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Executive Summary

The Joint Center for Artificial Photosynthesis (JCAP) was established in October 2010 and completed
operation after a no-cost extension in September 2021. At its inception, JCAP was a bold experiment in
research organization by the US Department of Energy (DOE). Ambitious in objective and scale, the Fuels
from Sunlight Hub was tasked with envisioning a new industry for which only basic science had previously
been conducted, identifying the critical technical and basic knowledge gaps that needed to be bridged to
achieve that vision, and focusing research activity to meet those critical needs. Led by the California Institute
of Technology (Caltech), JCAP quickly brought together a diverse team of over 100 physical scientists and
engineers, working in temporary and existing research space at several world-leading research institutions
for the first two years, while new buildings were constructed with dedicated facilities and instrumentation for
solar fuels research at Caltech and leading partner Lawrence Berkeley National Laboratory. In its decade of
activity, JCAP made transformative progress in solving the scientific and engineering challenges to creating
solar-fuels systems that surpass natural photosynthetic systems in efficiency and rival them in selectivity, the
ability to generate desired products. This progress has been reported in over 775 peer-reviewed publications.
Additionally, JCAP played a leading role in developing the nation’s solar fuels workforce by providing training
to some 250 graduate students, postdoctoral fellows, and stalf, many of whom moved on to leadership roles
in academia and industry. Over 45 JCAP researchers moved to tenure-track faculty positions, leading their
own research teams, and hundreds have moved to industry, including to leading firms such as 3M, Dow, Intel,
Lam, LG, and Applied Materials.

In natural photosynthesis, plants store the energy in sunlight by utilizing that energy to transform water
and carbon dioxide (CO,) into sugars and other biomass. Plants’ efficiency at storing the energy in sunlight
as fuel (biomass) is 1% or less, and plant photosynthetic systems operate for only 10 to 20 minutes before
requiring repair. However, plants have elaborate processes for such repair, while manmade repair systems
are very primitive, in comparison. Additionally, vegetation is self-propagating, and utilizes low atmospheric
concentrations of CO,. Given the inability to self-repair or self-replicate, to be feasible, non-biological
systems must be both durable and achieve at least 10% efficiency, while directly producing useful fuels instead
ofbulky biomass.

Solar-fuels systems must operate for years outdoors: their active components must be both long-lasting and
able to withstand daily temperature cycling and seasonal weather. This requires preventing corrosion at the
liquid-solid interface caused by acidic or basic conditions inherent in the electrolyte or generated by reaction
at the electrode, or by potential-dependent corrosion of the catalyst or light absorber. Two catalysts are
required for the water-splitting process: one for oxygen evolution, which generates O, molecules and protons,
and one for hydrogen evolution, which assembles H, molecules from the protons. Oxygen evolution typically
occurs in either a very acidic or a very basic environment due to system-level requirements, but oxygen-
evolution catalysts are unstable in very acidic environments, except for those based on the extremely rare
precious metals iridium and ruthenium.

Solar-fuels systems combine photoexcitation, chemical transformation, and transport processes to produce
fuel. A typical system includes light absorbers, oxidation and reduction catalysts integrated with them,
membrane separators, and water-based electrolyte. Each component ofthe system must be designed so that
the resulting combination uses the energy in sunlight to react water and carbon dioxide (CO,) to produce
fuel as efficiently as possible. The two primary types of solar-fuels systems are those designed to generate
hydrogen (H,) as the fuel, and those designed to reduce CO, to hydrocarbons or oxygenated hydrocarbons
(e.g., ethanol) as the fuel. Although they share many common elements, these two types of'solar fuel systems
have distinct advantages and challenges. Specifically, the H,-generating system consumes only water and
produces only one fuel (H,), but requires the use of corrosive electrolytes to achieve high efficiency, and
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produces a gaseous fuel with low volumetric energy density. There are associated challenges for storage and
distribution of H2, which must be rigorously separated from the by-product oxygen (02) gas or risk forming
an explosive mixture. The CO2-consuming generators can operate using less corrosive electrolytes and can
produce fuel similar to existing fossil fuels (natural gas or petroleum) enabling existing energy storage,
distribution, and utilization infrastructure to be leveraged. However, the reaction of CO, produces a mixture
of many dilferent products and has low energy conversion efficiency due to low reactant concentrations
and the complexity of the reaction mechanisms. The fundamental technical challenges are to achieve high
solar-to-hydrogen (STH) efficiency with multi-year durability or to achieve high product selectivity using CO,
(i.e., predominantly make the desired product) along with multi-year durability and high solar-to-fuel energy
conversion efficiency.

Before JCAP, work in artificial photosynthesis was limited and focused on individual components, and little
was understood about how to combine the components into artificial photosynthesis systems. Achieving
higher efficiency and selectivity had not been demonstrated in complete, inherently safe systems with product
separation, and universal standards and benchmarking did not exist.

The primary focus of JCAP’s first phase (2010 to 2015) was water splitting to make H2. To split water
efficiently, light absorbers that utilize as much of the solar spectrum as possible, provide high voltage and
high current, and are stable in a harsh environment are needed. JCAP made substantial progress in how
to find elfective light absorbers during this phase. Additional work included designing protective coatings
and water oxidation catalysts, studying systems while they operated, developing component performance
benchmarks, performance modeling, and designing and developing solar-fuels prototypes. In the second
phase (2015 to 2021), the focus shifted to CO, reduction, with a research program to develop new materials
and system-level designs to improve product selectivity and energy conversion efficiency.

Through its work, JCAP advanced mechanistic aspects of catalyst activity and selectivity, light absorption
and carrier transport, operando measurement, materials discovery for catalysis and light absorbers, and
multiphysics modeling and experimental prototyping of solar-fuels systems. JCAP demonstrated solar-fuels
prototypes that exhibited performance characteristics and levels of integration inconceivable in 2010. An
overview ofthese achievements and the phases is shown in Figure ES.I.

2020 Science Advances and Future Technology

f) * Expanded understanding of C02 reduction mechanisms
* New materials for selective and efficient C02 reduction
¢ Early C02 reduction testbed prototypes
10-19% Solar-to-Hydrogen
Generation
Early Test-bed
Demonstrations of Solar C02

u Reduction to C2 products
Understanding of Real
Systems in Complex
Environments
CO, Reduction Selectivity
2015 and New Materials

New Catalysts and Catalytic

Mechanisms X .
Detailed Understanding of

Reaction Mechanisms —
Theory and Experiment

High-Performance | ight
Absorbers

Data Science for Solar Fuels
Materials Discovery

p— e —— >

2010

State of the Art Prior to JCAP

* Limited mechanistic knowledge and materials sets
* High efficiency and selectivity solar to fuels conversion not yet realized
* Standards for benchmarking of materials and systems not developed

Figure ES.1. JCAR's record of accomplishment.
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These accomplishments were made possible through JCAP’s active, multidisciplinary, multi-institutional
partnerships. JCAP enabled development of unique capabilities for solar fuels, both at member institution
laboratories and in partnership with DOE user facilities. Through close and ongoing collaboration between
theorists and experimentalists, JCAP has left a legacy of team-oriented science as a highly elfective
vehicle for accelerating fundamental advances in methods, materials, and mechanistic understanding of
solar-fuels systems.

Mechanisms

Benchmarking and Testing Techniques

To help advance the field, JCAP developed standardized measurement protocols for solar-fuel generation
reactions. The JCAP benchmarking project developed a new procedure for evaluating the activity, stability,
and electrochemically active surface area of electrodeposited catalysts for the oxygen-evolution reaction
(OER), which is required to balance the fuel-forming reaction. This procedure was initially used to compare
the performance of10 such catalysts, and the resulting manuscript was featured as a Science magazine Editors’
Choice. The benchmarking protocol was later used to evaluate the performance ofhydrogen evolution and
additional oxygen-evolution catalysts. These standardized measurement protocols have been adopted by the
solar fuels community, and performance measurements following these protocols are now routinely required
for publication ofsolar fuel electrocatalyst discoveries.

JCAP developed a suite of microscopy and spectroscopy capabilities for versatile, in-depth characterization
of catalysts and electrodes for electrochemical and photoelectrochemical (PEC) reactions important for
artificial photosynthesis. The three levels of characterization are ex situ, in situ, and operando, where ex
situ is “out ofnatural location” and in situ is “in natural location,” but with no temporal discrimination;
operando is defined as working, and the characterization is of an operating catalyst. Tremendous insight into
the dynamic behavior of catalysts as a function of potential was obtained via the sequential implementation
ofmultiple operando methods.

JCAP developed partnerships with DOE user facilities at Lawrence Berkeley National Laboratory and SLAC
National Accelerator Laboratory that provide some ofthe world's most advanced technologies for synthesis
and characterization of artificial photosynthesis materials. JCAP contributed to the development of new
capabilities at these facilities enabling characterization ofmaterials and systems under operating conditions.

Insights into Catalytic Mechanisms

JCAP investigated combinations of materials, catalytic environments, electrolytes, and operating conditions
that improve efficiency and the ability to produce desired products while avoiding reactions that deactivate
catalysts. While water splitting occurs most efficiently in extremely acidic or basic electrolyte environments,
reducing C O, using copper requires neutral to basic electrolytes. JCAP has investigated how the concentration
and kinds ofcations and anions present in a solution strongly influence the efficiency of CO, reduction. Water
plays a role not only as a source ofhydrogen, but also through its interactions with interfacial intermediates.
JCAP researchers utilized molecular additives in the electrolyte, as well as polymeric overcoats on copper
surfaces, to tune the reaction microenvironment and improve the ability to produce desired products.

Materials

Discovery, Characterization, and Understanding of Catalysts

JCAP made progress in finding acid-stable oxygen-evolution catalysts made from inexpensive, abundant
elements and in finding better-functioning catalysts for use in basic environments. JCAP also discovered new
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hydrogen evolution catalysts composed ofinexpensive, abundant elements, and improved the catalysts used
to convert CO, into reduced molecules suitable for fuel.

Copper remains the most active electrocatalyst for reducing CO, to hydrocarbons and oxygenates.
JCAP studied how to use surface structure, alloy composition and spatial distribution, and electrode
functionalization to direct selectivity on copper and copper alloys. JCAP also studied development ofnon-
copper-based materials, but concluded that copper and its alloys are the only materials able to function
efficiently enough for this process. The researchers learned that the surface structure ofthe copper catalyst
and which metals it is alloyed with are important to generating the desired products. For the CO, conversion
process, JCAP also explored using two diUerent catalysts sequentially, one to reduce CO, to CO and then CO
to the desired products, rather than relying on a single catalyst for the full process.

High-Throughput Experimentation Facility for Light Absorber and Electrocatalyst
Materials Discovery

JCAP established a high-throughput facility to discover new light absorbers, photocatalysts, and
electrocatalysts using advanced automated experimental techniques and large-scale data analytic methods.
These new high-throughput experimental capabilities were combined with high-throughput computational
and theoretical prediction of materials via the Materials Project to identify functional solar-fuels materials.
Rapid characterization using high-performance scanning instruments, such as the scanning droplet cell and
online mass spectrometry, allowed materials and interfaces with desired properties to be identified and then
synthesized on a larger scale for in-depth study. An extensive, searchable Materials Experiment and Analysis
Database (MEAD) and associated big-data science techniques resulted from the work and are available to
the materials community.

JCAP’s high-throughput team developed several new technologies for screening (photo)electrocatalysts for
the CO, reduction reaction. Through the development of small electrochemical reactors and their coupling
to analytical chemistry tools, the team demonstrated experiment throughput approximately 10 to 100 times
that oftraditional methods with only moderate compromises in the quality ofproduct detection.

Component Integration

Test-Bed Development

Understanding that components behave diUerently in a system than in isolation, JCAP developed
multicomponent, multifunctional test beds focusing on understanding the science behind component
integration. To understand, explore, and develop next-generation architectures, JCAP used multiphysics
modeling combined with detailed studies. The modeling and experimental studies demonstrate the
importance ofthe local environment in achieving both performance and selectivity.

Integration elforts expanded the portfolio and operating range of metal oxide protective coatings for
photoanodes, and improved understanding ofinterfacial charge-transfer dynamics and efficiency. Integration
at the test-bed scale can introduce significant variation in the reported activity, selectivity, and durability, even
for well-studied catalysts such as copper. Mass-transfer elfects and the local environment can lead to changes
in the product distribution that could be incorrectly attributed to catalyst deactivation, as opposed to being
caused by the cell geometry. JCAP developed standardized cells and analytical methods to quantify CO,
reduction products. The cell designs and methods have been published for use by the scientific community.

Protective Coatings

JCAP reported strategies for stabilizing systems for hours and days, including day-night cycling, while
ensuring >10% STH conversion efficiency with full product separation for safety. These strategies include the
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use ofprotection layers and hybrid composite coatings to prevent corrosion in very acidic or basic electrolyte
environments, including materials with the ability to generate their own protective surface layer. Alternatively,
high-performance protection layers can be deposited to prevent corrosion while facilitating charge transport
within the layer and at its interface with the electrolyte.

Membrane Permeability

Polyelectrolyte membranes separate the two regions ofelectrochemical devices, the anode and the cathode.
For solar-fuels systems to be efficient, these membranes must minimize crossover of electrochemical
products by not being overly permeable to them. However, the membranes must be permeable to conduct
ions between the regions to prevent a build-up ofcharge that would divert much ofthe generated energy away
from fuel formation. JCAP focused on three areas of this problem. First, JCAP studied anion-conducting
membranes with polymers that are stable when operated in a basic environment. Second, researchers studied
the correlation between polymer composition and permeability by synthesizing a series ofrelated polymers
and measuring their permeability and conductivity properties. Third, permeation through membranes at
steady state had been well studied, and it was known that organics and CO, can interact with polymers and
alfect their permeability in use, but very little was known about the exact mechanisms of this transport.
JCAP developed a multiscale modeling framework that enabled macroscopic observables, such as extent
of permeation as a function oftime, to be simulated while retaining a molecular description of the system.
Daily and seasonal variability in solar intensity mean real systems will not operate at steady state. By studying
time-dependent permeability, JCAP researchers learned membranes will behave differently when operating
under real world conditions.

Solar-Fuels Prototypes and Associated Processes

JCAP demonstrated a portfolio ofsolar fuels test-bed systems exceeding 10% stand-alone solar-to-fuel energy
conversion efficiency. These demonstration systems evaluated the full range of device configurations and
electrolyte conditions. Both photoanode- and photocathode-based systems were demonstrated to be efficient.
Efficient systems using strong acid, strong base, and near-neutral pH electrolytes were demonstrated utilizing
acid exchange membranes, anion exchange membranes, and bipolar membranes, respectively. Efficient
systems using liquid, vapor, or gas feed of reactant water and CO, were demonstrated in a combination
of planar and high-porosity gas diffusion electrode configurations. Unassisted, highly selective plasmonic
photocatalyst reduction of CO, was also demonstrated. The diversity ofconfigurations that were characterized
form a strong basis on which to improve durability without compromising efficiency going forward.

JCAP produced the world-record holder for unassisted photoelectrochemical water-splitting devices with an
STH efficiency of19%, approaching the theoretical maximum 0f23% for a tandem junction device, using two
light absorbers to efficiently utilize the solar spectrum. JCAP also demonstrated a 19% efficient unassisted
solar-driven CO, reduction photovoltaic/electrolysis device using a gas-diffusion electrode directly coupled
to a triple junction photovoltaic device.
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Outlook Summary

In its more than 10 years of operation, JCAP moved the field forward dramatically in ways unimaginable in
2010. In addition to discovering new materials and protection strategies, deploying accelerated materials
discovery and scale-up methods, developing new designs and computational models for solar-fuel generating
systems, and demonstrating record-breaking system-level performance, JCAP built a solid foundation for
the future success of'the field by constructing and equipping dedicated research buildings, co-developing
new techniques and facilities at DOE user facilities, developing and disseminating standard protocols and
benchmarks for testing performance of'solar materials, and developing a world-wide solar fuels workforce.
However, a number of challenges related to durability, cost, and product selectivity remain to be solved
before conversion of CO, into energy-dense liquid fuels through artificial photosynthesis becomes a viable

method ofmeeting a portion ofhumanity's energy needs.

Achievements

Efficiency

JCAP increased solar-to-hydrogen (STH) energy
conversion efficiency in unassisted water split-
ting to arecord 19.3%, approaching the theoretical
limit 0f24% for this design. JCAP also increased
solar-to-fuel energy conversion efficiency in
unassisted CO, reduction to 19% by utilizing gas
diffusion electrodes to overcome inherent solubil-
ity limits of CO?2 in electrolyte-only designs.

System design

JCAP demonstrated a portfolio of test-bed
prototypes with solar-to-fuel conversion efficien-
cies exceeding 10%. This portfolio of test-bed
designs enabled a thorough investigation of a
full range of individual components and overall
systems to maximize prerfomance.

Component Development

JCAP created a pipeline to accelerate materials
discovery and scale-up for use as solar-fuels
systems components. New catalysts for both the
reduction and oxidation reactions were developed.
A rich mechanistic understanding of these
catalysts was developed through an integrated and
iterative partnership of theory and experiment,
which required the development of new methods
and experimental facilities. Through an extensive
search for new CO, reduction catalysts, JCAP
confirmed that copper and its alloys are the best-
performing materials as electrocatalysts for COl
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ACHIEVEMENT HIGHLIGHTS

« Increased solar-to-fuel energy conversion
efficiency in both unassisted water splitting
and unassisted COz reduction to >19%.

* Demonstrated a portfolio of test-bed
prototypes with efficiencies exceeding 10%.

Studied systems through test beds to
maximize individual component and overall
system performance.

Confirmed copper and its alloys are the only
materials that function efficiently enough

to be electrocatalysts for COz reduction to
products beyond CO.

+ Demonstrated tuning of the product
selectivity of COz reduction with copper
catalysts via organic additives and tuning
the composition of the electrolyte.

Developed new catalysts for reduction and
oxidation reactions and characterized their
mechanisms using theory and experiment.

Created a pipeline to accelerate materials
discovery for solar-fuels systems'
components.

Established benchmarking and standard
methods to allow systems to be compared.

« Developed partnerships with DOE user
facilities that advanced research.

e Trained a world wide solar fuels workforce.
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reduction. JCAP also demonstrated tuning ofthe selectivity and reactivity of copper and its alloys through
tailoring ofthe microenvironment via organic coatings on the electrocatalyst and by tuning the composition
ofthe electrolyte.

Advanced the Solar Fuels Discipline

JCAP helped to place solar fuels on a firm footing as a scientific discipline by developing standard methods
for measuring electrocatalyst performance and establishing benchmarks for performance and stability. These
methods allow components to be compared, and have been adopted by the research community. JCAP also
partnered with DOE user facilities to develop new experimental methods that greatly advance the study of
electrocatalytic systems under operating conditions, and are available to the community.

JCAP developed a world-wide solar fuels workforce by training a cadre of graduate students, postdoctoral
fellows, and stalf who have gone on to leadership positions in academia, national labs, and industry around
the world.

Continuing Challenges

Durability

JCAP researchers made significant advances in designing active components that are long-lasting and able to
withstand daily temperature cycling and seasonal weather. However, new work is needed to design, discover,
and develop high-performing components that are durable for many years.

High-Performing Systems and Components

Fundamental research is needed to provide a deeper mechanistic understanding ofhow systems ofindividual
components and processes interact. This will allow better design of both components and prototypes for
high performance.

Fuel Generation

An understanding ofhow to improve the efficiency oftwo chemical reactions that are essential parts of the
artificial photosynthesis process, CO, reduction and water splitting, needs to be developed for future solar-
fuels systems.

Using Sunlight Effectively

Current systems separate the process of light absorption from the catalytic reactions that generate fuels.
Overall system efficiency could be improved by directly coupling diverse light-driven phenomena and
chemical processes.

Development of Standards

Establishing common standards for measurements and cell designs for the field would provide a way to
confirm claims made about solar-fuels systems prototypes.

Methods and Tools

Improvements in methods and tools used to characterize solar-fuels systems are needed to advance the field.
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Introduction

JCAP was established in October 2010 and completed operation in September 2021. In JCAP’s first phase,
the goal was to address scientific and technological gaps in solar-driven water-splitting and CO, reduction
catalysis. JCAP’s first five-year goal was “discovery of robust. Earth-abundant light absorbers, catalysts, linkers,
and membranes and development of the scale-up science required to assemble the components into a complete artificial
photosynthetic system. " JCAP made substantial progress in addressing all aspects ofthe scientific and engineering
challenges, including discovery ofnew catalysts and photoabsorbers, assembly of components into a device,
and scalability and sustainability analysis. JCAP also accomplished its goal of demonstrating operation ofan
integrated solar-driven water-splitting device 10 times more efficient than natural photosynthesis.

In its second phase, JCAP’s five-year goal was to “create the scientificfoundationfor a scalable technology to convert
CO0), water, and sunlight into renewable transportation fuels.” JCAP’s approach was to master the use of selective
heterogeneous electrocatalysis and photocatalysis to direct product formation from carbon dioxide reduction
under mild conditions oftemperature and pressure, with high selectivity and with efficiency exceeding that of
natural photosynthesis. Doing this required accelerated discovery ofnew catalytic mechanisms and materials,
as well as development ofrobust components suitable for integration into a solar-fuels generator. Three areas
ofresearch focus were defined to guide development ofthe scientific foundations for scalable CO, reduction
to fuels:

1. Discovery and understanding ofhighly selective catalytic mechanisms for CO, reduction
and oxygen evolution under mild conditions oftemperature and pressure, and with input
partial pressures of CO, in air between ambient atmospheric levels 0of400 ppm and | atm.

2. Discovery ofelectrocatalytic and photoelectrocatalytic materials and useful light-absorber
photoelectrodes, followed by integration.

3. Demonstration, in JCAP test-bed prototypes, of artificial photosynthetic carbon
dioxide reduction components and oxygen-evolution components that exceed natural
photosynthesis in efficiency and rival it in selectivity.

