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Task 4.0 Passive Microseismicity Monitoring 
 
Executive summary: 
 
The objective of the subtask was to develop a near-real-time monitoring system for seismic data 
at the Decatur, IL, geologic carbon sequestration (GCS) site and specifically include fiber-optic 
cable derived distributed acoustic signal (DAS) data in the process. Owing to the large volumes 
of data, we opted to utilize existing deep borehole conventional seismic sensors for detection and 
pull DAS and shallow borehole seismic data once a detection has been made. Unfortunately, the 
horizontal fiber-optic cables did not yield microseismic signals for use in locating events near the 
GCS site. Various stacking and filtering approaches were tested without any coherent detection 
becoming apparent. We attribute the insensitivity to local microseismic events to a lack of 
coupling in downhole, vertical cable and the non-ideal alignment of the horizontal fiber-optic 
cable to the vertically polarized seismic energy. Despite the inability to detect and utilize the 
DAS data from the fiber-optic cables, we developed a general processing framework that enables 
easy adaptation for future deployment of fiber-optic cables with better suited alignment at 
Decatur or elsewhere.  

 
 
Subtask 4.1 Develop near-real-time extraction of DAS derived data into 
detection and location processing system. 
 
1. General layout of data flow/processing/etc.  
 
While passive microseismic monitoring on distributed acoustic sensing (DAS) can be successfully 
employed for microseismicity near the sensor string (<~1km), e.g., hydraulic fracturing operations 
(Molenaar at el., 2011), its applicability to monitoring more distant microseismicity is still in 
question (Karam et al., 2013). These difficulties are due to the low signal-to-noise ratio of small 
seismic events recorded on DAS, which is a consequence of the sensitivity of the DAS and often 



due to the noise of the injection itself (e.g., Maxwell and Urbancic, 2001). However, DAS also 
offers advantages over conventional instruments, primarily a very large sensor count (4000+) and 
extensive linear coverage, both of which present unique opportunities for passive microseismic 
analyses. 
 
DAS systems generate vast amounts of data given the large number of individual (virtual) 
sensors and the high sampling frequencies. To avoid major data transmission volumes, we 
iterated on the data acquisition and transmission design until dependable transmission of data 
from the field site to our servers was achieved. In all there are three different types of passive 
seismic data that we use in our near real-time processing: 1) the deep, conventional borehole 
seismometer network installed in wells GM1 and CCS1, hereon referred to as deep borehole 
array SCSDBA; 2) the shallow borehole and surface seismometer network deployed by the U.S. 
Geological Survey, referred to as GSDEC; and finally, 3) the fiber optic cable derived DAS data 
deployed in this project, hereon referred to as DECDAS. 
 
The overall data acquisition, transmission, and event detection is shown in the data flow diagram 
in Figure 1. We start the processing by transmitting the SCSDBA data every ten minutes. This is 
done on the ADM server side using a code called sendFileII, which requires firewall 

exemptions on both the ADM- and USGS-server sides. Once the SCSDBA data is sent to our 
project specific server (ISDPXL), the data file is unzipped and individual file names are time 
stamped to Coordinated Universal Time (UTC time) based on the start times recorded in the 
headers of the files. Each file is moved into a daily (UTC date and time) directory on the project 
server (ISDPXL). The separate steps are depicted in the top three boxes in the diagram in Figure 
1.  



 



Fig 1. Processing flow chart for near-real-time detection and location of microseismic events at 
the Decatur, IL, GCS site. 
 

 
 
2. Data transmission details  
 
Continuous data transfer from the SCSDBA to the USGS server (ISDPXL) is done using the 
programs sendfileII, fgetfileII, and makebhfile.  The programs run continuously, 

so they are appropriate for real-time and near-real-time applications. These programs are 
distributed as part of Earthworm, but they do not depend on any other parts of Earthworm. The 
sendfileII program gets files from a queue directory, transmits the files via a socket 

connection, and deletes the files from the queue directory. The getfileII program receives 

data files from sendfileII via a socket connection and saves them in specified directories.  

The makehbfile program periodically places a heartbeat file in the queue directory used by 

sendfileII. If the network connection between computers is down for any reason, files will 

accumulate in sendfileII's queue directory until the network comes back up.  Then all files 

will be sent immediately. However, getfileII will handle only a single file transaction at a 

time, that is, getfileII is a single-threaded, non-forking process.  

