
Dear Author,

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author names
and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your answers/
corrections.

• Check that the text is complete and that all figures, tables and their legends are included. Also
check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further changes
are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note
After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.link.springer.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

http://www.link.springer.com


Metadata of the article that will be visualized in
OnlineFirst

ArticleTitle Machine-Learning-based Algorithms for Automated Image Segmentation Techniques of Transmission X-
ray Microscopy (TXM)

Article Sub-Title

Article CopyRight The Minerals, Metals & Materials Society
(This will be the copyright line in the final PDF)

Journal Name JOM

Corresponding Author Family Name Chawla
Particle

Given Name Nikhilesh
Suffix

Division School of Materials Engineering

Organization Purdue University

Address West Lafayette, IN, 47907, USA

Phone

Fax

Email nikc@purdue.edu

URL

ORCID

Author Family Name Torbati-Sarraf
Particle

Given Name Hamidreza
Suffix

Division School of Materials Engineering

Organization Purdue University

Address West Lafayette, IN, 47907, USA

Phone

Fax

Email

URL

ORCID

Author Family Name Niverty
Particle

Given Name Sridhar
Suffix

Division School of Materials Engineering

Organization Purdue University

Address West Lafayette, IN, 47907, USA

Phone

Fax

Email

URL



ORCID

Author Family Name Singh
Particle

Given Name Rajhans
Suffix

Division School of Arts Media and Engineering

Organization Arizona State University

Address Tempe, AZ, 85281, USA

Phone

Fax

Email

URL

ORCID

Author Family Name Barboza
Particle

Given Name Daniel
Suffix

Division School of Arts Media and Engineering

Organization Arizona State University

Address Tempe, AZ, 85281, USA

Phone

Fax

Email

URL

ORCID

Author Family Name Andrade
Particle De
Given Name Vincent
Suffix

Division Advanced Photon Source

Organization Argonne National Laboratory

Address Argonne, IL, 60439, USA

Phone

Fax

Email

URL

ORCID

Author Family Name Turaga
Particle

Given Name Pavan
Suffix

Division School of Arts Media and Engineering

Organization Arizona State University

Address Tempe, AZ, 85281, USA

Phone



Fax

Email

URL

ORCID

Schedule

Received 15 January 2021

Revised

Accepted 22 April 2021

Abstract Four state-of-the-art Deep Learning-based Convolutional Neural Networks (DCNN) were applied to
automate the semantic segmentation of a 3D Transmission x-ray Microscopy (TXM) nanotomography
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experimental datasets.
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19 Four state-of-the-art Deep Learning-based Convolutional Neural Networks
20 (DCNN) were applied to automate the semantic segmentation of a 3D
21 Transmission x-ray Microscopy (TXM) nanotomography image data. The
22 standard U-Net architecture as baseline along with UNet++, PSPNet, and
23 DeepLab v3+ networks were trained to segment the microstructural features
24 of an AA7075 micropillar. A workflow was established to evaluate and com-
25 pare the DCNN prediction dataset with the manually segmented features
26 using the Intersection of Union (IoU) scores, time of training, confusion ma-
27 trix, and visual assessment. Comparing all model segmentation accuracy
28 metrics, it was found that using pre-trained models as a backbone along with
29 appropriate training encoder–decoder architecture of the Unet++ can robustly
30 handle large volumes of x-ray radiographic images in a reasonable amount of
31 time. This opens a new window for handling accurate and efficient image
32 segmentation of in situ time-dependent 4D x-ray microscopy experimental
33 datasets.

34 INTRODUCTION

35 X-ray microtomography has become a very impor-
36 tant characterization technique for understanding
37 materials behavior. Depending on the particular
38 modality, this technique can enable image resolu-
39 tions ranging from tens of micrometers to the
40 nanometer scale. More importantly, the non-de-
41 structive nature of this technique allows us to
42 conduct in situ and/or time-resolved (4D) investiga-
43 tions where the evolution of microstructure1–6 or
44 propagation of a defect7–19 can be captured as a
45 function of time. In this study, the x-ray tomogra-
46 phy technique of interest is transmission x-ray
47 microscopy (TXM) which can be used to conduct
48 in situ 4D experiments at high spatial resolutions
49 (� 20 nm)20–27 using the 32-ID beamline at the
50 Advanced Photon Source (APS).