In JCAP, a major effort was made to discover and understand new mechanisms and new materials proficient
for catalyzing CO, reduction. Despite systematic testing ofnew catalyst materials, Cu remains the most active
electrocatalyst for reducing CO, to hydrocarbons and oxygenates, albeit with low selectivity. Consequently,
a predominant focus was to understand deeply the mechanisms of CO, reduction on Cu surfaces and to
gain control ofthese pathways to impart selectivity via the influence ofnanostructuring, alloying, sequential
catalysis, electrolyte effects, application of organic coatings, and electrochemical conditions. To elucidate
electrocatalysis mechanisms, JCAP developed new experimental capabilities to probe the atomic-scale
surface and composition of catalysts under operando electrochemical conditions. These experimental
techniques were complemented by first-principles theory focused on the role ofthe catalytic environment,
including the solvent, overlayers, and supports, in determining the activation energy landscape for CO,
reduction. Understanding mechanisms of CO, reduction at photocatalysts involved the development and use
ofadvanced computational techniques, as well as the use ofultrafast absorption spectroscopy and modeling
of experimental product distributions to understand how excited states can alter CO, reduction selectivity
and activity.

JCAP’s materials discovery effort produced new electrocatalysts for selective CO, reduction and water
oxidation, light absorbers for photoanodes and photocathodes, photoelectrocatalysts, and protection layers.
CO, reduction electrocatalyst materials discovery activities can be classified into understanding how to
use surface structure, alloy composition and spatial distribution, and electrode functionalization to direct
selectivity on copper and copper alloys, including nanoparticle and oxide-derived (OD) Cu; development
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of non-copper-based materials (e.g., Al-doped metal-organic frameworks [MOFs]); and development of
plasmonic photocathode materials. The materials discovery elfort deployed both directed discovery and a
combined theory and experimental high-throughput discovery pipeline for photocathodes and photoanodes
to screen candidate nanostructured metal alloy, metal chalcogenide, and metal oxide structures with optimal
bandgaps and band edges that also satisfy stability criteria at the working pH conditions.

JCAP integration elforts expanded the portfolio and operating range of metal oxide protective coatings
for photoanodes and improved understanding ofinterfacial charge-transfer dynamics and efficiency. High-
throughput and directed discovery and characterization of integrated material assemblies yielded new
integrated photoanodes and photocathodes with improved performance. Guided by JCAP’s multiphysics
device modeling, the performance of widely varying test-bed prototype configurations has been advanced,
including both dark and light-driven gas-dilfusion electrode (GDE) architectures and related membrane-
electrode assemblies, as well as traditional planar bulk aqueous electrolyte cells. Both aqueous and vapor-fed
test-bed systems achieved targets for selectivity and efficiency.

The pages that follow contain a narrative summary of JCAP research that describes key scientific and
technical accomplishments, including discovery of novel materials and demonstration of water-splitting
and CO, reduction test beds that exhibit performance characteristics and levels of integration that were
inconceivable just 10 years ago. The narrative illustrates the breadth of JCAP’S R&D programs spanning basic
research to use-inspired and applied research. The narrative also describes several unique capabilities and
partnerships that JCAP developed and its role in accelerating materials discovery research and breakthroughs
in fundamental science.
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Discovery and Understanding of Mechanisms

Electrocatalysis

Standardized Measurement of Oxygen-Evolution Reaction and Hydrogen-Evolution
Reaction Electrocatalysts

The ability to quantitatively compare oxygen-evolution reaction (OER) and hydrogen-evolution reaction
(HER) electrocatalyst materials was crucial for the development of new materials for water-splitting and
CO2RRJ9 When JCAP began, the literature contained hundreds of electrocatalytic systems with numerous
elemental compositions and microstructures prepared in a multitude of ways. However, reliable methods
for measuring and reporting the performance ofthese materials under identical conditions had never been
uniformly applied, complicating meaningful comparisons of the catalytic activity and stability of these
systems. There was an unmet need for standardization of catalytic performance to evaluate the utility of
existing catalysts, provide experimental evidence to aid or corroborate theoretical models, and highlight
existing technological gaps to help inform the development ofnew catalyst materials.

The JCAP benchmarking project developed a new procedure for evaluating the activity, stability, and
electrochemically active surface area of electrodeposited catalysts for the OER. A comprehensive plot
containing information regarding catalyst activity, stability, and specific activity was also designed. The
primary figure of merit for the benchmarking measurements is the overpotential necessary to achieve 10
mA cm? current density: the approximate current density expected at the electrodes of a 10% efficient
integrated STH prototype under | sun illumination.dll In general, the best catalysts are expected to achieve
10 mA cm current densities at low overpotential, maintain constant activity over time, and have low-surface
roughness (i.e., high specific activity). This procedure was initially used to compare the performance of 10
OER catalysts,? and the resulting manuscript was featured as a Science magazine Editors’ Choice.l}

Subsequently, the benchmarking protocol was used to evaluate the performance of HER and OER catalysts
comprised of Earth-abundant materials in 1M NaOH and 1M H2S04.l{ These measurements are summarized
in graphical form (Figure 1) for easy comparison of catalytic data. In the case of OER, most catalysts
investigated were oxidatively unstable in acidic conditions. This suggests that the utility of a solar water-
splitting prototype operating in acidic solution may be limited by the lack ofnon-noble metal catalysts that
are oxidatively stable in acidic solution. In I M NaOH, most OER catalysts investigated showed roughly
similar activity, achieving 10 mA cm'] current densities at overpotentials between 0.3 V < q < 0.5 V. This
observation is qualitatively consistent with theoretical studies that suggest a limiting “thermodynamic
overpotential” for OER at planar electrodes due to the existence ofa common OER intermediate.lj Several
known HER catalysts show good activity and stability in acidic and basic electrolytes. JCAP extended its
methods to benchmarking ofnanoparticulate metal oxide electrocatalysts for water oxidation reaction under
alkaline conditions.lf
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Figure 1. Plots of catalytic activity, stability, and electrochemically active surface area for HER (left) and
OER (right) electrocatalysts in acidic (top) and alkaline (bottom) solutions. The x-axis is the overpotential
required to achieve 10 mA cm"] per geometric area at time t = 0. The y-axis is the overpotential required
to achieve 10 mA cm") per geometric area at time t = 2 h. The diagonal dashed line is the expected
response for a stable catalyst that does not change in activity during 2 h constant polarization. The color
of each point represents the roughness factor of the catalyst with a bin size of one order of magnitude
with light green representing RF = | and dark red representing RF > 104.

Advances in Methods for Mechanisms

JCAP developed a suite of capabilities for versatile, in-depth characterization of catalysts and electrodes
for electrochemical and PEC reactions important for artificial photosynthesis. The techniques can be
categorized as either microscopy or spectroscopy. The three levels of surface interrogation are ex situ, in
situ, and operando, where ex situ is “out of natural location” and in situ is “in natural location," but with
no temporal discrimination. Operando is defined as working, and the characterization is of an operating
catalyst (Figure 2).

The electrochemical surface science laboratory at JCAP!] established capabilities in catalyst characterization,
surface structure-composition-function correlations, reaction pathways (thermodynamic selectivity), and
reaction mechanisms (kinetic selectivity), and developed synergy between experimental and theoretical
model studies. JCAP developed a laboratory-based combination ofsurface analytical methods encompassing
ex situ, emersion, in situ, and operando surface techniquesl§ and a sequential implementation ofat least five
operando methods:1920 electrochemistry, scanning tunneling microscopy (STM), polarization-modulation
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infrared spectroscopy (PMIRS), electrochemical quartz crystal nanobalance (EQCN), and deferential
electrochemical mass spectrometry (DBMS). The combination of methods makes possible the identification
of the unique structural constitution of the electrode surface that is responsible for performance, e.g.,

selective catalysis.ll

Figure 2. (a) Ex situ electrochemistry-surface science apparatus, (b) In situ near ambient pressure-XPS.
(c) Operando EC-STM simultaneous with cyclic voltammetry.

The DOE user facilities at Berkeley Lab and SLAC house many ofthe most advanced X-ray, electron scattering,
computational, and nanoscience capabilities in the world. Use ofthem for synthesis and characterization of
artificial photosynthesis materials was crucial to JCAP’s scientific success, because they offered the ability
to fabricate complex nanoscale assemblies, connect materials composition to function at the scale ofatoms,
fully characterize the crystal and electronic structure ofnew semiconductors and catalysts, and investigate

electrochemical processes under realistic conditions.

JCAP took full advantage ofthe DOE user facilities and contributed to the development ofnew capabilities
as part of formal partnerships at the Advanced Light Source (AES) and Stanford Synchrotron Radiation
Lightsource (SSRL), and received large allocations of time from the National Energy Research Scientific
Computing Center (NERSC). JCAP contributed new instrumentation for high-throughput SAXS-WAXS
measurements, a liquid cell for studying in situ liquid-solid interfaces, and development of beamline

8970 8980 8990 9000 9010 9020 8970 8980 8990 9000 9010 9020

Energy (eV) Energy (eV)

Figure 3: (a) Experimental setup for operando XAS at SSRL. (b)
Operando XANES measurements at OCV and (c) under various
applied potentials.
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capabilities at the AES and SSRL for operando
studies of catalysis. The significant allocations
of facility time formed a core resource that was
supplemented by single user proposal access as
individual research projects evolved. The science
made possible by the broad and flexible user facility
access spanned JCAP’s research portfolio, and
was essential to the rapid progress made toward
its mission and goals. Operando synchrotron-
based X-ray characterization methods were
developed by JCAP, including ambient pressure
X-ray photoelectron spectroscopy (AP-XPS)2
and operando PEC and GDE cells for X-ray
spectroscopy and scattering at synchrotron end
stations (Figure 3).234 These methods were
initially demonstrated with Pd-based catalysts
to gain insight into the nature of hydrogen
intercalation processes across a wide range of
potentials.)y Structural characteristics were also



investigated for other catalyst families, including Cu under CO2R conditions.24’y X-ray absorption near
edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to elucidate the
electronic and structural changes of manganese oxide (MnOx) catalyst under electrocatalytic conditions.’
Distinct Mn oxide structural phases were identified at oxygen reduction reaction (ORR) and OER relevant
potentials. X-ray absorption spectroscopy (XAS) and electrochemical characterization of catalyst films
revealed a highly porous structure. An X-ray emission spectrometer (XES) was developed, enabling the first
study ofthe synergistic role oftwo metals, i.e., Ni in a mixed Mn-Ni oxide catalyst for water oxidation. The
XES with multi-metal detection capability opened a new level ofinsight into synergistic elfects (electronic,
coordination) of one metal on another and the resulting influence on catalytic efficiency.28

The AES and SSRL made possible characterization of semiconductor band structure,29'’ in situ and
operando catalysis mechanisms for the oxidation reactions,27'28°3646 operando electrochemical interface
characteristics,4748 characterization of heterogenized catalysts and anti-corrosion layers,3 46’49 53 and the
internal structure of polymeric membranes under ex situ and in situ conditions.4'3 The ffigh Throughput
Experimentation project and the Critical Materials Institute worked together to develop high-throughput
X-ray diffraction and composition measurement capabilities for materials libraries.64

The Molecular Foundry’s Nanofabrication Facility and Inorganic Nanostructures Facility were essential to
fabrication of thin films with controlled interfacial structure for creation and study of advanced electrode
materials for solar-fuels devices. These include semiconductor and oxide thin films30'’65 69 and nanostructured
assemblies.3} 36 9, 07 The sub-Angstrom resolution capabilities at the Molecular Foundry’s NCEM
Facility were vital for imaging reactive and fragile specimens at the atomic level,’s'80 and both the NCEM
and Imaging and Manipulation of Nanostructures Facility were used to examine the internal structure of
materials assemblies to understand aspects of structure-function correlations.3? 51,56,5831 86 Work at the Theory
of Nanostructured Materials Facility of the Molecular Foundry using NERSC resources focused on the
electronic structure oflinker interfaces and tethered catalysts.35°50°87 89 Additional studies at NERSC focused
on molecular intermediates involved in reduction9) 9| and water oxidation catalysis39,43,80,92 9% and electronic
band structures of semiconducting perovskites, oxides, and nitrides.29'32°50,95 10 NERSC time was also used to
simulate amorphous structures and corrosion protection layers51,105 108 and hot carrier generation. 09

JCAP advanced both theoretical formulations and experimental capabilities for understanding the
heterogeneous electrocatalytic and photocatalytic mechanisms of CO, reduction. The limitations of widely
used continuum solvation models were considered,|ll including treating ions using a linearized Poisson-
Boltzmann (LPB) model, which was shown to typically place charge unphysically close to the surface
and adsorbates. JCAP scientists led the development of more sophisticated treatments, including use of
explicit solvent and consideration of non-adiabaticity in electrochemical reactions.lll The grand canonical
potential kinetics (GCP-K) formulation was developed to provide a fundamental basis for understanding
heterogeneous electrochemical reactions.lll The importance of grand canonical quantum mechanical (QM)
methods to describe the effect ofelectrode potential on the stability ofintermediates involved in both CQ2R
and the HER was demonstrated.|ll The methodology was developed to extract vibrational spectra from
QM molecular dynamics (MD) trajectories in full solvent, and the spectra were related to experimental
measurements.|l{ Quantum embedding methods, including wavefunction (WF)-in-density-functional theory
(DFT) embedding and embedded mean-field theory (EMFT), were applied to understand CO, reactivity
pathways on a metal surface. WF-in-DFT embedding was applied with the path-based orbital partitioning
approach to CO adsorption on a copper surface.llf WF-in-DFT was reviewed for application to systems of
interest to JCAP.lo
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Catalytic Mechanisms

JCAP’s computational theory effort was strongly coupled to the experimental discovery science program and
helped to elucidate how the composition and structure of molecular and heterogeneous catalysts affect their
activity for ffER, OER, and CO2RR. Quantum chemical calculations of'the energetics of the elementary
steps via which these reactions occur were performed in order to identify the steps that limit catalyst activity
and, in the case of the CO2RR, the product selectivity. Related calculations were needed to interpret the
results of spectroscopic and X-ray scattering and absorption experiments so that changes in catalyst structure
occurring as a consequence of catalyst interaction with the electrolyte and the effects of applied potential
could be properly described.

Hydrogen-Evolution Reaction

JCAP used an electrochemical cell and an ambient pressure X-ray photoelectron spectroscopy (XPS) system
to probe the changes in the composition of molybdenum sulfide nanoparticles (MoSx) during ffER.II7 The
XPS spectra reveal that, as the system is humidified and taken to operating ffER conditions, there is an
irreversible change in the catalyst composition, with the growth of a lower binding energy (BE) feature
at 162.0 eV. With enough applied voltage, the cell reaches current density regimes of the same order of
magnitude as those required for solar-fuels prototypes. The electrochemical data showed that humidification
plays an essential role by controlling the cell currents, with the transition from | to 5 Torr of water resulting
in more than a doubling of'the cell current, even
with a lower applied voltage. This is attributed to
the condensation of a water monolayer entirely
covering the surface as the relative humidityreaches
30%. These experiments demonstrated that under
operating conditions, MoS]} sites gradually convert
to MOS2, and the electrolytic current densities are
proportional to the extent of the transformation.
The mechanism underlying MoS? activity was
not known in detail.ll§ To address this gap, JCAP
developed a theoretical approach based on a
cluster model, where the microscopically infinite
Mo-edges of the MoS)] crystals were modeled
in a finite cluster. The rate-determining step on
MoS? was found to be a reaction between the metal hydride and the hydronium water cluster (Figure 4).
The result indicates that the sulfur hydrogen bond energy is not the relevant descriptor for ffER activities.
Similar work was also performed on MoSe2, WS2, and WSe2, showing that the substitution of'S with Se lowers
the metal-hydride energies, while the substitution of Mo with W lowers the hydrogen chalcogen energies.
Both substitutions might alter the reactions of these materials from those observed on pure MoS2.1§ These
insights and further theoretical studies led to identification ofnanoclustered dichalcogenides as particularly
active motifs. |l

= 17.9 kcal/mol

Figure 4. Calculated Pourbaix diagram for the surface states
of the Mo-edge cluster.

Surface science techniques were also used to investigate Ni-Mo, which is among the most active hydrogen-
evolution catalysts reported. The reason for its improved activity compared with that ofpure Ni was not well
understood. JCAP explored this issue by combined XPS and low-energy ion scattering spectroscopy (LEISS)
measurements. It is clear that, whereas the XPS and energy-dispersive x-ray spectroscopy (EDS) results are
identical and track the ideal 1:I line, the LEISS data indicate a pronounced enrichment of molybdenum at
the outermost layer.!
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Oxygen-Evolution Reaction

Significant improvements in solar-fuels device efficiency require catalysts for the oxidation of water that
exhibit overpotentials ofless than 250 mV at a superficial current density of 10 mA/cnr. JCAP focused on
understanding the OER mechanism on selected catalysts in order to identify factors that alfect activity, and
potentially find ways to lower the overpotential, which is a direct means ofincreasing efficiency.

Operando XAS Site specific overpotentials from DFT+U
40H 0,42HO a4e Ni site
v 7 Fe site
Fel
during OER
7120 7160 7200 fo'
Energy (eV) y-NiOOH:Fe
Figure 5. Operando XAS and high-energy resolution

fluorescence detection (HERFD) reveal that Fe3+in NilxFexOOH
occupies octahedral sites with unusually short Fe-O bond
distances, induced by edge-sharing with surrounding [NiOJ
octahedra. Using computational methods, it was established
that this structural motif results in near optimal adsorption
energies of OER intermediates and low overpotentials at Fe
sites. By contrast, Ni sites in NilxFexOOH are not active sites
for the oxidation of water.

The Fe-Ni system, which has one of the lowest
overpotentials for the electrochemical oxidation
of water in basic electrolytes, was of particular
interest. Highly active FeNiOx catalysts were
investigated in situ in order to identify the
composition and local environment of the
active sites.[20'll FeNiOx films (2-70 nm) were
electrodeposited on roughened Au electrodes
and tested for OER activity; maximum activity
was achieved for Fe/Ni = 1.0. In situ Raman
spectroscopy revealed that the catalyst was a
mixture ofy-NiOOH and y-FeOOH. The oxidation
state and local coordination ofFe and Ni cations in
working catalysts were probed by in situ XAS and
in situ atmospheric XPS. XAS during OER showed
that the oxidation state ofbulk Ni cations exceeded
3+, whereas the oxidation state ofbulk Fe cations
remained 3+, independent ofthe proportions ofFe

and Ni. The average Ni-O bond distance in FexNil-xOOH was found to be higher than that in y-NiOOH, and
the average Fe-O bond distance was lower than that in y-FeOOH. With increasing Fe addition, the applied
potential at which Ni)+ was oxidized to Ni}* increased, in good accord with in situ Raman and electrochemical
measurements. Theoretical studies based on DFT support both ofthese findings and suggest that the high
activity of FeNiOx is attributable to Fe3 cations present in strained configurations within y-NiOOH. Further
studies#3 demonstrated that the presence ofFe in Nil xFexOOH octahedral sites results in optimal adsorption
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Figure 6. Oxygen evolution activity of electrodeposited
NiOOH films deposited on Au RDEs at 300 mV overpotential
and 10 mA cm-2 geometric current density in | M KOH as a
function of Fe content. Curves are included to guide the eye.
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energies for OER intermediates and low

overpotentials (Figure 5).

To complement this work, JCAP performed a
series of studies that deepened understanding
of processes involved in NuxFexOOH catalyst
evolution during electrochemical reactions,
and the influence of catalyst preparation on
activity. Incorporation of trace Fe impurities
from used KOH electrolytes
significantly improved OER activity over NiIOOH
electrocatalysts.|)] It was found that Ni films aged
in unpurified electrolyte can incorporate > 20%
Fe after five weeks of aging, and the maximum
catalyst activity is comparable to that reported
for optimized Nil xFexOOH catalysts (Figure 6).
Above -11% Fe content, a separate, Fe-rich phase
forms, providing direct evidence that a Ni-Fe
layered double (oxy)hydroxide (LDH) phase

commonly



Figure 7. (a) Normalized and background-subtracted Ols XP
spectra of Ni-Fe (7 nm) electrocatalyst, excited with 4020 eV
X-ray photons. Bottom to top: as-prepared catalyst exposed
to 9 Torr H2O pressure, and operando measurements, taken
after extended electrochemical conditioning (6 cycles, 0-0.65
V, and 6 cycles, 0-0.85 V) under a ~30 nm thick 0.1 M KOH
liquid film at the indicated applied potentials (vs. Ag/AgCI).
The measured spectra (circles) are fitted with four components
(black lines, residuals: gray lines) representing H20 in the gas
and liquid phase, and OH and O in the catalyst, (b) Fit results
for spectra in (a) relative intensity of the M-O component
in the MOx(OH)y catalyst, and measured H2Q peak positions
(black symbols) at 9 Torr, and in liquid electrolyte as a function
of applied potential. The expected 1:1 relationship between
peak shift and applied potential is indicated with red dashes,
and theoretically modeled peak positions considering
potential losses in the thin electrolyte layer are shown with
green circles, (¢) Comparison of XPS measurements taken at
identical applied potentials before (green) and after (red) the
second electrochemical conditioning (0-0.85 V).

is critical for high OER activity. Interestingly,
Fe cations present as impurities in | M KOH
have even been found to bind to the surface of
oxidized An and exhibit enhanced OER activity.|
The OER overpotential over An decreases from
-0.85 to -0.5 V with the presence of surface Fe
sites at low current densities (j = 0.1 mA cm?2),
in close agreement with the decrease in the OER
overpotential determined from DFT calculations
for pure Au2Oj vs Fe chemically bound to Au203.
This decrease in the OER overpotential was
attributed to the more optimal adsorption energy
ofintermediates involved in the OER.

Electrochemical impedance and activation
energy measurements were used to gain insight
into the evolution of FexNilxOOH catalysts with
composition.l4 The results showed that as Fe is
incorporated in a NiOOH lattice, the Faradaic
resistances associated with the OER decrease and
charge relaxation becomes more favorable. While
Fe sites in NiOOH lattices have similar energetics
regardless of film composition, the overall
OER activity is also controlled by structural
considerations. This characteristic was a focus in
a comparison of the structure and OER activity
of sputter-deposited and electrodeposited Ni,_
xFexOOH thin films.l) Electrochemical cycling
to convert sputtered metallic NilxFex films to
metal oxides/(oxy)hydroxides was found to lower
the Fe:Ni ratio, while the electrodeposited films
exhibited similar Fe:Ni ratios before and after
electrochemical cycling and characterization.
Structurally, Fe was found to incorporate within the
Ni(OIDYNiOOII lattice for films formed through
both sputter-deposition and electrodeposition.
Layered films were also compared to co-deposited
1:1 Fe:Ni films. It was found that for layered films,
an Fe top layer inhibited the electrochemical
conversion of metallic Ni to Ni(OII)/NiOOII,
while migration of metals within Ni-on-top films
occurred readily during electrochemical cycling.
Electrochemical cycling was examined directly

using “Tender" X-ray AP-XPS. A thin film ofNi-Fe oxyhydroxide was electrodeposited on An as the working
electrode at dilferent applied potentials in 0.1 M KOH.I) The as-prepared 7 nm thick Ni-Fe (50% Fe) film
contained Fe and Ni in both their metallic and oxidized states, and underwent further oxidation to Fe} and
Nr 23 when the sample was subjected to electrochemical oxidation-reduction cycles (Figure 7).

