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Task 4.0 Passive Microseismicity Monitoring

Executive summary:

The objective of the subtask was to develop a near-real-time monitoring system for seismic data
at the Decatur, IL, geologic carbon sequestration (GCS) site and specifically include fiber-optic
cable derived distributed acoustic signal (DAS) data in the process. Owing to the large volumes
of data, we opted to utilize existing deep borehole conventional seismic sensors for detection and
pull DAS and shallow borehole seismic data once a detection has been made. Unfortunately, the
horizontal fiber-optic cables did not yield microseismic signals for use in locating events near the
GCS site. Various stacking and filtering approaches were tested without any coherent detection
becoming apparent. We attribute the insensitivity to local microseismic events to a lack of
coupling in downhole, vertical cable and the non-ideal alignment of the horizontal fiber-optic
cable to the vertically polarized seismic energy. Despite the inability to detect and utilize the
DAS data from the fiber-optic cables, we developed a general processing framework that enables
easy adaptation for future deployment of fiber-optic cables with better suited alignment at
Decatur or elsewhere.

Subtask 4.1 Develop near-real-time extraction of DAS derived data into
detection and location processing system.

1. General layout of data flow/processing/etc.

While passive microseismic monitoring on distributed acoustic sensing (DAS) can be successfully
employed for microseismicity near the sensor string (<~1km), e.g., hydraulic fracturing operations
(Molenaar at el., 2011), its applicability to monitoring more distant microseismicity is still in
question (Karam et al., 2013). These difficulties are due to the low signal-to-noise ratio of small
seismic events recorded on DAS, which is a consequence of the sensitivity of the DAS and often



due to the noise of the injection itself (e.g., Maxwell and Urbancic, 2001). However, DAS also
offers advantages over conventional instruments, primarily a very large sensor count (4000+) and
extensive linear coverage, both of which present unique opportunities for passive microseismic
analyses.

DAS systems generate vast amounts of data given the large number of individual (virtual)
sensors and the high sampling frequencies. To avoid major data transmission volumes, we
iterated on the data acquisition and transmission design until dependable transmission of data
from the field site to our servers was achieved. In all there are three different types of passive
seismic data that we use in our near real-time processing: 1) the deep, conventional borehole
seismometer network installed in wells GM1 and CCS1, hereon referred to as deep borehole
array SCSDBA; 2) the shallow borehole and surface seismometer network deployed by the U.S.
Geological Survey, referred to as GSDEC; and finally, 3) the fiber optic cable derived DAS data
deployed in this project, hereon referred to as DECDAS.

The overall data acquisition, transmission, and event detection is shown in the data flow diagram
in Figure 1. We start the processing by transmitting the SCSDBA data every ten minutes. This is
done on the ADM server side using a code called sendFileII, which requires firewall
exemptions on both the ADM- and USGS-server sides. Once the SCSDBA data is sent to our
project specific server (ISDPXL), the data file is unzipped and individual file names are time
stamped to Coordinated Universal Time (UTC time) based on the start times recorded in the
headers of the files. Each file is moved into a daily (UTC date and time) directory on the project
server (ISDPXL). The separate steps are depicted in the top three boxes in the diagram in Figure
1.






Fig 1. Processing flow chart for near-real-time detection and location of microseismic events at
the Decatur, IL, GCS site.

2. Data transmission details

Continuous data transfer from the SCSDBA to the USGS server (ISDPXL) is done using the
programs sendfilelII, fgetfileII, and makebhfile. The programs run continuously,
so they are appropriate for real-time and near-real-time applications. These programs are
distributed as part of Earthworm, but they do not depend on any other parts of Earthworm. The
sendfileIT program gets files from a queue directory, transmits the files via a socket
connection, and deletes the files from the queue directory. The get fileITI program receives
data files from sendfileIT via a socket connection and saves them in specified directories.
The makehbfile program periodically places a heartbeat file in the queue directory used by
sendfilelIl. Ifthe network connection between computers is down for any reason, files will
accumulate in sendfileII's queue directory until the network comes back up. Then all files
will be sent immediately. However, get £i1eII will handle only a single file transaction at a
time, that is, get £11eIT is a single-threaded, non-forking process.

