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ABSTRACT 
 

 

 

 

Blind source separation (BSS) is the attempt to unmix a signal composed of multiple sources. It is blind 

because there is usually little to no prior knowledge about the total number of sources in the observed signal, how 

they are mixed, or anything else about the system in which the signals are recorded. The signals themselves may 

represent a time series, images, or higher dimensional data without any time component. 

This research summary describes how different methods and algorithms were applied to a blind signal 

separation problem with multi-channel seismic array data. There are several considerations which are unique to this 

application, such as time offsets of signals between sensors and the presence of many nuisance signals. Two of the 

most common methods for source separation come from applying the principal component analysis (PCA) and 

nonnegative matrix factorization (NMF) of a data matrix 𝑋. After the introduction and background, we look at how 

these two methods were able to assist in source separation of the seismic data. 
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INTRODUCTION AND PROBLEM BACKGROUND 
 

 

 

 

The Advanced Data Analytics for Proliferation Detection (ADAPD) project is a joint venture between the 

Nevada National Security Site (NNSS) and five other national labs: Los Alamos, Pacific Northwest, Sandia, Lawrence 

Livermore, and Oak Ridge. It is focused on three “hard problems” related to detecting proliferation, which is the 

activity of nuclear capability development. One of the problems is being primarily researched at the NNSS. 

The U1a underground facility (Fig. 1), located at the NNSS site north of Las Vegas, has been a model testing 

location for the collection of data and development of analytic capabilities. U1a attributes and activities include: 

government controlled restricted site, underground facility, large-scale science and engineering deployments, and 

mining activity, which are all of high importance in the development of proliferation detection capabilities. High 

quality analytics cannot be developed and tested without collecting high-quality data. To this end, the site is 

equipped with multi-modal sensors which are able to continually monitor and record various metrics: power usage, 

cyber & IT activity, and seismic-acoustic energy sources recorded from a surface array of 3-axis geophones. The latter 

is the data mode of interest in this research summary. 

Several analytic projects using 

the seismic data have been proposed. 

They include: (1) sub-terranean time-

difference-of-arrival (TDOA) multi-

lateration; (2) mining related signature 

development; (3) underground facility 

support infrastructure signature 

development; (4) elevator shaft 

signature and predictive analytic; and 

(5) surface vehicle activity, timing, 

directionality, and entrance/exit 

signature development. The seismic 

geophone sensors are able to record all 

manner of sources which emit energy 

in the form of seismic and acoustic 

waves. The variety of human and 

machine activity at U1a, at the surface 

and underground, creates superimposed signals from different sources and different locations. For example, at the 

same time, a heavy door being closed, percussions from a rock bolting machine, ventilation shaft fan motors, and a 

forklift driving on a surface road all contribute to the recorded signal. Additionally, the complex is 293m below the 

surface and constructed entirely within unsaturated alluvium, composed mainly of tuffaceous sand, with alternating 

and interbedded layers of sandy gravel and cobbly sand. The challenge of robust signal detection through such a 

thick, attenuative medium using surface sensors cannot be understated. 

Figure 1: U1a Facility schematic 
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In all of the 

aforementioned applications, 

it is a central task to be able to 

understand which types of 

signatures are coming from 

which possible sources. The 

data collected is noisy and 

contains a mixture of 

overlapping signatures, inter-

ference, attenuation of 

signals, nuisance tones, and 

time-domain offsets among 

the multiple sensors. As seen 

in the Fig. 2 spectrogram 

image, a variety of broad and 

narrow spectrum signals 

appear in a short time span. In 

order to develop specific 

signature detection and 

predictive analytics, we need to apply digital signal processing techniques to separate the mixture. In general, this 

presents itself as a blind source separation problem. In the context of machine learning, we can think of this as an 

unsupervised learning problem, in that we know very little or nothing about the signals themselves, i.e. labeled data 

is hard to come by. 

In the literature, the most common example mentioned when introducing BSS is the cocktail party problem. 

This involves the task of “hearing” or “listening” to a conversation in a crowded cocktail party, where there are many 

simultaneous conversations, music, and other source noises being received by the “listener,” who is tasked with 

focusing on a single conversation. The human listener, with two ears (sensors) is able to process this task by filtering 

out the distracting noises. The human brain is able to achieve source separation. For a computer, processing a 

digitally sampled, mixed signal is difficult. The cocktail party problem itself can be classified under the broader setting 

of auditory scene analysis. Digital signals can represent more than audio signals, of course. Separation may need to 

be applied seismic data (like in our case), images, EEG data, text documents, or any manner of time series data, to 

name a few examples. 