While a number of'suitable OER catalysts that function in base were identified, that was not the case for OER
in acid. The standardized evaluation of OER catalysts described above revealed that at the start of JCAP, only
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IrO2 was a suitable catalyst under acidic conditions. Understanding the fundamental reaction mechanism in
acid informed work to develop catalysts with low Ir loading and/or find a replacement for Ir. The correlation
between surface species and applied electrochemical potential on an iridium oxide electrocatalyst under
OER conditions was probed in situ through AP-XPS using a customized electrochemical cell.3] It was
demonstrated that, under OER conditions, iridium undergoes a change in oxidation state from Ir(IV) to
Ir(V) that takes place predominantly at the surface ofthe catalyst. In addition, DFT was used to identify new
catalyst motifs capable ofachieving targeted activity at low overpotential.l27'1}§

COzRR Electrocatalysis
Cu-Based Electrocatalysis, Experiment and Theory

Mechanistic complexity. A significant elfort across JCAP aimed to understand mechanistic pathways
for the CO, reduction reaction (CO2RR). There remains much to understand about this reaction, and the
insights gained from mechanistic work are essential to provide the guiding principles needed to develop
improved catalysts. Much progress was made in understanding mechanistic aspects of C-C coupling and key
electrolyte factors that can tune activity and selectivity, in order to identify control points for the reaction. A
variety of factors are known to impact COIR activity and selectivity, including the catalyst surface structure,
morphology, and composition, the choice of
electrolyte ions and pH, and factors involving the
Carbon atoms .
| reactor design (e.g., mass transport, electrode
area, etc.). Toward the end of the project, JCAP
researchers comprehensively reviewed and
analyzed these factors and their complex interplay
in CO2R catalysis on Cu to critically evaluate
progress in understanding the complex reaction
networks for CQ2R on Cu, based on substantial
research efforts both inside and outside of JCAP
(Figure 8).I9 The complexity of Figure 8 and
the variety of proposed mechanisms reveals the
need for further research to understand CO2R
C e pathways to improve selectivity and activity. This
will be particularly important to develop CQ2R

2
’ into an energetically sustainable technology that
X Concertd proton lectron rnder minimizes chemical separations.|3
No electron (render
Noproton render Operando and in situ characterization. JCAP
Chen-cdax*n* recctron . . . . . .
liplclecton sendrs —v*f identified active sites and key reaction inter-
rn~ : i i
X UeMacmp mediates for the CO2RR in order to provide the

insights needed to develop improved catalysts. It

Figure 8. Possible mechanistic pathways of COl reduction to is critical to probe the catalyst surface as well as
Cl and C2 products on polycrystalline copper, grouped into  surface-adsorbed species in situ to understand the
diffefent colored reaction schemes taken from the works in Fhe atomic and molecular-scale phenomena that are
top-right legend. The bottom-left legend states the meaning

of the texture of the lines connecting intermediates. occurring during the COIRR.

JCAP’s early investigations of chemical and
structural changes at Cu surfaces laid the foundation for subsequent mechanistic insights. Operando
EC-STM was used to understand surface changes to Cu electrodes under reaction conditions. As-prepared
Cu(100) was cathodically reduced to a clean and ordered Cu(100) surface under reaction conditions, while
a polycrystalline Cu electrode was found to behave electrochemically similar to Cu(100) electrodes, because
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it undergoes stepwise surface reconstruction, first to Cu(lll) and then to Cu(100) under reaction conditions
(Figure 9).m JCAP demonstrated that single crystals of Cu(100) and Cu(lll) do not reconstruct, but Cu(110)
undergoes a three-stage transformation, first to disordered Cu(110), then to disordered Cu(lll), and finally to
an ordered Cu(100).13

Figure 9. Operando EC-STM reveals the surface reconstruction of a Cu(poly) electrode under CO2RR
conditions.

The significance ofthe crystallographic surfaces of Cu (and other metals as well) for determining the product
specificity of CO2ZRR was demonstrated by investigation of several specific orientations of epitaxial and
single-crystal Cu. Seriatim ECSTM-DEMS enabled the direct correlation between electrocatalyst surface
structure and product selectivity or activity under reaction (operando) conditions. Cu-catalyzed reduction
of CO can be regulated by an atomic-level control of the surface structure to yield only one product; for
example, C2ff50E] is produced in 0.1 M KOH at -1.0 V (SHE) from a stepped Cu(511) surface.I3} JCAP also
utilized epitaxially grown large-format Cu thin films (ca. 6 cm2) to fully probe product selectivity.l}% In situ
EC-STM studies on Cu(100), (111), and (751) thin films revealed that Cu(100) and (111) are identical to the
bulk structure, but that Cu(751) has a heterogeneous kinked surface with (110) terraces. Electrochemical
COZIR testing showed that while both Cu(100) and (751) thin films are more active and selective for C-C
coupling than Cu(lll), Cu(751) is the most selective for > 2e oxygenate formation at low overpotentials.|}
Similarly, the selectivity of nanoparticle catalysts was tuned via facet-specific functionalization of
copper nanocrystals with passivating films of ALD-deposited A12Q)3 increasing the Faradaic efficiency for
ethylene synthesis. |3

Application of STM and operando PMIRS uncovered that, at potentials higher than -0.85 V, no CO
adsorption occurs. On Cu(100), the coverage 0C0 leveled off at 0.50 in a Cu(100)-c(2x2)-CO adlattice
with the CO molecules located at alternate atop sites in vertical orientations; such coverage and mode of
binding are as expected from the coordination of CO with zero valent Cu, a dll transition metal.l3 Operando
electrochemical STM further enabled visualization ofthe step edges of unreconstructed Cu(100), with and
without CO dissolved in 0.1 M KOH, at the early onset-potential region for CO,R, which revealed that the
step-edge direction changes dramatically upon the adsorption-desorption of CO at potentials of-1.0 to -0.8
V.17 In another seriatim permutation, operando EQCN was combined with STM and DBMS as a prelude
to the acquisition of 0CO as a continuous function of concentration and potential.l}§ It is equally critical to
know the adsorbate packing arrangement at the onset ofthe reaction because, if “CO dimers” were indeed
the precursors to C? products, reduction can be initiated only when the adlayer consisted of closely packed,
not loosely arrayed, CO molecules. The results show that the electrocatalytic reaction (i) lags the adsorption
process and (ii) does not transpire until maximum CO adsorption is attained (Figure 10).
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Figure 10. Near-perfect agreement between operando modes of STM, DBMS, and PMIRS. Onset of
reduction of adsorbed CO to ethanol occurs at lowest potential in 0.1 M KOH on Cu(511), but only after
maximum coverage of chemisorbed CO is attained.

Oxygen in Cu catalysts. The proposed effect ofresidual or subsurface oxygen on the activity and selectivity
of Cu and oxide-derived (OD) Cu electrocatalysts has stimulated much scientific discussion. Studies of
heterogeneous electrocatalysts for CQ2RR were performed in stringently controlled environments. The
interfacial structures and compositions of Cu(100), Cu(110), and Cu(lll), before and after exposure to
gaseous oxygen and emersion in mildly alkaline media (pH 8 and 10), were characterized by a combination of
electrochemistry, TEED, and AES.13 The affinity ofthe low-index copper planes for oxygen gas was found to
decrease in the order Cu(110) > Cu(100) > Cu(lll). The initial stages ofthe anodic oxidation of copper, prior
to formation ofbulk oxides, span a wide potential window that is pH-sensitive; within this precursory region,
sub-monolayer coverages of oxygen tended to form surface domains with long-range order. At potentials
far below the anodic-oxidation region (E < -0.90V), the surface compositions and structures of Cu(likl) are
expected to mimic those ofzero valent copper. These results bear significant implications in the generation
and identification ofsurface-bound intermediates that define the electrocatalytic selectivity of copper.

Differences in product distributions observed between Cu-oxide and pure Cu electrodes during
electrochemical CO, reduction were also investigated. In these studies, the stability of subsurface oxygen
from thermodynamic and kinetic perspectives was considered. It was shown that under reducing potentials,
subsurface oxygen alone should have negligible effects on the activity of crystalline Cu.l4) Using DPT, the
stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets was
investigated. Oxygen was found to be at least 1.5 eV more stable on the surface than beneath it for both crystal
orientations; interstitial sites are too small to accommodate oxygen, and diffusion is fast from one layer
below the surface to the top layer. While oxygen can survive longer in deeper layers, it does not promote CO,
adsorption there. Using the constant electrode potential modelldl'l4 and a nonlocal correlation functional,
it was found that subsurface oxygen is unnecessary for CO, adsorption on copper, leading to the conclusion
that subsurface oxygen is unlikely to be present near the surface during the reaction, and that it is not crucial
in determining the ability of copper to reduce carbon dioxide.4

JCAP investigated the role of oxygen in Cu, Ag, and Cu/Ag alloy surfaces upon exposure to CO, or CO,/
H20 using AP-XPS interpreted with QM simulations. In the Cu study, a thin suboxide structure below the
copper surface may be essential to bind the CO, in the physisorbed configuration at 298 K and promote
chemisorbed CO formation.l43 The stability ofresidual oxides was investigated by synthesizing IsO enriched
OD Cu catalysts and testing them for CO,R (Figure 11). These catalysts maintain a high selectivity toward
C)/C, products (-60%), with secondary ion mass spectrometry (SIMS) measurements revealing that only a
small fraction (<1%) ofthe original IsO content remains; residual oxides are not present in significant amounts
during CO2R. OD Cu reoxidizes rapidly in the absence ofa reducing potential, which could compromise
the accuracy ofex situ methods for determining the true oxygen content.l4 The structural evolution of the
near-surface region (probe depth of2.6 nm) ofpolycrystalline Cu electrodes under in situ conditions was
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Figure 11. CulO labelled with the 1sO isotope was synthesized. When employed under CO2R conditions
(~1 Vvs. RHE in aqueous solution), the oxide converts to Cu metal. The Cu rapidly reoxidizes after the

reducing potential is removed.

examined through a combination ofgrazing-incidence X-ray absorption spectroscopy (GIXAS) and GIXRD.
These studies revealed that the surface oxide layer is fully reduced to metallic Cu before the onset potential
for CO2RR, and the catalyst maintains the metallic state across the potentials relevant to the CQ2RR.
Additionally, a preferential surface reconstruction of the polycrystalline Cu surface toward (100) facets is
observed in the presence of CO02, consistent with the STM measurements,l}l confirming that the Cu surface

is dynamic during the CO2RR.26

The role ofsubsurface oxygen on production of C products from CO, reduction over Cu electrocatalysts was
elucidated using the newly developed grand canonical potential-kinetics DPT method, which predicts that
the rate of C2 production on pure Cu with no O is -500 times slower than H evolution. In contrast, starting

Time (h)

Figure 12. Long-term CO2RR measurements on thick-Cu2O
indicate that depletion of oxygen leads to reduced C2H4
production.

with CulO the rate of Cl production is > 5,000
times faster than pure Cu(lll) and comparable to
Hproduction. Experimental validation combined
time-dependent product detection (Figure 12)
with multiple characterization techniques to show
that ethylene production decreases substantially
with time and that a sufficiently prolonged reaction
time (e.g., 20 hours) leads to only H] evolution
with ethylene production -1,000 times slower, in
agreement with theory. This result indicates that
substantial subsurface oxygen is essential for long-
term C) production with Cu catalysts.l4

Additional isotopic labeling studies identified
whether all products are generated from the same
types of active sites on OD Cu or if product-
specific active sites are responsible for making
certain products.l4¢ By reducing mixtures of
3CO and 12CO02, it was demonstrated that OD
Cu catalysts have three dilferent types of active
sites for C-C coupled products, one for ethanol/
acetate, another for ethylene, and yet another for
1-propanol. In contrast, the researchers did not

find evidence of product-specific sites on polycrystalline Cu and oriented Cu (100) and (111). Analysis of
the isotopic composition ofthe products leads to the prediction that the adsorption energy of *COOH, the
product ofthe first step of CO, reduction, may be a descriptor for the product selectivity ofa given active site.
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CO reduction. Investigating electrochemical CO reduction (COR) can give valuable mechanistic insights
on the CO2RR, since CO is a key reaction intermediate to further reduced C-C bond-containing products.
JCAP investigated how the applied potential, partial pressure of CO, and electrolyte pH can be controlled
to guide selectivity toward fuels and chemicals on polycrystalline Cu (pc-Cu) electrocatalysts.l47 By
comparing CO and CO, reduction data in similar reactors using the same Cu foils,I4§ it was demonstrated
that alkaline electrolytes can increase the energy efficiency toward C2+ products (Figure 13a). Common
trends in selectivity for COR and CO,R indicate that lower applied potentials will promote higher ratios
for oxygenates/hydrocarbons (Figure 13b), with selectivity trends that are similar to state-of-the-art high
surface area Cu catalysts (Figure 13c).l47l5l These design principles were applied to a high surface area
nanostructured Cu catalyst (Cu-flowers) that exhibited a total Faradaic efficiency (FE) ofnearly 100% for
COR to C2+ oxygenates in alkaline electrolytes. A kinetic model for COR toward C)+ on stepped Cu was
developed, based on activation energies determined from an explicit solvent model (Figure 13). This model
elucidated the critical elfect of pH on C2 to Cl selectivity via dilferences in reaction pathways. Furthermore,
the model suggested that C2+ product selectivity can be improved through increased CO pressure, since the
coupling step is second order in CO coverage. They also found Cu(100) and stepped Cu(211) to be more
favorable for C-C coupling than Cu(lll). This investigation rationalized in part the improved activity of Cu
nanocube catalysts toward C2 products from CO,, which preferentially expose steps and likely more defect
and step sites.15'5

fe(Vvs.RHfc) £(V vsRHE) F(VvsRHF)

Figure 13. (a) Partial current densities for the indicated products from pc-Cu: (solid) CO? reduction
and (dashed) CO reduction, (b) Oxygenate/hydrocarbon ratios as a function of the applied potential,
(c) Normalized partial current densities for CO2R and COR on different Cu electrode morphologies.
All of the current densities have been normalized based on the reported roughness factor of the
corresponding electrodes.

While numerous studies had examined the electroreduction of CO to oxygenates such as ethanol, none
considered the possibility that oxygen in the product might arise from water rather than from CO. This
assumption was tested by reducing CIbO in H2IsO electrolyte.l%4 Surprisingly, the team found that 60-70%
of the ethanol has 180, which must have originated from the solvent (Figure 14). Prior all-solvent DFT
metadynamics calculations were extended to consider the possibility of incorporating water, and found a
potential new mechanism involving a Grotthuss chain of'six H2Os in a concerted reaction with the *C-CH
intermediate to form *CH-CH(I8OH), subsequently leading to 18Q ethanol. This competes with the formation
of ethylene that also arises from *C-CH. JCAP researchers also considered an alternative explanation for
the incorporation of oxygen derived from solvent water into the oxygenated products of COR over Cu,l§5 by
attributing it to isotopic scrambling of carbonyl-containing intermediate reaction products that are reduced
further to oxygenated products.

Understanding mechanisms through computation. JCAP employed a multifaceted approach to
investigate the CO, reduction reaction (CO,RR) using first-principles-based theoretical methods, a diverse
effort involving numerous research groups. JCAP theorists focused on developing a detailed understanding
of CO,R energetics and mechanisms, using explicit solvent methods. The first steps toward a comprehensive
microkinetic model for CO, reduction to C) products on stepped Cu were taken, based on reaction and
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Figure 14. Cl60 reduction on Cu(100) in H2IsO electrolyte produces acetate, propanol, and ethanol
which are enriched in 1sO. The enrichment is independent of potential suggesting that a chemical step
involving an intermediate which does not contain any O atoms is responsible.

activation energies using an explicit solvent approximation. The observed differences in the multi-step
mechanisms for C, and Cl products (Figure 15) result from different dependences on pH as well as applied
potential. These studies suggest that alkaline conditions generally favor the formation of C2 products over
C, for either CO2 reduction or COR. At high overpotentials, however, CO is more readily hydrogenated to
C, products, leading to lower CO coverage; because C-C coupling has a second-order dependence on CO
coverage, reaction rates for C] products also decrease at higher overpotentials.!5

JCAP theorists developed a detailed understanding of reaction mechanisms, including descriptors for
CI selectivity across the range of electrode materials,|S7 C2 mechanisms (identifying important reaction
intermediates, descriptors, and comparison with experiment),l8 C selectivity (hydrocarbons vs oxy-
hydrocarbons), theoretical screening ofnew catalysts for CQ2R,157 and the mechanisms for C3 formation on
Cu electrodes. JCAP calculations support experimental observations showing that high activity and selectivity
to C2 products can be achieved by controlling
atomic-scale spacings between two facets of
different Cu particles.l$9 Spacings of 5-6 A allow
a current density exceeding that of unmodified
CuOx nanoparticles, by more than a factor of'10,
with an FE of=80% to C2+. The calculations show
that such spacings maximize the binding energies
of CO, reduction intermediates and promote
C-C coupling reactions. A reaction network for
the electrochemical reduction of CO/CO, on Cu
was proposed that explains the formation of C2+
products and the observed selectivity for ethene
versus ethanol formation.l4) This work forms the
Figure 15. Reaction schemes of major pathways considered basis for developing ideas about how C3 products
for CO reduction toward C, and C2+ products. The green path  are formed. The researchers hypothesize that the

denotes Cl production through coupling of OC-CHO; the blue  third C atom originates from *CO addition to the
and red path represents Cl production through protonation of

OCCO to form OCCHO and OCCOH, respectively; the yellow C1 intermediates.
path represents C2 production via OC-CHOH coupling. The . . .
black path denotes C, production via CHOH and the dashed DefGCts. were .lnvesjtlgat.ed by JCAP theorists
CH,0. as possible active sites in star decahedron Cu

nanoparticle catalysts, demonstrating that they
are highly selective for ethylene production.lf)
The calculations showed that the surface stacking faults and twin defects in the nanoparticles directly led to
the enhanced CQ!IR performance. Machine learning methods were combined with DFT to understand the
nature of active sites on Cu nanoparticles grown on carbon nanotube supports. Since these nanoparticles
involve -200,000 or more atoms, the machine learning approaches are essential to bridge with QM methods.
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The researchers used this to identify the most active sites, which turned out to be a twin boundary next to
a 111 facet.lll They further report that copper nanowires with rich surface steps exhibit a remarkably high
FE for C2H4 that can be maintained for over 200 hours. Computational studies reveal that these steps are
thermodynamically favored compared with the Cu(100) surface under the operating conditions, and the
stepped surface favors C products by suppressing the Cl pathway and hydrogen production. |l

Au/Ag/Cu Alloys, Experiment and Theory

The noble metals, An, Ag, and Cu, all reduce CO2, but only Cu makes C-C bonds. JCAP worked extensively
to understand the differences between these metals in order to refine understanding ofproduct formation on
Cu. Structure-activity relationships were investigated by electrochemically reducing CO, to CO over Ag thin
films with (111), (100), and (110) orientations prepared via epitaxial growth on single-crystal Si wafers with
the same crystallographic orientations.lf) The Ag(110) thin films exhibited superior activity to the Ag(lll)
and Ag(100) thin films, consistent with previous single-crystal studies. DPT calculations suggest that CO,
reduction to CO is strongly facet dependent, and that steps are more active than highly coordinated terraces.
These findings result from both a higher BE ofthe key intermediate COOH as well as an enhanced double-
layer electric-field stabilization over undercoordinated surface atoms located at step edge defects.02'163 As
a consequence, step edge defects likely dominate the CO, reduction activity observed over the Ag(lll) and
Ag(100) thin films. The higher activity observed over the Ag(110) thin film is then related to the larger density
of undercoordinated sites compared with the Ag(lll) and Ag(100) thin films.l? JCAP utilized a multiscale
framework for ab initio simulation of the electrochemical reduction of CO, over a Ag(110) surface. A
continuum model for species transport was combined with a microkinetic model for the cathode reaction
dynamics. Free energies of activation for all elementary reactions were determined from DPT calculations.
Examination ofthree alternative mechanisms for CO, reduction, which differed in the nature ofthe hydrogen
donor—*H, **Pf20, and free FFO—for producing CO via **COOFfT in the rate-limiting step, demonstrated
that only free FFO as the hydrogen donor matched the experimental data.|64

The rate of electron transfer to CO, at the Au(211)-water interface during adsorption in an electrochemical
environment under negative potentials was studied.|t5 Based on results of several levels of theory, electron
transfer to adsorbed *CO02 was found to be very facile and it is, therefore, unlikely that electron transfer is rate
limiting for this reaction. Surface charging is important for electrochemical kinetics and mass transport when
examining CO, reduction experiments on Au at neutral to acidic pff values.l66 Finally, the researchers have
investigated transition metal surface energies under lattice strain and CO environments.l§7 Using AP-XPS,
Cu, Ag, and Cu/Ag alloy surfaces were studied when exposed to CO, or COV/IFO. In coordination with
theory, the researchers found that CO, surface adsorption on Ag surfaces is quite different from that on
Cu surfaces.lJ On Ag, an adsorption mechanism involving the 0=CO02&- was observed, in comparison to
that involving b-CO, on Cu. Each metal surface modifies both the chemical speciation and the respective
adsorption energies, thus providing a new basis for tuning CO, adsorption behavior to facilitate selective
product formation.l§ The researchers also studied Ag/Cu alloys and found that the metal stoichiometry at
alloy surfaces, which may differ from that ofthe bulk, plays an important role in the interaction of surface
metals and adsorbed species. These findings will stimulate new thinking about the CO, reduction reactions
on metal surfaces, suggesting that stabilization ofvarious surface adsorption configurations can be controlled
through additives or alloying along with externally applied potentials to control the reaction processes (Figure
16).16Q The initial atomic-level events for CO, electroreduction on the metal catalysts were investigated with
AP-XPS in combination with QM DFT.14 16§ 7 Oxygen plays an essential role in inducing reactions involving
CO, and FFO on both Ag and Cu surfaces, but the consequences for each metal are dramatically different.
The most energetically favorable reduction reaction pathway to hydrogenate CO, to HOCO* involves the
0=CO02&- configuration present only on the Ag surface.

