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ABSTRACT

A proper understanding of the complex physics associated with nonlinear dynamics can improve the accuracy of 
predictive engineering models and provide a foundation for understanding nonlinear response during environmental 
testing. Several researchers and studies have previously shown how localized nonlinearities can influence the global 
vibration modes of a system. This current work builds upon the study of a demonstration aluminum aircraft with a 
mock pylon with an intentionally designed, localized nonlinearity. In an effort to simplify the identification of the 
localized nonlinearity, previous work has developed a simplified experimental setup to collect experimental data 
for the isolated pylon mounted to a stiff fixture. This study builds on these test results by correlating a multi-degree-
of-freedom model of the pylon to identify the appropriate model form and parameters of the nonlinear element. The 
experimentally measured backbone curves are correlated with a nonlinear Hurty/Craig-Bampton (HCB) reduced 
order model (ROM) using the calculated nonlinear normal modes (NNMs). Following the calibration, the nonlinear 
HCB ROM of the pylon is attached to a linear HCB ROM of the wing to predict the NNMs of the next level wing-
pylon assembly as a pre-test analysis to better understand the significance of the localized nonlinearity on the global 
modes of the wing structure.

Keywords: Nonlinear dynamics, nonlinear normal modes, backbone curves, Craig-Bampton reduction, multi-
harmonic balance

1. INTRODUCTION

Large deformations, materials, and displacement-dependent boundary conditions are all potential sources of 
nonlinearity in engineering applications. Effects of nonlinearity on structural dynamic response include internal 
resonances, amplitude-dependent modal characteristics, self-excited oscillation, and non-repeatability, to name a 
few. These physics have been studied by numerous researchers for several decades, resulting in major developments 
towards modeling, analysis, and experimental techniques [1]. While linear models can yield adequate results for 
predicting and characterizing structural dynamic response, nonlinear effects can influence the accuracy of these 
models and introduce behavior not supported by linear theory. Including nonlinear physics in engineering models 
can often improve the model’s predictive capability and even provide opportunities for improved performance in 
design. Adequate modeling relies thoroughly on experimental as well as computational techniques [2].
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Cooper et al. studied the nonlinear dynamics of a demonstration aluminum aircraft in [3] with intentionally 
designed, localized nonlinearities. This investigation utilized finite element modeling and experimental test-based 
identification to extend linear analysis techniques to develop a nonlinear model of the system, following the 
approach described in [4]. This approach was applied to the demo aircraft depicted in Figure 1.1. On the wings of 
this structure, the subcomponents representing engine pylon subassemblies were mounted as shown in the red boxes 
in Figure 1.1, and consisted of two “block” components, a “thin beam,” and a swinging “tip mass.” Potential sources 
of nonlinearity marked on the right of Figure 1.1 include: (1) geometric nonlinearity of the thin beam, (2) contact 
with the blocks, and (3) friction in the bolted connections. 

  
Figure 1.1 (Left) Demo aluminum aircraft test setup from [3]; (right) pylon subassemblies (marked by red boxes) 

During the experimental procedures presented in [3], the identification of the nonlinear elements of the pylon proved 
difficult due to the high modal density of the aircraft structure and the influence of the nonlinearity on the global 
modes. The results of the initial study motivated further investigations to identify the nonlinearity by removing the 
pylon, and hence the localized nonlinearity, from the aircraft assembly, and attaching it to a more rigid test fixture 
with less modal density in the frequency range of interest. The study by Ligeikis et al. performed system 
identification of this isolated pylon by executing stepped sine and free decay experiments and post-processing the 
results to identify the frequency and damping backbones of the pylon [5]. The pylon assembly was mounted within 
a stiff box fixture structure as shown in Figure 1.2. Figure 1.2 (a) shows the overall view of the experimental setup 
while Figure 1.2 (b) shows a more detailed photograph of the accelerometer locations during the tests. Data collected 
from these tests were used to develop and validate a single-degree-of-freedom nonlinear model of the pylon and 
provided motivation for the current research presented in this paper. 