 
3. DAS data acquisition and archival  
Owing to the large amount of data generated by the DAS system employed at Decatur 
(DECDAS), we retrieve the DAS data only for events detected on the SCSDBA array. When a 
trigger is initiated, the trigger routine (dailyTrigger.py) will remote copy DECDAS data 

from the ADM external server (IP address: 96.92.207.122) into the individual triggered event 
directory.  
 
4. Details of translator code for proprietary SEG variant 
In order to facilitate the processing of the Silixa proprietary file format ‘TDMS’, we translated a 
MatLab script provided by Romain Pevzner at Curtin University, Australia. The translation of 
the TDMS-MatLab converter was done using python to enable accessing data in our python 
environment. We tested our translated code against the original MatLab conversion script and 
conclude that both data format readers yield identical results. The original MatLab script and our 
derivative code in python remain proprietary tools that Silixa is intent on keeping software 
proprietary from the public and or any funding agency 
 

 
Subtask 4.2 Event detection and phase identification 
 



1. STA/LTA detection 
 
 The advent of digital seismic data required automated techniques to detect earthquakes 
and determine automatic estimates of the phase onsets. Phase onsets in microseismic monitoring 
largely consist of downward compressional waves (P), upward/direct compressional (p) waves, 
and secondary (downward first) shear waves (S). Standard algorithms for event detection and 
phase arrival estimates are plentiful, with the most common being a short-term average over 
long-term average energy density squared ratio (STA/LTA) (Allen, 1978). We employ a 
recursive STA/LTA detection algorithm as it performs very well when tuned to local settings. 
For data from the deep borehole sensors (SCSDBA), we select 4 individual channels: PS1_1H, 
PS1_2Z, GM1_02Z, GM1_04Z, where PS1 indicates two sensors within injection well CCS1 
and GM1 indicates sensors in geophysical monitoring well GM1 (Couëslan et al., 2014); the last 
letters refer to either vertical (Z) or horizontal (H) orientation of the individual sensor. We 
choose these channels as they show the least noise of the deep sensors. The data is demeaned, 
notch-filtered at 60Hz, and bandpass filtered (20 Hz < ƒ < 100 Hz) based on observed noise 
patterns and microseismic energy distribution of the data. We then require a minimum of 3 
channel triggers to coincide to generate a detection when the STA/LTA window lengths are 0.5/5 
seconds (Withers et al., 1998).  
 
2. Template matching 
 

A well recorded seismic signal is largely a product of the 1) earthquake source, 2) 
medium the energy travels through, and 3) how the receiver records the energy. If an earthquake 
source “repeats” (i.e. multiple earthquakes in close proximity to one another along a similar fault 
patch), the event waveforms recorded at a sensor will be similar. Template matching is an 
important technique for the characterization of these repetitive seismic sources as it mitigates the 
path uncertainty (e.g., Schaff and Waldhauser, 2010). This procedure takes the waveform from a 
known earthquake and cross-correlates it against continuously recorded seismic data to identify 
other similar, smaller amplitude signals that might have been missed by other earthquake 
detection methods. As induced seismicity commonly occurs as swarms containing similar events, 
template matching aids our understanding of induced earthquakes by detecting smaller 
magnitude earthquakes that are generally missed in routine processing. While traditional 
earthquake detection techniques rely on relatively large amplitudes to be recorded, template 
matching can identify smaller amplitude events that have a much lower signal-to-noise ratio. 

Waveform template matching using regional seismic networks commonly increases the 
number of detected earthquakes by roughly an order of magnitude. With the increase in the 
number of continuously recorded seismometers and computational processing capabilities, the 
approach of applying template matching to regional stations has grown in popularity over the 
past decade. However, template matching has rarely been applied to borehole networks and 
DAS. While template matching using DAS may be feasible, the signal-to-noise ratio of 



microseismic events recorded by the DAS installation was too low to resolve the waveform for 
template events (described in Subtasks 4.2 & 4.3). Instead, we evaluate the potential to apply 
template matching to local borehole instruments. 

