results of peak dilatancy in Fig. 12.

1.3 1.3
1.1 1.1
09 -- 0-DEM —0-ACST 09
L7 - - 0.25-DEM—0.25-ACST | L o7
0.5-DEM — 0.5-ACST
0.5 0.75-DEM — 0.75-ACST 0.5
(a) --1-DEM — 1-ACST
0.3 0.3
0 0.2 0.4 0.6 0.8 0 03 06 09 12 15
£ n
1.2 1.2
1 1 =
LLQ'O.8 LLO.O.8 b
0.6 0.6
(c) (d)
0.4 0.4
0 0.2 0.4 0.6 0.8 0 0.3 0.6 0.9 1.2 1.5
510 & n

511  Fig. 11 Contact normal and particle orientation fabric evolution results from drained DEM tests and
512 ACST simulations using Eqgs. (7) and (8), for specimens with ey=0.656+0.005, under 5=0, 0.25, 0.5,
513  0.75, and 1: (a) Fe-g4; (b) Fe-17; () Fp-eg; (d) Fp-n.
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515  Fig. 12 Dilatancy and void ratio evolution results from drained DEM tests and ACST simulations
516 using Eqgs. (7) and (8), for specimens with ¢p=0.656+0.005, under 5=0, 0.25, 0.5, 0.75, and 1: (a) D-
517 5 from DEM; (b) D-5 from ACST; (c) e-¢; from DEM and ACST.

518 For the dilatancy simulation results, Fig. 12 (a) and (b) show that the initial
519  dilatancy is almost independent of 4 in both DEM and ACST. The ACST calculation

520 yields correctly decreasing absolute peak value of D with increasing b, which however
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is only slightly observed in the corresponding DEM test results. This may be cause by
the over-simplification of Eq. (3) by assuming constant values for d, m, and ¢,. For
void ratio development in Fig. 12 (c), the ACST calculation reflects similar patterns to
that of the DEM tests, while overestimating the difference between the tests with
different b values up to ¢, of about 0.2 due to the inconsistent simulations for peak
dilatancy. After ¢, exceeds 0.2, more fluctuation is observed for the DEM results,
possibly due to the limited number of particles. The same critical state void ratio is

reached, irrespective of the value of b.
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Fig. 13 The DEM results of critical state stress, contact normal fabric, and particle orientation fabric
in the 7 plane for specimens with eg=0.657+0.005, under loading with different b values: (a) critical
state stress; (b) critical state contact normal and particle orientation fabric (non-normalized).

Both Fig. 11 and 12 indicate that the critical state deviatoric stress ratio M is b
dependent (i.e. the well-known Lode angle dependence). Fig. 13 (a) plots the critical
state stress in the 7 plane for the four tests with different 5, which follows a typical
rounded triangular-shaped surface. DEM tests on spherical particles (Thornton, 2000;
Thornton and Zhang, 2010; Zhao and Guo, 2013; Huang et al., 2014; Yuan et al. 2019)
showed that the critical state non-normalized contact normal fabric tensor norm is
reciprocal to the critical state stress in the 7 plane, also derived theoretically under

certain assumptions (Li and Dafalias, 2015). The non-normalized critical state particle
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orientation and contact normal orientation fabric norms for the four tests with different
b in this study are plotted in the 7 plane in Fig. 13 (b). F*,rit is approximately similar
in shape to that of 6crit in the 7 plane, instead of being reciprocal as suggested for F'¢ orit
in the previous studies, because at critical state N'y= -1 instead of N'c= 1. Also, F'¢
shows only slight dependency on b in this study, and its reciprocal feature to Gcrit
plotting is not clearly exhibited. These results indicate that the dependency of critical
state fabric on b is different for fabric tensors defined based on different grain scale
features and may be more complicated than suggested in Zhao and Guo (2013),

especially for non-spherical particles (Yang and Wu, 2016; Nguyen et al., 2018).