The distribution ofproducts produced over stable CuAg bimetallic electrodes indicates that CO is primarily
produced on the surface of the Ag domains, whereas COR occurs exclusively on the surface of the Cu
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domains. However, the distribution of products observed over the Cu domains is altered compared with
pure Cu, with H) production being suppressed by -75%. While the suppression of HER does not inhibit
the ability of the Cu domains to produce products derived from CO, the distribution of products shifts to
favor carbonyl-containing products at the expense ofhydrocarbons. The mechanism of surface promotion is
compressive strain induced by the formation ofa Cu+Ag surface alloy, which induces a shift in the valence
band density of states of Cu to deeper levels. This electronic structure modification reduces the binding
energies of H and O relative to CO, leading to an enhanced selectivity for the production ofproducts derived
from CO due to the selective suppression of HER. These strain elfects also result in an enhanced selectivity to
multi-carbon carbonyl-containing products at the expense ofethene due to the reduced coverage ofadsorbed
H and the reduced oxophilicity ofthe compressively strained Cu.™

Cu- and Pd-based catalysts were investigated
under operando conditions by utilizing a
grazing-incidence (GI) electrochemical cell
for synchrotron-based X-ray characterization,
where the top -2-4 nm ofa flat electrode can be
probed at reaction rates where the performance
ofa catalyst is typically evaluated. The researchers
performed experiments observing thin (1-2
nm) oxide layers on the surface of Cu thin-film
catalysts and tracking changes in these oxides as
a function ofapplied potential.2j Additionally, the
team ran both lab and synchrotron tests ofthe Cu
Figure 16. A schematic of the differences of COl adsorption catalyst during the HER, showing improved mass
on Ag and Cu. Sublayer O stabilized both the I-C0? and b- transport and high signal to noise in both GIXAS
COL in the Cu system. Sublayer O goes to surface O without  and GIXRD while operating in excess of-120 mA/
an energy barrier on Ag, and interacts with g-C0] to form a - . ..
chemisorbed 0=CO02§- species. cm?. This makes the method ideal for examining
catalytic reactions such as CO, reduction, where
limited CO, concentration and competing HER
chemistry necessitate sufficient mass transport of CO, to the surface. This system was used to examine Cu
catalysts during COR chemistry, finding that initial surface oxide was reduced quickly once potential was
applied, leaving no detectable oxide in the surface during catalysis, and some indications that the metallic
Cu surface restructured toward the (100) surface under potential.l7

Effect of Environment (Electrolytes, Additives, Coatings)

Solid-liquid interface design can optimize the activity and product selectivity ofthe electrochemical reduction
of CO2. Experimental and computational studies were carried out to understand the role ofthe concentration
and identity of electrolyte anions and cations on the selectivity of COl reduction at Cu surfaces.|’3 The
composition and concentration ofelectrolyte anions had relatively little elfect on the formation of CO and
H2, but had a significant elfect on the formation of CH4, HCOO-, C2H4, and CH3CH2OH. Changes in the
pH near the electrode surface were insufficient to explain the dilferences in activity and selectivity observed
with changes in anion bulfering capacity, assessed using continuum modeling, influencing the formation of
H2 and CHA4. Therefore, the elfects of anion composition were ascribed to the ability ofbulfering anions to
donate hydrogen directly to the electrode surface in competition with water.

The critical factor through which cations alfect electrochemical CO2 reduction is the hydrated cation size and
how it impacts the interfacial electric field. Larger, less solvated cations better stabilize adsorbed species with
large dipole moments; the formation of C2H4 and C2H5OH can be enhanced significantly by large cations,
such as Cs+.163’74175 A multiscale modeling approach that combines size-modified Poisson-Boltzmann theory
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with ab initio simulations offield effects on critical reaction intermediates was developed. The model showed
unprecedented quantitative agreement with experimental trends of cation effects on CO production on Ag,
C2 production on Cu, and CO vibrational signatures on Pt, as well as Au(lll) single-crystal experimental
double-layer capacitances.|7'l7

The product distribution at the cathode ofan electrochemical cell used for the reduction of CO2 can differ
significantly from that in the bulk electrolyte because of secondary reactions.|§ To probe the distribution
of products as they form, a DBMS that enables product sampling directly from the cathode was designed,
as shown in Figure 17. A notable finding from experiments using this instrument was that the abundance of
aldehydes relative to alcohols near the Cu cathode surface is much higher than that observed in the bulk
electrolyte. These findings suggest that acetaldehyde is a precursor to ethanol and that propionaldehyde is a
precursor to n-propanol.

JCAP also developed a molecular tuning
strategy—the functionalization of the surface of
electrocatalysts with organic molecules—that
stabilizes intermediates for more selective CO,
reduction to CIH4.19'8l Using electrochemical,
) ) ) ) operando/in situ spectroscopic and computa-
Theoretical Insights on Reaction Local Environment Revealed A . . i
Mechanism by DBMS tional studies, the influence of a library of
molecules, derived by electro-dimerization of
Figure 17. Interactive studies on electrochemical CO2R by arylpyridiniums and phenanthrolinium adsorbed
combining theoretical mechanism prediction with operando . . .
- on copper, was investigated. The additive and
experimental approaches. . . .
the resulting organic film influence local surface
morphology, playing an important role both
before and during catalysis (Figure 18). The organic film improves the stabilization ofan “atop-bound” CO
intermediate (that is, an intermediate bound to a single copper atom), thereby favoring further reduction to
C2H4. As aresult, the CO2RR to C2H4 with an FE as high as 72% at a partial current density of230 mA cm?
in a liquid-electrolyte flow cell in a neutral medium was obtained. Stable C2H4 electrosynthesis was observed
for 190 hours in a system based on a membrane-electrode assembly (MEA) that provided a full-cell energy
efficiency of20 per cent.|?

Mechanistic studies to understand how N-substituted pyridinium films alter the CO2RR selectivity profile
with metallic electrodeslil'l§ are complicated by the rich product profile of CQ2RR on copper electrodes.l4 In
contrast, metallic silver surfaces catalyze primarily the CO2-to-CO conversion in aqueous electrolytes, with
concomitant production of H? and a small amount of HCOOH, depending on the potential applied.!8"I
Certain N-substituted pyridinium additives on Ag foils produce CO with extremely high selectivity by
inhibiting proton (HER) but not CO, reduction. The data from electrokinetic studies suggest that hydrogen
production was selectively inhibited by the growth of'a hydrophobic organic layer on the silver surface that
limits proton but not CO2 transport. The data also point to a proton-transfer as the rate-determining step of
the catalysis, instead ofthe commonly observed electron-transfer step for the case ofplanar Ag electrodes.l§
Similarly, the selectivity of Ag for CO, reduction to CO is dramatically enhanced by forming coatings with
dihexadecyldimethylammonium bromide and other quaternary ammonium cations with long alkyl chains.18

Additional organic modifiers on Cu surfaces alter CO2R selectivity between CO, formic acid, and H2.1§]
Polymeric and molecular modifiers featuring a wide variety of functional groups (aryl, amine, amide, and
ether groups, for example) and diverse structural features (neutral or cationic, protic or aprotic) were
screened to improve selectivity toward CO, formic acid, or H2, with selectivities of up to 76% CO or 62%
formic acid, and tuning the H selectivity from 97% down to 2% (Figure 19). Among these aprotic species,
cationic hydrophobic modifiers enhanced selectivity for CO, while hydrophilic modifiers enhanced selectivity
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Figure 18. Pictorial representation of the model for nano-
structuring of a polycrystalline copper electrode and film
electrodeposition.

Figure 19. Relationship between hydrophilicity/phobicity and
product selectivity. The contact angle was determined for Cu
surfaces modified with the organic species shown. Surfaces
that are more hydrophilic than OD Cu were more selective for
formic acid (highlighted in blue), and those that are cationic
and more hydrophobic were more selective for CO.
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Figure 20. (a) Plot of known hydricities in acetonitrile as a
function of EI2(Mnt/(n'l}t). Predicted hydricities of | and 2
are denoted by red and blue stars, respectively, (b) Cyclic
voltammograms of | mM | and 2 in acetonitrile. Conditions:
0.1 M tetrabutylammonium hexafluorophosphate supporting
electrolyte, glassy carbon working electrode, platinum counter
electrode, Ag/AgClI reference electrode, 100 mV s'l scan rate.
Inset: Electrocatalytic hydrogen evolution with 2 and phenol
used for experimental benchmarking of hydricity.
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for formic acid. Simulations based on ReaxFF
reactive molecular dynamics indicate that the
hydrophilic/hydrophobic modifiers influence the
formation of surface hydrides, which yield formic
acid or H2.

JCAP  researchers utilized N-heterocyclic
carbenes (NHCs) to direct CO2RR selectivity at
heterogeneous An, Ag, and Cu electrode surfaces
via the formation of NHC-CO, zwitterionic
adducts.I8'18) Infrared spectroelectrochemical
(IR-SEC) experiments indicate product formation
dependent upon the donating character of the
NHC substituents. Electrocatalytic reduction of
CO, to formate and hydrogen evolution (HER)
typically proceed via a metal-hydride intermediate.
A robust thermodynamic scaling relationship
between hydride donor ability, or hydricity (AG°H ),
and the first reduction potential of the parent
metal complex (EI2(Mnt<nljt)) was elucidated.19
This relationship provided a platform for rationally
tuning hydride intermediates for reactivity toward
CO, and proton sources (Figure 20).191 Conditions
can be rationally selected to switch HER on or
off, and the most reducing of these systems have
hydricities that are also thermodynamically
capable ofhydride transfer to CO, (AGH < 44 kcal
moll in acetonitrile).l9 This work illustrated the
kinetic challenges associated with hydride transfer
to CO, even under thermodynamically optimized
conditions.!%

Photocatalysis

Hot Carriers

Immediately after photoexcitation, charge carriers
(electrons and holes) can be sufficiently energetic to
drive interfacial electrochemical reactions that are
inaccessible when these carriers are thermalized.
A significant theoretical and experimental effort
in Phase 2 of JCAP focused on eclucidating the
mechanism for hot carrier generation, relaxation,
and transport at solid-liquid interfaces.|% This
effort informed the design of PEC processes in
which the kinetics and resulting products from
CO, reduction exploiting hot carrier phenomena
are significantly different from those obtained
from conventional photoelectrochemistry with
thermalized carriers.
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Figure 21. Hot hole injection in Cu/p-NiO and its impact on product distribution in CO2RR, demonstrating
that optical excitation can act as a mechanism to confer selectivity in CO2 reduction.

In particular, the work began with development of theoretical predictions for the hot carrier distributions
resulting from plasmon decay in Ag, An, Cu, and Al by directl% and indirect phonon-mediated processes, %
and for nonlinear plasmon processes at high intensities.l%7 Spatiotemporal evolution ofhot carrier distribution
during transport was modeled using a Boltzmann equation approach informed by first-principles parameters.|%
First-principles models for electron-electron interactions and electron-phonon interaction were developed,
representing a significant step beyond conventional two-temperature models for prediction of hot carrier
temperature in materials.l% These predictions for electronic relaxation by electron-electron interactions and
electron-phonon coupling were tested experimentally using An nanoparticles probed by ultrafast transient
absorption (TA) spectroscopy, and the first-principles model was found to exhibit quantitative agreement
with the experimentally observed carrier densities and temperatures.200 Next, optoelectronic hot carrier
photoconductivity and internal quantum efficiency measurements at Au/GaN Schottky junctions were
used to elucidate the contributions to hot carrier transport from intraband plasmon generation and optical
interband transitions. The comparison ofthe measured spectral variation ofinternal quantum efficiency with
theory strongly supports the hypothesis that in plasmonic nanostructures with characteristic dimensions <10
nm, a high fraction (approaching 100%) ofthe generated hot carriers can ballistically impinge on the Schottky
barrier interface, an important prerequisite for efficient hot carrier transport.2)l A significant experimental
step forward was the observation in 2018 ofhot hole collection in Au/p-type GaN heterostructures.202 This
important and highly cited finding demonstrated that visible photogeneration results in hot hole injection
that can occur across heterojunction barriers of>1 eV barrier height, enabling hot carrier charge separation
that results in electrons being localized on the metal nanoparticle photocathode, where they are available
to perform reduction reactions. For both Au/p-type GaN202 and Cu/p-type NiO heterostructures,2)3 the
product distribution under PEC carbon dioxide reduction conditions is significantly altered by hot carrier-
mediated processes (Figure 21). Notably, the CO, reduction product Faradaic yield is significantly enhanced
with respect to hydrogen evolution as compared with dark electrocatalysis under similar applied potential
conditions. Further experiments have revealed the contribution of plasmon and interband excitation
processes to hot carrier transport at both p-type and n-type Cu/GaN interfaces and indicate that the internal
quantum efficiency varies with energy in proportion to thejoint electronic densities ofstates for electron and
hole states in Cu.204 By combining visible and mid-infrared ultrafast TA spectroscopy, JCAP was able to show
that hot hole injection directly influences hot electron relaxation.205 These dual-wavelength TA experiments
also indicated high (>90%) efficiency for hot hole injection across Au/GaN interfaces.

Another foundational demonstration of light-induced modulation of product distribution was observed
with Ag tbin-film electrodes. Product distributions during (photo)electrochemical CO, reduction were
characterized using a cell design the team developed that allowed front illumination of electrodes and
precise temperature control.206 The thermal control alforded by this cell is unique and notable because solar-
simulated illumination can substantially heat the electrolyte, causing large dilferences in reactant solubilities
between light and dark conditions, thereby disallowing comparison between the two if cell temperature is
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not properly controlled. Illumination ofthe electrode near its plasmon resonance (365 run light) suppressed
H2 production and selectively promoted the formation of CO2 reduction products, most notably methanol,
which was only formed under illumination. The results demonstrate that plasmonics provide a promising
approach to promote selectivity and efficiency for CO, reduction as well as other complex, multi-electron
reactions. One hypothesis regarding the large product selectivity changes observed between light and
dark conditions is that the surface plasmon impacts the adsorbate concentration at the electrode surface
during electrolysis and therefore changes the probability of ground state electrochemical charge transfer
to dilferent reaction intermediates. Such experimental systems were combined with theory techniques to
establish mechanisms by which excited electrons may alfect CO, reduction. The model system examined
was photoexcited charge injection from gold nanoparticles into CO, where catalytic enhancement could
be due to thermalization of the electron-hole distribution or electric-field elfects. This project elucidated
methodological issues associated with the challenging excited state calculations ofthese and related systems,
prompting continued elfort in developing quantum embedding methods.207

Theoretical understanding ofhot carrier injection from An nanoparticles to GaN substrate per experiments
was also pursued. Such hot carriers can be generated with a plasmon excitation. Nonadiabatic molecular
dynamics (NAMD) was used to directly simulate the carrier cooling. It was found that the initial carrier can
be injected into the GaN very quickly before it is cooled down, but part ofthe carrier population will return
to the An nanoparticle due to the band alignment, in agreement with the experiments.208

Carrier Dynamics Theory

JCAP developed carrier dynamics techniques from first principles that address plasmon phenomena as
well as charge transport in semiconductors. The algorithms accurately treat long-range electron-phonon
interactions, temperature-dependent lattice vibrations in materials with structural phase transition, and
strong spin-orbital coupling. These approaches are implemented and integrated into a highly efficient
computational code, which is well optimized and parallelized to achieve nearly linear scaling up to 10,000
cores. The temperature-dependent charge transport in SrTiO3, a prototypical perovskite oxide, was
investigated using the newly developed ab initio approach. The approach employs renormalized phonons
to compute the temperature-dependent electron-phonon coupling for all phonon modes, including the
soft modes associated with ferroelectricity and phase transitions. Electron transport in cubic SrTiOj is
controlled by scattering with longitudinal optical phonons at room temperature and with ferroelectric soft
phonons below 200 K.209 The electron mobility computed using the Boltzmann transport equation (BTE) is
significantly overestimated compared with experiments. Charge transport in SrTi0} was reinvestigated in the
presence ofpolarons using the newly developed ab initio camulant approach, which includes polaron elfects.
The revised calculations accurately predict the experimental electron mobility around room temperature
and elucidate the long-sought microscopic origin of charge transport in cubic SrTiO3:210 a transition ofthe
transport mechanism from band-like conduction at low temperature to an incoherent transport regime
beyond the quasiparticle scattering paradigm near room temperature.

The piezoelectric (PE) electron-phonon interaction due to dynamical quadrupoles was derived and
computed, and the interaction’s contribution to charge transport in PE materials, such as GaN and PbTi03,
investigated.lll2l The quadrupole contribution is essential to correctly compute electron-phonon coupling
and charge transport in these PE materials. By combining the dynamical quadrupole approach with previously
developed approaches for polar phonons and soft phonon modes, transport properties in a wide range of
semiconductors and oxides were quantitatively computed and investigated from first principles. All these
approaches were implemented in the software package PERTURBO.1I3
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Materials Discovery

Discovered and Characterized Electrocatalysts for the Oxygen-Evolution
Reaction, Hydrogen-Evolution Reaction, and COzRR

Each half-reaction in artificial photosynthesis requires discovery of electrocatalysts that promote the
oxidation of water (OER) and either the reduction of water (EIER) or of carbon dioxide (CO2RR) at low
overpotentials. Prior to JCAP, the most effective heterogenous electrocatalysts for OER and PIER were
rare metals and metal oxides, i.e., Pt for HER, and RuO, and IrO, for OER. The challenge was to identify
Earth-abundant catalysts for the HER and OER reactions that offer comparable or superior activity. For
Cu, the most widely studied CO2RR electrocatalyst, the overpotential for reduction of CO, to methane
and other hydrocarbons is unacceptably high.2l4 Therefore JCAP investigated new CO2RR catalyst concepts.
Both heterogeneous and homogeneous catalysts were investigated. The value of discovery of homogeneous
catalysts lies in identification of catalytic center and ligand motifs that confer selectivity and activity, and
inform heterogeneous catalyst design.

Established High-Throughput Experimentation Solar-Fuels Facility

Materials discovery was at the core of JCAP’s mission. In addition to traditional directed discovery
approaches, high-throughput experimentation (HTE) is a powerful approach for searching high-order
composition spaces for new functional materials. Prior to JCAP’s HTE project, basic research efforts
utilizing high-throughput materials experimentation primarily resided in single-PI laboratories.2l521§ At the
intersection of combinatorial materials science and solar-fuels research, several groups reported relevant
experiments, demonstrating synthesis and/or screening of composition libraries, 15216219 but the reported work
was typically limited to demonstrations ofa series of separated techniques. Concurrently, rapid advances in
computational materials science, bolstered by evolving first-principles techniques22) and the establishment of
the Materials Genome Initiative, began to enable material properties to be predicted faster than they could
be measured experimentally. The HTE project developed synthesis and screening techniques geared toward
the discovery ofboth dark and photoelectrocatalysts. Furthermore, a workflow that balances data quality and
throughput was developed, resulting in the first high-throughput pipeline for solar-fuels materials discovery,
which included strong linkages to computational materials science to leverage the rapid material prediction
of computational screening.

Established methodologies for high-throughput materials discovery in a mission-driven research
effort: High-throughput experiments are most successful when conducted in close collaboration with
scientists conducting directed research. Guided by these daily interactions, the HTE team designed and
developed new instrumentation for synthesizing materials of interest, performing experiments under
operational conditions, and reporting performance metrics directly comparable to those obtained using
standard techniques.2ll Substantial development in library synthesis was required to obtain material quality
commensurate with the desired performance. New screening technologies included parallel techniques
such as the bubble,)l stability))? and colorimetry instruments,223 and serial techniques such as the on-the-fly
spectrometer,24 quantum yield instrument,2)5 and scanning drop cell.209°226

Constructed and demonstrated a synthesis and screening pipeline with unprecedented daily
throughput: With development of these new instruments and techniques, HTE deployed a synthesis and
screening pipeline for light absorbers and electrocatalysts, complete with decision trees based on hard-won
knowledge ofprocess compatibilities and best practices. To increase throughput, the pipeline was designed
to use a tiered screening strategy, in which substantial sample down-selection occurs between successive

JCAP 2021 Final Science Report 22



measurements. Data obtained from running the pipeline at a throughput of over 104 samples per day were
used to generate new algorithms for performing data-driven down-selection, increasing sample throughput
and accelerating discovery.2)]

Hydrogen-Evolution Reaction

On metals, the HER proceeds by either of two mechanisms, Volmer-Heyrovsky and Volmer-Tafel, that are
dilferentiated by whether the hydrogen-generation step involves reaction between two surface hydrogens
or via an adsorbed hydrogen and a solution-borne proton. For other types of catalysts, such as synthetic
compounds that mimic hydrogenase enzymes, the process would involve regenerative redox reactions ofthe
transition metals at the active site.

The transition metal chalcogenides have been
established to be good catalysts for industrial
hydrodesulfurization (HDS) reactions and,
because of the similarities of the HDS and HER
mechanisms, the materials were investigated as
potential HER catalysts (Figure 22). Well-defined
WSe) was synthesized via the chemical vapor
transport deposition method; catalytic activity
was not exceptional, but the material was found to
be stable in acid solutions.28 Molybdenum
diselenide was prepared operando by a wet
chemical-synthesis  procedure.2) Both had
overpotentials in the range of 200-350mV at 10
mA cm) and were stable in acidic environments.
Cobalt selenitic films, deposited electrochemically,
were stable and exhibited improved overpotentials
of 140 mV for 10 mA cm2; based on Raman and
XPS data, the films were determined to be CoSe embedded in a matrix of amorphous selenium.230 A
computational study, based on DPT, has indicated that the HER mechanism on these chalcogenides follows
the Volmer-Heyrovksy pathway (reaction between two surface-adsorbed H).l§ Molecular mimics of the
heterogeneous catalyst have been prepared that incorporate the edge site structure.)l

Figure 22. Electron microscopy of WSe2.