Figure 1.2 Isolated fixture-pylon assembly test setup from [5] 
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This paper describes the identification of the localized nonlinearity of the isolated pylon structure for a multi-degree-
of-freedom (MDOF) representation of the structure. A detailed, linear finite element model was created of the 
fixture-pylon setup in Figure 1.2, from which a Hurty/Craig-Bampton (HCB) superelement was then created with 
physical degrees-of-freedom at the location of the nonlinearity [6, 7]. This nonlinear HCB superelement was 
calibrated using the frequency backbone curves extracted from the experimental results in [5]. The nonlinear normal 
modes (NNMs) [8] of the HCB model were computed using the multi-harmonic balance (MHB) approach [9], from 
which the calculated frequency-amplitude curves were correlated with the test data. Different constitutive model 
forms were explored, and parameters were optimized to determine which model best replicated the test data. The 
pylon model was further verified by comparing stepped sine simulations to the experimental stepped sine response. 
The calibrated, nonlinear HCB model of the pylon was next coupled to a linear HCB wing model in order to gain 
new insight into the behavior of the next-level wing-pylon assembly. 

The rest of the paper is organized as follows. Section 2 provides a brief overview of HCB and NNM theory used 
throughout the identification and analysis efforts. Section 3 presents the post-processing of the stepped sine 
experimental data from Ligeikis et al. and its utilization in the development and validation of the nonlinear MDOF 
model of the isolated pylon assembly. Section 4 discusses the results of the next-level assembly study when 
mounting the calibrated pylon to a wing-like structure. The influence of the nonlinearity on the global modes of the 
wing are discussed in the context of the resulting NNMs of the assembly. Finally, Section 5 summarizes the 
conclusions and future work.

2. THEORY 

A brief overview of the theory is presented in the following subsections. Section 2.1 describes the HCB 
methodology deployed to generate the nonlinear ROM of the pylon subassembly. Section 2.2 provides a brief 
overview of MHB and its use for calculating periodic orbits, or NNMs, of conservative systems.  

2.1 Nonlinear Hurty/Craig-Bampton Reduction

Hurty/Craig-Bampton reduction is a method often used to reduce large-scale finite element models to a lower-order, 
and more manageable scale. It retains the physical coordinates at the interface (boundary) of a structure, which 
lends itself well to adding nonlinear constitutive elements that can be readily parameterized. The remaining DOFs 
in the model are reduced with a fixed-interface modal basis. Hurty provided the first development based on fixed-
interface and constraint modes [6]. Craig and Bampton [7] simplified Hurty’s method, which has been widely 
adopted due to its accuracy, ease of implementation, and computational efficiency. The Craig-Bampton method is 
detailed in [10] and summarized here. 

The undamped equations of motion for the full physical system with a conservative nonlinear forcing term is written 
as,

𝐌𝐮 + 𝐊𝐮 + 𝐟𝑛𝑙(𝐮) = 𝐅(𝑡) (2.1)

The transformation matrix, 𝚿𝐶𝐵, transforms the full physical space DOFs, 𝐮, to a reduced space containing fixed-
interface modal coordinates, η𝑓𝑖, and retained boundary DOFs, 𝐮𝑏.

𝐮 = 𝚿𝐶𝐵
η𝑓𝑖𝐮𝑏 (2.2)

This results in the transformation into reduced coordinates,

𝐌𝐶𝐵
𝛈𝑓𝑖
𝐮𝑏

+ 𝐊𝐶𝐵
η𝑓𝑖𝐮𝑏 + 𝟎

𝐟𝑛𝑙(𝐮𝑏) = 𝐅𝐶𝐵(𝑡) (2.3)
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where

𝐌𝐶𝐵 = 𝚿𝐶𝐵
T𝐌𝚿𝐶𝐵        𝐊𝐶𝐵 = 𝚿𝐶𝐵

T𝐊𝚿𝐶𝐵        𝐅𝐶𝐵(𝑡) = 𝚿𝐶𝐵
T𝐅(𝑡) (2.4)

In this study, the reduced mass matrix, 𝐌𝐶𝐵, and stiffness matrix, 𝐊𝐶𝐵, are obtained for the fixture-pylon and wing-
pylon assemblies using Sierra Structural Dynamics [11] finite element codes. With the undamped equations of 
motion in reduced coordinates in Eq. (2.3), a nonlinear restoring force can be added to any boundary DOF, 𝐮𝑏, to 
obtain the nonlinear undamped equations of motion. Two types of elements were used in Section 3 to explore the 
effect of the nonlinearity on the NNM backbone curve predicted using MHB, namely cubic spring elements and 
linear penalty springs. 