51One of the challenges with 4D x-ray microtomog-
52raphy experiments is the large amounts of data that
53are generated (often in the TB range). In particular,
543D rendering and statistical quantification of
55microstructurally evolving features (for example,
56crack growth, corrosion propagation, and phase
57transformation) require image segmentation. Thus,
58the subsequent image processing and feature clas-
59sification is often the rate-limiting step for tomo-
60graphic data analysis. Pixels with a wide
61distribution of grayscale values in the reconstructed
62images need to be segmented based on the features’
63density and homogeneity. These features often
64cannot be segmented using simple histogram
65thresholding or edge-based filtering. The presence
66of beam-hardening, scattered or other ionizing x-ray
67-generated ‘‘zinger’’ artifacts, ring artefacts, edge
68blurring due to motion artefacts, and phases with
69similar attenuation make the segmentation process
70more complicated.28,29 This renders the
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71 requirement of human hands-on intervention for
72 careful manual segmentation, making the process
73 extremely cumbersome and time-intensive. Manual
74 image segmentation is also subjective, depending on
75 the experience and visual acuity of the person doing
76 the analysis.30 Thus, there is a need for a new set of
77 tools to move toward automating image segmenta-
78 tion of large 4D x-ray tomography datasets.
79 With the success of machine-learning algorithms
80 in general image analysis, numerous promising
81 segmentation and classification approaches can be
82 applied for image segmentation for materials
83 science applications. Traditional machine-learning
84 image-processing methods, such as k-means clus-
85 tering and thresholding, have been employed for
86 various segmentation tasks.31,32 Contemporary
87 approaches, such as Gabor filtering, rely on neural
88 networks to solve a given end-task, such as classi-
89 fication or segmentation, by learning the model
90 parameters from training datasets33. Nevertheless,
91 these methods still require minimal human inter-
92 vention and are known as semi-automatic segmen-
93 tation approaches.
94 In recent developments, deep-learning (DL) has
95 pushed the boundaries in improving the robustness
96 of segmentation methods with minimal multi-pass
97 post-segmentation human intervention. Deep con-
98 volutional neural networks (DCNNs), have achieved
99 excellent performance for various image-processing

100 tasks. Krizhevsky et al.34 developed the first large-
101 scale application of DCNNs on difficult natural
102 image classification problems, and, since then,
103 different deep architectures have been modified in
104 different domains to improve the time and accuracy
105 of automated image processing. Although DL-based
106 image segmentation techniques have been exten-
107 sively implemented in medical x-ray radiographic
108 images, only a handful of studies have applied this
109 approach for x-ray microscopy images in materials
110 science and engineering.5,23,35–41

111 In this work, we study the performance of four
112 state-of-the-art deep learning architectures for
113 automatic image segmentation of a TXM dataset.
114 We chose U-Net, UNet++, PSPNet, and DeepLab
115 v3+ DCNN architectures, as the implementation of
116 these networks are readily accessible and have
117 shown outstanding segmentation results in multiple
118 domains, such as intelligent transportation, geo
119 sensing, and medical imaging.42–46 The architecture
120 of all the adopted networks contains an encoder and
121 a decoder sub-network. First, the encoder extracts
122 the features from a given image by contracting the
123 image into different depths (resolutions) using
124 different down-sampling convolutions and opera-
125 tional layers. Then, the decoder takes the feature
126 map from different depths of the encoder, predicts
127 the class of the pixel, recovers spatial information,
128 and reconstructs the image using up-sampling
129 convolutions.47 However, each model uses different
130 strategies, operational layers, and convolutional
131 arithmetic to extract and predict the features. The

132U-Net was chosen as the baseline, which comprises
133a symmetric encoder–decoder architecture and
134extracts features by applying consecutive convolu-
135tions into a fixed depth. UNet++ applies similar
136strategies to U-Net, but its architecture has been
137redesigned to operate at the optimal depth.43,48 In
138contrast to U-Net and UNet++, PSPNet and
139DeepLab v3+ simultaneously apply multi-scale con-
140volutional modules to convert the image into differ-
141ent depths, and the decoder fuses all the features at
142different scales to the prediction output. Applying
143this strategy can potentially accelerate the speed of
144image processing by extracting global information
145in the image more efficiently.46,49–51

146Although the application of DL tools for x-ray
147microscopy-based imaging is still in its early stages,
148here, we provide a unified framework for the
149analysis of x-ray tomography datasets using DCNN.
150To obtain an optimal segmentation output, opti-
151mized hyperparameters, methods, and backbones
152were identified for each architecture (a general
153description of DCNN parameters and terms are
154provided in the electronic supplementary). A super-
155vised DL approach using stacks of 2D TXM
156grayscale slices ( the raw data) and the correspond-
157ing manually segmented RGB images (ground-
158truth) were used as a training dataset. Then the
159adopted networks were trained, and the extracted
160models were used to predict the rest of the dataset
161images. A comparison of the ground-truth versus
162the predicted datasets was quantified and showed
163excellent agreement. In addition, the computational
164efficiency, based on the time taken to process an
165image, was also found to be favorable.