In addition to source separation, we wish to achieve multilateration, that is, be able to locate a specific 

source once it has been separated from the mixed signal. This is a well-developed area used in guidance and 

surveillance systems. It is based on finding the intersection of hyperbola from timing offsets in synchronized sensors, 

where least squares methods can be used when there are more than 4 sensors/receivers used to locate a source in 

three dimensions. In our use-case, the sensor spacing, wave propagation speed, and wave media all contribute to 

offsets between sensors of the same source signal. 

This report gives an overview of two methods which have been developed for the blind separation problem 

at U1a. BSS is highly underdetermined in most cases. It can be monaural, that is, used to separate mixed sources 

from a single sensor, or applied with many sensors. The work discussed herein was conducted during the student 

summer intern program at MSTS LLC., civilian contractor for the NNSS, under the guidance of Senior Scientist Dr. 

Daniel Champion. A portion of it had already been developed by Dr. Champion, and it is outlined first. This is followed 

by initial results and a discussion about how well the methods performed when used on real data.  

Figure 2: Spectrogram 
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METHODS 
 

 

 

Mathematical Formulation 

In this section I will lay out the basic mathematical formulation and assumptions for source separation of 

the seismic array. The unknown sources are emitted from unknown locations and are mixed together as they 

propagate through the ground and air, subject to interference, reflection, echoes, and other physical factors. 

We assume a linear system in the sense that at some time 𝑡 = 1, … , 𝑇, the signal picked up by a sensor 

𝑋𝑖(𝑡) for 𝑖 = 1,2, … , 𝑀 is a linear combination of sources 𝑆𝑗(𝑡) for 𝑗 = 1,2, … , 𝑁. For now, we ignore the typical 0 

mean normally distributed error term 𝜖𝑖  added to the signal.  

𝑋𝑖(𝑡) = 𝑎𝑖1𝑆1(𝑡) + 𝑎𝑖2𝑆2(𝑡) + ⋯ + 𝑎𝑖𝑁𝑆𝑁(𝑡)  (1) 

The 𝑎𝑖𝑗 ’s are attenuation (or possibly amplification) factors which are determined by the nature of the mixing 

system. For 𝑀 sensors and 𝑁 sources, the data can be represented as a matrix 𝑋 which is the result of the mixing 

system matrix 𝐴 acting on the 𝑁 sources: 

𝑋 = 𝐴𝑆      (2) 

where 𝑋 ∈ ℝ𝑀×𝑇 , 𝐴 ∈ ℝ𝑀×𝑁 , and 𝑆 ∈ ℝ𝑁×𝑇. That is, each row of 𝑋 is a digitally sampled signal from an individual 

sensor for 𝑡 = 1,2, … , 𝑇, the entries in the matrix 𝐴 are the attenuation factors, and each row of 𝑆 is an individual 

source. Matrix 𝐴 can also be thought of as the gain matrix, which determines the weights of each source which make 

up a signal. Equation (2) can be written out fully as 

 

[
𝑥1(1) ⋯ 𝑥1(𝑇)

⋮ ⋱ ⋮
𝑥𝑀(1) ⋯ 𝑥𝑀(𝑇)

] = [

𝑎11 ⋯ 𝑎1𝑁

⋮ ⋱ ⋮
𝑎𝑀1 ⋯ 𝑎𝑀𝑁

] [
𝑠1(1) ⋯ 𝑠1(𝑇)

⋮ ⋱ ⋮
𝑠𝑁(1) ⋯ 𝑠𝑁(𝑇)

]   (3) 

 

It should also be mentioned that a simplifying assumption is the matrix 𝐴 is unchanging in time, that is, the mixing 

system is the same during the entire signal collection. 

If matrix 𝐴 can be inverted, we can recover the sources: 𝑆 = 𝐴−1𝑋. However, 𝐴 is in general unknown and 

unobservable, which makes the problem interesting. Blind source separation techniques attempt to estimate 𝐴 or 

some approximation of 𝐴 . This is considered a “model-free” paradigm in the following sense: the sources are 

estimated without any underlying assumptions about how they are created and mixed. There is no need to rely on 

a complex model with many unknown parameters for the system in which the signals are observed. 
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The U1a sensor array and seismic data format 

 An array of seismic sensors was installed at U1a and started collecting 

data continuously by April 2020. Within 4 months, over 2.7 TB of data was 

available. The sensors are INOVA Hawk model 3-axis geophones like that 

shown in Figure 3. The x and y axes are oriented with the 

horizontal/surface plane, and the z-axis corresponds to the “up/down” 

direction. A geophone essentially converts ground movement into a 

voltage reading. A spring-mounted wire coil in a magnetic field generates 

an electrical signal as it moves back and forth when subjected to forces 

from seismic or acoustic waves moving through the media in which it is 

deployed. 