2.2 Multi-Harmonic Balance

The MHB method is a Fourier-Galerkin mathematical technique to solve for periodic solutions for nonlinear 
equations of motion [9]. The technique approximates the displacements with periodic solutions represented by a 
finite number of harmonics in a Fourier series,

𝐮(𝑡) =
𝐜𝑥

0

2 + ∑𝑁ℎ
𝑘=1 𝐬𝑢

𝑘 sin(𝑘𝜔𝑡) + 𝐜𝑢
𝑘cos(𝑘𝜔𝑡)  (2.5)

𝐟𝑛𝑙(𝐮) = 𝐜𝑓
0
2 + ∑𝑁ℎ

𝑘=1 𝐬𝑓
𝑘 sin(𝑘𝜔𝑡) + 𝐜𝑓

𝑘cos(𝑘𝜔𝑡)  (2.6)

Note that the displacement field, 𝐮(𝑡), can be any set of DOF to describe the dynamics of a system (i.e. physical 
DOF, modal DOF, etc..). Projecting the Fourier basis onto the nonlinear equations of motion, such as those in Eqns. 
(2.1) and (2.3), and performing a Galerkin projection onto the periodic functions produces the frequency-domain 
equations of motion

𝐀(𝜔)𝐳 + 𝐛(𝐳) = 𝟎 (2.7)

where 𝐳 is the collection of Fourier coefficients, 𝐀(𝜔) is the linear dynamic stiffness matrix, and 𝐛(𝐳) is the 
nonlinear restoring force. 

The algorithm is coupled with pseudo-arclength continuation to follow a branch of periodic solutions which is 
initialized by a starting guess based on the low-energy, linearized modes of the system [12]. The pseudo-arclength 
continuation technique is used with a Newton solver to find periodic solutions by satisfying a residual function 

𝐑(𝐳,𝜔) =  
𝐀(𝜔)𝐳 + 𝐛(𝐳)

𝐕T 𝐳
𝜔 ― 𝐳

𝜔
(𝒌=𝟏) (2.8)

where 𝐕  represents the tangent prediction vector. Each value of 𝐳 and 𝜔 that solve 𝐑(𝐳,𝜔) = 𝟎 represents an NNM 
solution along the branch. 

3. FIXTURE-PYLON MODEL CALIBRATION

This section describes the calibration efforts of the nonlinear HCB model of the fixture-pylon assembly (Section 
3.1). This was accomplished by extracting the amplitude dependent frequency backbone curve from the 
experimental stepped sine data of the fixture-pylon assembly from [5] (Section 3.2). This data was used with the 
nonlinear HCB model of the test assembly to evaluate different nonlinear element model forms and select the most 
appropriate (Section 3.3). The calibrated nonlinear pylon model was further validated by comparing the 
experimental stepped sine data to the simulated response of the model (Section 3.4).
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3.1 Fixture-Pylon Finite Element Model

A detailed finite element model (FEM) of the fixture-pylon assembly was used to create an initially linear HCB 
model. The mesh of the finite element model was generated using CUBIT [13] and the Sierra Structural Dynamics 
codes [11] were used for the eigenvalue analysis and HCB reduction. An eigenvalue analysis was performed on the 
fixture-pylon assembly with a fixed base to determine the linear natural frequencies and mode shapes, such as the 
first mode shown in Figure 3.1b. This first mode is the ‘swinging pendulum’ mode of the pylon, with a natural 
frequency of 7.3 Hz. This was the target mode for the experiments conducted in Ligeikis et al. [5] and was used to 
characterize the nonlinearity between the thin beam and block.