3. DAS data acquisition and archival

Owing to the large amount of data generated by the DAS system employed at Decatur
(DECDAS), we retrieve the DAS data only for events detected on the SCSDBA array. When a
trigger is initiated, the trigger routine (dailyTrigger.py) will remote copy DECDAS data
from the ADM external server (IP address: 96.92.207.122) into the individual triggered event
directory.

4. Details of translator code for proprietary SEG variant

In order to facilitate the processing of the Silixa proprietary file format ‘TDMS’, we translated a
MatLab script provided by Romain Pevzner at Curtin University, Australia. The translation of
the TDMS-MatLab converter was done using python to enable accessing data in our python
environment. We tested our translated code against the original MatLab conversion script and
conclude that both data format readers yield identical results. The original MatLab script and our
derivative code in python remain proprietary tools that Silixa is intent on keeping software
proprietary from the public and or any funding agency

Subtask 4.2 Event detection and phase identification



1. STA/LTA detection

The advent of digital seismic data required automated techniques to detect earthquakes
and determine automatic estimates of the phase onsets. Phase onsets in microseismic monitoring
largely consist of downward compressional waves (P), upward/direct compressional (p) waves,
and secondary (downward first) shear waves (S). Standard algorithms for event detection and
phase arrival estimates are plentiful, with the most common being a short-term average over
long-term average energy density squared ratio (STA/LTA) (Allen, 1978). We employ a
recursive STA/LTA detection algorithm as it performs very well when tuned to local settings.
For data from the deep borehole sensors (SCSDBA), we select 4 individual channels: PS1 1H,
PS1 27, GM1 02Z, GM1 _04Z, where PS1 indicates two sensors within injection well CCS1
and GM1 indicates sensors in geophysical monitoring well GM1 (Couéslan et al., 2014); the last
letters refer to either vertical (Z) or horizontal (H) orientation of the individual sensor. We
choose these channels as they show the least noise of the deep sensors. The data is demeaned,
notch-filtered at 60Hz, and bandpass filtered (20 Hz < f < 100 Hz) based on observed noise
patterns and microseismic energy distribution of the data. We then require a minimum of 3
channel triggers to coincide to generate a detection when the STA/LTA window lengths are 0.5/5
seconds (Withers et al., 1998).

2. Template matching

A well recorded seismic signal is largely a product of the 1) earthquake source, 2)
medium the energy travels through, and 3) how the receiver records the energy. If an earthquake
source “repeats” (i.e. multiple earthquakes in close proximity to one another along a similar fault
patch), the event waveforms recorded at a sensor will be similar. Template matching is an
important technique for the characterization of these repetitive seismic sources as it mitigates the
path uncertainty (e.g., Schaff and Waldhauser, 2010). This procedure takes the waveform from a
known earthquake and cross-correlates it against continuously recorded seismic data to identify
other similar, smaller amplitude signals that might have been missed by other earthquake
detection methods. As induced seismicity commonly occurs as swarms containing similar events,
template matching aids our understanding of induced earthquakes by detecting smaller
magnitude earthquakes that are generally missed in routine processing. While traditional
earthquake detection techniques rely on relatively large amplitudes to be recorded, template
matching can identify smaller amplitude events that have a much lower signal-to-noise ratio.

Waveform template matching using regional seismic networks commonly increases the
number of detected earthquakes by roughly an order of magnitude. With the increase in the
number of continuously recorded seismometers and computational processing capabilities, the
approach of applying template matching to regional stations has grown in popularity over the
past decade. However, template matching has rarely been applied to borehole networks and
DAS. While template matching using DAS may be feasible, the signal-to-noise ratio of



microseismic events recorded by the DAS installation was too low to resolve the waveform for
template events (described in Subtasks 4.2 & 4.3). Instead, we evaluate the potential to apply
template matching to local borehole instruments.

