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 18 

Abstract 19 

Fabric, expressed by means of an evolving deviatoric fabric tensor F, plays a very 20 

important role in the anisotropic mechanical response of granular materials. The 21 

Anisotropic Critical State Theory (ACST) addresses fabric anisotropy by rendering 22 

dilatancy a function of F, in addition to other state variables. In this paper, 3D DEM is 23 

used to guide the specific definition of F, the formulation of its continuum evolution 24 

equation and its effect on anisotropic dilatancy within ACST. DEM provides stress-25 

ratio and shear strain variations as input for ACST analytical calculations of evolving 26 

fabric tensor and dilatancy, which are then favourably compared with totally 27 

independent direct measurements of these quantities by DEM. Dilatancy is shown to be 28 

strongly affected by the contact normal-based fabric tensor F, whose evolution is best 29 

described by a continuum equation within ACST that also includes a particle 30 

orientation-based fabric quantity. The aforementioned favourable comparison of the 31 

results for fabric tensor and dilatancy obtained independently by ACST and DEM, 32 

confirms the validity of the core framework of ACST irrespective of any constitutive 33 

model that addresses the deviatoric stress-strain relations. 34 
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1. Introduction 38 

Fabric and its evolution play a very important role in the mechanical response of 39 

granular materials and are, therefore, an integral component of the corresponding 40 

constitutive relations that address the so-called fabric anisotropy. Fabric quantification 41 

is commonly achieved by the means of a fabric tensor F which can be defined by and 42 

associated with the statistical distribution of the orientation of unit vectors along the 43 

major axis of elongated particles, contact normal directions, void vectors, scan-line 44 

directions or other micromechanical oriented entities. In most continuum theories the 45 

notion of a fabric tensor is not necessarily associated with a specific microscopic entity. 46 

While F has been included in various ways into several constitutive relations in the past 47 

(e.g. Tobita, 1987; Oda, 1993; Wu, 1998; Wan and Guo, 2001, 2004; Li and Dafalias, 48 

2002; Dafalias et al., 2004; Yao et al., 2017; Ueda and Iai, 2018), its fundamental role 49 

as an element of a general framework for constitutive relations rather than specific 50 

constitutive models, was only recently recognized with the development of Anisotropic 51 

Critical State Theory (ACST) by Li and Dafalias (2012). ACST extends the classical 52 

Critical State Theory (CSR) (Roscoe et al., 1958; Schofield and Wroth, 1968) that did 53 

not consider fabric.  54 

ACST achieves two tasks. First, it enriches the two conditions of CST regarding 55 

stress and void ratios at Critical State (CS) by a third, related to the CS value of F in 56 

combination with the deviatoric plastic strain rate unit norm direction n. This 57 

combination is expressed by means of the Fabric Anisotropy variable (FAV) A=F:n, 58 

where “:” signifies the trace of the product of the adjacent tensors. With a proper 59 



normalization of the norm of F, the third CS condition yields A = Ac=1. In the process 60 

the very important rate equation of evolution for F must be formulated in a way that 61 

satisfies the foregoing third CS condition. The foregoing conclusion was motivated by 62 

DEM results in relation to a void based (Li and Li, 2009) and a contact normal based 63 

(Fu and Dafalias, 2011) fabric tensor. It was later shown by Theocharis et al. (2017, 64 

2019), that this third condition must be added to the two classical conditions of the CST 65 

in order to render all three of them both necessary and sufficient for reaching and 66 

maintaining CS without the additional assumption of fixity of the plastic strain rate 67 

direction (or stress direction) at CS implied in classical CST. 68 

The second task of ACST was to render the phase transformation stress ratio and 69 

the ensuing dilatancy D, function of A, hence of F, in addition to dependence on void 70 

ratio e and mean pressure p by means of the state parameter ψ (Been and Jefferies, 71 

1985). The ACST is mainly a theory on fabric dependent dilatancy, without addressing 72 

the deviatoric stress-strain response that is delegated to any chosen specific constitutive 73 

model formulated within the premises of ACST. By such dependence of D on F via A, 74 

it was possible to simulate the strongly anisotropic response of samples loaded at 75 

various directions in regard to fabric tensor, as initially shown by Li and Dafalias (2012), 76 

followed by numerous subsequent papers with various constitutive models within 77 

ACST (Gao et al., 2014; Li and Dafalias, 2015; Woo and Salgado, 2015; Zhao and Gao, 78 

2016; Petalas et al., 2018; Papadimitriou et al., 2018; Yang et al., 2018). The 79 

dependence of phase transformation stress ratio, thus of dilatancy D, on fabric, has been 80 

investigated earlier by Wan and Guo (2001, 2004) but differs fundamentally from the 81 



present development within ACST in two aspects. First, the assumed evolution of F is 82 

not related to its convergence with specific CS values, as demonstrated by numerous 83 

DEM studies, that constitutes the basis for showing the uniqueness of the Critical State 84 

Line (Li and Dafalias, 2012). Second, the dilatancy D depends not only on F, e and p 85 

as in ACST, but also on a modified cumulative plastic shear strain that given a sample 86 

is impossible to measure, as opposed to F, e and p that can all be measured in principle.  87 

While the continuum theory embodied by a typical constitutive model for sands 88 

within ACST yielded very good simulations based on the use of a generic macroscopic 89 

F and its evolution, it still remains an open question as to which microscopically defined 90 

fabric tensor is more appropriate for constructing the macroscopic entity F entering 91 

ACST. Furthermore, the validity of the fundamental macroscopic analytical relations 92 

of ACST for the evolution of F and the dependence of dilatancy on F via A, has been 93 

confirmed indirectly by successful simulations of data by the various models of all the 94 

aforementioned references, but not directly in terms of measured or computed grain-95 

scale quantities. What has been done so far by the means of DEM (there are numerous 96 

works with DEM addressing fabric but here only those related to ACST are considered), 97 

is to confirm concepts used in ACST such as the convergence of fabric tensor with n at 98 

CS and the anisotropic response of granular assemblages if loaded at various 99 

orientations with different Lode angles as well as the effect of fabric anisotropy on 100 

issues of controllability and instability (Li and Li, 2009; Fu and Dafalias, 2011; Guo 101 

and Zhao, 2013; Zhao and Guo, 2013, Yang and Wu, 2016; Wang et al., 2017; Shi and 102 

Guo, 2018; Lashkari at al., 2019). In some very recent papers, the DEM confirmation 103 



of the analytical relations of ACST was done half-way only, as follows. In Hu et al. 104 