4.5 Simulations of DEM undrained tests with different bedding plane angle ¢

To further challenge the adaptability of the ACST framework, two undrained DEM
tests are conducted on specimens with ep=0.655, and bedding plane angles ¢p=0° and
90°, respectively, and are simulated using the ACST formulations in Egs. (3), (7), and
(8). The exact same parameters as those for the drained tests are used for the simulation
of the undrained tests (Table 2). In the drained constant p tests, the critical state void
ratio ec measured in DEM at the particular p can be used as input for ACST calculations.
However, in the undrained tests, as p is constantly changing until the critical state, an
e~p relationship must be established. In the two undrained tests here, the critical state
void ratio e~0.655 at p=1180 kPa. The results from drained constant p tests yield
e~0.761 at p=100 kPa. Using the critical state e.~p data under these two conditions,
the e~p relationship can be approximated with ¢ =e¢ —A (p,/p,)° following Li

and Wang (1998), where p. is the atmospheric pressure, ¢ is generally assumed to be
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0.7, resulting in back calculated values of 0.784 and 0.023 for eco and A, respectively.
To simulate the p-g stress path of undrained loading, a reasonable approximation for
elastic bulk modulus must also be provided in the ACST calculation. Here, it is assumed
that that the elastic bulk modulus K =[(1+¢)p, / x](p/ p,)"* following Richart et al.
(1970), with a value of 0.032 for parameter «, calculated from fitting the elastic bulk
modulus obtained through applying hydrostatic stress increments in DEM at various p
with contact sliding restricted .

Fig. 14 (a)-(d) show the evolution of the contact normal and particle orientation
fabric tensor norms for the two undrained tests from ACST calculations and DEM tests.
The evolution of the two fabric tensors during the entire loading process is captured
remarkably well, particularly in the plots versus the deviatoric strain, given that no
adjustments whatsoever were made to the formulations and parameters used in the
drained tests. This further exhibits the general applicability of the combined rate
evolution Egs. (7) and (8) proposed within ACST, as well as the validity of the ACST
itself as an appropriate constitutive framework for granular materials.

Recall that in these simulations the deviatoric stress and deviatoric plastic strain
variations are inputted from DEM, as shown in Fig. 14 (e), where clear anisotropic
behaviour is observed due to large difference in response according to relative
orientation of stress and bedding plane. Dilatancy cannot be directly measured during
undrained DEM tests, and thus cannot be compared directly with ACST dilatancy
results. Instead, the stress path in p-¢g space for both ACST and DEM are plotted in Fig.

14 (f). The initial decrease in p (indicating contraction), subsequent increase in p
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(indicating dilation), and eventual stabilization of stress at the critical state is captured
in the ACST calculations. Close up of the early stages of loading in the small window
in Fig. 14 (f) shows that the ACST framework is able to simulate the anisotropic
volumetric behaviour, i.e. stronger initial contraction tendency of the specimen with
greater ¢. The anisotropy in deviatoric stress-strain relationship and stress path are
consistent with observations in laboratory tests (Symes et al., 1984; Yoshimine et al.,

1998).

T
05 —— 0°-ACST
- --- 90°-DEM
(@) ——— 90°-ACST
0 0
0 0.2 0.4 0.6 0.8 0 03 06 09 12 15
& n
1.2 1.2
1 >
LLQ. 0.8 === \\“
0.6
(d)

0 0.2 0.4 0.6 0.8
£q
800
e 4
500 (e) s
s ]
T 400 e T
o LT T
200 ST e
0 L4
0 0.025 005 0075 0.1 0 500 1000 1500
£ p (kPa)

q

Fig. 14 Fabric and stress evolution results from undrained DEM triaxial tests under 5=0 and ACST
simulations using Eqgs. (9) and (10), for specimens with ey=0.655, bedding plane angle p=0°and 90°:

(a) Fegg; (b) Fernp; (©) Fyeg; (d) Fpn, (f) g-g4 (input from DEM), (f) g-p.
5. Conclusions