(a)

Mode 1 (fn = 7.3 Hz)

(b)
Figure 3.1 Fixture-pylon CAD assembly; (a) general view; (b) natural frequency and mode shape for mode 1 

The linear ROM was generated from an HCB reduction with 16 fixed-interface modes and retained seven physical 
DOFs (drive point, accelerometer s1, accelerometer s2, and four virtual nodes). To account for the nonlinearity, a 
whole joint modeling approach [14] was used to constrain the finite element nodes along the contact edge of the 
block to a single, virtual node as shown in Figure 3.2; an analogous whole joint is created along a node line along 
the thin beam. The nonlinearity localized within the pylon block was modeled as a 1-D constitutive element between 
the virtual node pairs, resulting in the nonlinear HCB model. 

Figure 3.2 Nonlinear element in pylon block

2 1 3 4

Virtual nodes Virtual nodes
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3.2 Extracting Backbone Curves from Experimental Stepped Sine Data

Experimental data was used from stepped sine excitation tests presented in [5]. These tests recorded the system’s 
steady-state response to sinusoidal forcing over a range of discrete frequencies and forcing amplitudes, testing a 
single frequency and amplitude at a time. This results in a nonlinear force response (NLFR) curve for each forcing 
amplitude. Compared to other techniques such as broadband/burst random excitation, this method results in a higher 
quality NLFR to observe the influence of nonlinearity on the resonant modes of interest. The experimental stepped 
sine data was initially recorded by accelerometers s1 and s2 (labeled in Figure 1.2) into a set of accelerance NLFR 
curves including both real and imaginary components. The data was used to calculate the magnitude and phase 
angle response at the s1 location for each of the eleven forcing amplitudes (0.5 – 20 N); these plots are shown in 
Figure 3.3.

  
Figure 3.3 Phase (a) and magnitude (b) response spectra at s1 accelerometer point. Dashed line represents quadrature value 

of 90 degrees in (a) and the backbone curve marked in (b).

The phase resonance condition for nonlinear systems [15] occurs when there is a 90-degree phase difference 
between the input force and output response. By tracking where this phase quadrature criterion is satisfied between 
the forcing phase and s1 response phase for each of the forcing amplitudes, the amplitude-dependent resonant 
frequency of the first bending mode of the pylon can be extracted. The backbone curve is the interpolated curve 
connecting the quadrature points for the range of forcing amplitudes. It is important to note that perfect quadrature 
was not achieved during the experimental testing since this was not the original objective of the test efforts. Thus, 
the points nearest quadrature were used when constructing the backbone curve. The phase angle of these closest 
points ranged from 81-96°. The final acquired backbone curve, shown in Figure 3.3b, displays an initial weak 
softening nonlinearity at low forcing amplitudes (0.5 – 7 N), which transitions to a strong hardening behavior as the 
force level continues to increase (7 – 20 N). This transition coincides with the forcing level at which the thin beam 
element begins to contact the block elements as the mass swings at higher amplitudes [5]. Reflecting this transition 
was vital when developing the nonlinear model of the isolated pylon system.

3.3 Calibration of Nonlinear Elements

The interaction between the pylon “block” and “thin beam” components is a significant source of nonlinearity in 
the fixture-pylon system, as evidenced by the sudden stiffening observed in the experimental backbone curve. A 
nonlinear constitutive element was added to the HCB model and two constitutive elements were considered for this 
connection: a cubic spring element and a gap-spring element. These elements were chosen as candidates since both 
are capable of producing a strong hardening behavior for the frequency backbone curve. The initial softening 
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behavior was neglected for this effort, as it occurred over a small frequency range that was negligible compared the 
that of the hardening behavior. 

The cubic spring element was connected to the virtual nodes in Figure 3.2 with a restoring force defined as

𝑓𝑁𝐿(𝑥1,𝑥2) =  𝑘𝑁𝐿(𝑥2 ― 𝑥1)3
(3.1)

Here 𝑘𝑁𝐿 is the nonlinear spring constant and 𝑥1 and 𝑥2 are the displacements of the virtual nodes located on the 
left side of the thin beam. Since there was no directional dependence on this element, only a single cubic spring was 
modeled to capture the stiffening effect.