(2019) and Yuan et al. (2019) a rate equation of evolution for F, active even if no plastic 105 

deformation takes place, was validated versus DEM measurements of a contact normal 106 

based F. However, the dilatancy was not rendered function of F, hence, denying one of 107 

the most important features of ACST, namely that of a fabric anisotropy dependent 108 

dilatancy. In Wang et al. (2019a) the task was to confirm the validity of the analytical 109 

dependence of dilatancy D on F via A, as postulated by ACST. Hence, DEM loadings 110 

at various orientations were carried out calculating stress, strain, fabric tensor and 111 

dilatancy, and then using as input the DEM calculated fabric tensor F into the ACST 112 

analytical expression for D in terms of F and other entities, favorable comparison of 113 

the analytically calculated values of D with those obtained directly by DEM during the 114 

loading sequence till critical state failure, was obtained. 115 

It follows that up until now there is no DEM confirmation of both main ACST 116 

analytical expressions for the rate of evolution of F and the dependence of D on F via 117 

A. The present paper comes to cover exactly this missing link. The procedure is very 118 

simple and straightforward. As in Wang et al. (2019a), a DEM loading sequence at 119 

various orientations in regard to fabric, first drained and then undrained, is carried out, 120 

and stress, deviatoric strain, fabric tensor, dilatancy and volume change are recorded. 121 

Subsequently, instead of using as input to ACST the DEM calculated F, as done in 122 

Wang et al. (2019a), appropriate rate equations of evolution within ACST are used to 123 

calculate analytically F as an evolving internal variable, which then is used to calculate 124 

D by the ACST analytical expression of the latter. In other words, unlike what has 125 



happened in prior publications, the calculations of F and D by means of analytical 126 

relations within ACST are carried out totally independently from the DEM calculated 127 

F and D, and subsequently compared with them. The only input to ACST from DEM is 128 

the stress and deviatoric strain at each step of the loading process, that as mentioned 129 

before are delegated to be obtained by an appropriate constitutive model. This approach 130 

eliminates the need to rely the comparison on a specific constitutive model within 131 

ACST and enables to focus on evolving fabric and dilatancy, the key features of ACST. 132 

In the process of carrying out this task, other issues will also be addressed. One 133 

will be the examination of the performance of various rate equations for F proposed in 134 

past works, including their effect on dilatancy D. Another will be the sensitivity of the 135 

dependence of D on the “exact” calculation of F. This DEM based investigation will 136 

yield new insight for the optimal formulation of a novel continuum fabric tensor 137 

evolution equation appropriate for ACST, involving contact normal and particle 138 

orientation-based fabric tensors in combination. Overall it will be the most independent, 139 

direct grain-level validation and calibration of ACST done so far by means of DEM. 140 

 141 

2. DEM test scheme and typical observations 142 

2.1 Stress-strain and dilatancy calculations by means of DEM 143 

The open source code Yade (Šmilauer et al., 2015) is used in this study for 3D 144 

DEM numerical testing, to provide a basis for the formulation and validation of fabric 145 

evolution and dilatancy equations in ACST. Sixteen drained constant-mean effective 146 

stress (p) triaxial tests (meaning “true-triaxial tests” in this work) with various 147 

intermediate principal stress coefficient b values (0, 0.25, 0.5, 0.75, and 1) 148 



corresponding to various Lode angles, are conducted on specimens with various initial 149 

void ratios (e0 = 0.690±0.005, 0.656±0.005, and 0.570±0.005) and initial fabric 150 

orientations. Two undrained triaxial compression tests are also conducted on two 151 

specimens with the same void ratio (e0 = 0.655) but different initial fabric orientations, 152 

as listed in Table 1. Specimens with different initial fabric orientations are generated by 153 

altering the bedding plane angle φ (0°, 30°, 60°, 90°), i.e. the angle between particle 154 

deposition direction and the major principal stress axis (Fig. 1 (a)). Note in this study, 155 

the minor principal stress is always parallel to the bedding plane. 156 

Elongated particles with aspect ratio of 1.5:1 are used in this study for pronounced 157 

anisotropic behaviour. The details of the particle and contact law specifications have 158 

been reported in Wang et al. (2019 a). Constant p triaxial loading is achieved by servo-159 

controlled loading on rigid frictionless walls, while undrained triaxial loading is 160 

achieved by enforcing a constant-volume condition, which has been successfully 161 

applied in several studies (Kuhn et al., 2014; Wang et al., 2016; Wang et al., 2019 b). 162 

The specimens are consolidated under 100kPa confining stress. The homogeneity of 163 

the specimens after consolidation are verified rigorously by examining the consistency 164 

of stress and density in different regions within the specimen. Largely uniform 165 

deformation without the appearance of significant global shear bands and strain 166 

localization is observed in the tests, verified via the method proposed by Wang et al. 167 

(2017). During loading, the inertial number I is restricted within 10-5, to achieve quasi-168 

static conditions (MiDi GDR, 2004). 169 

Table 1. DEM test scheme 170 
Test 

number 
Initial void 

ratio e0 
Intermediate 

principal stress 
Bedding plane 

angle φ (°) Loading 



coefficient b 
1 0.693 0 0 

drained, constant p 2 0.685 0 30 
3 0.692 0 60 
4 0.690 0 90 
5 0.655 0 0 

drained, constant p 6 0.658 0 30 
7 0.654 0 60 
8 0.655 0 90 
9 0.658 0.25 0 

drained, constant p 10 0.656 0.5 0 
11 0.658 0.75 0 
12 0.656 1 0 
13 0.570 0 0 

drained, constant p 14 0.570 0 30 
15 0.570 0 60 
16 0.569 0 90 
17 0.655 0 0 undrained 
18 0.655 0 90 undrained 

In DEM, stress is computed as the per-volume summation of the tensor product of 171 

contact force vectors and corresponding contact branch vectors (Bagi, 1996). Strain is 172 

calculated from the displacements of particles at the vertices of a Delaunay tessellation 173 

of the granular assembly (Fu and Dafalias, 2012; Xue et al., 2019). Stress and strain are 174 

denoted positive in compression, following traditional soil mechanics sign conventions. 175 

The mean effective stress p is tr(σ)/3, where tr(σ) is the trace of the effective stress 176 

tensor σ. The deviatoric stress q is [3/2(σ-pI):(σ-pI)]1/2, where I is the second order 177 

identity tensor; η=q/p is referred to as the deviatoric stress ratio. The volumetric strain 178 