The role ofthe catalytic environment has been of
particular interest, and redox non-innocence has
been described for several Co-based molecular
catalysts for proton reduction.23)§ Heterogenized
di-Fe hydrogenase-based complexes have also been
examined and found to be quite robust.23

Figure 23. (a) Scanning-electron micrograph (SEM) images  Superior activity was shown with transition metal
of CoP before and after HER. (B) Activities, in terms of
overvoltage (r)), of nanoparticle catalysts of selected transition-
metal phosphides.

phosphides. Thin films of cobalt phosphide were
deposited electrochemically and excess cobalt
metal was removed via anodic stripping, leaving
only cobalt phosphide (Co:P ratio of I:1) upon reduction at HER potentials. CoP exhibited an overpotential
ofonly 85 mV at the benchmark current density of10 mA cm?2, and showed good stability for over 24 hours.23]
Operando XAS showed that, under catalytic conditions, CoP was the active material, without the presence
ofmetal oxides or high-valent phosphorus.237 Nanoparticles of other phosphides were also studied;23§"4! iron
phosphide, FeP, showed the best activity in terms oflowest overpotential (Figure 23).
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Oxygen-Evolution Reaction

Using JCAP’s unique HTE capabilities, approximately 100,000 OER catalysts were screened with exciting
results for lanthanide-rich compositions, particularly in the (Ni-Fe-Co-Ce)Ox25 and (Ni-La-Co-Ce)Ox24]
composition spaces. In the (Ni-Fe-Co-Ce)Ox composition space, (Figure 24) HTE transitioned from initial
discovery to test-bed demonstration ofthe new Ce-rich composition in only a few weeks.225 The composition
dependence of three engineering and four fundamental electrochemical parameters were then measured
to reveal the unique attributes of the Ce-rich catalyst relative to the well-known transition metal oxides.243
A related Ce-rich electrocatalyst (Ni-La-Co-Ce)Ox was discovered by expanding the composition search
space.2) For OER catalysis in basic electrolytes, these new materials exhibit activity that is comparable to the
best electrocatalysts discovered previously, including RuO, and IrO,.

The unique activity of the new Earth-abundant
mixed-metal oxide catalysts motivated detailed
characterization that revealed a novel two-phase
nanostructure composed of small particles that
may appear “X-ray amorphous.” Atomic
resolution imaging ofthe catalysts was an essential
aspect of their structural characterization and

Figure 24. The OER overpotential for 10 mA crrr? is shown  investigation of the structural integrity under
for the entire quaternary composition (Ni-Fe-Co-Ce)Ot  glectrocatalytic use. The application of electron
space. The discovered Ce-rich catalysts have a novel 2-phase . . . .
nanostructure where ceria grains form sharp interfaces with in-line holography with variable voltages and dose
alloyed transition metal oxides. rates removes sample-altering electron beam-
sample interactions and enables the study ofintact
crystalline and amorphous structures at atomic resolution with single atom sensitivity.244 TEM of printed
catalyst at high and at low magnification (Figure 24) and EDS maps with high spatial resolution < 0.5 nm
reveal that Fe, Ni, and Co are distributed similarly while the Ce precipitates in dilferent locations. The
microscopy and spectroscopy data is consistent with a microstructure where the transition metal oxides form
miscible agglomerates ofnanocrystals to create a matrix that encloses isolated CeO, precipitates. This novel
two-phase nanostructure was believed to enable OER catalysis at low overpotential via a tandem catalysis or
other cooperative mechanism; subsequent in situ, ambient pressure XPS and XAS analysis demonstrates that
the CeO, nanoparticles reduce the oxidation potential ofthe transition metal oxide nanoparticles to decrease
their onset potential.4§

Motivated by sensitivity analysis of water-splitting prototypes, HTE developed a combined electrochemical
and optical screening tool to characterize the darkening of metal oxide catalysts during operation and
identified the compositions with both high catalytic activity and high transparency (Figure 25).246

a
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Fiber 056 5
illumination

Library

Figure 25. OER catalyst efficiency of metal oxides determined from catalytic activity and in situ
measurement of AM1.5 transmission using the custom high-throughput instrument.
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The research effort in materials discovery for OER electrocatalysts for coupling to CO2RR focused on
lowering overpotentials and increasing stability. This latter consideration was demonstrated to be ofutmost
importance by the observation that cation corrosion from the OER catalyst followed by crossover and plating
on the cathode compromises stability in CO2RR product distributions over time. Using ffTE, two avenues
ofinquiry were followed. First, a pipeline to rapidly explore 15 pseudo-quaternary oxide libraries synthesized
on a single plate with compositional characterization as-deposited and after two hours of OER operation,
using multiple electrolytes from pH | to 13, provided crucial information on operational stability and activity.
Successful operation of the pipeline yielded a wealth of data for which visualization and interpretation
algorithms were developed to facilitate human comprehension, and revealed a new class of Co-rich OER
catalysts that can be compositionally tailored to a specified pH and perform on par with state-of-the-art
acid OER catalysts.247 Second, a concerted effort was made to stabilize known active species such as MiT3}
in acidic conditions. The greatest success has been with rutile alloys of the form \1nlxSbxO! ii, where high-
throughput catalyst screening was combined with a computational materials investigation and synchrotron
characterization. Systematic control of Mu’ concentration in this alloy oxide identified compositions
with excellent Pourbaix stability and operational stability in strong acid (Figure 26), demonstrating a very
promising precious-metal-free OER catalyst.24§

Computational methods provided guidance for
new catalyst compositions. The mechanism for

-12 OER on Fe-doped gammaNiO OH was established
and used to calculate an onset potential 0f0.42 V
using high-level DFT (experiment: -0.37 V) with a
Tafel slope of 24 mV/dec (experiment: 30 mV/
dec).249 Using these approaches, high-throughput
in silico screening suggested that replacing Fe
with Co, Rh, or Ir would have significantly lower
onset potential for OER.250

— Mn

02 03 04 05 06
X, Mn/(Mn+Sb)

Directed discovery of OER catalyst materials
focused on the birnessites, a heterogeneous analog
for the OER complex in natural photosynthesis,
where the influence of redox-inactive cations
on the structure and electrochemical reactivity
was studied. Birnessite is a natural mineral of
manganese characterized by stacked sheets of
edge-sharing octahedral MnO6¢ units.2l The
structural similarity of birnessite to the oxygen-
evolving center (OEC) in Photosystem II stems
from the abundance of mono-u-oxo and di-u-oxo
bridges in the edge-sharing octahedra ofbirnessite.
The same connectivity is present between three
Mu' 4 ions and one Cal in the Mn4CaOj
Figure 26. Increasing Mn3 concentration in MnASb/A cluster ofthe OEC.25) Electrochemical protocols
rutile alloys increases OER activity in | M H2SO4 and due were developed for the facile potentiostatic
to thermodynamic stabilization of the active sites, excellent  deposition of birnessite films, supported on Au
activity is retained over 25 hours of testing. substrates, to serve as a structural motiffor OER
electrocatalysts.)$ The rapid synthesis of near-
isostructural members ofthe birnessite family was invaluable in the isolation ofcompositional effects from the
closely intertwined structural effects in the rational design ofelectrocatalysts. Intercalated cations Na, Cal ,
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Sr, Y, and Znlt generally preserved the electroneutrality ofthe sheets in birnessite. The potential needed to
sustain a current density oflO mA cm? in O.IMNaOH increased according to the sequence Nar < Calt < St <Y’
< Zn}, which encompasses a 170-mV potential range. Unlike the case of the homogeneous cluster catalysts,
the electrochemical reactivity ofbirnessite does not vary linearly with the pK., ofthe redox-inactive cations.
The results olfer the prospect of property modulation via the use of cations that are classically labeled as
spectator-supporting ions in electrochemistry.

Carbon Dioxide Reduction Reaction

In JCAP, theory and experiment operated in

(138 1)
il i 12 synergy to accelerate the discovery ofmaterials for
N the COoRR. Screening dilferent catalyst
€03 A oc—Mo—N formulations for CO, reduction activity and
to)-0O °C Ao=-" selectivity was a focus. The activity and product
["“"TMI-Mo(CO)dp- (:Pr2VhpM|.Mo(CO)j(C02)]2 selectivity of electrochemically polished Cu was

compared to those of various rough Cu surfaces.
Dilferences in product current densities, the ratio
of current densities for HER to CQ2RR, and the
ratio of current densities for C)+ to C, product
formation depend on the surface roughness. Cu
derived from electrochemical reduction of CulN
exhibited activity and selectivity similar to Cu
obtained from Cu20. Analysis of simulated Cu
surfaces revealed that relative to an electropolished
surface, a roughened surface exhibits a higher
fraction ofundercoordinated Cu sites. These sites
bind CO preferentially relative to more fully
coordinated sites and contain square sites similar
to those on a Cu(100) surface, but with neighboring
step sites, which adsorb OC-COH, a precursor to
C2t products.25425

JCAP’s molecular catalysis team investigated a
number ofhomogeneous systems for CO2ZRR and
achieved some notable results. Electrocatalytic
reduction of CO, to CO can be achieved with
high current efficiencies in wet acetonitrile solvent
with a cobalt molecular catalyst, [ComN4H(Br)2}t

Fi 7 p d _ & for th y ‘i (N4H=2,12-dimethyl-3,7,11,17-tetraazabicyclo-

igure 27. Proposed reaction path for the reaction of the

dianion with CO} and a nuclear magnetic resonance (NMR) [11.3.1]-heptadecaT(7),2,11,13,15-pentaene). JCAP

spectroscopic characterization of the product of the reaction ~ demonstrated that Co-based homogeneous

with CO.. catalysts display remarkable selectivity for C O2RR
in the presence of water and other proton donor

2019 H 171615141312 1.1 1.00.90.80.70.6 0.50.40.30.20.1 0.0

solvents.256 257 The study includes the isolation and characterization of several reduced compounds that are
relevant to both HER and CO2RR catalysis. In situ FT-IR measurements and DPT calculations indicate
that reducing equivalents are stored on the ligand, implicating redox non-innocence in the ligands for CO,
reduction electrocatalysis.

The team also focused on new ligand systems, which were based on design principles that came from the
JCAP theory group and previous experimental work. Pyridine monoimine (PMI) complexes of Re and Mo
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were investigated toward electrocatalytic CO2 reduction because of'their close relation to the well-studied
bipyridine system, their fairly positive first reduction potentials, and the fact that this ligand system can
be easily functionalized (Figure 27). Carbon-carbon bond formation between the CO, molecule and the
reduced PMI ligand was found to present an unexpected pathway for CO, reduction by these complexes.25§
In related work, a set of PMI Rhenium (I) tricarbonyl chlorido complexes with substituents of dilferent
steric and electronic properties were synthesized and fully characterized. Rhodium diphosphine with P2N)
pendant base-containing ligands, was prepared, and thermochemical studies were conducted to determine
hydricities. With typical measured hydricity values on the order of 30 kcal/mol, these are some ofthe most
hydridic d8 metal hydrides known. These complexes were also determined to be excellent catalysts for CO,
hydrogenation to formic acid.2$9 The hydricity of the Fe-H species and its catalytic activity in CO2ZRR were
also investigated.260

JCAP researchers also investigated NHCs as co-catalysts to pre-activate CO, for reduction. Notable success
was achieved in the use of'this pre-activator/co-catalyst in conjunction with a nickel cyclam (Ni(cyclam)2)
catalyst to convert CO2 to methane with 93% FE. The source of carbon in the produced CH4 is shown
to arise from CO, through labeling experiments in which 3CO2 is first converted to NHC-3CO2, and then
electrochemically reduced to 3CH4. Likewise, deuterium-labeling experiments ofthe proton source show that
the source of deuterium in the produced 3CD4 comes exclusively from CF3CH2OD. The results demonstrate
the viability ofa pre-activation strategy toward the selective, electrochemical conversion of CO, by 8e-.26!

Tandem and Cascade Catalysts (Cu/Ag or Au)

Nanostructured dual-phase catalysts  were

nonadsorbed Oxygenates investigated for controlling the flow of CO2R

intermediates during electrocatalysis, taking

advantage ofproximate reaction centers to control

chemical selectivity. Inspired by the multi-step

enzymatic pathways found in the Calvin cycle,26

a tandem cascade electrocatalysis pathway using

CO as an intermediate species was demon-

Figure 28. (a) Independently addressable and (b) coupled (right) strated.)6 The higher areal density of active sites

bimetallic arrays are used for two-step cascade conversion of on metals as compared to enzymes allows

COL Increasing the activity of'C.O near Cu in the second step  {iffusional transport of intermediates over

of the cascade increases selectivity to C2+ oxygenate products. . .

micron-length scales, opening the door to

fabrication of bimetallic sequential catalysis

devices with standard photolithographic techniques (Figure 28). The sequential catalysis pathway dramatically

increased the yield of oxygenated products when Cu was used as the second catalyst in the sequence. The

bimetallic design is essentially modular, allowing for individual components to be optimized before

integration. The tandem cascade conversion of CO, on cathodes was further demonstrated by deposition of

Ag and Cu on dilferent <llI>-oriented facets of Si, yielding higher current densities and much lower faradic
efficiencies (FE) for CO than the single metal controls.264

Cu sulfides were used as templates for bimetallic Ag/Cu sulfide catalysts with well-controlled Ag/Cu mass
ratios using Ag+ cation-exchange as both nanoparticles and foil electrodes. For nanosheets, the Ag/Cu
ratio can reach 25 with the nanosheet structure remaining, while it is difficult to produce a Ag-rich surface
beginning with sulfides on Cu foil. Formate was the only product detected at low overpotentials (-0.2 V vs.
reversible hydrogen electrode [RHE]). With the introduction of moderate Ag loadings, nanosheet catalysts
showed increased C] product generation for CO2? reduction. The product profiles appear to be influenced
by CO availability controlled by Ag concentration, suggesting a tandem catalytic mechanism. Both the
nanosheets and copper foil catalyst morphology changed during the CO, reduction, which may explain why
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the product distributions change as the CO) reduction proceeds. The reconstruction of'the catalyst during
CO?2 reduction increased the production ofmulti-carbon products.265

An electrocatalyst composed of gold nanoparticles on a polycrystalline copper foil (Au/Cu) is highly active
for CO?2 reduction to alcohols.266 At low overpotentials, the Au/Cu electrocatalyst is over 100 times more
selective for the formation of products containing C-C bonds versus methane or methanol, largely favoring
the generation of alcohols over hydrocarbons. A combination of electrochemical testing and transport
modeling supports the hypothesis that CO, reduction on gold generates a high CO concentration on nearby
copper, where CO is further reduced to alcohols such as ethanol and n-propanol under locally alkaline
conditions.

Under alkaline conditions, planar CuAg electrodes can reduce CO to acetaldehyde with over 50% FE and
over 90% selectivity on a carbon basis at a modest electrode potential of-0.536 V vs. the reversible hydrogen
electrode.27 This study emphasized how deliberate modification to the catalyst surface and reaction
conditions can greatly improve product selectivity, providing design principles that can be extended to other
catalysts and related electrocatalytic reactions.

High-Throughput Alloy Discovery

JCAP’s high-throughput team developed several new technologies for screening (photo)electrocatalysts for
the CO2RR with a focus on mapping composition-structure-property relationships to facilitate the down-
selection of materials for detailed computational and experimental exploration. Through the development
of small electrochemical reactors and their coupling to analytical chemistry tools, the team demonstrated
experiment throughput approximately 10-100 times that oftraditional methods with moderate compromises
to the quality of product detection. The two new screening systems are (i) high-throughput analytical
electrochemistry (HT-ANEC), which uses electrolyte recirculation to rapidly concentrate products for
accelerated gas chromatography (GC) and high-performance liquid chromatography (ffPLC) product
detection,26§ and (ii) high-throughput electrochemistry and mass spectroscopy (EIT-ECMS) (Figure 29),
which performs quasi-real-time product detection of FI? and CfF,.289 Both systems have been deployed for
screening Cu-alloy and non-Cu catalyst libraries, as demonstrated by seminal work revealing the sensitivity
of Cu-alloy catalysts to various alloying elements (Figure 30).270

Cu-based bimetallic catalysts. The -electro-

Melzil:‘ane catalytic properties of Cu bimetallics were
investigated using a combination of experiment
and theory to evaluate whether improved
selectivity could be obtained. Bimetallic Zn-rich
Zn-Cuwas prepared by a facile galvanic procedure.

waste The Zn-Cu catalyst exhibited dramatically
Mol. sieve Pervaporation Electrochemical improved selectivity and activity for CO formation
chamber Chamber Flow Cell compared with pristine Zn and Cu electrocatalysts

. . . and, remarkably, also showed higher intrinsic
Figure 29. The HT-ECMS system combines real-time

measurement with mass transport models to estimate the full aCthlt}-/ than a .plana.lr Ag catalyst within the
FE profiles of H2, and CH4 during 10 mV/s CVs. operating potential window from -0.8 to -1.0 V

versus RHE. This enhanced intrinsic activity for

CO formation on Zn-Cu catalysts was attributed
to the electronic elfect originating from the Cu adatoms on the Zn surface. DFT calculations suggest that the
incorporation of Cu onto the Zn surface lowers the reaction energy (from 0.44 to 0.15 eV) ofthe potential-
determining step (PDS) to form COO 11*, which improves CO production rates, while suppressing the HER
due to a higher coverage of CO that impedes H adsorption. The changes in these relative energies rationalize
the enhanced CO production activity and selectivity ofZn catalysts with Cu modification.]!
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Cu-Free Catalysts

JCAP discovered electrocatalytic systems for CO2R that do not contain Cu, Pd, Ag, or other metals that
were explored in early studies of electrocatalytic CO2R.I% Ni-Ga films operated in contact with aqueous
electrolytes reduce CO, to methane, ethylene, and ethane,2’? and MoS) crystals reduce CO, to 1-propanol
(among other products).)73 Bimetallic near-surface alloys were investigated, with a monolayer of An on W
yielding selectivity toward CH3OH.2%4

The JCAP materials discovery effort extended to
other classes of non-Cu materials for CQIR,
including single-site catalysts, in hopes of
identifying other materials capable of making
highly reduced carbon products. A number of
active catalysts were discovered whose products
were primarily CO and formate. For example,
an aluminum MOF derivative is active under
electrochemical CO2R conditions and able to
produce the important carbon-based products,7s
carbon monoxide (CO) and formic acid (Figure
31). Notably, while Al metal foil is active only for
HER,276278 it was found that confining Al in MOFs,
such as MIL-53 (Al), provides an active construct
for COIR, with FEs reaching up to 21% for CO
production and 19% for formic acid production.

PotentiaKv vs RHE) PotentiaKv vs RHE)

Figure 30. The HT-ECMS system combines real-time
measurement with mass transport models to estimate the

full FE profiles of H2, CH4, and C2H4 during 10 mV/s CVs. The
results shown here compare pure Cu (black) with a series of Cu
alloys with a bulk concentration of 5% of the alloying element,
revealing that Mn and Zn improve hydrocarbon formation
while suppressing the HER.

At potential -1.1 V vs RHE, the turnover frequency
(TOF) reaches 174 1rl, comparable to the TOF of
one of the best performing cobalt porphyrin
covalent organic frameworks (COFs).279

Metal- and nitrogen-doped carbon materials

derived from the cheap and non-toxic carbon-
ization ofpolyacrylonitrile (PACN) are an exciting
class of materials that are promising candidates
for heterogeneous catalysis applications due to
the chemical tunability of their hypothesized
nitrogen-coordinated MNX active sites. Ni,
N-doped carbon (Ni-N-C), has impressive activity
and selectivity for electrochemical reduction
of CO, to CO (CO2R).280 Explicit proof of the
existence of the hypothesized NiNx sites, a
description of the nitrogen ligand environment,
and correlation ofthese sites to CO2R activity were obtained by combining scanning transmission electron
microscopy (STEM), single atom electron energy loss spectroscopy (EELS), and time-of-fiight secondary ion
mass spectrometry (ToF-SIMS).%8! Collectively, these probes ofthe Ni-N-C catalysts indicate that molecular-
like NiN4 sites are responsible for selective CO, to CO conversion. The atomically dispersed Ni sites yield
selective CO, to CO catalysis under both electrochemical and thermal driving force, raising the prospect for
improved performance under combined electrothermal conditions.282 JCAP researchers also demonstrated
that water-sensitive Re, Ir, or Co molecular electrocatalysts for CO, reduction can be used in aqueous
solution when dispersed in a polymer ion gel coating the electrode.8}

1 ! - Electrochemical CO R with Al-catalys
uC, - Up to 40% faradaic efficiency toward
CO,R products
- Up to 182 hlturnover frequency

Figure 31. Electrochemical CO2 reduction mediated by MIL-53
(Al) to HCOOH and CO.
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Photoanode Materials

High-Throughput Discovery

Figure 32. Automated optical screening instrument (design
and photograph), a critical component of the HTE pipeline for
light absorber discovery.

Energy (eV
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Figure 33. Experimental band gap measurement and
calculated band alignment of MnlV1O7, a light absorber
discovered through computation-guided operation of the
HTE pipeline.

JCAP 2021 Final Science Report

Following the initial focus on discovery of OER
electrocatalysts, photoanode discovery became
the focus, with development of infrastructure for
discovery. Optical property mapping was enabled
by an on-the-fly spectrometer (Figure 32), which
measures optical absorption with throughput
on the order of one second per sample.24
Combined with PEC measurements using the
scanning drop cell, the framework for rapid
investigation of light absorbers was completed
and validated, prompting the deployment of a
light-absorber discovery campaign based on
combined computation-experiment screening, as
described below.