We applied template matching to 85 earthquakes identified using the deep borehole 
sensors (PS1 & PS2) to evaluate the benefit of using borehole instruments to monitor for 
microseismicity (Fig. 2). Templates were two seconds in length, bandpass filtered between 50-90 
Hz, and cross-correlated between 1 September 2016 - 30 November 2017. The template 
matching catalog contained 349 events, roughly four times as many earthquakes than were in the 
original catalog. 

 

 
Fig 2. Demonstration of template matching applied to the deep borehole sensors (PS1 & PS2) 
showing the number of events in the original catalog (red) and detected events (black). 
 
  



3. Filtering/stacking/cross-correlation of DAS data 
Many microseismic events that were well-recorded on both the deep borehole and 

shallow borehole networks. However, the signal-to-noise ratio of microseismic events recorded 
by the DAS installation was too low to resolve the waveform for the microseismicity (Figure 3). 
We verified that this was not due to a time zone issue (Figure 3) and demonstrate some of the 
different filtering and stacking steps we tried to improve the signal-to-noise ratio in Subtask 4.3. 



 



Figure 3. Example records for the 21 October 2018 [~10:59:30] local event for a single channel 
from the deep borehole, shallow borehole, and a representative DAS channel. DAS records are 
shown at different time zones to confirm the lack of an observed signal. 
 
4. Description of manual picking interface  
 
 Analyst picked phase arrivals are crucial in determining high accuracy hypocentral 
parameters, including the origin time and location. To facilitate the use of all three data streams 
we built a custom user interface that ingests data from SCSDBA, GSDEC, and DECDAS 
sources. The interface is based on the open source streampick package (Isken, 2013). The 

framework depends on the event detection and archiving in event directories described earlier. 
Once an event is detected, instantiated on ISDPXL, and data are gathered, an analyst can access 
data from all individual channels per station (Fig. 4). In the wavetrace panel, phase arrivals can 
be added for both P- and S-wave arrivals using the cursor and determining the phase using 
specified keys. Those data are automatically saved to a QUAKEML file in the event directory. 
The function bar includes options to plot all arrivals for the particular event on a Wadati plot (i.e. 
P-arrival plotted against the difference of S- and P-wave arrivals) to ensure erroneous phase 
arrivals can be easily identified; the panel also includes the option to locate the event directly 
using either standard Geiger method location techniques (“Locate hypo”) or the probabilistic 
location method (“Locate Nlloc”), see section 4.3.3 for more details on the location method. 
 

 



Figure 4. Custom built user interface depicting two channels from one station in the wavetrace 
panel (GM1_1). Specific channel names are shown in the upper right-hand corner of each trace 
panel. Mouse and keyboard are used to pick phase arrivals 
 
 Once event hypocenters are located, the manual picking interface displays a window with 
the event hypocenters and uncertainty regions displayed in a separate window (Fig. 5). The map 
and two cross-section views aid in determining the quality of the location, specifically, if the 
uncertainty region is skewed and whether reductions in uncertainty can be made by improving 
phase picks. 
 

 

 
 
Figure 5. Custom-built hypocenter location map and cross-section interface for analyst review. 
Each panel can be zoomed to verify locations and hypocentral uncertainties. 
 



The flexibility of the custom-built interface can easily be extended to ingest all DAS derived data 
or stacks of DAS derived data. Additionally, extension to various hypocentral location and 
magnitude estimation methods can and has been added. 
 

Subtask 4.3 Improving location methods and weighting for improved event 
location uncertainties 
 
1. DAS data on local event 

If the vertical DAS had been coupled to the borehole, it would have likely had larger 
signal-to-noise ratios than the horizontal DAS strings due to a smaller source-sensor distance. 
However, since the vertical DAS was not coupled to the borehole, it was not possible to utilize it 
to detect microseismic events. As a result, we were limited to recordings on the horizontal DAS. 