 Initially, 36 sensors were arranged in roughly a “cross” pattern 

with 3 arms stretching out in approximately the N, W, and S cardinal directions, and the 4th arm diverging to the 

northeast. Each of these stations is identified with a letter corresponding to the branch, and a number, e.g. N01, 

N02, …, N13, S01, etc. In late 2020, another branch of arms was added to bring the total number of sensors up to 

48. This branch was identified with the letter ‘X’. Each sensor is buried under several inches of topsoil. An overhead 

view of the layout is shown in Figure 3.  

 The sensors are time 

synchronized and able to sample at 

a rate of 500Hz, with a higher 

sampling rate possible for 

temporary periods or short-term 

experiments. Once downloaded 

onto a computer, the raw data is 

stored in what is called SEG-Y 

format, a file standard that was 

developed by the Society of 

Exploration Geophysicists. A single 

download from one sensor may be 

larger than 10 GB and represent 2 

weeks of continuous recording. As 

most of the analysis and signal 

processing of this data was to be 

carried out using the Python 

scripting language, one of the first 

data engineering tasks was to be 

able to convert the raw seismic data 

from SEG-Y format to a numpy 

array. This required a parsing script 

which would comb through the 

byte stream of each SEG-Y file, skip 

Figure 3: INOVA Hawk geophone 

Figure 4: Geophone layout 
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over irrelevant meta-data and file headers, and copy only the raw voltage readings from the x, y, and z axis. The only 

other data parsed from the file was the UTC time (down to 1 second resolution) of each digital record.  

 In addition to the SEG-Y parsing script, another script was developed to break each multi-day stream into 

usable numpy arrays representing 1 hr of data starting from the top of the hour. The script would sort each file into 

a directory ordered by year, month, and day, with each unique sensor ID belonging to the filename. With these “data 

management” utilities in place, the groundwork was laid out to allow easier searching, sorting, uploading, and 

analysis of the data. 

 

A low-rank linear decomposition approach to signal extraction 

 This section explains one of the first methods devised for U1a signal extraction, based on a low-rank linear 

decomposition of cross-correlation aligned signals. 

In many source separation settings, a simplifying assumption is that there are no time delays or time offsets 

with respect to a signal between different sensors. While this may be valid when recording speakers in a small room, 

as sound travels ~343 m/s in air, the assumption doesn’t hold for seismic signals in the U1a array. The geophones 

are far enough apart that time delays between different sensors recording the same source(s) are evident. Thus, in 

order to construct our data matrix 𝑋 from Eq. (3), we do the following: assume there is some dominant signal which 

is evident in all of the array sensors (or perhaps a subset of them). When two signals are cross-correlated, the peak 

correlation index (or the argmax of the resulting correlation) gives the time offset of greatest similarity between two 

signals. 

[𝑋𝑖 ∗ 𝑋𝑗](𝑛) ≔ ∑ 𝑋𝑖(𝑡)𝑋𝑗(𝑡 + 𝑛 mod 𝑇)𝑇−1
𝑡=0   (4) 

Equation (4) gives the finite time discrete cross-correlation of two signals 𝑋𝑖  and 𝑋𝑗  of length 𝑇. By cross-correlating 

each pair of sensors, we can find the time offset between them with respect to the dominant signal and shift one so 

that the dominant signal is aligned. By doing this for all pairs, the dominant signal can be “built up” in a sense that 

for 𝑀 selected sensors, the 𝑀 rows of matrix 𝑋 are aligned in time. In other words, the no time delay assumption is 

artificially satisfied between sensors for the dominant signal. 

 Due to the shifted signals, the cross-correlated data 𝑋 will have a slightly shorter length in time, but this is 

irrelevant, as the overall signal duration is assumed to be much longer than the dominant signal in question. The 

linear decomposition approach takes aligned matrix 𝑋 and approximates it with matrices 𝑊 and 𝐻: 

𝑋 ≈ 𝑊 ⋅ 𝐻  (5) 

𝑊 and 𝐻 are typically of lower rank, in order to achieve data reduction. 

 For example, assume signal is made up of a linear combination of two main components: 𝑆1(𝑡) and 𝑆2(𝑡). 

At time 𝑡, the signal from sensor 𝑋𝑖  can be decomposed as 

𝑋𝑖(𝑡) = 𝑎𝑖1𝑆1(𝑡) + 𝑎𝑖2𝑆2(𝑡) + 𝜖𝑖(𝑡)  (6) 

With the error term accounting for all other aspects of the signal not from the two main components. Equation (6) 

expresses this decomposition as a rank 2 approximation of 𝑋. The 𝑖th row of 𝑊 is [𝑎𝑖1  𝑎𝑖2]  and the two columns of 

𝐻 are the sources  𝑆1(𝑡) and 𝑆2(𝑡). A schematic is shown below in Figure 5. 
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 Thus, the task of extracting two signals from matrix 𝑋 comes down to finding the matrices 𝑊 and 𝐻 in the 

factorization in Equation (5). This can be achieved in several ways, two common approaches are the principal 

component analysis, and non-negative matrix factorization, which can be expressed via the optimization: 