166EXPERIMENTAL METHODS
167AND PROCEDURE

168In this section, we describe the experimental
169details for acquiring the XCT dataset, the image
170segmentation, hardware details, and the analysis
171used for comparing the accuracy of the predicted
172segmented images.

173X-ray Synchrotron Tomography

174This study was conducted on 2D x-ray slices
175obtained from a TXM scan performed on 7075
176aluminum alloy (AA7075). The principal constituent
177particles of AA7075 are the Al-Cu-Fe inclusions and
178the Cu-Mg-Zn precipitates.52,53 The size, geometry,
179and distribution of these phases play a significant
180role in determining the mechanical behavior and
181corrosion performance of this alloy. 13,54,55 Rods of
182the AA7075 were overaged using the following heat-
183treatment protocol: solution treatment at 510�C for
1842 h fi water-quenching fi overageing at 107�C
185for 6 h and at 163�C for 40 h, followed by further
186coarsening of the precipitates at 300�C for 86 h. This
187resulted in a significant coarsening of the precipi-
188tate particles. Al-Cu-Fe inclusions, with the compo-
189sition Al7Cu2Fe, are intermetallic particles present
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190 in the form of stringers along the rolling direction. A
191 micropillar of overaged AA7075, approximately 15
192 lm in diameter and 30 lm in height, was milled
193 using a Ga+ focused ion beam. A TXM scan was
194 conducted on the pillar at the 32-ID-C beamline at
195 the APS at Argonne National Laboratory. The
196 combination of a condenser lens and custom-made
197 Fresnel zone plates yielded a voxel size of 18 nm.
198 Details about the beamline can be found in previous
199 studies26,27. A monochromatic x-ray beam energy of
200 9.75 keV (just above the zinc absorption edge) was
201 used for the scan to obtain the maximum contrast
202 between the Cu-Mg-Zn precipitate particles, the
203 Al7Cu2Fe inclusions, and the matrix. A total of 1200
204 projections were captured over an angular range of
205 0–180� with an exposure time of 1 s/projection. A
206 filtered back-projection algorithm was used to
207 reconstruct the projections using the software
208 TomoPy27. The reconstructed dataset was converted
209 into a 2D slice stack of 730 images, having an image
210 size of 768 9 768 pixels with a high bit-depth of 32
211 bits.

212 Manual Segmentation Recipe

213 Due to different attenuating properties originat-
214 ing from different atomic weight densities of the
215 particles, these phases can be distinguished based
216 on their gray value range. The presence of compos-
217 ite phases and the formation of near-field phase
218 contrast fringes around the periphery of the parti-
219 cles (shown in Fig. 1), makes the manual segmen-
220 tation complicated. To this end, a non-local mean
221 filter was employed to reduce noise, and an unsharp
222 mask filter was used to sharpen the relevant
223 microstructural features. Avizo 9 (Bethesda, MD,
224 USA) was then used to perform manual image
225 segmentation to generate the ground-truth.

226 Deep Convolutional Neural Network (DCNN)
227 Architectures

228 U-Net

229 The U-Net is a symmetric U-shaped encoder–
230 decoder network originally developed for medical
231 image processing56. Its general architecture shown
232 in Fig. 2(a). First, in the contraction path (encoder),
233 the image features are extracted using consecutive
234 3 9 3 convolutions followed by 2 9 2 rectified linear
235 unit (ReLU) activation and 2 9 2 max-pooling
236 operations. Then, in the expansion path (decoder),
237 the dense output of the encoder is progressively
238 expanded. In each step of the expansion path, the
239 spatial information of up-convolution is concate-
240 nated with the corresponding feature maps from the
241 contraction pathway, followed by 3 9 3 convolutions
242 and ReLU layers. However, this design has a major
243 limitation. Depending on the feature sizes and the
244 numbers of labeled classes for training, the optimal
245 depth of an encoder–decoder network can vary for
246 different segmentation tasks. Hence, this network

247cannot be used for multi-scale feature segmentation
248as it is unnecessarily restricted to fuse feature maps
249into the fixed depth43.