Gap elements were modeled by two linear penalty springs with one each attached to the left and right virtual node 
connections in Figure 3.2. These springs only applied a restoring force when the relative displacement between the 
virtual node pairs was sufficient to close the gap. The restoring force for the penalty springs can thus be expressed 
as

𝑓𝑔𝑎𝑝(𝑥𝑖,𝑥𝑗) = 𝑘𝑝𝑒𝑛 𝛿𝑖𝑗 ― 𝑥𝑔𝑎𝑝  𝑓𝑜𝑟 𝛿𝑖𝑗 > 𝑥𝑔𝑎𝑝 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.2)

where 𝑘𝑝𝑒𝑛 was the linear spring constant of the penalty springs, 𝛿𝑖𝑗 = 𝑥𝑖 ― 𝑥𝑗, and 𝑥𝑔𝑎𝑝 is the gap distance of the 
contact element. The elements were placed between nodes with displacements 𝑥1 and 𝑥2, as well as between 𝑥3 and 
𝑥4 to represent the restoring force on the beam/block on each side. 

By adding the described nonlinear constitutive elements to the HCB model, a nonlinear reduced order model of the 
fixture-pylon subassembly was developed using each type of element. Frequency backbone curves were computed 
for both models using MHB to calculate the NNMs. Figure 3.4 shows the comparison between the experimental 
backbone curve with the nonlinear HCB ROMs corresponding to the best fit cubic spring and penalty spring 
elements. Note that these curves are plotted versus the displacement amplitudes at the s1 location and the 
frequencies are normalized to their respective linear natural frequencies. A parametric study was conducted to 
determine the set of nonlinear parameters for each model that minimized the error to the experimental backbone. 
The penalty spring was able to better match the experimental backbone curve and was thus selected as the 
constitutive element to represent the nonlinearity of the pylon.  The penalty spring element was calibrated to the s1 
location, and the plot in Figure 3.5 shows the correlation of the backbone at the s2 location, again showing good 
agreement with both sets of experimental data.

Figure 3.4 Comparison of gap and cubic spring models to experimental backbone (s1 location); parameters: 𝑘𝑁𝐿
= 4𝑒10 𝑁/𝑚, 𝑘𝑝𝑒𝑛 = 7𝑒4 𝑁/𝑚, and 𝑥𝑔𝑎𝑝 = 0.68 𝑚𝑚
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Figure 3.5 Comparison between experimental and NNM backbones for calibrated penalty spring element 

3.4 Stepped Sine Validation

Using the calibrated penalty spring elements, a stepped sine simulation was performed to validate the nonlinear 
HCB model’s ability to reproduce the stepped sine experimental data. Rayleigh mass and stiffness proportional 
damping was used to calculate the damping matrix for the model based on linear damping ratios for modes 1 and 3 
[5]. The stepped-sine simulation was conducted by inducing a constant amplitude harmonic force on the fixture 
drive point node at various oscillating frequencies. The model was integrated using Matlab’s ode15s solver to steady 
state and the response amplitude was recorded as a single point in the NLFR curve. The frequency was incremented 
with positive frequency steps until the final frequency was reached. This was repeated for several force amplitudes 
corresponding to the experimental results. The drive point DOF was on the stiff fixture and the output DOF was at 
the s1 location. The results are shown in Figure 3.6 for the experiment (- - -) and simulation (—) for seven of the 11 
forcing amplitudes.  

The comparison plots reveal that the amplitude of the simulated data matches well with the experimental data, but 
the jump-down frequency seems to be in slight disagreement for most amplitudes. The 17 N forcing in the nonlinear 
response nearly produced an identical response between the simulation and experiment. It can be seen in Figure 3.6 
that the linear resonances in the test data were consistently occurring around 1.03, with a slight softening behavior, 
whereas the linear resonances in the simulation were occurring around 1.045. Some of the most significant 
differences between the simulation and experimental results may be attributed to the difference in the damping 
formulation in the model. Here a constant damping ratio is assumed for each mode, however the experiments in [5] 
reveal that the damping backbone curves are amplitude dependent. The damping is known to influence the 
resonance condition for NLFR curves, so it is likely that the model is missing the physics to capture this dependence. 
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Figure 3.6 Stepped sine test results of fixture-pylon (- - -) experimental (—) simulation

4. WING-PYLON NNM COMPUTATION

This section describes the simulations performed on the nonlinear HCB model of the wing-pylon-fixture assembly 
(Section 4.1). The calibrated nonlinear pylon model from Section 3 was attached to a linear HCB ROM of the wing 
structure and the NNMs of the next-level assembly are calculated. The first NNM under investigation (Section 4.2) 
corresponds to the localized mode of the pylon when connected to the wing. The second NNM (Section 4.3) 
corresponds to the first bending mode of the wing.  