PCA: argmin
𝑊∈𝑂(𝑛)

 ‖𝑋 − 𝑊 ∙ 𝐻‖𝐹
2   (7) 

NMF: argmin
𝑊,𝐻≥0

 ‖𝑋 − 𝑊 ∙ 𝐻‖𝐹
2   (8) 

where 𝑂(𝑛) is the space of orthogonal 𝑛 × 𝑛 matrices and ‖∙‖𝐹  is the Frobenius matrix norm. The PCA solution is 

efficiently computed via singular value decomposition. Non-negative matrix factorization requires that 𝑋, 𝑊, and 𝐻 

all have non-negative entries and will be discussed in the next section. 

Figure 5: Cross-correlated and aligned signals make up signal matrix 𝑋. 
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 After computing the PCA and obtaining 𝑊 and 𝐻, we may approximate 𝑋 with a rank-1 matrix formed by 

taking the outer product of the first principal component. From here, find the residual matrix 𝑅 = 𝑋 − 𝑋′ , “unshift” 

𝑅 using the time offsets determined by the sensor cross-correlations, then repeat the process. 

 This method was applied using five sensors in an attempt to develop an analytic signature for the U1a 

elevator shaft motor, characterized by a sloping bright pattern in the spectrogram. As Table 1 shows, 3 principal 

components were enough to describe much of the variance in the two North arm sensors. Different types of signals 

and known patterns have yet to be analyzed with this technique, but it is a good start to a low rank signal 

decomposition method with the seismic data. 

 

N05 N13 S03 W03 E03

1 component 0.2031 0.1235 0.4895 0.2911 0.2799

2 components 0.4628 0.5365 0.4953 0.4805 0.5476

3 components 0.9549 0.9003 0.5029 0.4840 0.5481

4 components 0.9606 0.9059 0.5807 0.9999 0.7762

Proportion of original signal variance variance explained with linear decomp model

Figure 6: Spectrograms of original and correlated signal. 

Table 1: PCA variance results 
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Monaural signal separation with non-negative matrix factorization 

This section describes another commonly used method for blind source separation: non-negative matrix 

factorization (NMF). There has been a considerable amount of research and literature produced on NMF since the 

late 1990’s, due to its usefulness in high-dimension data modeling and machine learning applications [source]. A few 

applications include document topic analysis, auditory scene analysis, electroencephalography, image and video 

separation, and recommender systems. 

Like with the PCA method, we assume the data 𝑋 can be approximated with a linear decomposition: 𝑋 ≈

𝑊 ∙ 𝐻. As the name implies, there is a constraint that all three matrices have non-negative values. This is useful 

because it does not allow any parts of the sources to cancel out. The intuition here is that NMF is a “parts-based” 

representation of the signal 𝑋. 

Finding 𝑊 and 𝐻 can be posed as an optimization problem: 

{𝑊, 𝐻} = argmin
𝑊,𝐻

 𝐷(𝑋 || 𝑊 ∙ 𝐻) 

Subject to:  𝑊, 𝐻 ≥ 0    (9) 

Where 𝐷(∙ || ∙) is a cost function, or divergence (e.g. Kullback-Leibler). A further constraint on the rank of 𝑊 and 𝐻 

can be imposed. The solution {𝑊, 𝐻} is not unique in the sense that an equivalent factorization can be found with a 

different scaling and permutation (order) of the basis elements of 𝑊 and 𝐻. Currently, no algorithms have been 

shown to converge on a global-optimal solution. However, local optima have shown to be useful in practice. 

I will provide here an overview of the main algorithms and techniques which are used to find a non-negative 

factorization of 𝑋. The dissertation [MS] gives a succinct overview of NMF with original sources. A nice geometric 

intuition of NMF is explained in [AA]. If the data 𝑋 are non-negative, each observation lies inside the positive orthant 

of the corresponding feature space, that is, the columns of 𝑋 lie within a convex cone (cf Fig. 7). By normalizing the 

columns of 𝐻, the data is mapped to the convex hull with vertices represented by the columns of 𝑊 (Fig. 8). 

Figure 7: NMF as a convex cone [AA] 
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The optimization methods for NMF fall into 3 different types: direct optimization, alternating optimization, 

and alternating descent [MS]. Direct optimization of Eq. (9) requires solving the non-negative constrained, non-linear 

problem but can be infeasible due to the high number of parameters. Alternating optimization methods treat the 

search for 𝑊 and 𝐻 as two separate subproblems. Each iteration to solve for one matrix is taken while the current 

step for the other matrix is held fixed, until both converge to a local solution for the main problem. 