εv is the trace tr(ε) of the strain tensor ε, while the deviatoric strain εq equals [2/3(ε-179 

εv/3I):(ε-εv/3I)]1/2. Corresponding definitions apply to strain rates. The dilatancy  is 180 

defined as the ratio of the volumetric to deviatoric plastic strain increments, i.e. 181 

. The plastic strain increment dεp is calculated by subtracting the 182 

elastic strain increment dεe from the total strain increment following the procedure 183 

suggested by Wan and Pinheiro (2014) and Wang et al. (2019 a). 184 

The stress-strain results from two typical drained DEM triaxial tests under b=0 on 185 

D

( / )p p
v qD d de e=



specimens with e0=0.656±0.005, and bedding plane angle φ=0° and 90°, respectively, 186 

are presented in Fig. 1. Significant anisotropic behaviours are observed for the two 187 

specimens with different bedding plane angle φ. Fig. 1 (b) and (c) show that the 188 

specimen with φ=0° exhibits higher peak shear strength and stronger tendency to dilate 189 

compared with the specimen with φ=90°, though both specimens converge toward the 190 

same critical state in terms of deviatoric stress ratio η and void ratio e at large deviatoric 191 

strain, consistent with findings in the literature (Oda, 1972; Guo, 2008; Fu and Dafalias, 192 

2011b; Tong et al., 2014; Yang et al., 2016; Cao et al., 2016; Wang et al., 2017). 193 

The variations of dilatancy D with respect to η for the specimens in the two tests 194 

are directly compared in Fig. 1 (d). The specimen with φ=90° is significantly more 195 

contractive in the early stage of loading at low η. At higher η values, the D-η 196 

relationship converges towards the same point, denoted as the “critical state” in the 197 

figure, while the dilatancy at peak stress ratio, also called peak dilatancy (negative in 198 

dilation), is significantly greater in absolute value for the specimen with φ=0°. At the 199 

critical state, D = 0 at same critical stress ratio for both specimens, as expected from 200 

CST and its extension by ACST. Also observe that D = 0 instantaneously during loading 201 

when η crosses the phase transformation, such crossing is indicated in the D-η plot of 202 

Fig. 1(d) by dashed circles; this happens at quite different values of η for the two 203 

specimens, smaller for the specimen with φ=0°. The comparison of the stress-strain 204 

behaviour of the specimens with φ=0° and φ=90° is analogous to that between a denser 205 

and a looser specimen, respectively. 206 



  207 

Fig. 1 Typical drained DEM tests on two specimens with e0=0.656±0.005, and bedding plane angle 208 
φ=0° and 90°: (a) DEM specimen and loading schematic; (b) deviatoric stress ratio η - deviatoric 209 
strain εq; (c) void ratio e-εq; (d) dilatancy D-η. 210 

2.2 Contact normal and particle orientation-based fabric tensors 211 

Denoting, henceforth, by superscript * a fabric tensor calculated by means of DEM, 212 

the deviatoric fabric tensor F* can be calculated as (Satake, 1982): 213 

                  (1) 214 

where N is the number of contacts, vk is the unit norm vector attributed to the kth grain 215 

scale entity used to define the fabric tensor, e is the void ratio. The term 1+e is 216 

introduced to define a per-volume measure of fabric tensor for thermodynamic 217 

consistency required for the continuum definition of fabric as an internal variable (Li 218 

and Dafalias, 2015).  219 

Motivated by the notion of Fabric Anisotropy Variable (FAV) A=F:n introduced 220 

in ACST, two quantities will be used to evaluate fabric anisotropy. First is the norm of 221 

the deviatoric fabric tensor F*=||F*|| = that measures the intensity of fabric 222 
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anisotropy. Second is the quantity N*= (F*/ F*):n , which is independent of the norm 223 

and measures the orientation of the fabric tensor with respect to n, since F*/ F* is a unit 224 

norm deviatoric tensor along . Based on the foregoing definitions it follows that A* 225 

= = F* N*. It must be mentioned that in what follows in this section the DEM 226 

calculated norms are not normalized by their CS values, hence, the A* does not attain 227 

unity at CS with no effect whatsoever on the basic premises of ACST (Dafalias, 2016). 228 

Common examples of grain-scale features used to define the fabric tensor include 229 

the contact normal vector and the particle orientation vector, which yield the contact 230 

normal fabric tensor F*c and particle orientation fabric tensor F*p, respectively. For the 231 

two typical drained DEM tests in Fig. 1, F*c and N*c of the contact normal fabric tensor 232 

and F*p and N*p of the particle orientation fabric tensor are plotted in Fig. 2 against both 233 

deviatoric strain εq and deviatoric stress ratio η. At the initial state, the norms F*c and 234 

F*p are the same for the two specimens since they are independent of orientation, while 235 

N*c and N*p are distinctly different, reflecting the difference in bedding plane angle φ. 236 

The initial evolution of the contact normal fabric is faster than that of the particle 237 

orientation fabric. The specimen with φ=0° experiences a peak F*c. For the two tests, 238 

the contact normal fabric tensor reaches the same stable state after εq > 0.4, while the 239 

particle orientation fabric tensor converges to the same stable state after εq > 0.7 (Fig. 240 

2 (a) and (c)). At εq > 0.7, stress, void ratio, and fabric anisotropy all reach their 241 

respective constant values, confirming the reaching of critical state. At the critical state, 242 

N*c=1 while F*c is unique under the same loading condition, complying with the basic 243 

hypothesis of ACST. For the particle orientation fabric, F*p is also unique at the critical 244 

*F

*F :n



state under the same loading condition, though N*p= -1, since F*p/ F*p = - F*c/ F*c at CS.  245 

 246 
Fig. 2 Contact normal and particle orientation fabric evolution in drained DEM tests on two 247 
specimens with e0=0.656±0.005, and bedding plane angle φ=0° and 90°: (a) F*-εq; (b) F*-η; (c) N*-248 
εq, ; (d) N*-η; N*=(F*:n)/F* is a measure of the relative orientation of the fabric tensor F* and unit-249 
norm deviatoric tensor-valued loading direction n. c and p in the legend denote contact normal fabric 250 
and particle orientation fabric, respectively. 251 

A first hint as to which grain level-defined fabric tensor may be considered best 252 

suited for representing the generic notion of such tensor in ACST, can be obtained from 253 

