
PRESENTED BY

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Componentized hieratical build and
test infrastructure and processes for
CASL VERA

Roscoe A. Bartlett, Ph.D.

Dept. Software Engineering & Research

Center for Computing Research

https://bartlettroscoe.github.io

SAND2020-13467C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

The Challenge => Develop and Deploy Complex Software

• Multiple software repositories and distributed development teams

• Multiple compiled programming languages (C, C++, Fortran) and mixed-language programs

• Multiple development and deployment platforms (Linux, Windows, Super-Computers, etc.)

• Stringent software quality requirements

Solution Approach
 => TriBITS custom CMake build & test framework

Background and Motivation
2

Overview of CASL VERA
Development

Overview of CASL

• CASL: Consortium for the Advanced Simulation of Lightwater reactors
• DOE Innovation Hub including DOE labs, universities, and industry partners
• Goals:

• Advance modeling and simulation of lightwater nuclear reactors
• Produce a set of simulation tools to model lightwater nuclear reactor cores

to provide to the nuclear industry: VERA: Virtual Environment for
Reactor Applications.

• Phase 1: July 2010 – June 2015
• Phase 2: July 2015 – June 2020
• Organization and management:

• ORNL is the hub of the Hub
• Milestone driven (6 month plan-of-records (PoRs))
• Focus areas: Physics Integration (PHI), Thermal Hydraulic Methods

(THM), Radiation Transport Methods (RTM), Advanced Modeling
Applications (AMA), Materials Performance and Optimization (MPO),
Validation and Uncertainty Quantification (VUQ)

4

• VERA Development is complicated in almost every way
• VERA Currently Composed of:

• 18 different git repositories most with a different access list (NDAs, Export
Control, IP, etc.)

• CMake build system using TriBITS Framework:
• Over 2700 CMakeLists.txt files!

• VERA Software Development Process:
• Official definition of VERA is ‘master’ branch of git repo mirrors at ORNL.
• Primary development platform: ORNL CASL Machines (and clones)
• VERA integration maintained by continuous and nightly testing:

• Pre-push CI testing: checkin-test-vera.sh, cloned VERA git repos, on
Fissile machine.

• Post-push CI testing: CTest/CDash, all VERA git repos, shared libs.
• Nightly CI testing: Debug and Release builds.
• 100% passing builds and tests!

• VERA snapshots and releases are taken off of ‘master’ branches on ORNL
git repos.

CASL VERA Development Overview (2015)
5

Dependencies Between Selected VERA Repos (2015)
6

Trilinos
(SNL)

TeuchosWrappersExt
(Multi Inst.)

VERAInExt
(Multi Inst.)

COBRA-TF
(PennState) MPACT

(U.Mich.)

SCALE (ORNL)

VUQDemos
(SNL)

MOOSEExt

MOOSE /
Bison (INL)

DatraTransferKit
(ORNL)

Exnihilo
(ORNL)

DakotaExt

Dakota
(SNL)

PSSDriversExt
(Multi Inst.)

• Primary/originating institution shown in Blue
• Most codes being contributed by multiple institutions as well
• All direct dependencies not shown
• Dependencies between repos are though TriBITS package

dependencies
• Local VERA git clones of all these repos kept compatible

MAMBA
(LANL)

Why CMake?

Why TriBITS?

Why CMake?

Open-source tools maintained and used by a large community and supported by a
profession software development company (Kitware).

CMake:
• Simplified build system, easier maintenance
• Improved mechanism for extending capabilities (CMake language)
• Support for all major C, C++, and Fortran compilers.
• Automatic full dependency tracking (headers, src, mod, obj, libs, exec)
• Good Fortran support (parallel builds with modules with src => mod => object

tracking, C/Fortran interoperability, etc.)
• Shared libraries on all platforms and compilers (support for RPATH)
• Faster configure times (e.g. > 10x faster than autotools)
• Native support for MS Windows (e.g. Visual Studio projects)
• Portable support for cross-compiling

CTest:
• Parallel running and scheduling of tests and test time-outs
• Memory testing (Valgrind)
• Line coverage testing (GCC LCOV)
• Better integration between the test system and the build system

8

Componentized CMake-based Projects
Approaches

CMake, CTest, and CDash are great, but raw usage does not scale very well to large
projects and multiple repositories and teams!
• Multiple CMake projects:

• Manual builds and linking through <Package>Config.cmake files (e.g. Albany &
Trilinos)