Alternating descent methods are similar to alternating optimization, except at each step, the 

cost/divergence function for each separate matrix is only reduced, not minimized. An example of this type of 

algorithm is the multiplicative update rule given by Lee and Seung [DL]. The authors provide two theorems, which 

state that the Frobenius norm (Euclidean distance) and KL divergence is non-increasing under the update rules. The 

rule for the Euclidean distance is given here. 

Theorem: The Euclidean distance ‖𝑋 − 𝑊𝐻‖ is nonincreasing under the update rules 

 

𝐻αμ ← 𝐻αμ

(𝑊⊤𝑋)αμ

(𝑊⊤𝑊𝐻)αμ

 

 

𝑊𝑖𝑎 ← 𝑊𝑖𝑎

(𝑋𝐻⊤)𝑖𝑎

(𝑊𝐻𝐻⊤)𝑖𝑎

 

 

The Euclidean distance is invariant under these updates if and only if 𝑊 and 𝐻 are at a stationary point 

of the distance. 

This is guaranteed to converge to a locally optimal solution, which solves the problem from Eq. (9). The proof of this 

update rule is done with an auxiliary function. The ease of computational implementation has made Lee and Seung’s 

update rule algorithm one of the most widely used for NMF [MS]. 

Figure 8: Finding 𝐻 amounts to finding the vertices of the triangle [AA] 
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We now turn to the application of NMF 

methods on the seismic signal separation task. 

As explained earlier, the raw data from the 

geophones represent voltage values which 

fluctuate as seismic and acoustic energy waves 

vibrate the ground around the sensor. While 

NMF appeared to be a promising tool in our 

signal separation task, the voltage signals in the 

seismic data are not inherently non-negative, as 

they are in other applications. A short sample of 

the raw voltage signal is shown in Fig 9. 

Some naïve work-arounds were initially considered: (1) the data could be “min-shifted,” that is, add the 

minimum value to the signal, but this would clearly misrepresent a “loud” seismic event (with high amplitude voltage 

readings) because the maximum negative value would be close to zero and equate to an absence of signal. (2) the 

absolute value of the voltage could be taken, but here again, values of zero would be present where there is high 

amplitude oscillations. 

A method to separate the sources from one sensor, known as monaural separation, is described in [NB]. 

The technique used is to represent the single microphone recording as a spectrogram, by applying the short-time 

Fourier transform (STFT). As applied to the U1a seismic array, this analysis focuses only on separating sources within 

a single sensor, so the time offset and cross-correlation preprocessing in the previous section doesn’t apply. The 

STFT of the signal from one geophone turns the one-dimensional time series voltage reading into a matrix of positive 

values: the rows represent each discretized spectra or frequency, the columns represent the sampled times, and the 

values are the weight of each frequency occurring at the particular time. 

The discrete STFT is defined as follows [NB]: 

𝑋𝑚(𝜔𝑘) = 𝑒−𝑗𝜔𝑘𝑚𝑅 ∑ 𝑥(𝑡 + 𝑚𝑅)𝑤(𝑡)𝑒−𝑗𝜔𝑘𝑡

𝑁/2−1

𝑡=−𝑁/2

 

𝑥(𝑡) = input signal at time 𝑡 

𝑤(𝑡) = length 𝑀 window function (e.g. Hann, zero-centered Gaussian) 

𝑁 =  DFT size, in samples 

𝑅 =  hop size (samples) between successive DFT 

𝑀 =  window size, in samples 

𝜔𝑘 = 2𝜋𝑘/𝑁 , 𝑘 = 0,1,2, … , 𝑁 − 1  

 

Figure 9: Raw voltage signal from seismic sensor. 

Sensor N13 
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Note that this is just the Fourier transform of the signal combined with a window function 𝑤(𝑡). The result 

𝑋𝑚(𝜔𝑘) is a complex-valued matrix which represents the magnitude and phase of the signal in each point in time 

and frequency. The spectrogram is obtained by taking the magnitude squared: |𝑋𝑚(𝜔𝑘)|2 . 

This representation of the data can now be input for one of the non-negative matrix factorization algorithms 

discussed. In the case of an audio recording sample, consider the interpretation of the columns and rows of the 

matrices 𝑊 and 𝐻, respectively. Suppose we have a rank 3 approximation of the spectrogram 𝑋. The 𝑖th column of 

𝑋 is the matrix-vector product 𝑊ℎ𝑖 , where ℎ𝑖  is the 𝑖𝑡ℎ  column of 𝐻. In turn, 𝑊ℎ𝑖  is a linear combination of the 

columns of 𝑊, scaled by the elements in ℎ𝑖. Since a column of 𝑋 represents the amount of each spectra present in 

the signal at time 𝑡, the interpretation is that each column of 𝑊 represents a “part” or “source” in the signal 𝑋, and 

the columns of 𝐻 represent the “activations” or “gains” of each source at time 𝑡. 