Fig. 2. In Fig. 2 (b) and (d), the contact normal fabric tensor evolves continuously from 254 

the initiation of loading, and N*c of the two specimens becomes very close at high η, 255 

e.g. at η>1, similar to the convergence of D-η relationship at high η as seen in Fig. 1(d). 256 

In comparison, the particle orientation fabric evolves significantly only as peak η is 257 

reached. Therefore, as suggested in Wang et al. (2019a), it seems that the contact normal 258 

based fabric tensor is better suited to address the dilatancy dependence on fabric in a 259 

way that will be addressed in the sequel. 260 
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3. Fabric evolution and dilatancy in ACST motivated by DEM results 261 

3.1 Fabric dependence of dilatancy within ACST 262 

In the ACST framework (Li and Dafalias, 2012), the volume-related anisotropic 263 

behaviour of granular materials is addressed by introducing the role of a deviatoric 264 

fabric tensor F via the aforementioned Fabric Anisotropy Variable (FAV) A=F:n into 265 

dilatancy as follows. A new state variable, the Dilatancy State Parameter (DSP) ζ 266 

combines both the classical State Parameter (SP)  by Βeen and Jefferies 267 

(1985), with ec the critical state void ratio at current p, and FAV A in its definition as 268 

follows: 269 

                          (2) 270 

where  can be a function of the void ratio e and/or the mean effective stress p (Li 271 

and Dafalias, 2012). The ζ substitutes for  in the definition of a variable with  272 

phase transformation line (or dilatancy stress ratio), an idea originally proposed by 273 

Manzari and Dafalias (1997). Therefore, a dilatancy based on the essence of Rowe’s 274 

dilatancy theory (Rowe 1962), can be expressed as: 275 

                         (3) 276 

where M is the critical state stress ratio, d and m are material parameters or functions 277 

that are often assumed to be constant (e.g. Dafalias and Manzari, 2004; Wang et al., 278 

2014). The exponential dependence of dilatancy stress ratio on ζ is adopted from the 279 

corresponding expression in Li and Dafalias (2000) for ψ. 280 

Normalization of F by its critical state norm Fcrit, which depends on the Lode angle, 281 

yields a third condition A=Ac=1 when reaching critical state, that in combination with 282 

ψ = 0 yields ζ = 0 and D = 0 at critical state according to Eqs. (2) and (3). The foregoing 283 

ce ey = -

ˆ ( 1)Ae Az y= - -

ˆAe

y y
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normalization of a DEM calculated F* as in Eq. (1) by its norm F*crit will henceforth be 284 

adopted, hence, hereafter, a fabric tensor refers to its normalized version either as a 285 

continuum variable within ACST or as a DEM calculated entity, i.e. F = F*/F*crit, unless 286 

specifically otherwise indicated.  287 

A key step in ACST is the formulation of the rate evolution equation of F towards 288 

its critical state value. Li and Dafalias (2012) proposed an equation of F that reads: 289 

              (4) 290 

where  is the rate of evolution for F; λ within the Macauley brackets < > is the plastic 291 

multiplier which can be expressed as in terms of the plastic deviatoric 292 

strain rate norm. With no loss of generality cc = rc was set in Eq. (4) with cc and r 293 

constitutive parameters or functions, the former dictating the pace of fabric evolution 294 

and the latter its peak value. The specific form of those two parameters were not 295 

addressed in the original ACST formulation (Li and Dafalias, 2012).  296 

In order to compare results obtained by DEM and ACST the following procedure 297 

is adopted. The input to ACST from DEM calculations consists of a given stress ratio 298 

η, its increment and the deviatoric plastic strain increment. A typical example of such 299 

input was presented in Fig. 1 (b), but it is not necessary to show such input in all 300 

subsequent cases. The output from ACST is obtained as follows: first, λ is identified 301 

based on the deviatoric plastic strain increment, then the fabric tensor is updated by 302 

Eq.(4) using the n defined by the provided plastic strain increment tensor, followed by 303 

calculation of the Fabric Anisotropy Variable (FAV) A and the ensuing Dilatancy State 304 

Parameter (DSP) ζ from Eq.(2). Then dilatancy D is calculated from Eq. (3) that in turn 305 
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is used to calculate the volumetric strain and ensuing void ratio changes based on the 306 

deviatoric plastic strain increment provided. These steps are then repeated. The initial 307 

values of void ratio and fabric tensor, and the corresponding critical state void ratio 308 

used in the ACST calculations are also obtained from DEM measurements as a virtual 309 

substitute of real experimental data. For the drained constant p=100 kPa triaxial tests, 310 

ec=0.761 is determined from the mean void ratio of sixteen drained tests, at 0.8 311 

deviatoric strain. For the triaxial tests with b=0, M=1.06 is determined from the mean 312 

deviatoric stress ratio of the fourteen tests with b=0, at 0.8 deviatoric strain. For 313 

simplicity, it is assumed in this study that d, m, and  in Eqs. (2) and (3) are constants. 314 

3.2 Performance of two simple fabric evolution formulations 315 

ACST does not specify which microscopically defined fabric tensor is more 316 

appropriate for F in Eqs. (2)-(4). Based on the observations from DEM results in this 317 

study (Fig. 1-2), it would be reasonable to simulate the evolution of the contact normal 318 

fabric tensor Fc with various forms of Eq. (4) and use Fc to address the anisotropic 319 

dilatancy of granular materials via Eqs. (2) and (3). One may rename in that case the 320 

FAV A entering Eq. (2) as Ac=Fc:n.  321 

In the simplest form of Eq. (4) one considers cc to be constant, and r =1 to 322 

guarantee that at critical state Eq. (4) results in  and Fc = n; thus, one can write: 323 

                      (5) 324 

This simplified rate equation only requires one parameter to depict the evolution 325 

of the fabric tensor. While it guarantees the eventual convergence of the fabric tensor 326 

towards its critical state, Eq. (5) does not reflect the peak in F*c observed for the 327 
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specimen with φ=0° in Fig. 2. To capture this peak behaviour, the parameter r in Eq. 4 328 

should be able to become smaller than unity before the critical state (Li and Dafalias, 329 