We applied template matching to 85 earthquakes identified using the deep borehole
sensors (PS1 & PS2) to evaluate the benefit of using borehole instruments to monitor for
microseismicity (Fig. 2). Templates were two seconds in length, bandpass filtered between 50-90
Hz, and cross-correlated between 1 September 2016 - 30 November 2017. The template
matching catalog contained 349 events, roughly four times as many earthquakes than were in the
original catalog.
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Fig 2. Demonstration of template matching applied to the deep borehole sensors (PS1 & PS2)
showing the number of events in the original catalog (red) and detected events (black).



3. Filtering/stacking/cross-correlation of DAS data

Many microseismic events that were well-recorded on both the deep borehole and
shallow borehole networks. However, the signal-to-noise ratio of microseismic events recorded
by the DAS installation was too low to resolve the waveform for the microseismicity (Figure 3).
We verified that this was not due to a time zone issue (Figure 3) and demonstrate some of the
different filtering and stacking steps we tried to improve the signal-to-noise ratio in Subtask 4.3.
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Figure 3. Example records for the 21 October 2018 [~10:59:30] local event for a single channel
from the deep borehole, shallow borehole, and a representative DAS channel. DAS records are
shown at different time zones to confirm the lack of an observed signal.

4. Description of manual picking interface

Analyst picked phase arrivals are crucial in determining high accuracy hypocentral
parameters, including the origin time and location. To facilitate the use of all three data streams
we built a custom user interface that ingests data from SCSDBA, GSDEC, and DECDAS
sources. The interface is based on the open source streampick package (Isken, 2013). The
framework depends on the event detection and archiving in event directories described earlier.
Once an event is detected, instantiated on ISDPXL, and data are gathered, an analyst can access
data from all individual channels per station (Fig. 4). In the wavetrace panel, phase arrivals can
be added for both P- and S-wave arrivals using the cursor and determining the phase using
specified keys. Those data are automatically saved to a QUAKEML file in the event directory.
The function bar includes options to plot all arrivals for the particular event on a Wadati plot (i.e.
P-arrival plotted against the difference of S- and P-wave arrivals) to ensure erroneous phase
arrivals can be easily identified; the panel also includes the option to locate the event directly
using either standard Geiger method location techniques (“Locate hypo™) or the probabilistic
location method (“Locate Nlloc™), see section 4.3.3 for more details on the location method.
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Figure 4. Custom built user interface depicting two channels from one station in the wavetrace
panel (GM1 _1). Specific channel names are shown in the upper right-hand corner of each trace
panel. Mouse and keyboard are used to pick phase arrivals

Once event hypocenters are located, the manual picking interface displays a window with
the event hypocenters and uncertainty regions displayed in a separate window (Fig. 5). The map
and two cross-section views aid in determining the quality of the location, specifically, if the
uncertainty region is skewed and whether reductions in uncertainty can be made by improving
phase picks.
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Figure 5. Custom-built hypocenter location map and cross-section interface for analyst review.
Each panel can be zoomed to verify locations and hypocentral uncertainties.



The flexibility of the custom-built interface can easily be extended to ingest all DAS derived data
or stacks of DAS derived data. Additionally, extension to various hypocentral location and
magnitude estimation methods can and has been added.

Subtask 4.3 Improving location methods and weighting for improved event
location uncertainties

1. DAS data on local event

If the vertical DAS had been coupled to the borehole, it would have likely had larger
signal-to-noise ratios than the horizontal DAS strings due to a smaller source-sensor distance.
However, since the vertical DAS was not coupled to the borehole, it was not possible to utilize it
to detect microseismic events. As a result, we were limited to recordings on the horizontal DAS.