4.1 Wing-Pylon Finite Element Model

The mesh of the wing-pylon-fixture assembly was generated using CUBIT [13] and the Sierra Structural Dynamics 
codes [11] were used for the eigenvalue analysis and HCB reduction. This assembly has free-free boundary 
conditions. The linear ROM of the wing-pylon-fixture assembly was generated with an HCB reduction that used 30 
fixed-interface modes and retained physical DOF for various drive points along the wing and fixture in addition to 
the same accelerometer and virtual nodes in Section 3.1.  The calibrated penalty spring elements between the virtual 
nodes in the pylon were added to the linear HCB ROM to generate the nonlinear HCB model. 

A linear eigenvalue analysis was performed on the wing-pylon-fixture assembly to obtain the linear natural 
frequencies and mode shapes without the inclusion of the penalty springs.  Figure 4.1 shows the elastic modes of 
interest for the model, in which modes 1 and 2 are the starting points for the NNM computations in Sections 4.2 
and 4.3, respectively. The first mode of the wing-pylon-fixture assembly (7.3 Hz) is a localized first bending mode 
of the pylon and is the same as the first mode of the fixture-pylon assembly that was used to calibrate the nonlinear 
element. The second mode is a combination of bending in the wing and swinging of the pylon mass at a resonant 
frequency of 22.2 Hz. The seventh mode imparts torsional motion in the wing and higher order bending of the pylon 
at 102.1 Hz. This mode is included to help explain the modal interactions that occur within the next-level assembly. 
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(a)

Mode 1 (fn = 7.3 Hz)

(b)

Mode 2 (fn = 22.2 Hz)

(c)

Mode 7 (fn = 102.1 Hz)

(d)
Figure 4.1 Wing-pylon CAD assembly (a) and mode shapes/frequencies for mode 1 (b), mode 2 (c), and mode 7 (d)

4.2 NNM 1 Computation

Figure 4.2 shows the corresponding simulated data for NNM 1 which continues from the linearized mode at 7.3 Hz 
at a low energy level. The NNMs were calculated using MHB with up the 7th harmonic in the Fourier approximation 
and the frequency-energy plot (FEP) is shown in Figure 4.2 (a) and (b). The FEP for NNM 1 reveals that the penalty 
spring does not introduce nonlinearity into the dynamic response until about 1E-02 J, at which point the frequency 
begins to stiffen. As the energy in the NNM increases, the backbone frequency increases until an internal resonance 
occurs around 7.4 Hz. The tongue occurs just where the NNM 2 FEP (divided by a frequency integer of three) 
crosses the NNM 1 FEP, indicating that this is a 3:1 modal interaction between NNM 1 and 2. The displacement 
time-histories shown in Figure 4.2 (c) and (d) show the higher harmonic content of the response on the tongue as 
the wing tip completes three oscillations during the fundamental period of motion. In this case, the higher frequency 
content produced by the nonlinearity at the pylon block strongly excites mode 2. Figure 4.2 (e) and (f) show the 
frequency content of the displacement time-histories for the wing tip and the pylon block, thus confirming the 
spectral content of the particular periodic orbit.  

It is worth noting here the difference between this NNM compared to the NNM of the first bending mode computed 
from the fixture-pylon model in Section 3. This localized mode of the pylon produces nearly equivalent solutions 
along the main backbone curve, however the dynamics of the next-level assembly clearly influence whether or not 
the mode can interact with other modes of the system. The introduction of the 3:1 modal interaction is strictly due 
to the dynamics of the wing structure, thus highlighting the importance of the fixturing when predicting NNMs of 
a subcomponent. A stiff or rigid frame may simplify the nonlinear dynamics of the structure by avoiding any modal 
interactions (as motivated by the system in Section 3). This approach may not necessarily reveal the potentially 
damaging exchanges of energy that could occur within the system where the nonlinearity introduced into the next-
level assembly can introduce global nonlinear effects. 
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(a)                                                                                       (b)

