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System overview: Z accelerator at Sandia

P8 ° Multi-purpose research device for high energy density (HED) physics

- Storage:

* 36 Marxes = 2,160 caps
* 95 kV, 20 MJ in ~ 3 min
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System overview: Z accelerator at Sandia
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* Multi-purpose research device for high energy density (HED) physics

* Storage: * Delivery to load:

* 36 Marxes = 2,160 caps » 26 MA peak (80 TW)
* 95 kV, 20 MJ in ~ 3 min * 100 ns rise time
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s | System overview: modeling challenges
* Vastness of scales:
- time: us discharge time vs. THz electron cyclotron frequencies
» space: meters-long transmission lines vs. micron electron gyroradii

- velocities: thermal speeds (v/c ~ 10-°) of desorbed neutrals vs. EM wave prop. (<
C)

- densities: ranging from near vacuum levels to greater than solid density

Underlying numerical methods introduce additional constraints




« | Required components for full physics heterogeneous

° %89@%agnetics described on complex geometries

* Symmetry boundary capabilities = reduced domain
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s | Required components for full physics heterogeneous

’ %89@%agnetics described on complex geometries

* Symmetry boundary capabilities =2 reduced domain
* 1D Transmisston line coupling to 3D for end-to-(almost)end simulations

* Surface physics:
o Particle creation:

J Field-emitted electrons ~ 10'* ¢m™ (SCL rate for > 200 kV/cm)
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J Fragmentation: H,O = 3e + 2H'" + O~




Required components for full physics heterogeneous

’ E‘E((:)tro%agnetics described on complex geometries
* Symmetry boundary capabilities =2 reduced domain
* 1D Transmisston line coupling to 3D for end-to-(almost)end simulations
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* Relativistic particle dynamics



Powerflow model building has advanced using an integrated
11 I approach where developing code capabilities are pushed
through a pipeline of increasingly complex MITL systems
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| Half-o-lute model
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Half-o-lute code-comparison study: EMPIRE vs. CHICAGO -
5 1 cold
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Half-o-lute code-comparison study: EMPIRE vs. CHICAGO -
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Half-o-lute hot EMPIRE simulation: electron number density
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20 ‘ Powerflow 18a model setup: full problem domain
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to deliver 26 MA peak within 100 ns at machine center
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‘ Powerflow 18a model setup

Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)

* Downstream: extreme conditions: 3D
o 0<|E| <£10*kV/cm
o 0 < |B| €300 Tesla
o electrode temperatures: 300 < T < Thperr

o particle creation, fragmentation, and more!

* Upstream: well-behaved conditions: 11D

Marx bank intermediate pulse water-insulated insulator outer simulation
storage forming fransmission stack MITLs volume
capacitors lines lines

16.5 m radius
upstream direction



2 ‘ Powerflow 18a model setup

Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)
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‘ Powerflow 18a model setup

Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)
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24 | Powerflow 18a model setup
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25 ‘ Powerflow 18a model setup

Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)
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‘ Powerflow 18a model setup

1D region

3D
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N ‘ Powerflow 18a code-comparison study:
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Powerflow 18a EMPIRE simulation: hot @
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Powerflow 18a EMPIRE hot simulation: ExB vectors trace e-
flow I
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§ ‘ Powerflow 18a EMPIRE hot simulation: Time = 111.262
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33 ‘ Conclusions

. SNIa’SI_next-generation plasma simulation code, EMPIRE, is expanding to meet the challenges of power flow
modeling.

demonstrating that the full device can be simulated at feasible cost.

* An EMPIRE power flow model incorporating EM wave propagation, space-charge limited emission with relativistic
dynamics has:

v Been benchmarked successfully against corresponding CHICAGO simulations.
v Demonstrated good agreement with current data measured during the actual shots of this campaign.

* A 1D BERTHA circuit model has been successfully coupled to a 3D electromagnetic domain of the Z-convolute, |
i

* To achieve a full physics model, one more step = including thermal desorption - electrode plasma formation
which introduces

o Time step restrictions:
= From plasma frequency (10" cm3): At < 0.05 ps
= From cyclotron frequency (300 T): At < 0.01 ps
o Mesh resolution restrictions: 100 um to resolve sheaths at all electrode surfaces.
o Preliminary mesh revisions produce 93.75 um elements at 2.6B elements, particle inventories approaching billions
= Need: implicit time stepping, load balance, particle merge, and restart capability which are all emerging capabilities in EMPIRE

 Scaling studies on next-generation platforms (NGPs) and initial test runs on LLNL’s sierra suggest a simulation
turnover time of days is reachable for a full physics model

* Impacts:

« Z power flow is a critical design criteria to understand, we have made significant steps towards demonstrating simulation simulations can
be turned around fast enough to affect the design cycle of future Z shots.
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Thank you for your attention!
Questions?