We attempted various types of low (15-100 Hz in intervals of 5 Hz), high (1, 5-80 Hz in
intervals of 5 Hz), and bandpass (1-100, 5-15, 5-20, 5-40, 10-50, 20-40, & 50-100 Hz) filters
along with channel stacking approaches (bin and rolling stacks using 5, 10, 50, & 100 channels)
to improve the signal-to-noise ratio of the DAS records. Filtering the data did not clearly resolve
any signals, and stacking channels caused other noise signals to be amplified. We show example
waveforms of this for two local events (Figs. 6 & 8) along with the spectra for the records (Figs.
7 & 9). While the borehole networks recorded these microseismic events well, the DAS appears
to be dominated by noise. Note, the linear feature decreasing in frequency with time (Figure 7)
that coincides with the arrival time of the local event is part of the active orbital source described
in other portions of the final report.
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Figure 6. Example records for the 21 October 2018 [~10:59:30] local event on the deep
borehole, shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz (left), 10-
50 Hz (middle), and 20-40 Hz (right).
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Figure 7. Example records for the 21 October 2018 [~10:59:30] local event on the deep
borehole, shallow borehole, and DAS in the time (top) and frequency (bottom) domains.
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Figure 8. Example records for the 28 July 2017 [~00:36:57] local event on the deep borehole,
shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz (left), 10-50 Hz

(middle), and 20-40 Hz (right).
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Figure 9. Example records for the 28 July 2017 [~00:36:57] local event on the deep borehole,
shallow borehole, and DAS in the time (top) and frequency (bottom) domains.

2. DAS data on regional event

Similar to the results from the microseismic records, regional events were also not well-
recorded on the DAS. The various types of filtering applied to local microseismic data (15-100
Hz in intervals of 5 Hz), high (1, 5-80 Hz in intervals of 5 Hz), and bandpass (1-100, 5-15, 5-20,
5-40, 10-50, 20-40, & 50-100 Hz) filters along with channel stacking approaches (bin and rolling
stacks using 5, 10, 50, & 100 channels) were also used for the regional events. We show example
waveforms of this for two regional events (Figs. 10 &12) along with the spectra for the records
(Figs. 11 & 13). While the regional earthquakes are well recorded on the borehole networks, the
DAS appears to be dominated by noise.
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Figure 10. Example records for the 20 September 2018 Md 2.3, ~170 km south of Decatur on
the deep borehole, shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz
(left), 10-50 Hz (middle), and 20-40 Hz (right).
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Figure 11. Example records for the 20 September 2018 Md 2.3, ~170 km south of Decatur on
the deep borehole, shallow borehole, and DAS in the time (top) and frequency (bottom) domains.
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Figure 12. Example records for the 15 October 2018 Md 2.1, ~185 km south of Decatur on the
deep borehole, shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz
(left), 10-50 Hz (middle), and 20-40 Hz (right).
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Figure 13. Example records for the 15 October 2018 Md 2.1, ~185 km south of Decatur on the
deep borehole, shallow borehole, and DAS in the time (top) and frequency (bottom) domains.

3. Location method (NonLinLoc)

All earthquakes were independently relocated using a probabilistic formulation of the
nonlinear inverse problem governing hypocentral location methods (NonLinLoc; Lomax et al.,
2000). We assumed that uncertainties in a priori information (e.g., phase arrival pick times and
theoretical arrival times) are Gaussian and independent of one another, which permits calculation
of the posterior probability density function (PDF). We used the OctTree sampling algorithm in
NonLinLoc, which efficiently calculates the PDF for hypocentral parameters (Husen and Smith,
2004). The velocity model consisted of a 38-layer P- and S-wave 1D model interpolated from the
borehole velocity survey conducted by Schlumberger Carbon Services. The travel time model
volumes were determined for 10x10x10 m grids.