• CMake ExternalProject: (Also see LLNL Spack)
+ Provided as standard CMake module ExternalProject.cmake
+ Allows non-CMake subprojects
- Does not do full dependency tracking between component CMake projects

• Google Catkin (used for the Google Robotics Operating System (ROS) project)
+ Automatic dependency handling logic (implemented in Python)
+ Parallel builds of CMake (sub)projects and posting to CDash
- Requires Python for basic usage

• CMakeBasis (Also see LLNL BLT)
+ Standardize CMakeList.txt and creation/usage of <Package>Config.cmake files
- Core functionality requires Python

• Single CMake project:
• Kitware VTK Modules:

- Does not support optional dependencies
- Slow due to need to sort submodules based on dependencies

• TriBITS:
+ Support multiple repos
+ Core functionality depends only on CMake 3.10+

9

http://www.kitware.com/media/html/BuildingExternalProjectsWithCMake2.8.html
https://github.com/spack/spack
http://wiki.ros.org/catkin/CMakeLists.txt
https://cmake-basis.github.io/
https://github.com/LLNL/blt
http://www.vtk.org/Wiki/VTK/Module_Development

Why TriBITS?

• Framework for large, distributed multi-repository CMake projects

• Reduce boiler-plate CMake code and enforce consistency across large
distributed projects

• Subproject dependencies and namespacing architecture (packages)

• Automatic package dependency handling (directed acyclic graph)

• Additional functionality missing in raw CMake

• Change default CMake behavior when necessary

• Additional tools for agile software development processes (e.g.
Continuous Integration (CI))

History of TriBITS:
• 2007: Initially developed as a CMake package architecture for Trilinos

• 2011: Generalized and extended for CASL VERA

• 2014: Source code hosted on GitHub

10

Raw CMake vs. TriBITS

Example Raw CMakeLists.txt File

Build and install library

set(HEADERS hello_world_lib.hpp)

set(SOURCES hello_world_lib.cpp)

add_library(hello_world_lib ${SOURCES})

install(TARGETS hello_world_lib DESTINATION lib)

install(FILES ${HEADERS} DESTINATION include)

Build and install user executable

add_executable(hello_world hello_world_main.cpp)

target_link_libraries(hello_world hello_world_lib)

install(TARGETS hello_world DESTINATION bin)

Test the executable

add_test(hello_world ${CMAKE_CURRENT_BINARY_DIR}/hello_world)

set_tests_properties(hello_world PROPERTIES PASS_REGULAR_EXPRESSION "Hello World")

Build and run some unit tests

add_executable(unit_tests hello_world_unit_tests.cpp)

target_link_libraries(unit_tests hello_world_lib)

add_test(unit_test ${CMAKE_CURRENT_BINARY_DIR}/unit_tests)

set_tests_properties(unit_test PROPERTIES PASS_REGULAR_EXPRESSION "All unit tests passed")

Executable and
test names must

be globally
unique!

12

Example TriBITS Package CMakeList.txt File

• Less duplication and boiler-plate code
• Fewer commands
• Build command wrappers:

• Install by default (most common)
• Optionally Install libraries and headers or just executables?
• Optional global prefixing of libraries
• And more …

• CTest command wrappers:
• Automatic namespacing of tests and test executables
• Classification of tests (BASIC, CONTINUOUS, NIGHTLY, …)
• Uniform handling of timeouts (and scaling of timeouts)
• And more …

Maintain consistency and add/change behavior across different
independent repositories and packages and 1000s of CMakeLists.txt files!.

tribits_package(HelloWorld)

TRIBITS_add_library(hello_world_lib HEADERS hello_world_lib.hpp SOURCES hello_world_lib.cpp)

TRIBITS_add_executable(hello_world NOEXEPREFIX SOURCES hello_world_main.cpp INSTALLABLE)

TRIBITS_add_test(hello_world NOEXEPREFIX PASS_REGULAR_EXPRESSION "Hello World")

tribits_add_executable_and_test(unit_tests SOURCES hello_world_unit_tests.cpp

 PASS_REGULAR_EXPRESSION "All unit tests passed")

tribits_package_postprocess()

13

TriBITS Structural Units
and

Meta-Projects

TriBITS Project:
• Complete CMake “Project”
• Overall projects settings
TriBITS Repository:

• Collection of Packages and TPLs
• Unit of distribution and integration
• Typically a version control (git) repository
TriBITS Package:

• Encapsulated collection of related software & tests
• Unit of testing, namespacing, documentation, and reuse
• Lists dependencies on upstream Packages & TPLs
TriBITS Subpackage:

• Optional partitioning of package software & tests
• Primarily for dependency management (SE principles)

TriBITS TPLs (Third Party Libraries):
• Specification of external dependencies (libs)
• Required or optional dependency
• Single definition across all packages
• Can use standard CMake find_package(<Package>) and native

Find<Package>.cmake modules

TriBITS Hierarchical Structural Units
15

VERA Meta-Project, Repositories, Packages
& Subpackages

VERA

Trilinos

Epetra
…

Teuchos

Core Comm

ParameterList

…

NOX

SCALE/Exnihilo

Nemesis

…

Insilico

Neutronics
…

Shift

MPACTVERAInExt

VERAIn

…

• VERA: Git repository and TriBITS meta-project (contains no packages)
• TriBITS and Git repos:: Trilinos, VERAInExt, COBRA-TF, MPACT, SCALE, Exnihilo …
• TriBITS packages: Teuchos, Epetra, VERAIn, Insilico, COBRA_TF, MPACT_Drivers, …
• TriBITS subpackages: TeuchosCore, InsilicoNeutronics …
• TriBITS SE packages: Teuchos, TeuchosCore, VERAIn, Insilico, InsilicNeutronics, …

COBRA-TF

COBRA_TF

MPACT_libs

MPACT_Drivers

…

16

Flexibility in TriBITS Projects and Repositories

MPACT

Trilinos

SCALE

VERAInExt

COBRA-TF

MPACT

The same TriBITS repositories and packages
can be arranged into multiple TriBITS projects.

SCALE (Exnihilo)

Trilinos SCALE

VERAInExt
Exnihilo

COBRA-TF

COBRA-TF

Trilinos

Trilinos

17

Automated Package
Dependency Handling

Package Dependency Structure (e.g. Trilinos)

RTOp

Teuchos Epetra

Triutils

Thyra

EpetraExt

Required Dependence

Optional Dependence

19

Package Dependencies.cmake Files

tribits_package_define_dependencies(

 LIB_REQUIRED_TPLS BLAS LAPACK

 LIB_OPTIONAL_TPLS Boost)

Teuchos
tribits_package_define_dependencies(

 LIB_REQUIRED_TPLS BLAS LAPACK)

Epetra

tribits_package_define_dependencies(

 LIB_REQUIRED_PACKAGES Teuchos)

RTOp
tribits_package_define_dependencies(

 LIB_REQUIRED_PACKAGES Epetra)

Triutils

tribits_package_define_dependencies(

 LIB_REQUIRED_PACKAGES Epetra Teuchos

 LIB_OPTIONAL_PACKAGES Triutils)

EpetraExt
tribits_package_define_dependencies(

 LIB_REQUIRED_PACKAGES RTOp Teuchos

 LIB_OPTIONAL_PACKAGES EpetraExt Epera)

Thyra

20

CI Testing: Change Epetra

 $./do-configure \
 -D Trilinos_ENABLE_Epetra=ON \
 -D Trilinos_ENABLE_ALL_FORWARD_DEP_PACKAGES=ON \
 -D Trilinos_ENABLE_TESTS=ON

RTOp

Teuchos Epetra

Triutils

Thyra

EpetraExt

Lib Only

Libs & Tests

21

CI Testing: Change RTOp

 $./do-configure \
 -D Trilinos_ENABLE_RTOp=ON \
 -D Trilinos_ENABLE_ALL_FORWARD_DEP_PACKAGES=ON \
 -D Trilinos_ENABLE_TESTS=ON

RTOp

Teuchos Epetra

Triutils

Thyra

EpetraExt

Lib Only

Libs & Tests

22

Multi-Repository Support

Dependencies Between Selected VERA Repos (2015)
24

Trilinos
(SNL)

TeuchosWrappersExt
(Multi Inst.)

VERAInExt
(Multi Inst.)

COBRA-TF
(PennState) MPACT

(U.Mich.)

SCALE (ORNL)

VUQDemos
(SNL)

MOOSEExt

MOOSE /
Bison (INL)

DatraTransferKit
(ORNL)

Exnihilo
(ORNL)

DakotaExt

Dakota
(SNL)

PSSDriversExt
(Multi Inst.)