The audio spectrogram in Fig. 10 shows this interpretation. For a rank 3 decomposition, the columns of 𝑊 

are the frequency domain representation of the sources, while the rows of 𝐻  are the gains for each source. 

Equivalently, the spectrogram 𝑉 can be thought of as the sum of three matrices formed by taking the outer product 

of each column of 𝑊 and row of 𝐻. 

In order to reconstruct each separated signal component (i.e. each column of 𝑊) in the time domain, the 

outer product of corresponding columns of 𝑊 and rows of 𝐻 is computed. This is the spectrogram of the separated 

component. This, along with phase info from the original STFT, makes up the input for the inverse short-time Fourier 

transform (ISTFT), which reconstructs the original time domain signal [NB]. A consideration when using the STFT is 

the type of window function 𝑤(𝑡) to select. One common window function 𝑤(𝑡) is the Hann window, which is 

essentially one period of a squared cosine wave. It is the default window in most software and the one applied in 

our use case. 

A demonstration of this workflow is now 

shown. Consider the standardized signal 𝑋(𝑡) 

shown in Fig. 11. It is an unfiltered 2 min 40 sec 

recording from one axis of geophone station N13. 

We will apply NMF using three components to 

attempt signal separation.  

Figure 10: NMF of an audio spectrogram [NB] 

Figure 11: Standardized voltage signal, N13 
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We can see from the 

spectrogram that several things are 

going on. There are obvious constant 

nuisance tones around 25-30 Hz and 

~120 Hz. We see the elevator shaft 

signature in the form of the steep 

diagonal positive slope line followed by 

a plateau, and part of the diagonal 

negative slope line being obscured by a 

broad spectrum signal from around 60-

90 seconds. There appear to be high 

amplitude, short duration “bursts” 

around 7 seconds in and 105 seconds 

in. From actual observations of 

elevator operation, these features are 

most likely the elevator door sliding 

open and shut, which creates a loud bang. There is also a varying, narrow spectrum tone which gradually drops off 

by the end of the recording. 

After applying the STFT to this signal with a Hann window of length 256, the squared modulus of the 

complex values is used to make our input matrix 𝑋 for the NMF. The default cost (or loss) function used is the 

squared Frobenius norm: 

‖𝑋‖𝐹
2 = ∑ ∑ |𝑋𝑖𝑗|2

𝑗𝑖

 

The matrix decomposition software returns 𝑊 and 𝐻, computed using the multiplicative update rule shown earlier. 

In order to reconstruct the 3 source estimates, let 𝑋𝑖̂ = 𝑊𝑖𝐻𝑖
⊤ be the estimated modulus for the STFT of the 𝑖th 

source, where 𝐻𝑖
⊤ is the 𝑖th row of 𝐻. This is multiplied by the phase values for the STFT of 𝑋 and given as input to 

the inverse STFT function. Our estimate source signal 𝑥𝑖̂(𝑡) is returned. 

 The result of this 

workflow on the example signal 

is shown in Fig 13. We have the 

three source estimates plotted 

in the time domain. They are 

slightly shorter due to the sliding 

window used in the STFT, which 

is ok because the signals of 

interest lie well within the 

timeframe of our sample. We 

can see that NMF has produced 

distinct estimates. Source 1 

appears to have low amplitude 

background noise until around 22:40:50, before a signal appears. The Source 2 plot is scaled vertically in amplitude 

but shows a different signature than source 1. Most activity is from 22:40:20 to 22:41:00. The third source clearly 

Figure 12: Spectrogram for working example 

Figure 13: Recovered source estimates from rank-3 NMF 
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shows a separation of the loud “bang” noises coming from the elevator shaft door, occurring at 22:39:30 and again 

at 22:41:07. Although the amplitude scaling on this plot is higher, we can see that the rest of source three appears 

to have less activity between the impulse signatures. 

 What does a spectrogram of one of 

these sources look like? In Fig 14, the 

Source 3 spectrogram is shown. Note 

the color scaling is on a much broader 

range, from -20 to 30, compared to the 

scale from -27 to -10 on the unseparated 

signal spectrogram. We can clearly see 

the two impulse sources caused by the 

slamming shaft door, represented as 

two bright vertical bars. 

 There remains much to be 

investigated when it comes to applying 

NMF to the seismic signal separation. 

Different algorithm parameters and loss 

functions, or divergence measures, can be experimented with. The Kullback-Leibler and Itakura-Saito divergences 

are two examples. 