The main objectives of this study were to evaluate the validity of two analytical
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relations of ACST for the rate equation of evolution of fabric tensor F and the
dependence of dilatancy on it for granular materials and guide the formulation of the
former by comparison with DEM calculations. The DEM tests input the stress ratio and
deviatoric plastic strain during loading into these two ACST analytical relations, which
then are used to independently calculate fabric evolution and dilatancy, the latter
yielding the volumetric deformation. Based on the comparisons of fabric evolution and
dilatancy between ACST calculations and DEM tests, it is concluded that the ACST
framework is able to address the strongly anisotropic dilatancy response of granular
materials and simultaneously capture the evolution of fabric tensor, a confirmation not
possible by earlier macroscopic only observations. The contact normal fabric tensor F
can serve as an acceptable grain scale-based fabric going into the ACST framework in
determining the dilatancy, a previously assumed fact, but now being firmly confirmed
with the following interesting and novel observations.

It was firstly shown that the fabric dependent dilatancy is relatively sensitive to
the exactness with which the contact normal fabric tensor is analytically calculated. The
peak contact normal-fabric norm, before reaching its lower critical state value for dense
materials under triaxial loading, was found to be related to dilatancy based on DEM
results. In addition, the evolution of the contact normal fabric tensor was observed to
be influenced by the also evolving particle orientation fabric tensor as well. Therefore,
the incorporation of the combined influence of dilatancy and particle orientation fabric
in the expression for the coefficient r of the original Eq. (4) proposed by Li and Dafalias

(2012), entering the contact normal fabric rate evolution Eq. (7) in conjunction with Eq.
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(8), 1s an important and original proposition of this work, called the combined
formulation. This combined formulation is shown to achieve good analytical
description of contact normal fabric evolution and dilatancy anisotropy in a very wide
range of loadings. Both drained and undrained loadings were considered, always with
the same set of model constants. For the drained loadings in particular, the responses of
three different categories of samples were simulated, namely those with different
bedding plane orientations, different initial void ratios and different intermediate
principal stress coefficient b.

Some issues still remain in regard to the effect of b. The simulated peak dilatancy
was found to be slightly inconsistent with DEM observations for tests with different
values of b, resulting in overestimation of the influence of » on fabric and void ratio
evolution. The dependency of critical state fabric on » was also found to be different
for contact normal and particle orientation-based fabric tensors associated with non-
spherical particles. To address these issues further analysis should be carried out on the

dilatancy of granular materials under 3D loading with different .
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Appendix

Referring to Eq. (7), the parameter £ is expected to be related to particle elongation or
aspect ratio R and other factors. For spherical particles, where particle orientation is
non-existent resulting in isotropic fabric, hence, F,= 0 and 4,= 0, # should be set equal
to 0 so that F. = n from Eq. (7) at critical state where D = 0. One may assume in fact
that £ is a continuous function of aspect ratio R such that f = 0 when R=1. This
guarantees the necessary continuity of the quantity f(1+4,) at R=1 in Eq. (7), because
the F; and 4, may change discontinuously from their 0 values at R=1. This may happen
if for example one considers an arrangement of particles shown in Fig. 5 with such

particles changing from spherical with R=1 and F,= 0, to non-spherical with R#1 and
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F, # 0 for any value of R as close or as far from 1.

In order to check the validity of the requirement to set f = 0 when R=1, two DEM tests

on spherical particles are conducted and used Eq. (7) with =0 in ACST simulations.

Due to the change in material, the critical state and fabric evolution rate changed, thus

requiring re-calibration of all parameters. The figure below compares the contact

normal fabric evolution void ratio development under these circumstances. Good

agreement between ACST and DEM is achieved with only Eq. (7) and § = 0, without

of course the use of Eq. (8) that has no meaning for spherical particles.

---- 0°-DEM
———0°-ACST
- --- 90°-DEM
———90°-ACST

0.2 0.4 0.6 0.8
Cq

Fig. 15 Contact normal fabric evolution and void ratio development results from drained DEM tests

and ACST simulations using Eq. (7) and = 0, on two specimens consisting of spherical particles

with different bedding plane angles.