The FITE team established close cooperation with
JCAP theorists via the Materials Project to
identify promising composition spaces to
investigate and to enable rapid understanding of
newly discovered materials.} 89 To guide the
composition search spaces for the experimental
pipeline, the team performed data mining on the
Materials Project database and developed specific
testable  hypotheses  from  first-principles
calculations. Theory interactions are equally
important on the back end of the experimental
pipeline by providing another layer of screening
through computation of material properties that
cannot be readily measured. An initial discovery
from the combined theory-experiment screening
was the Mn2V207 compound$) with near-optimal
band alignment to the standard potentials for
water oxidation and reduction (Figure 33). This
ternary metal vanadate has a unique combination
of stability, bandgap energy, and valence band
position. The accelerated discovery of
photoanodes proceeded with three primary lines
of inquiry, where high-throughput experiments
and detailed electronic structure characterizations

were combined to discover and understand
photoanodes. These were (i) a framework
for evaluating composition-structure-property
relationships in high-dimensional alloying spaces
demonstrating that alloy-based tuning of the
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Figure 34. The integrated theory-experiment screening
pipeline for photoanode discovery is shown with the number
of compounds (bold) and screening criteria based on database
mining (gray), high-throughput computational screening
(blue), and high-throughput experimental screening (red).
Computational and experimental data are combined in a
summary plot of band gap and band edge tuning along
within with circles denoting OER photoanodes in pH 9 (borate
buffer) solution.
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Figure 35. The integrated theory-experiment screening
pipeline for discovery of operationally stable
photoaonodes is shown with the number of compounds
(bold) and screening criteria. This pipeline revealed the
first five ternary metal manganate photoanodes, plotted
in black on the right plot, which summarizes the map
of all known OER photoanodes (within the plotted band
gap range, as of summer 2017), including 15 phases
from the literature and 17 phases identified in JCAR

monoclinic distortion in BiV04 canimprove carrier
transport,284 (i) advancement of the integrated
computation-experiment screening workflows for
rapid identification of metal oxide photoanodes
(Figure 34),8528 which included seminal
incoproration of screening based on Pourbaix
energetics (Figure 35),287289 and (in) many metal
oxide photoanodes exhibit a small photovoltage
compared to their band gap, making photovoltage
screening a focus of continued exploration of
3-cation oxide libraries with additional variation
in materials processing. These efforts led to
identification of Bi203-coated FeWO04, which can
only be synthesized as an n-type semiconductor
in specific, non-equilibrium conditions (Figure
36). The 2 eV bandgap photoanode exhibits
excellent stability and, perhaps most notably,
an illuminated open circuit voltage below 0.4 V
vs RITE, corresponding to the best photovoltage
for any metal oxide with a band gap below that of
BiV04.290 The importance of exploring processing
conditions is demonstrated by the observation that
previous research on iron tungstate photoanodes,
both directed and combinatorial materials
discovery, 91293 failed to identify this promising
material. Given the quantity of photoanode data
that has been compiled in the JCAP database

(Figure 37), data science techniques were developed and applied to establish new understanding. A machine
learning model for optical properties of metal oxides has provided a foundational example of generative
models in materials science.294 Further investigating systematic composition-property trends in discovered
families of photoanodes, XPS and Kelvin probe measurements for 11 ternary vanadate photoanodes were
used to characterize the relation between band edge energetics, cation selection, and crystal structure. Across
compounds with seven different cation structures with the V04 structural motif, the range of band edge
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positions was lower than that predicted
 anedic theoretically, but provides the largest band edge
——cathodic tuning demonstrated to date for any analogous
class of metal oxide semiconductors.s
The combined efforts on dark and photo-
electrocatalysis of the OER comprised the
majority of experiments that were included in

Figure 36. Due to self-passivation in acid and base, stable  JCAP’s release ofthe largest database ofmaterials
operation of FeW04-based photoanodes is obtained over a experiments and associated analyses. This

wide pH range, and including 5% Bi in the FeWO04film provides . . .
excellent photovoltage. database features tracking of data lineage, which

is a key requirement for data management in the
age ofadvanced data science.296

time (mins) potential (V vs RHE)

Vis. Light

Cumulative Photocathode Materials
Q- 80- HiTp Exp. MM
HiTp Th.+Exp. In accordance with the goal to identify COIRR
Literature photocathodes that contribute to the controlled
o 40- selectivity in CO2RR, as opposed to optimization

of known p-type semiconductors that drive
CO2IRR via a buried photovoltaic (PV) junction,
the materials discovery efforts comprised
two primary themes. The first aimed to enact

hotonic and plasmonic processes through
Figure 37. Discovery of metal oxide photoanodes by JCAP P . P f kn P icond g d
high-throughput efforts (red and green) compared with the nanostructuring o own semiconductors an

rest of the field (blue), demonstrating markedly accelerated metals, and the second adopted directed and

discovery. high-throughput methodologies to identify
photocathodes with appropriate energetics and
stability for photoelectrocatalysis of CO2RR in
the presence of water.

- 20.

Photonic Structures

JCAP developed photocathodes with photonic structures that enable use of opaque CQ2RR catalysts in
a photocathode illuminated device configuration. Arrays of mesophotonic dielectric cone structures serve
as tapered waveguides to guide incident light through apertures in an opaque catalyst into the underlying
light absorber. This transparency enabled simultaneous achievement ofhigh photoelectrode current density
and high catalytic activity, and represents a versatile strategy for rendering optically opaque (e.g., metallic)
catalysts to be optically transparent. Experimental progress on optical measurements matched well with the
simulated results using full wave electromagnetic simulations. Less than 10% reflection (>90% transmission)
is achieved experimentally for Cu metal coverage as high as 70% with incorporation ofnanostructured TiO,
dielectric cones (Figure 38).

Semiconductor Photocatalysts

Exploration ofreductively stable photocathodes employed high-throughput methods, with JCAP reporting
the largest photocathodes screening search to date.)97 Starting with 68,860 candidate materials (orders
of magnitude larger than previous reports), the team identified 43 new (and rediscovered 9 reported)
photocatalytic materials which can be easily synthesized, are robust in the highly reducing conditions
needed for CO, reduction, can harvest visible light, and present a wide range ofelectronic properties (Figure
39). The identified materials include arsenides, tellurides, selenides, and oxides presenting a wide range of
chemistries suited for extracting different reduction products. These materials were identified via a systematic
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Figure 38. Schematic illustration of light management with
dielectric nanocones on top of a semiconductor photo-
electrochemical cell.
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Figure 39. The first-principles-based computational screening
pipeline for reductively stable photocathodes identifying 52
candidate materials predicted to be stable in water under
reducing conditions, have band gaps in the visible light region,
and have surfaces with suitable band-alignments for CO2RR.
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search based on first-principles simulations of
intrinsic properties of candidate materials. The
screening strategy identified semiconductors
not only fulfilling metrics for synthesizability
and corrosion-resistance, but also bandgaps and
band-edge energies suited for efficient solar-
energy conversion.

The elfect of semiconductor conduction-band
edge position on electrochemical CO, reduction
yield and selectivity were assessed using MoS2,
MoSe2, and Mo(SxSelx)? alloy transition metal
dichalcogenide (TMDC) semiconductor
catalysts. Alloying Se into MoS? produces an
increase in valence band-edge position. The
resulting upward shift of the band edges relative
to the electrochemical reduction potentials for
CO, reduction suggests their promise as (photo)-
electrocatalysts for the CO2R.2%

Spin-coating and sputtering recipes have been
developed that enable synthesis of large area
(<10x10 cm?) and homogeneous photocathode
thin films with accurate and reproducible control
of component stoichiometry, deployed for study
of the Cu-Bi,299 and Cu-Fe00 oxide systems.
For CuBi204, copper-rich films demonstrated
improved incident photon to current efficiency
(IPCE), which optical and XPS analysis showed
resulted from CuO segregated to the fluorine-
doped tin oxide (FTO) interface acting as a
hole-selective contact. The electronic structure
of CuFeO, was elucidated through a combination
of optical, X-ray spectroscopic techniques, and
first-principles The
visible absorption edges of CuFeO, correspond to
Cu to Fe metal-to-metal charge transfer, and the
ultrafast (<1 ps) decay ofthe photoexcited state is
related to the formation ofpolarons.

computational methods.
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Component Integration

JCAP developed multicomponent, multifunctional test beds for water splitting and CO, reduction, focusing
on understanding the science behind component integration, from interface formation at the component
level up to test-bed devices. This knowledge is key, since synergistic interactions are prevalent within these
complex assemblies, and there is a need to exploit emergent properties to realize systems that are more
selective and higher performing than natural photosynthesis.

Protective Coatings for Photoelectrodes

Photocathodes for the Hydrogen-Evolution Reaction

Atomic layer deposition (ALD) -grown TiO, layers were shown to be elfective at protecting photocathodes,
such as textured amorphous Si n-i-p structures. This material corrodes rapidly under HER conditions in the
absence ofa protective layer. An onset potential ofover 900 mV for the amorphous Si structure was achieved
with a photocurrent in excess of 10 mA cm2. Even very thick layers of ALD-grown TiO, (up to 40 nm) do
not significantly reduce the current density or fill factor, suggesting that this approach might be generally
applicable to high surface-area photocathodes. The concept was also used to optimize electron extraction
from p-InP using electron-selective TiO,, producing the highest onset potential, >800 mV vs. RHE, for Hl
generation using this light-absorbing material.3(1"302

Photoanodes

Life cycle assessments performed by JCAP
researchers and others have made it clear that
operational lifetimes for solar water-splitting
devices must be on the order ofat least 5-10 years
to ensure a positive return on energy, which is a
fundamental requirement for any sustainable
energy conversion strategy.303'305 This requirement
contrasts with the demonstrated experimental
lifetimes of spontaneous solar water-splitting
devices, which are at most on the order of one
month and more generally less than a day.3("
Operational stability of water-splitting devices
presents a fundamental materials challenge,
especially for photoanodes, which perform the
needed water oxidation reaction. Notably, only a
few materials, such as TiO, and related metal
oxides, are relatively stable under photo-driven
water oxidation conditions.%

Figure 40. Structural and chemical characterization of the (<2 eV) were not stable in acidic or basic aqueous
Sl/T102/N1.1nterface.' Both Ni and TiO} films in this study electrolytes. To address this critical materials gap,
were continuous, with thicknesses of 100 nm and 68 nm, . . .
respectively. Shown is an elemental contrast image of the JCAP employed parallel strategies, i.e., protection
Si/Ti0Y/Ni interface by scanning TEM. of otherwise unstable known semiconductors and
discovery of intrinsically stable semiconductors.
Research on semiconductor discovery was described above and protection strategies are discussed here.

Previous work involving protective layers on semiconductor photoanodes typically employed TiO, as a tunnel
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barrier, significantly limiting the useful range ofthicknesses, and thus durability, ofthe coatings. Leveraging
that knowledge, JCAP developed a remarkably versatile approach to stabilizing known semiconductors that
involves combining a physical barrier layer with a catalytic coating. Photoanodes were protected against
oxidative corrosion during extended operation in | M KOH by ALD of optically transparent TiO,, with
modified electronic properties to allow the facile transport ofholes. Ni is deposited onto the “leaky’ TiO,
to catalyze water oxidation (Figure 40). This method was first demonstrated on Si, GaAs, and GaP, with Si
photoanodes operated in | M KOH electrolyte solutions at photocurrent densities > 30 mA cnr? for > 100
h.307 In subsequent publications, JCAP demonstrated that a Group II-V semiconductor, n-CdTe, can also
be stabilized against corrosion for > 100 h of operation at pH 14, while producing 435 mV ofphotovoltage
and 21 mA cm? of photocurrent.30§ An ultrathin dual-layer TiCL/Ni coating deposited on polycrystalline
BiVQ4 photoanodes improved stability in pH 13 from minutes for bare electrodes to hours for coated
electrodes.}09 This work showed that protection of photoanodes by “leaky’ TiO, coatings is generalizable
to many technologically important semiconductors with band gaps ofinterest for solar-fuels generation. In
addition, thin layers of ALD TiO, can be used to tune and increase the activity of IrO,, RuO,, and F-doped
SnO, (FTO) electrocatalysts by altering the surface charge density.3!0

JCAP further investigated the mechanism of
anodic  conduction across heterojunctions
between Si and electronically “leaky’ amorphous
TiO, protective coatings,|’307 with Mg, In, Ti, Ni,
Au, Ir, Pt, and Pd contacts. Anodic conduction
occurs via Ti3 defect-mediated charge-carrier
hopping through an energy band 0.83 eV in width
and centered 1.47 eV below the conduction-band
maximum.ll The results show that interfaces
between TiO, and metals having work functions
less than that of TiO, generally provide higher
conductivities than interfaces between TiO, and
higher-work-function metals. These results
elucidate the mechanism underlying anodic
conduction through TiO, films despite the -2 eV
barrier to conduction expected for suchjunctions,
and inform the design of protective coatings for
Figure 41. (a) Schematic of a structure that consists of an  gemiconductor electrodes. To understand the

np+-Si microwire-array conformally coated with a protective, . . . .
transparent, and hole-conducting TiOl layer, with the Ti0l differences in conduction between Ni, Ir, and Au

layer subsequently coated with a NiCrOx oxygen-evolution  contacts, resonant photoemission spectroscopy

Cat?;}ysi,l (b) SEM imagtzs) of an np+Si microwire-array prior  (resPES) and resonant inelastic X-ray scattering
to further processing, (¢) SEM image of a fully processed . .
microwire array, (d) SEM cross-section near the base of a single (RiXS) measurements at the Ti 2p edge were used

microwire, showing the conformality of the TiOl coating with ~ tO investigate the a-TiO, gap state atburied a-TiO,/
a thickness of 94 nm. metal interfaces. The three characteristics of a

highly conductive interface between a-TiO, and a
metal contact are (1) a “reductive” layer that does not oxidize the “leaky’ a-TiO,; (2) upward band bending
that pushes holes toward the surface but does not push the Fermi level below the defect band in a-TiO,; and
(3) an increase in the a-TiO, density ofstates to provide a quasi-metallic interface with the metal.}l JCAP also
developed a method to deposit a catalytically active, transparent, conductive oxide, NiOx, on Si photoanodes.
JCAP demonstrated the stabilization of Si, III-V, and II-VI photoanodes for > 1200 h of continuous light-
driven evolution of0,(g) in 1.0 M KOH(aq).}3

JCAP demonstrated that the protection method based on “leaky’ TiO, coatings could be extended to
structured photoanodes. Si microwire-array photoanodes, protected by a combination of a “leaky’ TiO,
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layer and a sputter-deposited NiCrOx oxygen-evolution catalyst, operated for > 1700 h of continuous, stable
photoanodic water oxidation in 1.0 M KOH(aq) (Figure 41).3l4 Multiple corrosion pathways for TiO,-
protected Si microwire arrays in a polymer membrane either attached to a substrate or free-standing were
identified. Top-down corrosion was observed through defects in the TiO, coating, while bottom-up corrosion
was observed through the substrate and up the adjacent wires and, in the free-standing samples, uniform
bottom-up corrosion was observed through the membrane.}l§ Additionally, arrays ofvertical GaAs nanowires
were grown on photoactive planar Si substrates and then protected with the a-Ti02/NiOx coating. These
microwire photoanodes exhibited continuous solar-driven water oxidation in 1.0 M KOH(aq) for >600 h
without substantial photocurrent decay.316 Investigation ofthe failure modes ofa-TiO, protection layers on
GaAs anodes indicated that extrinsic pinhole defects formed during deposition and testing control the short-
term protective performance ofthe a-TiO, film for GaAs anodes evolving O, from water; however, additional
intrinsic mechanisms are implicated in longer duration failure.}!]

JCAP also demonstrated that SnOx is a versatile protective coating for n-Si photoanodes that provides
efficient and stable light-driven water oxidation when coupled to a variety ofknown catalysts for the OER in
aqueous electrolytes across a wide range (0-14) of pH.}I§ The n-Si/SiOy/SnOx heterojunction photoanodes
provide a photovoltage of 620 mV under 100 mW cnr) simulated solar illumination. The SnOx protective
coating provides low-resistance ohmic contacts to known catalysts (Ni, Ir, and Pt oxides) for the OER. In
acidic electrolytes, the stability of the photoanodes was limited by corrosion of the Ir or Pt catalyst films.
Unlike other protective coatings for photoanodes, such as electronically “leaky’ Ti0,,307 conduction through
the SnOx coating does not depend on the catalyst, and thus the coating allows independent selection
of the catalyst and therefore a more modular approach to photoanode design. The SnOx coating was
deposited conformally on high aspect-ratio three-dimensional structures, such as Si microcone arrays, and
was combined with amorphous TiO, to form a protective SnOx/T1i02 bilayer that exhibits the beneficial
properties of both materials. Photoanodes coated with SnOx/T1i02 exhibited a similar photovoltage to that
of SnOx-coated photoanodes, and showed >480 h of stable photocurrent for planar photoelectrodes and
>140 h of stable photocurrent for n-Si microcone arrays under continuous simulated solar illumination in
alkaline electrolytes.}l9 The stability of the protective coating across a wide range of pH values will allow
stable operation for oxygen evolution in contact with the neutral electrolytes used for CO, reduction cells
even as the pH decreases locally as protons are liberated at the photoanode.320

In another approach, JCAP developed a multifunctional water-splitting catalyst that was specifically
engineered to be interfaced with semiconductor light absorbers without the need for an interfacial corrosion
protection layer. The major impact of this work was to highlight the importance oftailoring new catalysts
to elfectively balance chemical, optical, and electrical properties in integrated assemblies. This was
accomplished using plasma-enhanced ALD (PE-ALD) to create a biphasic cobalt oxide catalyst coating.3l!
An -4 nm thick conformal nanocrystalline Co304 spinel provided a stable interface with the chemically
sensitive light absorber, and was combined with a chemically labile and disordered Co(OH)? surface layer
providing high catalytic activity. By applying this coating to p n-Si junctions, the highest performance for
crystalline Si photoanodes performing OER reported to that time was achieved. Nanotextured interfaces
were found to promote deposition of amorphous, rather than nanocrystalline, cobalt oxide, allowing more
efficient protection.’|

JCAP researchers co-authored a comprehensive review article on protection layers for photoelectrodes used
for solar-fuel generation.3) Focusing on the photoanode, which is an n-type semiconductor, one can imagine
three regimes for charge transfer of minority holes to the surface (Figure 42). In the first case (42(a)), the
valence band ofthe protection layer is lower than that ofthe absorber, and holes are transported by tunnel-
ing. In the second case (42(b)), the protection layer possesses a valence band below that ofthe absorber but
allows hole transport through a defect band. In the third case, the valence band of the protection layer is
above that ofthe absorber, such that holes can reach the surface via band conduction (42(c)).
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Figure 42. Schematic band diagram of hole transport through a protective oxide layer deposited on
an n-type photoanode. Conduction and valence band edges are red and blue lines, respectively, and
quasi-Fermi levels are indicated by dotted lines. Three mechanisms for hole transport are depicted: (a)
tunneling, (b) defect band conduction, and (c) valence band transport.

This third case was experimentally demonstrated using NiCo204, which is a p-type transparent oxide, as a
protective coating on n-type Si.J3 Measurements ofthe work function ofthe NiCo204 by XPS confirmed that
the band alignment depicted in Figure 42(c) was achieved. Due to the transparency ofthe protective layer
and also its efficient hole collection properties (Figure 43) a limiting current density ofover 30 mA cm?2 with
25 mA cm? at 1.23 vs. RFIE was achieved with an np -Si/NiCo0l04/Ni-Fe device stack in which the Ni-Fe
serves as a water oxidation catalyst. Stable operation was confirmed by observing a constant current density
over 72 hours and by sensitive measurements of corrosion products in the electrolyte. Extrapolation of'the
corrosion rate predicts an operational lifetime of several years for this approach. The generality of using
p-type transparent conductors as protection layers was demonstrated by multihour, stable water oxidation
with an n-InP/p-NiCo0204 heterojunction photoanode.

JCAP also conducted an in-depth investigation of

hybrid organic-inorganic halide perovskites,

where the team developed a novel process for

synthesis of halide perovskite-based PV devices

exhibiting high internal quantum yields and -19%

power conversion efficiency, which is among the

highest reported for this emerging solar-energy

______ np*-Si/NiCo20, harvesting material.68'69 This synthesis process has
------ np'-Si/NiC020,/NiFe been extended to allow the fabrication ofmaterials
with tunable bandgaps, from 1.6 to 2.3 eV, thus

making them well suited for integration in tandem

device configurations.t9 Using this process,

photovoltages in excess of 1.1 V have been

generated from single junction devices. In

E (V vs. RHE) addition, it was demonstrated that thin-film
crystallographic texture (i.e., preferential grain

Figure 43. CV scans of NiC0204 coated np+ Si with (dark green) orientation) can have a significant impact on PV

and without (red) a 2 nm Ni-Fe (50/50) coating serving as an ) ]
oxygen evolving catalyst. For this film, the onset potential for performance.6§ By probing the PV properties at

OER is 0.95 V vs RHE and the current density at the reversible ~ the nanoscale, the team found that facet-
potential for oxygen evolution is 26 mA cm™). The vertical dependent defect concentrations exist that lead to
dashed line is at 1.23 V vs. RHE. .. . . iy
significant photovoltage inhomogeneity within
individual grains. This research points to new

ways to engineer interfaces and halide perovskite
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synthesis conditions to obtain higher efficiency. In addition to understanding basic factors that contribute to
photocarrier recombination within and on the perovskite, JCAP investigated the role of electron-selective
contacts in defining device performance. Deep level hole traps were introduced into contacting Ti02 layers
and contributed to a high photoconductive gain and reduced photocatalytic activity. The high
photoconductivity of the TiOl electron transport led to improved efficiency for the fabricated planar
protective coatings. In addition, the reduced photocatalytic activity ofthe TiO, layer led to enhanced long-
term stability for the planar protective coatings. Under continuous operation near the maximum power
point, a power conversion efficiency of over 15.4% was demonstrated for 100 h for the first time with
perovskite materials.