• Primary/originating institution shown in Blue
• Most codes being contributed by multiple institutions as well
• All direct dependencies not shown
• Dependencies between repos are though TriBITS package

dependencies
• Local VERA git clones of all these repos kept compatible

MAMBA
(LANL)

Managing Compatible Repos and Repo Versions

External
Repo1

External
Repo2

Project Native
Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Project Copy
Repo1

Project Copy
Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

Repo2 Devs

Repo1
Integrator

Repo2
Integrator

Repo1 Devs

Project Devs

Project
Releaser

Issues that need to be addressed:
• Flexibility for development inside and outside

of particular project.
• Managing changes between different repos

versions and projects.
• Full tracking of changes and updates.
• Reproducibility of prior versions.
• Repos may be missing with optional package

dependencies.
• Making non-backward compatible changes

across many repos.
• How to manage compatible repos versions?

pull
push

pull
push

pull
and/or
push

pull
and/or
push

pull
and/or
push

pull
and/or
push

pull
and/or
push

pull

25

VERA/cmake/ExtraRepositoriesList.cmake (2015)

tribits_project_define_extra_repositories(
 TriBITS "" GIT git@casl-dev:TriBITS "" Continuous
 Trilinos "" GIT git@casl-dev:Trilinos "" Continuous
 TeuchosWrappersExt "" GIT git@casl-dev:TeuchosWrappersExt "" Continuous
 MAMBA "" GIT git@casl-dev:MAMBA "" Continuous
 COBRA-TF "" GIT git@casl-dev:COBRA-TF "" Continuous
 VERAInExt "" GIT git@casl-dev:VERAInExt "" Continuous
 DataTransferKit "" GIT git@casl-dev:DataTransferKit "" Continuous
 MOOSEExt "" GIT git@casl-dev:MOOSEExt "" Continuous
 MOOSE MOOSEExt/MOOSE GIT
 git@casl-dev:MOOSE NOPACKAGES Continuous
 SCALE "" GIT git@casl-dev:SCALE "" Continuous
 Exnihilo SCALE/Exnihilo GIT
 git@casl-dev:Exnihilo NOPACKAGES Continuous
 MPACT "" GIT git@casl-dev:MPACT "" Continuous
 LIMEExt "" GIT git@casl-dev:LIMEExt "" Continuous
 hydrath "" GIT git@casl-dev:hydrath "" Nightly
 PSSDriversExt "" GIT git@casl-dev:PSSDriversExt "" Continuous
 DakotaExt "" GIT git@casl-dev:DakotaExt"" Continuous
 Dakota DakotaExt/Dakota GIT git@casl-dev:Dakota NOPACKAGES Continuous
 VUQDemos "" GIT git@casl-dev:VUQDemos "" Nightly
)

Official version of VERA in on master branch used for CI & Nightly testing
• Partial set of repos can be cloned (protected by different groups)
• Non-git repos are converted into git repos: Dakota, SCALE, MOOSE

26

clone_extra_repos.py

$./clone_extra_repos.py

…

ID	Repo Name	Repo Dir	VC	Repo URL	Category
1	TriBITS	TriBITS	GIT	git@casl-dev:TriBITS	Continuous
2	Trilinos	Trilinos	GIT	git@casl-dev:Trilinos	Continuous
3	TeuchosWrappersExt	TeuchosWrappersExt	GIT	git@casl-dev:TeuchosWrappersExt	Continuous
4	MAMBA	MAMBA	GIT	git@casl-dev:MAMBA	Continuous
5	COBRA-TF	COBRA-TF	GIT	git@casl-dev:COBRA-TF	Continuous
6	VERAInExt	VERAInExt	GIT	git@casl-dev:VERAInExt	Continuous
7	DataTransferKit	DataTransferKit	GIT	git@casl-dev:DataTransferKit	Continuous
8	MOOSEExt	MOOSEExt	GIT	git@casl-dev:MOOSEExt	Continuous
9	MOOSE	MOOSEExt/MOOSE	GIT	git@casl-dev:MOOSE	Continuous
10	SCALE	SCALE	GIT	git@casl-dev:SCALE	Continuous
11	Exnihilo	SCALE/Exnihilo	GIT	git@casl-dev:Exnihilo	Continuous
12	MPACT	MPACT	GIT	git@casl-dev:MPACT	Continuous
13	LIMEExt	LIMEExt	GIT	git@casl-dev:LIMEExt	Continuous
14	hydrath	hydrath	GIT	git@casl-dev:hydrath	Nightly
15	PSSDriversExt	PSSDriversExt	GIT	git@casl-dev:PSSDriversExt	Continuous
16	DakotaExt	DakotaExt	GIT	git@casl-dev:DakotaExt	Continuous
17	Dakota	DakotaExt/Dakota	GIT	git@casl-dev:Dakota	Continuous
18	VUQDemos	VUQDemos	GIT	git@casl-dev:VUQDemos	Nightly

…

Running: git clone git@casl-dev:TriBITS TriBITS

Running: git clone git@casl-dev:Trilinos Trilinos

…

Only clones the repos that the
user/developer has access to clone!