250UNet++

251The UNet++ is a redesigned U-Net architecture
252which extends the U-Net’s abilities for achieving
253multi-scale and more accurate semantic segmenta-
254tion.43,48 As compared to the U-Net (Fig. 2(b)), the
255UNet++ consists of varying depths, and the deco-
256ders are densely connected at the same resolution of
257encoders via skip connections. It bridges the feature
258maps from different depths of the contraction path
259to the expansion path before merging them. This
260architectural modification not only improves the
261overall segmentation accuracy but also enhances
262the learning and prediction time by enabling the
263network pruning itself.43 Furthermore, using deep
264supervision enables the model to operate in differ-
265ent modes by averaging all segmentation branches.
266In the current study, we also used pre-trained
267ResNet 152 as a backbone to enhance the training
268speed.

269PSPNet

270The pyramid scene parsing network (PSPNet)
271uses the spatial pyramid pooling module with
272different-region-based contexts to achieve superior
273segmentation performance.43,48,51,57 As shown in
274Fig. 2(c), the PSPNet architecture takes the feature
275map from the last convolutional layer as an input
276image and fuses the features under four different
277pyramid scales. The pyramid levels form pooled
278representations of the feature map. The low-dimen-
279sion feature maps are then up-sampled to the input
280image size and concatenated with the original input
281image.51,58 Using multi-scale pyramid pooling, con-
282volution aids the network to extract global features
283in the image more efficiently. A graphical interpre-
284tation of spatial pyramid pooling can be found in
285supplementary Fig. S-2. In this study, a pre-trained
286ResNet 152 backbone was used to extract the
287feature map as an input to the pyramid pooling
288module.

289DeepLab v3+

290This network applies atrous convolutions and
291atrous spatial pyramid pooling (ASPP) approach to
292extract the feature in its encoder sub-network.
293Atrous convolution are also called ‘‘dilated convolu-
294tions’’. A graphical interpretation of ASPP is
295depicted in supplementary Fig. S-3. Using this
296module, DeepLab v3+ is able to extract global and
297multi-scale features of the image simultaneously,
298which results in a faster computational process
299compared to conventional convolutions used in U-
300Net base architectures.49,50 As shown in Fig. 2(d),
301the extracted features from atrous convolutions
302with different sampling rates and strides are fused
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303 to generate the encoder part of the network. Then,
304 the decoder uses the fused map from the ASPP and
305 the low-level features received from the preliminary
306 extracted feature by DCNN layers as input and
307 generates the output predicted output49. In this
308 study, this technique was paired with an Xception
309 71 model as a backbone.

310 Training, Testing, and Evaluation of CNN
311 Algorithms

312 After normalizing of the entire batch of TXM
313 dataset (a description of batch normalization can be
314 found in the supplementary file: S-1), the consecutive
315 image stack (here, each slice is a pair of raw and
316 ground-truth images (shown in Fig. 1 as an example)
317 was randomly split into training and testing batches
318 based on their slice numbers. 550 images (75% of the
319 whole data) were used for training and 180 images
320 (25% of the whole data) were used for testing. During
321 training, the ground-truth dataset was used as the
322 target output to minimize the loss error. For testing,
323 the ground-truth images were used to calculate the
324 accuracy of the prediction. To validate and monitor
325 training progress after each epoch, 20 images were
326 randomly separated from the training batch for the
327 validation loss checkpoint. All models were trained
328 and testedwith theuse ofGPU (NVIDIAQuadroRTX
329 6000) computational resources.

330We use the intersection over union (IoU) as a
331metric to quantify the accuracy of the segmentation
332models36. Given the ground-truth mask and pre-
333dicted image, the IoU for a class m can be computed
334using Eq. 1:

IoUm ¼
tpm

tpm þ fpm þ fnm
ð1Þ

336336where tpm and fpm are the numbers of true and
337false positives, respectively, and fnm refers to the
338number of false-negative pixels in the predicted
339image. This metric measures the ratio of the area of
340overlap between the predicted feature and the
341ground-truth, divided by the area of union between
342the predicted feature and the ground-truth, as
343shown in Fig. 3. The mean of IoU (mIoU) scores
344for every class present in the predicted image were
345used to compare different models.