The local structure elfects of dilferent A site cations (e.g., methylammonium, formamidinium, cesium) on
hybrid organo-lead halide perovskite materials was investigated using high-energy resolution fluorescence
detected (HERFD) XAS and first principles DPT. The unique spectral signatures for cesium cations arise
from coupling between the Cs d orbitals and the Pb-halide d-d coupling.324 New insights into light-induced
halide segregation mechanisms were uncovered using in situ methods.}'}6 Theoretical investigation of
transport in halide hybrid perovskite found that large polarons reduce carrier mobility by a factor oftwo.3)
The optimization of compositions is aided by computation, including elucidation of the mechanism for
photoinduced HER on the methyl amine PbI3 organic-inorganic hybrid perovskites3$ and rapid in silico QM
optimization of organic-inorganic hybrid perovskites photocathodes.328

Integration of semiconductor light absorbers and
functional coatings (e.g., electrocatalysts) requires
simultaneously balancing catalysis, corrosion
protection, light trapping, carrier transport, and
mitigation of photocarrier recombination at
interfaces.3)) JCAP introduced a high-throughput,
combinatorial methodology for discovering
emergent properties at interfaces between light
absorbers and catalysts to address this challenge.
Uniform BiV04 thin films were coated with
pseudo-quaternary composition spaces — (Ni-La-
Co-Ce)Ox and (Ni-Fe-Co-Ce)Ox — with three
dilferent loadings.330'3}2 Each integrated photo-
anode was photoelectrochemically and optically
Figure 44. Combinatorial integration of (Ni-Fe-Co-Ce)Ox . . -
onto BiV04. (a) Composition maps of PEC Pmax, plotted with characterized and compared with the isolated

a common color scale using the flattened pseudo-ternary metal oxides. Data-driven discovery was used to
triangle scheme, (b) Representative photocurrent density  identify composition regions that form high-
signals from three of the best photoanodes are shown performance interfaces (Figure 44). In both cases,
along with the photocurrent density signal from bare BiVO4. . L.
Composition maps of (c) optical transmission efficiency {alc/, the optimal catalyst compositions, when
(d) catalytic current density (J(J, and the ensuing (¢) combined  integrated with BiVQ4, are substantially dilferent
figure of merit (aCcat). The parameter T compares photoanode  {han  the optimal electrocatalysts on FTO,
performance (Pmax) (a) to that predicted by aCcat, and the
corresponding composition map is shown in (f).

“035V

revealing that consideration of the isolated
properties of semiconductors and catalysts is
insufficient for predicting functional
characteristics of integrated PEC assemblies. A subset of integrated assemblies exhibited performance
characteristics that were significantly better than anticipated, indicating that material interactions can lead
to emergent properties. To provide insight into function and stability, a photoanodic deposition approach
was established to access promising multicomponent oxides over larger areas.}}} The high-throughput
evaluation ofintegrated catalyst/light-absorber combinations33('332 was extended to investigate pH-dependent
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behavior in photoanodes.33 Duplicate (Fe-Ce)Ox composition-loading gradient films were sputtered onto
100 cm2, high-performing, undoped, compact, spin-coated BiVQ4 films to create photoanode assemblies, which
were photoelectrochemically evaluated in pH 13 NaOH and pH 9 borate buffer. The PEC performance is
much more sensitive to composition in pH 9 than in pH 13 (Figure 45), with pronounced photocurrent
transients in pH 9, except at the optimal composition and loading.
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Figure 45. Overlay of anodic sweep toggled-illumination CV
data collected using pH 9 and pH 13 electrolyte at similar
loading (0.9 nmol mm™2) and compositions in the Ce, xFexO:
coating on BiV04 The current transients are more pronounced
in pH 9 than in pH 13 at all but the optimal and poor Fe-rich
compositions (21% and 41% Fe).

.Transient Absorption

AE 4-AT+ AT+ Drude

Figure 46. The transient absorption spectrum of solid-state
systems, such as the model system bismuth vanadate (BiV04),
is found to be related to free-carrier induced modifications to
the band gap (AEg), the band broadening (Ar), laser induced
heating (AT), and free-carrier absorption (Drude). Using ground
state optical properties, we were able to model the transient
spectral components from fs - ps.
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Photocathode assemblies were developed by
evaluation 012,574 different metal oxide layers (in
composition spaces (Ce-Y-Zr-Cu)Ox, (Ga-Sn-
Gd-Cu)Ox, and (La-Y-Ti-Cu)Ox)) deposited using
inkjet printing onto 100 cm? sputtered copper
bismuth oxide films,}} which identified a (Cu-Ti)
Ox coating that enhanced both photocurrent and
stability in pH 7 bicarbonate buffer with a sodium
persulfate electron acceptor. The optimized
overlayer (Cul5TiOz) improves the onset potential
by 110 mV, the photocurrent by 2.8x, and the
absorbed photon-to-current efficiency by 15.5%.
These enhancements result from passivation
of surface defect states and improved
carrier extraction efficiency through Fermi-
level engineering.}}

Component and Interface
Characterization

Within JCAP, a suite of ex situ and in situ
characterization techniques and multimodal
approaches allowed a robust picture ofinterfacial
processes to be developed. TA spectroscopy is
uniquely suited for understanding kinetic
processes initiated by light over vast time scales,
but requires careful interpretation. In the transient
spectra of a monoclinic BiVQ4 thin-film sample,
heating from the optical pumping, which begins
at -10 ps and plateaus by -200 ps, dominates the
overall spectral response at longer times (Figure
46). However, by using the Drude optical model
of free carriers, the transient response related to
free hole density was also identified. This
comprehensive approach to analyzing and
modeling the TA spectra offers a generalizable
basis for understanding the complex pump-probe
data, reveals thermal heating artifacts that are
frequently erroneously assigned to long-lived
photocarriers, and offers a path to eliminating
ambiguity in analysis of photocarrier dynamics in
solid state systems.)36 Application of these
methods of comprehensive spectroscopic and
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first-principles characterization to CuBi204 thin films led to a description of their fundamental electronic
structure and optical properties and exposed a limited electron diffusion length of 45 nm attributed to
electron small polaron transport.3}7

Complementary to charge-carrier dynamics in light absorbers, the operando quantification of surface and
bulk losses is key to developing strategies for optimizing photoelectrodes and realizing high-efficiency PEC

solar-energy conversion systems. The spatial collection efficiency (SCE), which is defined as the fraction of
photogenerated charge carriers at each point below the surface that contributes to the measured current,

was introduced as a novel technique to identify performance bottlenecks arising from lossy charge transport

properties or slow reaction kinetics at semiconductor/electrolyte interfaces under operating conditions.338'339

Researchers applied this approach to the understanding ofdifferent phases ofcopper vanadate.34) Specifically,

copper-rich phases were shown to have a collection length larger than anticipated, but with a performance

limited by low charge carrier photogeneration yield.

Understanding and optimizing semiconductor/
catalyst and catalyst/electrolyte interfaces remain
key challenges to realization of efficient PEC
solar-fuel generators. Using complementary
macroscopic PEC measurements and nanoscale
atomic force microscopy (AFM) techniques, the
interfacial charge transfer and collection
mechanisms of light-absorber/catalyst interfaces
were interrogated to simultaneously optimize the
Figure 47. (a) Schematic of photoconductive probe AFM passivating and catalytic functions.
instrument, (b) AFM technique for investigating the interfacial ~ Multicomponent (Ni-Fe-Co-Ce)Ox overlayers on
charge transfer mechanism. BiVQ4 photoanodes were assembled and analyzed.
(Ni-Fe)Ox was identified as the surface catalytic
component and (Co-Fe-Ce)Ox as the charge capture/collection component. A bilayer (Co-Fe-Ce/Ni-Fe)Ox
overlayer was rationally engineered to yield BiVQ4 photoanodes with almost 100% efficiency for the OER.
The effective charge transfer through the (Co-Fe-Ce)Ox hole collector and (Ni-Fe)Ox catalyst interfaces was
verified by mapping current distributions with photoconductive AFM measurements (Figure 47).333’34

Picosecond time-resolved X-ray photoemission spectroscopy (TRXPS) was utilized to investigate
photoinduced electron transfer in a model plasmonic system composed of 20 nm gold nanoparticles
attached to a nanoporous film of TiO,.}4) The results of TRXPS provide an absolute measure of the charge
injected from the gold nanoparticles (AuNPs) into the semiconductor substrate. This study provides the
first reference-free, quantitative, microscopic, real-time insight into the efficiency and temporal evolution
of charge-transfer dynamics in a standard nanoplasmonic heterostructure. It demonstrates that currently
available benchmark values for the first steps of photon-to-charge conversion in AuNP-sensitized TiO, need
to be re-evaluated based on newly available data and corresponding theoretical estimates.

Spatially resolved X-ray absorption spectra obtained by scanning transmission X-ray microscopy (STXM)
provide information about changes in the chemical composition and electronic structure, combined with
the corresponding Mo:BiVQ4 film morphology obtained by AFM.343 Using STXM as a spectromicroscopic
technique, the different X-ray absorption spectra corresponding to grain centers and grain boundaries
compositions ofthe Mo:BiVQ4 films were disentangled. The absorption spectrum at grain centers corresponds
to Mo:BiVQ4, whereas the spectrum at grain boundaries indicates the presence of V20s. Many-body DFT
calculations ofthe O K-edge absorption spectra for Mo:BiVQ4 and V2Os provided further understanding of
the chemical composition in heterogeneous regions within the thin film. STXM analysis of Mo:BiVQ4 films
degraded by PEC operation provided insight into the impact of material heterogeneities on the degradation
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mechanism and material stability. The same approach was used to investigate the impact of nanoscale
heterogeneities and composition-reactivity relationships in copper vanadate photoanodes with varying
Cu/(Cu + V) ratios around the ideal stoichiometry of stoiberite CuiV20I0. Nanoscale segregation of Cu in
films with dilferent stoichometries showed that the average macroscale film composition is insufficient for
defining structure-function relationships in complex ternary compounds. Correlating microscopic variations
in chemical composition to macroscopic PEC performance provides insights into photocatalytic activity and
stability that are not apparent from purely macroscopic characterization.#

Membrane Materials for Solar-Fuels Applications

A fully integrated solar-fuels prototype requires separating gaseous products for both safety and efficiency,
while maintaining sufficient ion conduction between the reduction and oxidation chambers in order to
maintain charge neutrality and avoid undesirable pH gradients. Prior to JCAP, appropriate membranes
existed for related technologies, such as fuel cells and water electrolyzers, but the optimal properties
for membrane separators in solar-fuels prototypes were unknown, as were strategies for synthesizing the
appropriate materials.

JCAP’s initial investigations were of relevant aspects of membranes and membrane composites derived
from material systems used widely by the fuel-cell community, such as perfluorosulfonic acid ionomers (e.g,
Nafion). These included utilization of small-angle X-ray scattering to determine sub-second morphological
changes in Nafion during water uptake$ by utilization ofin situ GI small-angle X-ray scattering techniques.
The measurements demonstrated that the wetting interaction in tbin-film interfaces can drastically alfect the
internal morphology ofionomers and in turn modify its transport properties,346 and that confinement ofNafion
in thin films induced thickness-dependent proton conductivity.}47 These results deepened understanding ofthe
properties ofNafion and revealed options for controlling its properties in a solar-fuels device. A key modeling
study by JCAP revealed the impacts of'the tradeoff between gas-blocking characteristics and conductivity
in Nafion for a solar H2-generating device, and led to JCAP’s definition of unique membrane requirements
for solar-fuel generators, i.e., a successful membrane must have better product blocking characteristics than
Nafion but does not require its high conductivity.34 New acid- and base-stable membrane materials would be
required to meet these criteria.

JCAP’s research on new membrane material discovery focused on developing polymer platforms having
balanced and tunable ion and gas transport properties. Two dilferent strategies were pursued: block
copolymers (BCPs), which are highly customizable, and randomly crosslinked polymers synthesized by
reactive blending. Additionally, methods for control ofmembrane properties during synthesis and processing
were evaluated.

BCPs offer the ability to select both the
hydrophobic and the hydrophilic blocks and tune
their domain sizes to have controlled water uptake
and good conductivity. Work by JCAP researchers
focused on polymer designs to optimize those
specific characteristics. Several novel classes were
reported. All have low water uptake compared to
Nafion, indicating a potentially reduced gas
crossover relative to it. BCP membranes with
Figure 48. Reactive blending of functionalized poly(2,6- polystyrene (PS) as the structural, hydrophobic

dimethyl phenylene oxide) is used to prepare membranes with block and polymerized ionic liquids (PIT)
tunable mechanical and conductive properties. containing imidazolium as the hydrophilic block
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were prepared$d’58°63°349-351 and demonstrated to have conductivities around 0.3 mS/cm,60 in the range ofabout
| mS/cm predicted as optimum.60 In an alternative approach, block copolyelectrolytes using PS and
cyclopropenium ions as the hydrophilic block have been demonstrated to have conductivities in the range of
4 mS/cm.35) A specific focus was placed on finding new BCP anion-exchange membrane (AEMs) materials
for operation in basic electrolytes, since the number ofavailable materials (commercial and in the literature)
is quite small.3$3 Membranes prepared with imidazolium and phosphonium blocks may not be sufficiently
stable in base for use in high-performance solar-fuels devices; however, improved stability has been
demonstrated with new membrane BCPs containing PS and polydimethyl ammonium.

Amorphous, randomly crosslinked polymers (Figure 48) olfer a completely dilferent approach to membrane
design. A novel reactive blending process yielded a highly adaptable platform demonstrated for base-stable
anion-conducting membranes. A series of membranes were prepared and evaluated for their stability under
electrolysis conditions, as well as their conductivity, water uptake, and product crossover properties. They
were found to have very promising performance relative to the commercial membrane Selemion, including
a diffusive permeability to methanol reduced by more than a factor of 10, indicating they may be useful for
CO, reduction systems.

In addition to discovery of new membrane materials, JCAP evaluated techniques for modification of
membrane properties through process control and developed a scientific understanding oftheir performance.
These techniques include thermal processing to control slow transport through hydrophobic regions of
the membrane, demonstrated for Nation,60 preparation of BCP films using partly soluble blends to create
artificial free volume and hence controlled transport properties,il and development of a new simplified
model for control of polymer synthesis kinetics through monomer reactivity ratios, which facilitates design
of synthetic strategies.3

A critical issue for the operation of CQ2R devices is the isolation ofreactants and products, thereby ensuring
safe and efficient operation as well as high selectivity. This is of even more importance for the GDE and
MEA systems since reactants at higher concentrations may exist at the membrane interface. Furthermore,
the ion-conducting membranes are critical for efficient water delivery and regulation in those architectures,
and require hydration for sufficient conduction. These needs drove the exploration of membranes, which
for JCAP are ion-exchange membranes that ideally transport only the ions ofchoice (e.g., OH") and not the
product fuels.35

Permeation through membranes at steady state is
well studied,356-357 and it is known that organics
and CO, can interact with polymers and affect

ZZZ :  fN their permeability in use.3% However, very little .is
known about the exact mechanisms of this
400 - transport and how transient operation (e.g., due
3001 to diurnal fluctuations) impacts the transport
200 . processes. JCAP researchers developed a
multiscale modeling framework that enables
macroscopic observables, such as extent of
100 permeation as a function oftime, to be simulated

10 15 20 while retaining a fundamentally molecular
Time for Pressure Rise (s) description of the system. Stochastic simulation

Figure 49. Percentage difference between the time obtained metho.ds lend .themselves well to this type of
in the simulations for the pressure-dependent (Henry's Law) ~ modeling, particularly for membrane systems

concentration of N2 or CO2 in PPO to reach a maximum, and  where permeation is accompanied by volume and

the pressure rise time upstream (from the membrane) in the internal environment changes. In an initial study,
experimental apparatus.
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a basic framework was developed for permeation of small gaseous molecules through rubbery polymers.3%
The time-dependent maximum concentration ofthe solute, determined by Henry’s law, varied instantly with
external pressure changes, suggesting that the polymer is not an inert host. Time-dependent permeation of
weakly and strongly interacting solutes through a model glassy polymer, poly(dimethylphenylene oxide)
(PPO) and through Nation was also studied.360 Detailed studies of N, and CO, permeation through PPO have
shown that external pressure variations lead to similar behavior as rubbers, but the polymer response is
sluggish (Figure 49).3%! The solution diffusion model accurately describes permeation in glasses, and yields
the same results as a more complex dual model involving migration through dynamic and static voids.}62 As
found in the rubbery polymer case, PPO is not an inert host: the free energy profiles calculated for the solutes
show that sorbed gases are at lower energy than in the gas phase. The agreement between the simulations and
time-dependent data shows that interactions between N2 and CO, and the polymer dynamically influence the
solute diflusivity. Polymer relaxations have been identified by MD studies, but on a much shorter timescale
than that found in this work. This suggests that additional, longer term physical mechanisms are involved,
pointing to gaps in our understanding ofpolymer stability in use.

Ion-exchange membranes play dual roles in PEC carbon dioxide reduction devices: they promote the
transport of electrolyte ions so that current can flow in the device and minimize the crossover of redox
products. To assess the connection between membrane composition, structure, and function in co-transport
environments, JCAP developed a new technique featuring a standard diffusion cell with temperature control
and using an in situ Fourier transform infrared spectroscopy (FTIR) probe. The in situ FTIR probe of
the solution was demonstrated to be valid for co-solutes and neutral species transport, by measuring the
transport of methanol, formate, and acetate through Nation 117 membranes. The diffusive permeabilities of
formate and acetate were suppressed when co-permeated with methanol. The approach was used to quantify
the permeability ofindividual and mixed alcohols (methanol, ethanol, and n-propanol) through Selemion
AMV .36} Experimental measurements and multiscale simulation of methanol transport in Nation was used
to develop and validate a multiscale model describing solute permeation through a hydrated membrane
as a series of physical mechanistic steps: reversible adsorption from solution at the membrane interface,
diffusion driven by a concentration gradient within the membrane, and reversible desorption into solution
at the opposite membrane interface. The validated model was used to predict methanol transport across a
solar-driven CO, reduction device and to assess the impact ofpolymer changes on the measured value. The
approach of combining experimental data, computational fluid dynamics, and the mechanistic multiscale
model will provide more accurate analysis of membrane permeation data in cases with polymer swelling or
unusual device geometries, among others.364

To understand the fundamental membrane properties governing the transport of electrolyte ions and CO,
reduction products, two families of AEMs with tunable properties were synthesized. One family ofmembranes
consisted of imidazolium-functionalized poly(phenylene oxide),}5 and the other was comprised of photo-
crosslinked vinyl(imidazolium) materials.366 The degree of functionalization in both families was varied to
control ion-exchange capacity and membrane water content. The ionic conductivity and permeability to CO,
reduction products, such as low molecular weight alcohols,363 37 was measured as a function ofion-exchange
capacity and water content. In both poly(phenylene oxide) and poly(vinyl imidazolium) membranes, ionic
conductivity and CO, reduction product (e.g., alcohol) crossover scaled with membrane water content.365'366
In crosslinked poly(vinyl imidazolium) materials, ionic conductivity and alcohol permeability were reduced
by increasing crosslink density.366 This was the first experimental demonstration of the fundamental
tradeoff challenging the development of membranes for artificial photosynthesis devices. Membranes
with water contents greater than and less than legacy ion-exchange materials (e.g., Selemion, Nafion) were
synthesized.365 366 In CO, reduction devices, the crossover of charged products (e.g., acetate, formate) due to
the application ofan electric field was found to exceed the crossover due to concentration-driven diffusion.368
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Multiscale Modeling of Solar-Fuel Device Architectures

Multiphysics modeling of complete solar-fuels prototypes is critical for guiding materials development,
defining operational conditions and constraints for various cell designs, providing detailed geometric
parameters for prototypes, and evaluating the viability of novel cell designs. Prior to JCAP, the modeling
of solar-fuel cells was primarily focused on materials properties of individual components and simplified
O-dimensional or 1-dimensional system analysis without a detailed cell construct.39'370

Architectures for H2 Generation

JCAP developed a robust multiphysics, multidimensional modeling/simulation platform that accounts for
the performance ofthe photoabsorbers and electrocatalysts, the transport properties ofelectrolytes, and the
requirements for membrane separators.}l'34 The modular modeling platform, in which individual processes
are coupled with the preceding and subsequent processes by interactive boundary conditions, allowed for
study of the overall cell performance of planar systems,}ll as well as of more advanced designs involving
components with micro- or meso-scale structures.l06’375-37% Coupled with the electron/hole transport in the
semiconductor and multi-ion transport in the solution electrolyte, the detailed reaction rates at the catalytic
sites in three-dimensional photoelectrodes were modeled and simulated for the first time.}7I7) Leveraging
the whole cell model, JCAP identified several sufficiently specific, yet generic cell constructs, including a
“louvered" design, a “side-by-side" design, etc., in which fully integrated, efficient, and scalable solar-hydrogen
generators could be fabricated with proper materials assemblies. JCAP also established a comprehensive
relation between the overall STH conversion efficiency and the physical dimensions ofthe electrode width,
electrode height, and the film thickness ofthe membrane separators in specific designs.

In addition, JCAP investigated the trade-offs between the illumination intensity and temperature-dependence
ofthe photocurrent and photovoltage. JCAP also investigated losses associated with factors that include ohmic
resistance, concentration overpotentials, kinetic overpotentials, and mass transport.}7? The target materials
properties ofthe photoabsorber, the electrolyte solution, and the membrane separator were provided by the
whole cell model to achieve optimal STH conversion efficiencies, and the optimal bandgap combinations of
tandem photoabsorber structures were revealed.}]] The trade-offs between the permeability and conductivity
ofthe next-generation membrane separator were investigated to reveal the target material properties needed
to achieve efficient ion conduction and product separation for solar-fuel devices.34§ The performance
limits and associated potential losses in near-neutral pH operation were also simulated and experimentally
validated.3”8 The large voltage penalty associated with local pH gradients at the surface of'the electrodes in
near-neutral pH operation significantly limited the cell efficiency in a membrane-based device.}’8 Additional
JCAP modeling showed that a device architecture that externally recirculates the electrolyte through the
system was beneficial at near-neutral pH because it substantially reduced the potential loss associated with
pH gradients at the surface ofthe electrodes, and minimized electrodialysis ofthe bulk electrolytes.}?) JCAP
performed sensitivity analyses on a variety of generic solar-fuels generator designs comparing the relative
importance of electrocatalyst overpotential reduction, improvements in light-absorber properties, and
parameter optimization.3§) One strategy for reducing the optical obscuration from metal electrocatalysts is
to use a low geometric filling fraction ofthe catalyst on the surface ofthe light absorbers.}! In addition, JCAP
studied the design criteria ofnovel cell designs: an integrated PEC cell coupled with a solar concentrator
with low solar concentration,}’3 an integrated vapor-fed PEC device,J4 and a membrane-encapsulated
device.3§? Annual thermal and efficiency aspects of solar concentration have revealed the importance ofsiting
and temperature management.}$} JCAP researchers published a comprehensive review on the modeling of
solar-fuel devices, which encapsulated the best practices, as well as pitfalls, in the modeling of different
device architectures.3$
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Architectures for COz Reduction

The architecture of the solar-fuels generator
directly impacts the product selectivity and
activity for COZR catalysis. Integration at the test-
bed scale can introduce significant variation in
the reported activity, selectivity, and durability,
even for well-studied catalysts such as copper.
Mass-transfer elfects and the local environment
can lead to changes in the product distribution
that could be incorrectly attributed to catalyst
deactivation, a common concern in such studies,
as opposed to being caused by the cell design.385 37
To wunderstand, explore, and develop next-
generation architectures, JCAP used multiphysics
modeling combined with detailed studies. The
modeling and experimental studies demonstrated
the importance of the local environment,
including overpotential, and how the aqueous
CO, concentration is limiting in terms of mass
transport and performance.}§7 The latter is
especially true because the C O2 concentration limits the operation window due to acid/base reactions, which
result in non-Fickian diffusion profiles and lack of local equilibrium.388 This is one reason that vapor-fed
systems were explored.3§9

mkroporout layer

Efficiency Cells

Figure 50. Schematic of a GDE and schematics of different
GDE and membrane-electrode-assembly (MEA) cell designs.