2012), instead of being constant as in Eq. (5). Yang et al. (2018) suggested incorporating 330 

dilatancy D in r of Eq. (4) in the form of r=1+D. This achieves an evolving r that can 331 

be smaller than 1 for dense material with D<0 in the dilative state while guaranteeing 332 

r=1 at the critical state where D = 0. Extending the foregoing suggestion, a similar 333 

approach is tested in this study using the following equation: 334 

                    (6) 335 

where a new parameter ccd is introduced to provide better control of the peak contact 336 

normal fabric norm; ccd = 0 reduces Eq. (6) to Eq. (5). 337 

Using Eqs. (2), (3), (5) and (6), with parameters listed in Table 2, fabric and void 338 

ratio evolution results can be obtained independently from DEM under the same initial 339 

and loading conditions. The value of the parameter ccd in Eq. (6) is set at 0.3, while the 340 

other parameters for the simulations using Eqs. (5) and (6) are exactly the same (Table 341 

2). Fig. 3 plots the ACST and DEM contact normal fabric norm evolution results for 342 

the two tests on specimens with e0=0.656±0.005, and bedding plane angle φ=0°and 90°, 343 

under b=0.  344 

It is evident that even the simplest form of Eq. (5) can capture the fundamental 345 

behaviour of fabric tensor evolution towards its critical state values, irrespective of the 346 

initial fabric, because this is built into the basic formulation. However, the difference 347 

in the Fc-εq plots resulting from Eq. (5) for the two specimens with different φ, is 348 

significantly underestimated compared to the DEM results, as seen in Fig. 3 (a). 349 
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Although the evolution of the contact normal fabric in the Fc-η space seems to be 350 

reasonably well captured with Eq. (5) at low η values, it is observed that the peak of 351 

fabric norm for φ=0° observed in DEM results is not achieved (Fig. 3 (a) and (b)), and 352 

significant discrepancies between ACST and DEM results develop at high η. Fig. 3 (c) 353 

and (d) show that by introducing dilatancy into the rate Eq. (6), one can achieve a good 354 

representation of the fabric norm peak for dense granular materials, however, the 355 

difference in fabric evolution in the Fc-εq space for the two specimens with different φ 356 

is still poorly represented. 357 

 358 
Fig. 3 Contact normal fabric evolution results from drained DEM tests and ACST simulations using 359 
Eq. (5) and Eq. (6), for specimens with e0=0.656±0.005, and bedding plane angle φ=0°and 90°: (a) 360 
Fc-εq from Eq. (5); (b) Fc-η from Eq. (5); (c) Fc-εq from Eq. (6); (d) Fc-η from Eq. (6) . 361 

The discrepancy between fabric evolution in the Fc-εq space in ACST calculations 362 

using Eqs. (5) and (6) and DEM has important consequences in volumetric behaviour. 363 

It leads to significant underestimation of anisotropy differences in void ratio 364 

development, as plotted in Fig. 4. The DEM results show that the specimen with φ=0° 365 

is much more dilative than that with φ=90° for εq between 0.1-0.4 (Fig. 4), while the 366 
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difference between the two tests based on ACST is much smaller during the entire 367 

loading process, using either Eq. (5) or (6), which cannot be overcome simply by 368 

adjusting the parameters in Table 2. For example, if a smaller cc value is adopted, 369 

although the difference between the fabric tensor norms of the two tests with different 370 

φ would persist till later during loading, the overall fabric evolution would become 371 

much slower compared to the DEM results. This suggests that even if the peak 372 

behaviour of fabric is captured by Eq. (6), some key ingredient is still missing. 373 

   374 

Fig. 4 Void ratio development results from drained DEM tests and ACST simulations using Eq. (5) 375 
and Eq. (6), for specimens with e0=0.656±0.005, and bedding plane angle φ=0°and 90°: (a) e-εq 376 
from Eq. (5); (b) e-εq from Eq. (6). 377 

 378 

Table 2. Input parameters for various fabric evolution equations in ACST 379 

Parameter Eq. (5) Eq. (6) Eqs. (7) and (8) 
 0.11 0.11 0.11 

d 0.44 0.44 0.44 
m 10 10 10 
cc 80 80 80 
ccd / 0.3 0.55 
β / / 0.3 
cp / / 4.5 
cpd / / 0.2 

4. A combined fabric evolution equation and comparisons with DEM 380 

4.1 Theoretical development 381 

Wang et al. (2017) suggested that various fabric tensors defined based on different 382 

grain scale quantities may be inter-dependent. In the two idealized configurations of a 383 
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granular material in Fig. 5, the contact normal fabric tensors are the same (isotropic) 384 

according to Eq. (1), while the particle orientation fabric tensors are clearly different. 385 

Under the same vertical compression loading, the evolution of the contact normal fabric 386 

would no doubt be different, influenced by the difference in particle orientation fabric.  387 

 388 

Fig. 5 Illustration of the possible influence of particle orientation fabric on the evolution of the 389 
contact normal fabric. 390 

It is hence plausible to make the hypothesis that the particle orientation fabric 391 

tensor, which converges with its critical state at a much slower rate compared with the 392 

contact normal fabric (Fig. 2), can delay the evolution of the contact normal fabric at 393 

relatively large strains. The lack of reference to the particle orientation fabric in Eqs. 394 

(5) and (6) may be the reason for their tendency to overestimate the convergence rate 395 

of fabric towards the critical state. Therefore, the influence of the particle orientation 396 

fabric on contact normal fabric evolution should be considered when formulating the 397 

rate equation of Fc. To this extent, a combined formulation for fabric evolution is 398 

presented in the following equations for both contact normal and particle orientation-399 

based fabric tensors: 400 

                (7) 401 

                  (8) 402 
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where it is clear from Eq. (7) what is the expression for the coefficient r of the original 403 

Eq. (4) proposed in Li and Dafalias (2012). The influence of the particle orientation 404 

fabric is incorporated via the relevant FAV Ap=Fp:n, with the positive parameter β used 405 

to adjust the amount of influence Ap imposes on the evolution of Fc. The parameter β is 406 

expected to be related to particle elongation or aspect ratio R and other factors. For 407 

spherical particles, where particle orientation is non-existent resulting in isotropic 408 

fabric, hence, Fp = 0 and Ap = 0, β should be set equal to 0 so that Fc = n from Eq. (7) 409 

at critical state where D = 0; in fact β=0 reduces Eq. (7) to the form of Eq. (6). The case 410 

of spherical particles deserves a more detailed consideration addressed in the Appendix. 411 

The Fp evolution Eq. (8) is similar to that of Fc in Eq. (6), with parameters cp controlling 412 

the pace of evolution and cpd the peak behaviour related to D. The expression +Fp 413 

instead of -Fp is used in Eq. (8), because at critical state one has Fp=-n, shown in Fig. 414 