The workflow laid out above only attempts monaural separation from a single recording. There are possibly 

other non-negative representations of the seismic data. One such method could come from applying the Hilbert 

transform to the 𝑖th sensor signal 𝑋𝑖(𝑡). This obtains its analytic representation, and the instantaneous amplitude is 

a positive signal representing the “envelope.” The envelope signals from multiple sensors could then be aligned in a 

matrix 𝑋 and decomposed as a lower rank factorization. Further investigation would be needed to test the concept 

of this method. 

 

Ground truth collection experiment at U1a 

 In July 2021, myself and another student intern, UNLV mathematics PhD candidate Eric Jameson, had the 

opportunity to visit the U1a site and actually create various short duration, low energy signals in the proximity of 

one of the Hawk geophones. The goal of this experiment was to make a ground truth collection so that our various 

analytics could be measured for quality of signal separation. This would hopefully make it easier to test versions of 

signal separation methods, and see which ones would be most useful. 

The experiment was conducted rather ad hoc, as we had no prior experience or knowledge with subjecting 

the geophones to artificial “sources.” The main idea was to create seismic and acoustic signals which would for 

certain be picked up by station X12, then record the time at which the various signals were induced, and download 

the data afterwards. This would provide us with a labeled data set which could be used to demonstrate how well 

different methods work. It could also serve as a prototype for a future supervised learning method training set.  

 This section will discuss the result of applying NMF to our collected data using two of the artificial source 

signals we created. The sources were (1) a government vehicle driving slowly (<15 kph) around the sensor in 

Figure 14: Recovered source 3 spectrogram (impulse signatures) 
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approximately a circle, and (2) a 2-3 cm diameter steel ball bearing being dropped from about 1 meter high onto a 

thick steel plate pushed firmly into the ground. 

 The Hawk geophone station which we employed for this experiment was station X12, located within 50 

meters of relevant site activity including the U1a elevator shaft, a ventilation fan, and a passing utility road. The 

surrounding area was mostly desert topsoil and dry grass. The entire experiment spanned roughly 1 hours between 

11:30 am and 12:30 pm PDT. This time included creating sources other than the two explained below. 

The procedure started with recording each source individually. First, the government vehicle was driven for 

2 laps around the sensor in roughly a circle, with each lap taking approximately 90 seconds. Next, the steel plate was 

placed within 1 meter of the geophone and pressed into the ground by standing on it. The record keeper and 

stopwatch operator would then give the signal for the ball bearing dropper to release the steel ball and let it hit the 

plate. This was repeated twice, for each distance of 1, 4, 8, and 12 meters from the geophone. 

 With the sources recorded in isolation, we next allowed the vehicle to be driven while repeating the ball 

bearing drop procedure, so both sources would be simultaneously picked up by the sensor. The unfiltered signal for 

this window of time is shown in the spectrogram in Fig 15. The broad-spectrum feature comes from the vehicle, and 

the sharp vertical lines are from the ball bearing striking the plate. The monaural NMF method explained was used 

to decompose this data into two sources, the rational being that one source would be the vehicle, and the other 

would be the ball bearing.  

 The results of the NMF workflow are shown in the plots of Figure 16. The top plot is the standardized and 

bandstop filtered original signal. The bandstop filtering was done to attenuate the constant nuisance tones clearly 

visible in the spectrogram, at around 25-30 Hz and 60 Hz. The bottom plot is an overlay of two “label” or indicator 

vectors for the presence of each source. That is, if the vehicle was driving at a certain time, or the ball bearing was 

dropped, the vector element at that time index would contain a 1, and 0 if the source was not present. The NMF 

estimates of sources 1 and 2 are plotted on the second and third rows. The vertical axis scaling of the plots for source 

1 and 2 are different because the amplitude of the ball bearing impact was so much higher than the broad-spectrum 

source coming from the vehicle. It is easy to see from the plots that Source 2 is the separation of the ball bearing 

source, and Source 1 contains most of the signal from the car. 

Figure 15: Geophone X12 spectrogram of ball bearing and vehicle signature overlap. 
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Figure 17 shows a zoomed-in version of the four plots. Note the time window from 12:07:40 to 12:08:30. 

Source 1 is almost completely absent of the high amplitude signature coming from the ball bearing. These results 

are a promising step toward the development of a fully unsupervised source separation capability for the U1a seismic 

array. As with the example in the NMF workflow discussion, NMF appears to excel in separating short duration, high 

amplitude sources from the background activity. A possible use case would be to apply the monaural method to 

each seismic station and extract the short duration impulse events, and use the separated impulse signals for 

pairwise sensor cross-correlation. 

 This one experiment was our 

only chance over the summer to collect 

ground truth, but it provided a valuable 

data set as well as laid the groundwork 

for future experiments.  

  

Figure 16: Rank-2 NMF separation results for ball bearing and vehicle experiment. 