Multiphysics simulations using continuum equations allowed for virtual evaluation of different test-bed
designs, as well as providing feedback on optimal material properties and limiting phenomena. The voltage
efficiency ofa solar-driven electrochemical cell depends on the physical properties ofits components (catalysts,
electrolyte, and membrane); operating conditions (carbon dioxide flow rate and pressure, current density);
and the physical dimensions ofthe cell.3% A multiphysics, multidimensional model for electrochemical CO,
reduction cells with a focus on GDEs and MEAs was developed. The models account for electrocatalysis
for CO2RR and OER, ionic transport, and chemical acid/base homogeneous reactions in any liquid or ion-
conducting polymer electrolyte.}$)

GDE and MEA architectures (Figure 50) overcome the inherent ohmic losses associated with liquid layers
(with a typical drop of 1 V/cm). Cells with liquid between the electrodes are labeled diagnostic as they allow
one to explore specific physical phenomena. However, to reach higher current densities and explore other
benefits of vapor feed (e.g., low water concentrations, different possible mechanisms, use of CO feeds,
etc.),}89 one should use the high-efficiency cells. The cell design for the simple case of CO, reduction to CO
on Ag was explored numerically, and high current densities are possible at relatively low total cell potentials
(Figure 51). It is also clear that hydration of the membrane becomes important, and thus liquid and even
ion-containing exchange solutions can help lower cell voltage, although there is a precipitation limit due to
carbonate crossover. In fact, this model was one ofthe first to explicitly evaluate CO, utilization, where it is
very low in the exchange solutions due to carbon dioxide pumping across the anion-conducting membrane.
Due to some ofthese concerns, cell performance and CO, utilization efficiency was modeled in cells with
different separators (AEM, cation-exchange membrane, and bipolar membrane). The AEM led to only
14.4% CO, utilization for 6-electron reactions, and the optimum membrane was the bipolar membrane
with a CO, utilization efficiency of 66% with higher utilization possible with membranes designed to inhibit
CO, transport.}!
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(a) A one-dimensional, steady-state model for MEA
designs operated with a Cu catalyst was

KOH developed.’? The model demonstrated that the

exchange product selectivity depends on such parameters

_MEA as catalyst-layer thickness and humidity or

liquid anode feed due to the intricacies of water

KHCOs and thermal management within the cell and

exchange its impact on ionic conductivity. In addition,

-MEA changing the feed from vapor to an exchange

solution on the anode side demonstrated
Full-MEA much higher current densities with similar
selectivity and product distributions, as well as
full catalyst utilization.
Integrated Artificial
Photosynthetic Test Beds
2 2.5 3 3.5 4

Figure 51. Total current density for a ful-MEA, KHCOj-MEA, Test Beds for H2 Generation
and K'OH-MEA.. The red crosses indicate the current densities  JCAP’S initial goal was to build fully integrated
at which precipitation occurs in the MEA cell solar-fuels generators that utilize Earth-abundant
semiconductors and catalysts for the efficient
conversion of water to H2 and provide for full product separation using membranes. Criteria for success were
efficiencies exceeding 10% STH, with stability and durability for days to weeks and longer. As discussed in a
JCAP review article,306 at the time these were leading-edge criteria for the technology. JCAP achieved this
goal in several demonstrations and pursued further improvements, such as design and fabrication of more
efficient light absorbers using custom made (e.g., energy gap selection) tandems for water photolysis and
further electronic optimization of the various interfaces in the structure to produce larger currents at the
water-splitting potential.

JCAP prototypes were designed to enable separation of products, and therefore require membranes and
complex interfaces between various material components that will function under realistic operating
conditions. Most solar-fuels devices described in the literature represent only portions ofa complete system,
or are miniaturized combinations of PVs and electrolyzers.}06 Here we summarize results demonstrating
that JCAP made substantial progress in addressing the scientific and engineering challenges associated with
designing, building, testing, and analyzing fully integrated H2 solar generators.

>19% device operating in acidic media: Advanced prototypes combined photonic design, transparent
catalyst synthesis, and heterostructure band alignment of protective coatings, catalysts, and semiconductor
tandem photoelectrodes to achieve record PEC STH efficiency. A still-standing world record for STH
efficiency was achieved in 2018 by an integrated PEC solar-fuels generator functioning as a monolithic
photocathode (Figure 52).393 This test-bed prototype architecture exhibited significantly reduced surface
reflectivity, minimizing parasitic light absorption and reflection losses. A tailored multifunctional crystalline
titania interphase layer acted as a corrosion protection layer, with favorable band alignment between the
semiconductor conduction band and the energy level for water reduction, facilitating electron transport at the
cathode-electrolyte interface. It also provided a favorable substrate for adhesion ofhigh-activity Rh catalyst
nanoparticles. Under simulated AM 1.5G irradiation, STH efficiencies of 19.3 and 18.5% were obtained in
acidic and neutral electrolytes, respectively. The system reached a value 0f0.85 ofthe theoretical limit for PEC
water splitting for the energy gap combination employed in the tandem-junction photoelectrode structure.
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>10% device operating in alkaline media:
JCAP built an integrated device that exhibited
an STH conversion efficiency, r|STH, of 10.5%
in a 2-electrode cell configuration under | sun
illumination, with stable performance for > 40
h of continuous operation (Figure 53b).3% The
tandem photoabsorbers were designed using a 1-D
numerical simulator and were custom grown for
efficient

operation under AM 1.5 solar spectrum. The
fully integrated prototype includes a tandem-
junction GaAs/InGaP photoanode coated by an
amorphous TiO, stabilization layer, Ni-based,
earth-abundant active electrocatalysts for the
hydrogen-evolution and OERs, and an AEM
for product-gas separations (Figure 53a).
Figure 52. Schematic of a solar-fuels generator for photo- The unassisted solar-driven  water-splitting
electrochemical water splitting with a > 19% solar-to-fuel performance under | sun illumination was
efficiency. measured to be 8.6% in 1.0 M KOH(aq) without
any external voltage bias. The prototype exhibited
an average hydrogen and oxygen production rate of0.81 uL s'l and 0.41 uL s'l (Figure 53c). The gas evolved
from the cathode chamber and from the anode chamber showed minimal (<0.5%) product-gas crossover.

Figure 53. (a) Schematic illustration of a fully monolithically integrated intrinsically safe, solar-hydrogen
system prototype, (b) The short-circuit photocurrent density, Jphotoi shot, and the corresponding STH
conversion efficiency, r|STH, as a function of time in a two-electrode configuration (active area = 0.031
cm)) under | sun illumination in 1.0 M KOH(aq). (c) Collected hydrogen and oxygen as a function of time
for the integrated prototype (active area = 1.0 cm2) under | sun illumination in 1.0 M KOH(aq).

>10% device with bipolar membrane: JCAP demonstrated unassisted solar-driven water splitting with an
STH conversion efficiency of>10% in a 2-electrode integrated photoelectrosynthetic cell that incorporates a
bipolar membrane.3)5 A relatively large photoactive area of> | cm was stabilized under | sun illumination for
>100 hours ofefficient (10%) and continuous operation with minimal decrease in the device efficiency. The
bipolar membrane cell configuration enabled successful integration of a JCAP HER electrocatalyst that
operates in 1.0 M H2SQ4 (aq.) with a III-V photoanode-catalyst combination at near-neutral pH to provide
an alternative approach to ensuring stable performance. The unassisted solar-driven water-splitting
performance ofthe bipolar membrane-containing cell (CoP/H2S04 (pH=0)/BPM/KBi (pH=9.3)/Ni/Ti0/
InGaP/GaAs) (Figure 54) Relative to a Nation membrane, the bipolar membrane exhibited reduced
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Figure 54. (a) A schematic illustration of the flow cell, (b) The
photocurrent density and corresponding STH conversion
efficiency, rjstn, observed during unassisted water splitting
using a BPM-containing GaAs/InGaR/Ti0/Ni cell in a two-
electrode configuration incorporating a CoP/Ti mesh cathode
and under | sun of simulated solar illumination from a halogen
lamp. The light source failed after ~70 h of operation and
illumination was resumed ~5 h later.
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Figure 55. (a) Schematic of high efficiency photocathode device
for solar water splitting. The Pt coated grid serves as an HER
catalyst and is embedded in a transparent epoxy encapsulation
coating with mechanical contact to the semiconductor; (b)
Efficiency of device under diurnal cycling of the solar simulator
illumination, 1 sun, AM 1.5G. The device area was | c¢cm2, in |
M HISO04 electrolyte, using a Nafion membrane for H) and O]
product separation. The efficiency loss at the end of the week
was due to loss of Pt catalyst.

permeability for both O2(g) and H2(g). At the
relatively low operational current density of the
membrane, - 4 mA cm 2, a near-unity transference
number for the H and OH was observed in the
bipolar membrane, and the pH gradient between
the catholyte and anolyte was maintained for
weeks under continuous operation.

>10% polymer-encapsulant device: JCAP
designed a new device architecture that decouples
fabrication ofthe catalyst layer from fabrication of
the semiconductor electrode, and offers significant
flexibility in selection of materials.}% A typical
device (Figure 55a) achieves efficiencies in the
range of>10% using a laboratory solar simulator
and membrane separator to ensure pure H? and
O} product streams, and has demonstrated
significantly higher efficiency in preliminary
testing in natural sunlight. The current proof-of-
concept device utilizes a commercial substrate
and a Pt-coated mesh that is encapsulated in
transparent epoxy coating. The epoxy coating is
stable in | M base as well as | M acid electrolyte,
and performs with similar efficiency under steady
illumination and diurnal solar simulator cycling
(Figure 55b).

Monolithic vapor-fed device: A fully monolithic
PEC device architecture incorporating a I1I-V PV
embedded in an ion-exchange membrane provides
stable PEC hydrogen generation in multiple
configurations. AM 1.5G solar illumination ofthis
device in a vapor cathode/liquid anode format,
where the anolyte is neutral-pH water, has an
STH efficiency ranging from 12.6% to ca. 7% over
a four-day period. The device design is significant
as it allows incorporation of conventional, dark
catalyst materials and supports an integrated

PEC device. Incorporation of a shunt path between the PV and the cathode catalyst with potentiostat
in series enables the direct measurement of real-time Faradaic yields. Using this device in a vapor
cathode/vapor anode, where the anode vapor is from neutral-pH water, JCAP demonstrated integrated PEC
devices displaying record stabilities and efficiencies (> 1,000 hours for H2 evolution at 14% STH efficiency
under | sun).3973%

Louvered prototype: The louvered design provides a robust platform for the further implementation of
various types of improved PEC assemblies and can lead to an efficient, scalable, stable, and intrinsically
safe solar-driven water-splitting system. JCAP demonstrated this device by constructing a fully integrated,
acid-stable solar-driven water-splitting system comprised of WO}/ FTO/p n Si as the photoanode, Pt/Ti0O,/
Ti/n p Si as the photocathode, and Nafion as the membrane separator. It was designed, assembled, operated
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in 1.0 M HC104, and evaluated for performance and safety characteristics under dual side illumination.3%
A hydrogen production rate of0.17 L hrl was observed in a full-cell configuration for > 20 h with minimal
product crossover.

Microwire devices: One ofJCAP’s unique accomplishments was the development ofn-p -Si/n-WO03 and u-p -
Si/n-Ti02 core-shell microwire devices for solar water splitting in acidic and basic electrolytes.}l§ Preparation
of these complex structures required optimization and control of a series of processing techniques and
tools. JCAP demonstrated an Si microwire-based tandem-junction device capable of unassisted solar water
splitting under | sun illumination. In addition, the team tested the stability ofthe device for 24 h, showing ca.
10% degradation in | M KOH. With JCAP’s newly developed protection methods, stable microwire devices
provide a viable platform for development of more robust and efficient solar-fuels components.3l4 400401
Unlike planar electrodes, bubble-producing microwire-array photocathodes can function without external
convection, regardless of the orientation of the electrode.4? Microwires can be tapered, demonstrating
superior light-trapping properties with < 1% angular averaged reflection, and absorption reaching the 4n)
light-trapping limit due to enhanced coupling ofincident light into waveguide modes.4(3

Recirculating device and pH gradient effect on operation: Controlled recirculating electrolyte streams
between compartments were used to demonstrate self-regulating and pure solar-hydrogen generation from
near-neutral pH electrolytes with solar-fuel efficiencies above 6.2%.404 Stable operations for over 12 h were
achieved without significant concentration differences between compartments or noticeable overpotential
build-up. JCAP also built a fully integrated membrane-free solar-driven water-splitting system with an STH
conversion efficiency 0f3.2% at near-neutral pH.378 The integrated system contained a triple-junction a-Si:H
light absorber, Pt and Co-Pi electrocatalysts, and a 1.0 M boric acid buffer (pH 9.2). Analysis of the gas
composition in the cathode and anode compartments showed high product-gas crossover, with 10% O2(g)
found in the cathode chamber and up to 40% H2(g) measured in the anode chamber. Hence this system was
not intrinsically safe, and constituted a significant explosion hazard during operation, producing flammable
mixtures of H2(g). Even though the bulk electrolyte was buffered, the local pH values near the electrodes were
driven significantly toward alkaline or acidic conditions at steady state. This work served to establish the need
for extreme pH to achieve high efficiency in a safe device.

Solar-hydrogen plant: JCAP developed a detailed physical description of a hypothetical | GW hydrogen
plant (220,000 metric tons 11,/ycar) using a wired JCAP prototype design.304 Materials requirements, initial
primary energy requirements, and annual net energy balance for the full plant were built upon the initial
device study3)3 and estimated using lifecycle assessment methodologies. The focus was on the balance of
system, which included structural supports, electrolyte, piping, storage, drying and compression, water
transport and purification, land and road improvements, maintenance, panel replacement, and end-of-life
decommissioning. Uncertainties were estimated for all key parameters and used to drive a Monte Carlo
simulation to obtain sensitivities and ranges ofthe energy returned on energy invested (EROEI), net energy
balance, and energy payback time. Key uncertainties were found to be the STH efficiency and panel lifetime.
In the base case, the team found an EROEI of 1.7 and an energy payback time of approximately eight years.
By moving to alternative structural designs and a tbin-film device requiring simpler manufacturing methods,
substantial reductions in energy invested were estimated,})5 resulting in an EROEI of 2.5 and an energy
payback time of3.9 years. These studies all point to the importance of ensuring high efficiency and a long
lifetime for sustainable PEC hydrogen production.

Test Beds for COz Reduction

The modeling and experimental studies demonstrated the importance of the local environment, including
overpotential and how aqueous CO, is limiting in terms of mass transport and performance.}7 The latter
is especially true, as it limits the operating window due to its acid/base reactions, which results in non-
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Fickian diffusion profiles and lack oflocal equilibrium.3§8 JCAP used test beds coupled to these models to
explore the traditional aqueous planar cells, including mechanism and kinetic discovery. JCAP integrated
materials discoveries into optimized aqueous test-bed prototypes to perform solar powered CO, conversion
to hydrocarbons and oxygenates.

Photocathode-based planar aqueous unassisted C0 reduction device: A device based on JCAP-
developed bimetallic catalysts4)s (Ag/Cu, Au/Cu) integrated with a photoabsorber was demonstrated to form
a CO, reduction photocathode with over 60% FE to hydrocarbon and oxygenate products (mainly ethylene,
ethanol, and propanol) for several days under diurnal simulated conditions.406'407 In addition, a tandem,
self-powered CO, reduction device was formed by coupling a Si photocathode with two series-connected
semitransparent CH3NH3PbI} perovskite solar cells,408 achieving a conversion efficiency of sunlight to
hydrocarbons and oxygenates 0of1.5% (3.5% for all products).406

Membraneless laminar-flow device: JCAP used multiscale models to evaluate and design a membraneless
laminar-flow device.409 Computational modeling showed that near-unity separation efficiencies were possible
at achievable current densities via optimization ofthe spacing between the electrodes and the electrolyte flow
rate. Laminar-flow reactor prototypes were fabricated with a range of channel widths by 3D printing and
using CO, reduction to formic acid on Sn electrodes. Trends in product separation efficiency with channel
width and flow rate qualitatively agreed with the model, but the separation efficiency was lower, with a
maximum value 0£90% achieved.

GDEs for C0? and COR: Beyond modeling, GDE test beds were fabricated for evaluation under both CO
and CO, reduction. Current densities up to -130 mA/cnr and total carbon product selectivity ofup to -75%
using Cu as an electrocatalyst for COR was demonstrated.4l0 This configuration was also used for operando
XAS measurements.) Humidity had minimal impact on COR products. X-ray diffraction (XRD) patterns of
deposited Cu-GDEs showed small amounts of Cu20 while operando XANES measurements indicated Cu
with a mixed oxidation state at open circuit voltage conditions. During bulk electrolysis, ethylene Faradaic
yields decreased over time and corresponded to the reduction ofthe initial Cu-oxide phases to metallic Cu.

>19% unassisted solar-driven GDE CO0! reduction device: JCAP reported an over 19% efficient unassisted
solar-driven CO, reduction device using a GDE directly powered by a PV heterostructure. A GalnP/GalnAs/
Ge triple-junction photoelectrode was used to power a reverse-assembled GDE employing an Ag nanoparticle
catalyst layer. The prototype solar-fuels generator had a solar-to-CO energy conversion efficiency of 19.1%
under simulated AM 1.5G illumination at | Sun.ll The use ofa reverse-assembled GDE prevented transition
from a wetted to a flooded catalyst bed and allowed the device to operate stably for >150 h with no loss
in efficiency. Outdoor measurements performed under ambient solar illumination in Pasadena, California,
produced a peak solar-to-CO efficiency of 18.7% with a CO production rate of 47 mg-cnr) per day and a
diurnal-averaged solar-to-fuel conversion efficiency of5.8%.

10% solar-to-formate CO0 reduction device with a bipolar membrane: JCAP investigated in-depth
the effects of'the buffer capability ofthe solution on the local pH and CO, concentrations at the electrode
surface under operating conditions and revealed that the total polarization loss and system efficiency is
highly dependent on these local parameters. For example, such local values were simulated to explain the
operational losses of a system using a bipolar membrane for solar-driven CQ2RR.386 This solar-driven CO,
device exhibited a solar-to-formate (STF) conversion efficiency of 10% under 1.0 sun illumination, which
was the highest reported conversion efficiency for CO, reduction reported at that time. A tandem InGaP/
GaAs/Ti02/Ni photoanode operated in 1.0 M KOH for OER, while a Pd/C nanoparticles-coated Ti mesh
cathode operated in 2.8 M KHCO3} (aq., pH=8.0) for CQ2RR. The effective coupling between the two
electrolytes with different pHs for CQ2R reaction and OER provided a new cell design space for efficient
solar-fuel generation.
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Figure 56. (a) Cross-section view of the device's active components, such as PV-integrated membrane
and catalyst-coated carbon papers, (b) 24-hour durability test showing no overall efficiency degradation.

Monolithic PEC CO0! reduction producing syngas at 10% efficiency: A 4 cm] monolithic, PEC device
(Figure 56) exceeding 10% solar-to-fuel efficiency was demonstrated, representing a doubling in the reported
peak efficiency for such devices.dll The best performance was found through a systematic analysis of the
operating conditions. Straightforward scale-up from | to 4 cm) was demonstrated. No overall efficiency
degradation occurred during a 24-hour durability test. The changing product distribution over time was
analyzed and solutions to stabilize the distribution were provided.

Direct capture and reduction of CO! from sea water: A direct coupled, proof-of-concept electrochemical
system was demonstrated that used a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed
CO, reduction (CCER) cell to capture and convert CO, from oceanwater.dl} The BPMED cell replaced the
commonly used water-splitting reaction with one-electron, reversible redox couples at the electrodes and
demonstrated the ability to capture CO, at an electrochemical energy consumption 0f0.98 kWh kg | of CO,
and a CO, capture efficiency of71%. The direct coupled, vapor-fed CQ2R cell yields a total FE ofup to 95%
for electrochemical CO, reduction to CO. The proof-of-concept system provides a unique technological
pathway for CO, capture and conversion from oceanwater with only electrochemical processes.

Unassisted highly selective gas-phase COz
reduction with a plasmonic Au/p-GaN
photocatalyst: JCAP reported the first example
of gas-phase photocatalytic CO, reduction to
CO on plasmonic-metal/p-type semiconductor
heterostructures (Figure 57) without applied bias
or the presence of a sacrificial electron donor.4l4
An interfacial layer of aluminum oxide (A1203)
deposited between the plasmonic metal and the
underlying p-type semiconductor significantly
improved the interfacial separation of hot holes
across the Au/p-GaN heterojunction, and further
decorating Cu nanoparticles onto the Au surface
accelerated the rate of CO, reduction. Overall,
Figure 57. Schematic diagram of highly selective, unassisted these plasmonic Au/p-GaN and AU_CU/AIZ(,)S/
CO02 to CO reduction on plasmonic Au particles. p-GaN heterostructures are capable ofperforming
selective, unassisted, gas-phase photocatalytic
CO, reduction to produce CO as the only detectable reduction product, balanced by water oxidation to yield
02. The plasmonic metal (Au or Au-Cu) was identified as the locus of CO, reduction and the underlying
p-GaN as the locus ofwater oxidation.
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