2, as opposed to Fc = n for the contact normal fabric. Compared with the simplest form 415 

of Eq. (5), the present combined formulation requires four additional parameters b, ccd, 416 

cp and cpd.  417 

Using Eqs. (7) and (8) in conjunction with Eqs. (2) and (3), with parameters listed 418 

in Table 2, one can obtain the simulations of fabric tensors evolution and dilatancy for 419 

the various categories of tests in Table 1. Such simulations show in general a 420 

satisfactory agreement with DEM results. These 18 tests include drained tests on 421 

specimens with different bedding plane angles and initial void ratios, drained tests with 422 

different intermediate principal stress coefficients b, and undrained tests on specimens 423 

with different bedding plane angles. A description of these simulations follows. 424 



4.2 Simulations of DEM drained tests with different bedding plane angle φ 425 

The ACST results for contact normal fabric evolution calculated with Eqs. (7) and 426 

(8) are compared with the DEM test results in Fig. 6, for the four specimens with 427 

e0=0.656±0.005, and bedding plane angle φ=0°, 30°, 60°, and 90°, under b=0. A distinct 428 

feature observed in the ACST results using the combined fabric evolution formulation 429 

is that the difference in contact normal fabric norm between the specimens with 430 

different φ is preserved until much larger εq, due to the dependence of Fc on Fp. Better 431 

simulation of fabric evolution in the Fc-η space is also achieved at at high η values 432 

compared with the simulations in Fig. 3. The peaks in Fc for the two specimens with 433 

φ=0° and 30° are captured, while the general difference in the evolution of Fc during 434 

the entire loading process for the four specimens with different bedding plane angles is 435 

reflected in Figs. 6 (a) and (b). The calculated contact normal fabric tensor orientation, 436 

represented by Nc, also shows good agreement with DEM results. In the Nc-εq space, 437 

the orientation of the fabric tensor and the loading direction quickly align in both ACST 438 

calculations and DEM tests, which corresponds to the period of loading up to around 439 

the peak deviatoric stress ratio (Fig. 6 (c) and (d)).  440 

The good agreement of contact normal fabric evolution between ACST 441 

calculations and DEM results in Fig. 6 is aided by the appropriate formulation for the 442 

particle orientation fabric tensor evolution as per Eq. (8). Fig. 7 compares the particle 443 

orientation fabric tensor norm and orientation of ACST and DEM results. The slower 444 

evolution of Fp compared with that of Fc is well simulated. In both ACST and DEM 445 

results, Fp begins to evolve significantly only after peak stress is reached, with Fp 446 



reaching the critical state near the end of the loading process. 447 

 448 
Fig. 6 Contact normal fabric evolution results from drained DEM tests and ACST simulations using 449 
Eqs. (7) and (8), for specimens with e0=0.656±0.005, and bedding plane angle φ=0°, 30°, 60°, and 450 
90°: (a) Fc-εq; (b) Fc-η; (c) Nc-εq; (d) Nc-η. 451 

 452 
Fig. 7 Particle orientation fabric evolution results from drained DEM tests and ACST simulations 453 
using Eqs. (7) and (8), for specimens with e0=0.656±0.005, and bedding plane angle φ=0°, 30°, 60°, 454 
and 90°: (a) Fp-εq; (b) Fp-η; (c) Np-εq; (d) Np-η. 455 

As explained before, the fabric tensor is not taken from DEM calculations, but is 456 

independently obtained from Eq. (7) whose better performance over Eqs. (5) and (6) 457 

for the evolution of Fc results in better simulation of volumetric behaviour in Fig. 8, 458 
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compared to that in Fig. 4. The initial contraction tendency of specimens with greater 459 

φ is stronger. At high η, the dilatancy-stress relationship begins to converge in the D-η 460 

plot (Fig. 8 (a) and (b)), while specimens with smaller φ exhibit stronger peak dilatancy. 461 

The anisotropic void ratio development in ACST and DEM results also show good 462 

agreement (Fig. 8 (c)). 463 

 464 
Fig. 8 Dilatancy and void ratio evolution results from drained DEM tests and ACST simulations 465 
using Eqs. (7) and (8), for specimens with e0=0.656±0.005, and bedding plane angle φ=0°, 30°, 60°, 466 
and 90°: (a) D-η from DEM; (b) D-η from ACST; (c) e-εq from DEM and ACST. 467 

4.3 Simulations of DEM drained tests with different void ratio e 468 

Simulations of fabric evolution and volumetric behaviour for specimens with 469 

various densities are also conducted using the combined formulation of fabric evolution 470 

within ACST, with the same set of parameters in Table 2. Although twelve triaxial tests 471 

under b=0 on specimens with e0 of 0.656±0.005, 0.690±0.005, and 0.570±0.005 and φ 472 

of 0°, 30°, 60°, and 90° are conducted, Fig. 9 only presents the contact normal and 473 

particle orientation fabric tensor norm evolution for four tests for visual clarity, 474 

including the tests on specimens with φ=0° and 90° for the two different initial void 475 
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ratios of 0.690±0.005 and 0.570±0.005. Using the same set of parameters, the evolution 476 

of both contact normal and particle orientation fabric tensors during the entire loading 477 

process for specimens with drastically different initial densities can be simulated using 478 

ACST (Fig. 9). Not only is the greater peak contact normal fabric tensor norm of the 479 

dense specimen captured through Eq. (7) (Fig. 9 (a) and (b)), the peak particle 480 

orientation fabric tensor norm for the very dense specimen with e0=0.570±0.005 and 481 

φ=0° is also captured with Eq. (8). 482 

 483 
Fig. 9 Contact normal and particle orientation fabric evolution results from drained DEM tests and 484 
ACST simulations using Eqs. (7) and (8), for specimens with e0=0.570±0.005 and e0=0.690±0.005, 485 
bedding plane angle φ=0°and 90°: (a) Fc-γ; (b) Fc-η; (c) Fp-εq; (d) Fp-η. 486 

Fig. 10 shows the dilatancy and void ratio development results for these tests. The 487 

dilatancy results from ACST and DEM agree quantitatively, with looser specimens 488 

initially more contractive (Fig. 10 (a) and (b)) and having weaker peak dilatancy. The 489 

void ratio development for specimens with different densities is also well simulated 490 

using Eqs. (7) and (8) (Fig. 10 (c)). Initially, the looser specimens experience significant 491 
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void ratio reduction, while the contraction of the denser specimens are barely visible. 492 