Figure 17: Closer view of separation results. 
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LANL Research Article 

Before concluding this report, it is worth discussing the most interesting publication [FI] I encountered during the 

course of literature review for NMF applications. It is an article by four authors from Los Alamos National Labs, titled 

“Nonnegative Matrix Factorization for identification of unknown number of sources emitting delayed signals.” They 

present a method in which NMF is used to identify an unknown number of mixed signals, delays between sensors, 

propagation speed of the signals, and location(s) of the sources, using a sensor array. Discovering this article was a 

nice surprise, as it considers essentially the exact same objective of the U1a seismic separation project! It even 

mentions nuclear nonproliferation as a possible application. An algorithm called “ShiftNMFk” is introduced, which is 

capable of determining the “unknown number of the sources of delayed signals and estimating their delays, 

locations, and speeds based only on records of their mixtures.” 

 An overview of this algorithm is as follows: first, a version of the NMF optimization which accounts for 

shifted signals is modified to stop at an optimal number of iterations. Then, a system to discard solutions when the 

optimization is performed many times is devised, followed by a clustering method used to determine the actual 

number of sources. A further optimization procedure estimates the locations of the sources, and finally a Bayesian 

uncertainty analysis is done to determine how accurate the locations are. The authors provide a link to the Git 

repository which contains the code used to implement this algorithm. It is implemented in the Julia language. Given 

more time to delve into this paper, my top priority would be to attempt applying their algorithm to work on our 

seismic array data. Their results are very interesting and likely the best currently developed method for the U1a 

source separation objectives. 
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CONCLUSIONS AND FURTHER RESEARCH 
 

 

 

Despite the promising initial results of NMF on our data, it was very challenging to actually devise a scheme 

to quantitatively measure the quality of extracted signals. It is easy to visually confirm that monaural NMF is able to 

indicate the presence of an impulsive source, as in the ball bearing experiment. But without more labeled data, it’s 

difficult to say what the next step should be. There still are many possible questions and topics worth investigating, 

such as: can we separate moving sources from stationary sources? Can multilateration results be improved by using 

NMF? Can we create artificial sources which are picked up by multiple sensors, rather than small localized sources? 

Do the surface acoustic sources differ in some fundamental way from the subterranean seismic sources?  

 There are also a myriad of data pre-processing and transformation tasks to consider, such as different 

correlation and signal stacking techniques, application of classical signal processing filters, and better data 

engineering to make it easier to select and manipulate data of interest. Visualization and animation tools can prove 

extremely useful for understanding the types of signals we are trying to analyze. In addition to this, the data 

collection at U1a spans different time resolutions and modalities, as mentioned in the introduction. One topic of 

interest is the combination of different data streams to develop some type of combined analytic. This could be 

applied in signal extraction for example if power usage data was able to provide some amount of prior knowledge 

for the blind separation problem. 

 Overall, there is still much room for analytic development regarding the source separation task at U1a. It is 

my hope that these initial explorations of applying NMF to the seismic data can be continued and inspire similar or 

perhaps completely different methods to be attempted, whether it is for the ADAPD venture or other 

nonproliferation projects. 

  

  



Page | 20 
 

 

REFERENCES 
 

 

 

[AA] Andersen Ang (2018) “What’s happening in Nonnegative Matrix Factorization? Models and Algorithms.” 

Structured Low-Rank Matrix/Tensor Approximation. Leuven, Belgium. Accessed at 

https://angms.science/talks.html. 

[DL] Daniel Lee & H. Sebastian Seung (2000) “Algorithms for Non-negative Matrix Factorization.” Advances in 

Neural Information Processing Systems 13. NIPS 2000. Accessed at 

https://papers.nips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html. 

[FI] Iliev FL, Stanev VG, Vesselinov VV, Alexandrov BS (2018) “Nonnegative Matrix Factorization for identification of 

unknown number of sources emitting delayed signals.” PLoS ONE 13 (3): e0193974. 

https://doi.org/10.1371/journal.pone.0193974 

[MS] Schmidt, M. N. (2009). “Single-channel source separation using non-negative matrix factorization.” Technical 

University of Denmark, DTU Informatics, Building 321. IMM-PHD-2008-205. 

[NB] Nicholas Bryan & Dennis Sun (2013). “Source separation tutorial mini-series II: introduction to non-negative 

matrix factorization.” Center for Computer Research in Music and Acoustics, Stanford. Accessed at 

https://ccrma.stanford.edu/events/source-separation-tutorial-mini-series-ii-introduction-non-negative-matrix-

factorization . 

https://angms.science/talks.html
https://papers.nips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html
https://doi.org/10.1371/journal.pone.0193974
https://ccrma.stanford.edu/events/source-separation-tutorial-mini-series-ii-introduction-non-negative-matrix-factorization
https://ccrma.stanford.edu/events/source-separation-tutorial-mini-series-ii-introduction-non-negative-matrix-factorization