                 
                    (c)                                                                                    (d)                        

           

                                           (e)                                                                                            (f)
Figure 4.2 FEP plots for NNM 1 (a) and (b) and the corresponding (red point) displacement time-histories of the s1 node (c) 
and the wing tip (d). The frequency content of the displacement time histories shown for s1 node (e) and wing tip (f).
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4.3 NNM 2 Computation

The simulated data for NNM 2 is shown in Figure 4.3. The NNMs were again calculated using MHB with up the 
7th harmonic in the Fourier approximation and the frequency-energy plot (FEP) is shown in Figure 4.3 (a) and (b). 
The backbone for NNM 2 does not begin to stiffen until approximately 1 J. Over the entire energy range of the 
computed mode, the penalty spring produces a minimal frequency shift over the operating range, going from 22.2 
Hz to about 22.25 Hz, or about 0.2% increase. This suggests that the localized nonlinearity in the pylon does not 
significantly shift the frequency of the wing bending mode. A more interesting observation comes from the tongue 
that emanates along the backbone. The backbone crossings of NNM 2 with NNM 7 (divided by a frequency integer 
of five) are shown in Figure 4.3 (a) and (b), indicating a 5:1 modal interaction. The displacement time histories 
shown in Figure 4.3 (c) and (d) correspond to the tip of the internal resonance where the pylon completes five 
oscillations in one oscillation on the wing tip. Figure 4.3 (e) and (f) show the frequency content of the displacement 
time histories for the wing tip and the pylon block, thus highlighting the dominant frequency content of the motion. 
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                                           (e)                                                                                        (f)
Figure 4.3 FEP plots for NNM 2 (a) and (b) and the corresponding (red point) displacement time-histories of the s1 node (c) 
and the wing tip (d). The frequency content of the displacement time histories shown for s1 node (e) and wing tip (f).

It is interesting to observe the relative effect (or lack thereof) of the penalty spring on the backbone frequency of 
the wing bending mode, i.e. NNM 2. This mode could be effectively assumed to be linear in practice if it not for 
the presence of the modal interaction with NNM 7. NNM theory provides the theoretical foundation to understand 
the conditions required for modes to interact, and thus reinforces that it does not necessarily require the mode to 
have a significant shift in frequency. A modal interaction may occur when a higher frequency NNM of the system 
has a significant shift, thus satisfying the condition that resonant frequencies are commensurate at a given energy 
level. This highlights the importance of investigating the NNMs of the next-level assembly and how fixturing 
decisions can introduce (or eliminate) complex behavior in the system. The wing bending mode was demonstrated 
here to exchange energy with the higher order mode of the pylon (i.e. NNM 7). Additionally, this mode was also 
able to receive energy exchange from NNM 1 due to the presence of the 3:1 modal interaction in Section 4.2. 

5. CONCLUSIONS

This research built upon the experimental study of the isolated fixture-pylon assembly from previous research. A 
nonlinear reduced order model of their test assembly was used to identify the nonlinearity localized in the pylon 
when the thin beam contacts the surrounding support blocks. A penalty spring element was used to describe this 
nonlinear contact behavior and produced frequency backbone curves that agreed well with measured results. This 
model was validated through comparison of displacement response from stepped-sine simulations to those measured 
during the previous tests. A nonlinear reduced order model of the next-level assembly comprising of the pylon, 
wing, and fixture block was created using this calibrated nonlinear pylon model to generate pre-test predictions in 
the form of frequency-energy curves for the first two nonlinear normal modes. These were both shown to have 
internal resonances due to the dynamics of the next-level assembly, providing valuable insight into the design of 
future experiment and potential nonlinear phenomena to be observed in the data. 

The results presented on the wing-pylon-fixture reveal the complex physics associated with the dynamics of the 
next-level assembly and fixturing. The NNM framework combined with nonlinear system identification can serve 
as a useful design tool to understand potential regimes in response when modes can interact. Depending on the 
objective of the structure, the tools utilized throughout this study can be used to tailor the dynamics of the system 
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for the intended needs, i.e. either exploit or eliminate the modal interactions. Future work will seek to validate these 
findings on test hardware with a variable length wing. 
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