Eventually, specimens with different e0 end up with the same ec. 493 

 494 

Fig. 10 Dilatancy and void ratio evolution results from drained DEM tests and ACST simulations 495 
using in Eqs. (7) and (8), for specimens with e0=0.570±0.005 and e0=0.690±0.005, bedding plane 496 
angle φ=0°and 90°: (a) D-η from DEM; (b) D-η from ACST; (c) e-εq from DEM and ACST. 497 

4.4 Simulations of DEM drained tests with different principal stress coefficient b 498 

The results presented in the previous sections are all from tests under triaxial 499 

compression with intermediate principal stress coefficient b=0. Here, the performance 500 

of the proposed ACST fabric evolution and dilatancy formulation is evaluated for 501 

different b values that will have an effect on the values of the FAV Ac = Fc :n entering 502 

Eq. (2) and Ap=F:n entering Eq.(7), due to the change of n. Fig. 11 illustrates the contact 503 

normal and particle orientation fabric norm for specimens with e0=0.656±0.005 and 504 

φ=0°, under b=0, 0.25, 0.5, 0.75, and 1.  505 

The DEM test results for fabric evolution are generally well simulated by the 506 

relations of ACST (Fig. 11). Tests with greater b values exhibit lower peak Fc values. 507 

However, the difference in peak Fc values is much more pronounced in ACST 508 
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simulations than DEM, possibly related to the results of peak dilatancy in Fig. 12. 509 

 510 
Fig. 11 Contact normal and particle orientation fabric evolution results from drained DEM tests and 511 
ACST simulations using Eqs. (7) and (8), for specimens with e0=0.656±0.005, under b=0, 0.25, 0.5, 512 
0.75, and 1: (a) Fc-εq; (b) Fc-η; (c) Fp-εq; (d) Fp-η. 513 

 514 

Fig. 12 Dilatancy and void ratio evolution results from drained DEM tests and ACST simulations 515 
using Eqs. (7) and (8), for specimens with e0=0.656±0.005, under b=0, 0.25, 0.5, 0.75, and 1: (a) D-516 
η from DEM; (b) D-η from ACST; (c) e-εq from DEM and ACST. 517 

For the dilatancy simulation results, Fig. 12 (a) and (b) show that the initial 518 

dilatancy is almost independent of b in both DEM and ACST. The ACST calculation 519 

yields correctly decreasing absolute peak value of D with increasing b, which however 520 
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is only slightly observed in the corresponding DEM test results. This may be cause by 521 

the over-simplification of Eq. (3) by assuming constant values for d, m, and . For 522 

void ratio development in Fig. 12 (c), the ACST calculation reflects similar patterns to 523 

that of the DEM tests, while overestimating the difference between the tests with 524 

different b values up to εq of about 0.2 due to the inconsistent simulations for peak 525 

dilatancy. After εq exceeds 0.2, more fluctuation is observed for the DEM results, 526 

possibly due to the limited number of particles. The same critical state void ratio is 527 

reached, irrespective of the value of b. 528 

 529 

Fig. 13 The DEM results of critical state stress, contact normal fabric, and particle orientation fabric 530 
in the π plane for specimens with e0=0.657±0.005, under loading with different b values: (a) critical 531 
state stress; (b) critical state contact normal and particle orientation fabric (non-normalized). 532 

Both Fig. 11 and 12 indicate that the critical state deviatoric stress ratio M is b 533 

dependent (i.e. the well-known Lode angle dependence). Fig. 13 (a) plots the critical 534 

state stress in the π plane for the four tests with different b, which follows a typical 535 

rounded triangular-shaped surface. DEM tests on spherical particles (Thornton, 2000; 536 

Thornton and Zhang, 2010; Zhao and Guo, 2013; Huang et al., 2014; Yuan et al. 2019) 537 

showed that the critical state non-normalized contact normal fabric tensor norm is 538 

reciprocal to the critical state stress in the π plane, also derived theoretically under 539 

certain assumptions (Li and Dafalias, 2015). The non-normalized critical state particle 540 
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orientation and contact normal orientation fabric norms for the four tests with different 541 

b in this study are plotted in the π plane in Fig. 13 (b). F*p,crit is approximately similar 542 

in shape to that of σcrit in the π plane, instead of being reciprocal as suggested for F*c,crit 543 

in the previous studies, because at critical state N*p= -1 instead of N*c= 1. Also, F*c 544 

shows only slight dependency on b in this study, and its reciprocal feature to σcrit 545 

plotting is not clearly exhibited. These results indicate that the dependency of critical 546 

state fabric on b is different for fabric tensors defined based on different grain scale 547 

features and may be more complicated than suggested in Zhao and Guo (2013), 548 

especially for non-spherical particles (Yang and Wu, 2016; Nguyen et al., 2018). 549 

4.5 Simulations of DEM undrained tests with different bedding plane angle φ 550 

To further challenge the adaptability of the ACST framework, two undrained DEM 551 

tests are conducted on specimens with e0=0.655, and bedding plane angles φ=0° and 552 

90°, respectively, and are simulated using the ACST formulations in Eqs. (3), (7), and 553 

(8). The exact same parameters as those for the drained tests are used for the simulation 554 

of the undrained tests (Table 2). In the drained constant p tests, the critical state void 555 

ratio ec measured in DEM at the particular p can be used as input for ACST calculations. 556 

However, in the undrained tests, as p is constantly changing until the critical state, an 557 

ec~p relationship must be established. In the two undrained tests here, the critical state 558 

void ratio ec=0.655 at p=1180 kPa. The results from drained constant p tests yield 559 

ec=0.761 at p=100 kPa. Using the critical state ec~p data under these two conditions, 560 

the ec~p relationship can be approximated with  following Li 561 

and Wang (1998), where pa is the atmospheric pressure, ξ is generally assumed to be 562 

0 ( / )c c c c ae e p p xl= -



0.7, resulting in back calculated values of 0.784 and 0.023 for ec0 and λc, respectively. 563 

To simulate the p-q stress path of undrained loading, a reasonable approximation for 564 

elastic bulk modulus must also be provided in the ACST calculation. Here, it is assumed 565 

that that the elastic bulk modulus  following Richart et al. 566 

(1970), with a value of 0.032 for parameter κ, calculated from fitting the elastic bulk 567 

modulus obtained through applying hydrostatic stress increments in DEM at various p 568 

with contact sliding restricted . 569 

Fig. 14 (a)-(d) show the evolution of the contact normal and particle orientation 570 

fabric tensor norms for the two undrained tests from ACST calculations and DEM tests. 571 