27

gitdist

$ gitdist dist-repo-status

--
ID	Repo Dir	Branch	Tracking Branch	C	M	?
0	VERA (Base)	master	origin/master	2	1	
1	TriBITS	master	origin/master			
2	Trilinos	master	origin/master			
3	TeuchosWrappersExt	master	origin/master			2
4	MAMBA	master	origin/master			
5	COBRA-TF	master	origin/master			
6	VERAInExt	master	origin/master			3
7	DataTransferKit	master	origin/master			
8	MOOSEExt	master	origin/master			
9	MOOSEExt/MOOSE	master	origin/master			
10	SCALE	master	origin/master			
11	SCALE/Exnihilo	master	origin/master			
12	MPACT	master	origin/master	2		
13	LIMEExt	master	origin/master			
14	hydrath	master	origin/master			
15	PSSDriversExt	master	origin/master		4	
16	DakotaExt	master	origin/master			
17	DakotaExt/Dakota	master	origin/master			
18	VUQDemos	master	origin/master			
--

(tip: to see a legend, pass in --dist-legend.)

28

Testing Support

Standard TriBITS Test Categories and Layers
30

Coverage Testing

Nightly Testing

CATEGORIES [BASIC CONTINUOUS NIGHTLY]
(MPI/Serial(non-MPI), Shared/Static, Debug/Release)

Post-Push CI Testing

CATEGORIES [BASIC CONTINUOUS]
(post-push CTest/CDash, Linux/GCC)

Pre-Push CI Testing

CATEGORIES [BASIC]
(checkin-test.py)

Memory (Valgrind) Testing

C
or

re
ct

ne
ss

 T
es

tin
g

Heavy Testing

CATEGORIES [BASIC CONTINUOUS NIGHTLY HEAVY]
(more expensive tests)

Pre-Push CI Testing: checkin-test.py

 $ checkin-test.py --do-all –push

• Integrates with latest version in remote git repositories
• Figures out modified packages

Modified file: 'packages/teuchos/CMakeLists.txt'

 => Enabling 'Teuchos'!

• Enables all forward/downstream packages & tests
• Configures, builds, and runs tests
• Does the push (if all builds/tests pass)
• Sends notification emails
• Fully customizable (enabled packages, build cases, etc.)
• Documentation: checkin-test.py --help

31

CDash: VERA (Collapsed) Builds
32

Package-by-Package Build/Test Results
33

CDash: VERA Package Builds (VeraAPI)
34

CDash: VERA Packages
35

 Post-Push Testing: TRIBITS_CTEST_DRIVER()

VERA CDash Dashboard
for 4/6/2014
• Collapsed summaries

for each build case
• Nightly, CI,

Experimental build
cases

VERA CDash CI Iterations
• Individual packages built

in sequence
• Targeted emails for

failed package build &
tests

• Failed packages
disabled in downstream
packages

=> Don’t propagate
failures!

36

TriBITS Misc. Facts and Upcoming Work

• TriBITS Partitioning and Dependencies:
• TriBITS Core (tribits/core/): Core TriBITS package-based architecture for CMake

projects includes configure, build, test, install, deploy (tarballs) for multi-repo projects.
(1M size)

• TriBITS Python Utils (tribits/python_utils/): Some basic Python utilities that are not
specific to TriBITS (e.g. gitdist, snapshot_dir.py).

• TriBITS CI Support (tribits/ci_support/): Support code for pre-push continuous
integration testing (e.g. checkin-test.py).

• TriBITS CTest Driver (tribits/ctest_driver/): Support for package-by-package testing
driven by CTest submitting to CDash (e.g. TribitsCTestDriverCore.cmake).

• Upcoming Work:
• Collect requirements for next generation of TriBITS
• Upgrade to use modern target-based CMake implementation and features
• More flexibility to pre-build packages and linking in as external packages (TPLs)

37

TriBITS

CTest Driver

CMake 3.10+ python 2.6.6

git

Core PythonUtils

CI SupportCom. TPLs

• Contact: rabartl@sandia.gov

• Sponsors:

– CASL: Consortium for the Advanced Simulation
of Lightwater reactors

THE END

