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System overview: Z accelerator at Sandia3

• Multi-purpose research device for high energy density (HED) physics
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• Storage:

• 36 Marxes = 2,160 caps
• 95 kV, 20 MJ in ~ 3 min



System overview: Z accelerator at Sandia4

• Multi-purpose research device for high energy density (HED) physics

• Storage:

• 36 Marxes = 2,160 caps
• 95 kV, 20 MJ in ~ 3 min

• Delivery to load:

• 26 MA peak (80 TW)
• 100 ns rise time
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System overview: modeling challenges5

• Vastness of scales:

• time: ms discharge time vs. THz electron cyclotron frequencies

• space: meters-long transmission lines vs. micron electron gyroradii

• velocities: thermal speeds (v/c ~ 10-6) of desorbed neutrals vs. EM wave prop. (≤ 
c)

• densities: ranging from near vacuum levels to greater than solid density

  
Underlying numerical methods introduce additional constraints

  Modeling a large system is not tractable with homogeneous approaches



Required components for full physics heterogeneous 
model
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Powerflow model building has advanced using an integrated 
approach where developing code capabilities are pushed 
through    a pipeline of increasingly complex MITL systems
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(3D) Powerflow 18a(3D) Half-o-lute
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(3D) Powerflow 18a(3D) Half-o-lute
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Half-o-lute model

Circuit B

Circuit 
C+D branch1

branch2

anode

cathode
MITL A

MITL B

ca
tho

de

Circuit A

Circuit C

Circuit D

Circuit B

anode

M
IT

L 
C+

D

BERTHA circuit 
work by B. Hutsel 
et al.

Thanks to D. Welch, D.V. Rose 
for CHICAGO simulation model

Hardware geometry

Simulation model



15

Half-o-lute code-comparison study: EMPIRE vs. CHICAGO – 
cold
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Half-o-lute code-comparison study: EMPIRE vs. CHICAGO – 
hot
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Half-o-lute hot EMPIRE simulation: electron number density
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Powerflow model building has advanced using an integrated 
approach where developing code capabilities are pushed 
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(3D) Powerflow 18a(3D) Half-o-lute
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Powerflow 18a model setup: full problem domain20

power flow

power flow
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Energy stored at outer perimeter compressed in space 
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(load)



Powerflow 18a model setup21

Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)
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Powerflow 18a model setup22
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Powerflow 18a model setup23
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Powerflow 18a model setup24
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Powerflow 18a model setup25

Full problem domain

3D1D region
Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)
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Powerflow 18a model setup26
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Powerflow 18a code-comparison study: cold
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Powerflow 18a code-comparison study: cold
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Powerflow 18a EMPIRE simulation: hot
EMPIRE-PIC



Powerflow 18a EMPIRE hot simulation: ExB vectors trace e- 
flow

Time: 111.262 ns EMPIRE-PIC



Powerflow 18a EMPIRE hot simulation: Time = 111.262 
ns31
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Conclusions
• SNL’s next-generation plasma simulation code, EMPIRE, is expanding to meet the challenges of power flow 

modeling.

• A 1D BERTHA circuit model has been successfully coupled to a 3D electromagnetic domain of the Z-convolute, 
demonstrating that the full device can be simulated at feasible cost.

• An EMPIRE power flow model incorporating EM wave propagation, space-charge limited emission with relativistic 
dynamics has:
 Been benchmarked successfully against corresponding CHICAGO simulations.
 Demonstrated good agreement with current data measured during the actual shots of this campaign.

• To achieve a full physics model, one more step = including thermal desorption   electrode plasma formation 
which introduces
o Time step restrictions:

 From plasma frequency (1016 cm-3): Dt < 0.05 ps 
 From cyclotron frequency (300 T): Dt < 0.01 ps

o Mesh resolution restrictions: 100 mm to resolve sheaths at all electrode surfaces.
o Preliminary mesh revisions produce 93.75 mm elements at 2.6B elements, particle inventories approaching billions

 Need: implicit time stepping, load balance, particle merge, and restart capability which are all emerging capabilities in EMPIRE

• Scaling studies on next-generation platforms (NGPs) and initial test runs on LLNL’s sierra suggest a simulation 
turnover time of days is reachable for a full physics model

• Impacts: 
• Z power flow is a critical design criteria to understand, we have made significant steps towards demonstrating simulation simulations can 

be turned around fast enough to affect the design cycle of future Z shots.
• As more confidence is gained in these models, EMPIRE power flow simulations will provide crucial design information, esp. for next 

generation pulsed power facilities (NGPPF) such as Z-next.
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Thank you for your attention!
Questions?
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Half-o-lute EMPIRE vs. CHICAGO code-comparison study: 
cold
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Half-o-lute cold EMPIRE simulation: EM fields
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System overview: Z accelerator at Sandia38

• Marx generators:
• 36 Marxes housing sixty 2.6 uF capacitors each = 2,160 

caps total
• 20 MJ stored energy total
• Charged to ~ 85 kV   5.1 MV output voltage
• Discharge time: 1.5 rise time to peak of 150 kA

•I-store caps
 Ø6.5 ft, 10-ft long water-filled cylinders charged to 5.1 MV   
laser-triggered   peak current 600 kA in 500 ns rise

• Laser-triggered gas switches: 
Ø1.5 ft, 2.6 ft-long   triggered by 15 mJ Nd:glass laser

•PFLs: 
Ø5.5 ft, 4.5-ft long coaxial water cylinder   700 
kA at 200 ns rise

•Outer MITLs: 
• five nested 10-ton stainless steel cones

• Vacuum convolute   inner MITL   Load
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Component information: “How does the Z Machine Work? Sandia National Laboratories: Z Pulsed Power Facility: How 
Does the Z Machine Work?”. http://www.sandia.gov/z-machine/about_z/how-z-works.html. Accessed: 11/23/2020

http://www.sandia.gov/z-machine/about_z/how-z-works.html
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Powerflow18a hardware                        15 degree 
wedge
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Powerflow18a hardware                        15 degree 
wedge
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Powerflow 18a hot EMPIRE simulation: V and I at MITL 
ports42

A

B

C

D



Powerflow 18a cold EMPIRE simulation: V and I along top 
level43
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Powerflow 18a hot EMPIRE simulation: V and I along top 
level44
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Powerflow 18a (hot): CHICAGO vs. EMPIRE MITL A 
current

Black = measured
Blue = simulated
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Powerflow 18a (hot): CHICAGO vs. EMPIRE MITL D 
current

Black = measured
Blue = simulated
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Powerflow 18a (hot): CHICAGO vs. EMPIRE inner MITL entrance current
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Powerflow 18a hot EMPIRE simulation: EM fields
EMPIRE-PIC