We attempted various types of low (15-100 Hz in intervals of 5 Hz), high (1, 5-80 Hz in 
intervals of 5 Hz), and bandpass (1-100, 5-15, 5-20, 5-40, 10-50, 20-40, & 50-100 Hz) filters 
along with channel stacking approaches (bin and rolling stacks using 5, 10, 50, & 100 channels) 
to improve the signal-to-noise ratio of the DAS records. Filtering the data did not clearly resolve 
any signals, and stacking channels caused other noise signals to be amplified. We show example 
waveforms of this for two local events (Figs. 6 & 8) along with the spectra for the records (Figs. 
7 & 9). While the borehole networks recorded these microseismic events well, the DAS appears 
to be dominated by noise. Note, the linear feature decreasing in frequency with time (Figure 7) 
that coincides with the arrival time of the local event is part of the active orbital source described 
in other portions of the final report. 
 



 
Figure 6. Example records for the 21 October 2018 [~10:59:30] local event on the deep 
borehole, shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz (left), 10-
50 Hz (middle), and 20-40 Hz (right).  
  



 

 
Figure 7. Example records for the 21 October 2018 [~10:59:30] local event on the deep 
borehole, shallow borehole, and DAS in the time (top) and frequency (bottom) domains. 
  



 

 
Figure 8. Example records for the 28 July 2017 [~00:36:57] local event on the deep borehole, 
shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz (left), 10-50 Hz 
(middle), and 20-40 Hz (right). 
  



 

 
Figure 9. Example records for the 28 July 2017 [~00:36:57] local event on the deep borehole, 
shallow borehole, and DAS in the time (top) and frequency (bottom) domains. 
 
2. DAS data on regional event 

Similar to the results from the microseismic records, regional events were also not well-
recorded on the DAS. The various types of filtering applied to local microseismic data (15-100 
Hz in intervals of 5 Hz), high (1, 5-80 Hz in intervals of 5 Hz), and bandpass (1-100, 5-15, 5-20, 
5-40, 10-50, 20-40, & 50-100 Hz) filters along with channel stacking approaches (bin and rolling 
stacks using 5, 10, 50, & 100 channels) were also used for the regional events. We show example 
waveforms of this for two regional events (Figs. 10 &12) along with the spectra for the records 
(Figs. 11 & 13). While the regional earthquakes are well recorded on the borehole networks, the 
DAS appears to be dominated by noise. 
 
 



 
Figure 10. Example records for the 20 September 2018 Md 2.3, ~170 km south of Decatur on 
the deep borehole, shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz 
(left), 10-50 Hz (middle), and 20-40 Hz (right). 
  



 

 
Figure 11. Example records for the 20 September 2018 Md 2.3, ~170 km south of Decatur on 
the deep borehole, shallow borehole, and DAS in the time (top) and frequency (bottom) domains. 
  



 

 
Figure 12. Example records for the 15 October 2018 Md 2.1, ~185 km south of Decatur on the 
deep borehole, shallow borehole, and DAS. Waveforms bandpass filtered between 1-100 Hz 
(left), 10-50 Hz (middle), and 20-40 Hz (right). 
 
 
 



 
Figure 13. Example records for the 15 October 2018 Md 2.1, ~185 km south of Decatur on the 
deep borehole, shallow borehole, and DAS in the time (top) and frequency (bottom) domains. 
 
3. Location method (NonLinLoc) 

All earthquakes were independently relocated using a probabilistic formulation of the 
nonlinear inverse problem governing hypocentral location methods (NonLinLoc; Lomax et al., 
2000). We assumed that uncertainties in a priori information (e.g., phase arrival pick times and 
theoretical arrival times) are Gaussian and independent of one another, which permits calculation 
of the posterior probability density function (PDF). We used the OctTree sampling algorithm in 
NonLinLoc, which efficiently calculates the PDF for hypocentral parameters (Husen and Smith, 
2004). The velocity model consisted of a 38-layer P- and S-wave 1D model interpolated from the 
borehole velocity survey conducted by Schlumberger Carbon Services. The travel time model 
volumes were determined for 10x10x10 m grids. 

This location method solves for travel times in the velocity model. This method 
completely maps the PDF through the model domain. For each event, we obtain a cloud of 
possible locations within the prescribed probability density function bounds and we select the 
maximum likelihood location from the point cloud to arrive at the preferred event location. 
However, given the vertical arrangement of borehole seismic sensors this generally results in a 
donut-shaped distribution of possible locations that fit the uncertainty conditions due to the 
azimuthal ambiguity (Fig. 14). 
  