This location method solves for travel times in the velocity model. This method
completely maps the PDF through the model domain. For each event, we obtain a cloud of
possible locations within the prescribed probability density function bounds and we select the
maximum likelihood location from the point cloud to arrive at the preferred event location.
However, given the vertical arrangement of borehole seismic sensors this generally results in a
donut-shaped distribution of possible locations that fit the uncertainty conditions due to the
azimuthal ambiguity (Fig. 14).
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To further reduce the number of probable event locations we use additional waveform
data to discern the incident polarization direction of recordings (Fig. 15). The polarization
direction of recorded S-waves is perpendicular to the back-azimuth from the station to the event
location. Figure 15 shows the polarization direction of S-waves determined using a 0.1 second
window following the S-pick after band-pass filtering from 20 to 40Hz (Vidale, 1986). Note that
planarity and ellipticity of all borehole sensors are increasing in quality with depth, but can
confidently be deduced for all sensors, thus providing robust estimates of S-wave azimuths for
all sensors.
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Figure 15. S-wave polarity (blue curve) and best fitting azimuth (red line) at each of the GM1
borehole sensors. Resulting S-wave azimuth plotted in boxes in lower left corner. GM1 borehole
array sensors IDs decrease in number with depth (e.g. GM129 is the deepest channel depicted).

Using the estimates of S-wave polarization, we can then weigh probable event locations
according to how well the azimuths fit the locations (Fig. 16). This method does not resolve the
180-degree ambiguity of azimuths (Fig. 16), but given the PDF of the probable event locations, a
weighted maximum likelihood event location can be robustly deduced (see red dots in Fig. 16).
This weighting of the PDF further improves our estimates of absolute location of each event
located and includes formal estimates of the location uncertainty.
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Figure 16. a) Posterior probability density function (PDF) of the non-linear grid search location
method. b) Azimuthal weighting based on S-wave polarity with warm colors indicate higher
likelihood of location. ¢) Combined PDF and azimuthal weighting for best fitting locations (red
dots). Color and size indicate highest PDF and azimuthal weight.

4. Test shot performance on borehole array

We tested our microseismic event location algorithm using perforation shots carried out
in well VW#1. We locate events by first getting an initial location and then using the residuals
for each channel as individual weights in a second location. Using this approach without any
further calibration we manage to locate three of the four perforations shots very well in depth
(Table 1).

Table 1. Actual and location depths and differences in km for three individual perforations shots
fired in VW#1.

Actual depth (km) NonLinLoc depth (km) Difference (km)

Perf #2 1.953 1.9584 0.005
Perf #3 1.517 1.5327 0.015
Perf #4 1.514 1.5220 0.008

The horizontal coordinates were all within roughly 100m of the actual horizontal position
with the larger uncertainty owing to the polar ambiguity inherent in the vertical array. The
polarity calculation cannot be carried out at this point, as several channels appear to be
misreported and we did not receive confirmation on the actual orientations from Schlumberger
Carbon Services. If those sensor orientations issues had been addressed, we could have reduced
the horizontal uncertainty to within a few tens of meters, albeit still subject to the 180-degree
ambiguity (see Subtask 4.3.3).

Summary

The goal of this subtask was to build a workflow for DAS generated seismic data to be integrated
at the Decatur, IL, geologic sequestration site’s microseismic data processing. The main
objectives were to: 1) ensure near-real-time data transmittal and processing, 2) improve event
detections, 3) employ location techniques that rely on all data streams, including DAS-derived
data. Owing to the multitude of available data, we focused on optimizing data flows, testing
detection methods for each stream of data, i.e., deep borehole, DAS, shallow borehole, and
extending location methods for the specific needs at Decatur. Unfortunately, the DAS-derived



data at Decatur did not prove useful in detecting or locating seismicity. Various stacking and
filter optimization schemes were employed to overcome the insensitivity of the installed fiber-
optic cables to seismic waves but no avail. However, we have developed a framework for the
inclusion of fiber-optic cable derived DAS data in the standard workflow in microseismic
monitoring. Our data flow, analyst interface, and extended location methods have been employed
in other settings, e.g., West Texas (Skoumal et al, 2020), with little change from the outlined
workflow.
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