Half-o-lute EMPIRE vs. CHICAGO code-comparison study:

36

cold

Circuit

anode

07120 V!E-w TITCA T
) wea2 M) wes3 M) west H) st H) sz M) wsr M) vz M) misr M) mese M) mess H) mese H) mess H] mess HEMITL A
ﬁ -I-rLi T ns 2ins 0.2 ns 03ns 0.1ns 1ns Odns 0B ns 0.5 ns 0.225ns
P 1e8TU | 10TEU | tA2eU 340 8850 .81 13.00 72080 | 23140 | 24130 | 2520 | 2880 | 28760 160U
o CerUIt B
| m1 H) w;z H) m:b! HI wd:-'l H] ;:m H) sI:hZ H) et H) \rfb2 H) mrnm H} mith2 H} mrdﬂ- H) mu H) mﬂ:\b H) e )
Ty a0 dae0 11340 ey S e JES | aeu | 2ey  fieo dso semb | aagl
— Circuit CD
i =l -
Input - wm}ﬂ ){rm}ﬂw}ﬂ' H]'réH! ﬁHﬁ dH} }ﬂm}-@m}-ﬂw}ﬂw}ﬂm}-ﬂ M.H!m
voltages -
= -
— - —_— :&MEEEHT}{J::EJ %g.i"".'.l 13.2.;:;u}{:|IM.I..Hj| 4H1mu}{:|:::H}3m:HMﬂ:}ﬂzﬂzﬂwmﬂ?}ﬂ;ﬁms:

mltl A port

| empp: probe78
1 == ' chgp: probe78

100 125

t [ns]

1] 25 50 75

11111

mitl B port

m— eMpp: probe87
w= . chgp: probe87

100 125 150 175

t [ns]

0 25 50 75

mitl CD port

1000 1

750

V [kV]

—250 1

=500 -

500 1

250 1

= eMmpp: probe64
== chgp: probe64

100 125

t [ns]

0 25 50 75 150 175




Half-o-lute cold EMPIRE simulation: EM fields |
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3 | System overview: Z accelerator at Sandia

-_Marx generators:
» 36 Marxes housing sixty 2.6 uF capacitors each = 2,160 |
i

caps total

« 20 MJ stored energy total

R, 4 iml o PN * Charged to ~ 85 kV - 5.1 MV output voltage
é— A S ' \\% v/ * Discharge time: 1.5 rise time to peak of 150 kA

\ e TN e

°|-store caps

6.5 ft, 10-ft long water-filled cylinders charged to 5.1 MV >
laser-triggered = peak current 600 kA in 500 ns rise

*PFLs:  Laser-triggered gas switches:

@5.5 ft, 4.5-t I.ong coaxial water cylinder - 700 @1.5 ft, 2,6 ft-long = triggered by 15 mJ,Nd:glass laser,
kKA at 200 ns rise < > — > :
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*Quter MITLs:
 five nested 10-ton stainless steel cones

* Vacuum convolute - inner MITL - Load | v il

insulator

stack
laser- pulse  water-

6 I-store triggered forming insulated
enerators caps switches lines  TLs

Component information: “How does the Z Machine Work? Sandia National Laboratories: Z Pulsed Power Facility: How
Does the Z Machine Work?”. http://www.sandia.gov/z-machine/about z/how-z-works.html. Accessed: 11/23/2020
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Powerflow18a hardware -
wedge
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Powerflow18a hardware - 15 degree
wedge 3D simulation
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Powerflow 18a hot EMPIRE simulation: V and | at MITL
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Powerflow 18a hot EMPIRE simulation: V and | along top
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Powerflow 18a (hot): CHICAGO vs. EMPIRE MITL A
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Powerflow 18a (hot): CHICAGO vs. EMPIRE MITL D
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Powerflow 18a (hot): CHICAGO vs. EMPIRE inner MITL entrance current
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Powerflow 18a hot EMPIRE simulation: EM fields |
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