The evolution of the two fabric tensors during the entire loading process is captured 572 

remarkably well, particularly in the plots versus the deviatoric strain, given that no 573 

adjustments whatsoever were made to the formulations and parameters used in the 574 

drained tests. This further exhibits the general applicability of the combined rate 575 

evolution Eqs. (7) and (8) proposed within ACST, as well as the validity of the ACST 576 

itself as an appropriate constitutive framework for granular materials. 577 

Recall that in these simulations the deviatoric stress and deviatoric plastic strain 578 

variations are inputted from DEM, as shown in Fig. 14 (e), where clear anisotropic 579 

behaviour is observed due to large difference in response according to relative 580 

orientation of stress and bedding plane. Dilatancy cannot be directly measured during 581 

undrained DEM tests, and thus cannot be compared directly with ACST dilatancy 582 

results. Instead, the stress path in p-q space for both ACST and DEM are plotted in Fig. 583 

14 (f). The initial decrease in p (indicating contraction), subsequent increase in p 584 

1/2[(1 ) / ]( / )a aK e p p pk= +



(indicating dilation), and eventual stabilization of stress at the critical state is captured 585 

in the ACST calculations. Close up of the early stages of loading in the small window 586 

in Fig. 14 (f) shows that the ACST framework is able to simulate the anisotropic 587 

volumetric behaviour, i.e. stronger initial contraction tendency of the specimen with 588 

greater φ. The anisotropy in deviatoric stress-strain relationship and stress path are 589 

consistent with observations in laboratory tests (Symes et al., 1984; Yoshimine et al., 590 

1998).  591 

  592 

Fig. 14 Fabric and stress evolution results from undrained DEM triaxial tests under b=0 and ACST 593 
simulations using Eqs. (9) and (10), for specimens with e0=0.655, bedding plane angle φ=0°and 90°: 594 
(a) Fc-εq; (b) Fc-η; (c) Fp-εq; (d) Fp-η, (f) q-εq (input from DEM), (f) q-p. 595 

5. Conclusions 596 

The main objectives of this study were to evaluate the validity of two analytical 597 



relations of ACST for the rate equation of evolution of fabric tensor F and the 598 

dependence of dilatancy on it for granular materials and guide the formulation of the 599 

former by comparison with DEM calculations. The DEM tests input the stress ratio and 600 

deviatoric plastic strain during loading into these two ACST analytical relations, which 601 

then are used to independently calculate fabric evolution and dilatancy, the latter 602 

yielding the volumetric deformation. Based on the comparisons of fabric evolution and 603 

dilatancy between ACST calculations and DEM tests, it is concluded that the ACST 604 

framework is able to address the strongly anisotropic dilatancy response of granular 605 

materials and simultaneously capture the evolution of fabric tensor, a confirmation not 606 

possible by earlier macroscopic only observations. The contact normal fabric tensor Fc 607 

can serve as an acceptable grain scale-based fabric going into the ACST framework in 608 

determining the dilatancy, a previously assumed fact, but now being firmly confirmed 609 

with the following interesting and novel observations. 610 

It was firstly shown that the fabric dependent dilatancy is relatively sensitive to 611 

the exactness with which the contact normal fabric tensor is analytically calculated. The 612 

peak contact normal-fabric norm, before reaching its lower critical state value for dense 613 

materials under triaxial loading, was found to be related to dilatancy based on DEM 614 

results. In addition, the evolution of the contact normal fabric tensor was observed to 615 

be influenced by the also evolving particle orientation fabric tensor as well. Therefore, 616 

the incorporation of the combined influence of dilatancy and particle orientation fabric 617 

in the expression for the coefficient r of the original Eq. (4) proposed by Li and Dafalias 618 

(2012), entering the contact normal fabric rate evolution Eq. (7) in conjunction with Eq. 619 



(8), is an important and original proposition of this work, called the combined 620 

formulation. This combined formulation is shown to achieve good analytical 621 

description of contact normal fabric evolution and dilatancy anisotropy in a very wide 622 

range of loadings. Both drained and undrained loadings were considered, always with 623 

the same set of model constants. For the drained loadings in particular, the responses of 624 

three different categories of samples were simulated, namely those with different 625 

bedding plane orientations, different initial void ratios and different intermediate 626 

principal stress coefficient b.  627 

Some issues still remain in regard to the effect of b. The simulated peak dilatancy 628 

was found to be slightly inconsistent with DEM observations for tests with different 629 

values of b, resulting in overestimation of the influence of b on fabric and void ratio 630 

evolution. The dependency of critical state fabric on b was also found to be different 631 

for contact normal and particle orientation-based fabric tensors associated with non-632 

spherical particles. To address these issues further analysis should be carried out on the 633 

dilatancy of granular materials under 3D loading with different b. 634 
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 651 

Appendix 652 

Referring to Eq. (7), the parameter β is expected to be related to particle elongation or 653 

aspect ratio R and other factors. For spherical particles, where particle orientation is 654 

non-existent resulting in isotropic fabric, hence, Fp = 0 and Ap = 0, β should be set equal 655 

to 0 so that Fc = n from Eq. (7) at critical state where D = 0. One may assume in fact 656 

that β is a continuous function of aspect ratio R such that β = 0 when R=1. This 657 

guarantees the necessary continuity of the quantity β(1+Ap) at R=1 in Eq. (7), because 658 

the Fp and Ap may change discontinuously from their 0 values at R=1. This may happen 659 

if for example one considers an arrangement of particles shown in Fig. 5 with such 660 

particles changing from spherical with R=1 and Fp = 0, to non-spherical with R≠1 and 661 



Fp ≠ 0 for any value of R as close or as far from 1.   662 

In order to check the validity of the requirement to set β = 0 when R=1, two DEM tests 663 

on spherical particles are conducted and used Eq. (7) with β = 0 in ACST simulations. 664 

Due to the change in material, the critical state and fabric evolution rate changed, thus 665 

requiring re-calibration of all parameters. The figure below compares the contact 666 

normal fabric evolution void ratio development under these circumstances. Good 667 

agreement between ACST and DEM is achieved with only Eq. (7) and β = 0, without 668 

of course the use of Eq. (8) that has no meaning for spherical particles.  669 

 670 

 671 
Fig. 15 Contact normal fabric evolution and void ratio development results from drained DEM tests 672 
and ACST simulations using Eq. (7) and β = 0, on two specimens consisting of spherical particles 673 
with different bedding plane angles. 674 
 675 
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