 
Figure 14. Map (top) and cross-sectional (bottom) view of PDF solutions for one microseismic 
event. Black dots indicate preferred locations based on probability density bounds. Green star 
indicates maximum likelihood location. All coordinates are in a local reference frame and in km. 
 

To further reduce the number of probable event locations we use additional waveform 
data to discern the incident polarization direction of recordings (Fig. 15). The polarization 
direction of recorded S-waves is perpendicular to the back-azimuth from the station to the event 
location. Figure 15 shows the polarization direction of S-waves determined using a 0.1 second 
window following the S-pick after band-pass filtering from 20 to 40Hz (Vidale, 1986). Note that 
planarity and ellipticity of all borehole sensors are increasing in quality with depth, but can 
confidently be deduced for all sensors, thus providing robust estimates of S-wave azimuths for 
all sensors. 



  

 
Figure 15. S-wave polarity (blue curve) and best fitting azimuth (red line) at each of the GM1 
borehole sensors. Resulting S-wave azimuth plotted in boxes in lower left corner. GM1 borehole 
array sensors IDs decrease in number with depth (e.g. GM129 is the deepest channel depicted). 
  

Using the estimates of S-wave polarization, we can then weigh probable event locations 
according to how well the azimuths fit the locations (Fig. 16). This method does not resolve the 
180-degree ambiguity of azimuths (Fig. 16), but given the PDF of the probable event locations, a 
weighted maximum likelihood event location can be robustly deduced (see red dots in Fig. 16). 
This weighting of the PDF further improves our estimates of absolute location of each event 
located and includes formal estimates of the location uncertainty. 
 

 



Figure 16. a) Posterior probability density function (PDF) of the non-linear grid search location 
method. b) Azimuthal weighting based on S-wave polarity with warm colors indicate higher 
likelihood of location. c) Combined PDF and azimuthal weighting for best fitting locations (red 
dots). Color and size indicate highest PDF and azimuthal weight. 
  
  
4. Test shot performance on borehole array 

We tested our microseismic event location algorithm using perforation shots carried out 
in well VW#1. We locate events by first getting an initial location and then using the residuals 
for each channel as individual weights in a second location. Using this approach without any 
further calibration we manage to locate three of the four perforations shots very well in depth 
(Table 1). 
 
Table 1. Actual and location depths and differences in km for three individual perforations shots 
fired in VW#1.  

 Actual depth (km) NonLinLoc depth (km) Difference (km) 

Perf #2 1.953 1.9584  0.005 

Perf #3 1.517 1.5327 0.015 

Perf #4 1.514 1.5220 0.008 

 
The horizontal coordinates were all within roughly 100m of the actual horizontal position 

with the larger uncertainty owing to the polar ambiguity inherent in the vertical array. The 
polarity calculation cannot be carried out at this point, as several channels appear to be 
misreported and we did not receive confirmation on the actual orientations from Schlumberger 
Carbon Services. If those sensor orientations issues had been addressed, we could have reduced 
the horizontal uncertainty to within a few tens of meters, albeit still subject to the 180-degree 
ambiguity (see Subtask 4.3.3). 
 

 

Summary 
 
The goal of this subtask was to build a workflow for DAS generated seismic data to be integrated 
at the Decatur, IL, geologic sequestration site’s microseismic data processing. The main 
objectives were to: 1) ensure near-real-time data transmittal and processing, 2) improve event 
detections, 3) employ location techniques that rely on all data streams, including DAS-derived 
data. Owing to the multitude of available data, we focused on optimizing data flows, testing 
detection methods for each stream of data, i.e., deep borehole, DAS, shallow borehole, and 
extending location methods for the specific needs at Decatur. Unfortunately, the DAS-derived 



data at Decatur did not prove useful in detecting or locating seismicity. Various stacking and 
filter optimization schemes were employed to overcome the insensitivity of the installed fiber-
optic cables to seismic waves but no avail. However, we have developed a framework for the 
inclusion of fiber-optic cable derived DAS data in the standard workflow in microseismic 
monitoring. Our data flow, analyst interface, and extended location methods have been employed 
in other settings, e.g., West Texas (Skoumal et al, 2020), with little change from the outlined 
workflow.   
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