346RESULTS AND DISCUSSION

347The baseline U-Net architecture used for the
348initial experimentation was implemented in a deep-
349learning toolbox for x-ray imaging obtained from the
350‘‘Xlearn’’ Github repository (github.com/tomogra-
351phy/xlearn). A detailed description of the Xlearn
352network is provided in40. To our knowledge, for the
353first time, Xlearn, as a CNN segmentation tool, has

Fig. 1. Typical raw and ground-truth (manually segmented) images from a 15-lm-diameter micropillar of an overaged AA 7075 dataset obtained
by the TXM technique.
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354 been implemented on a TXM dataset to segment 2D
355 images and visualize the microstructural features in
356 an Al-4%Cu alloy micropillar. This alloy mainly
357 consists of plate-like and needle-like Al2Cu precip-
358 itates in an a-Al matrix and the shape, size, and
359 distribution of each phase is required to understand
360 the mechanical behavior of this material. 59How-
361 ever, marginal differences in grayscale values

362between the existing precipitates in this alloy made
363it almost impossible to conduct manual segmenta-
364tion on the entire TXM dataset. This entailed the
365application of an efficient automated technique to
366fully segment the whole dataset. To this end, a sub-
367volume (only 1/32 of the whole scan) of the TXM
368slices were segmented manually within 36 h. The
369Xlearn algorithm was trained to emulate

Fig. 2. The architecture of the four networks used for this study: (a) U-Net, (b) UNet++, (c) PSPNet, and (d) DeepLab v3+.
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370 segmenting of the precipitates of the alloy using the
371 2D images provided from the manually segmented
372 sub-volume. Using a CPU, this process only took 2
373 h. Then, the entire dataset was segmented auto-
374 matically using the trained Xlearn model within
375 just 20 h using a CPU. The quantitative volume
376 comparison of the 3D-rendered data from the man-
377 ually and Xlearn segmented dataset revealed appre-
378 ciable accuracy of the DCNN approach for such
379 TXM segmentation23. The time for automated seg-
380 mentation is also a function of the hardware
381 computation capability.
382 In our current study, we executed the Xlearn and
383 other DCNN algorithms training and testing pro-
384 cess on a GPU cluster and compared the computa-
385 tional time reduction. The Xlearn was trained on all
386 550 training images with a patch size of 768 9 768
387 pixels, using the Adam optimizer with the MSE loss
388 (binary segmentation) as default loss function.
389 However, we changed the loss function to categorial
390 cross-entropy be able to classify and segment the 3
391 classes. For the binary (2-class) segmentation, both
392 the Cu-Mg-Zn precipitates and Al-Cu-Fe inclusions
393 were classified as a single class with the background
394 being another class; while for 3-class segmentation,
395 each precipitate, inclusions, and background were
396 classified as separate classes. As shown in Table I,
397 the U-Net gave better mIoU scores (mIoU overall all
398 classes) in the case of binary segmentation com-
399 pared with 3-class segmentation. However, to

400segment Al-Cu-Fe and Cu-Mg-Zn particles sepa-
401rately, multi-class segmentation was employed for
402all four architectures under consideration.
403The UNet++ and PSPNet were implemented on a
404nested U-Net architecture from the GitHub repos-
405itory (github.com/MrGiovanni/UNetPlusPlus). The
406DeepLab v3+ architecture with the exception 71 as
407backbone were referred to existing open-source
408TensorFlow Model Garden implementations
409(github.com/tensorflow/models). The training and
410testing dataset were converted to Tensorflow’s
411’.tfrecord’ format. Used this way, the models can
412become trained faster, as less memory is consumed
413during processing, while the data can be read
414quickly from memory. Also, the atrous rates were
415set to 3, 6, and 9 for training and testing.
416In our code implementation, based on the initial
417epochs and monitoring the loss convergence and
418accuracy progression of the validation batch, the
419best sets of hyperparameters were chosen before
420initiating the main training process. These param-
421eters included learning-rate, dropout, batch size,
422loss function, and optimizer (the detailed descrip-
423tion of each term is provided in supplementary file:
424S-1). A fixed batch size was used for all the models.
425Various loss functions provided in60,61 were tested,
426and the summation of the categorial cross-entropy
427and dice loss (1 – dice similarity coefficient) as the
428loss function gave the best training and testing

Fig. 3. Graphical interpretation of the intersection over union (IoU) metric used to compare the accuracy of the predicted feature (DCNN) with the
manual segmented feature (ground-truth).

Table I. U-Net results on the testing dataset for binary (2-class) and 3-class segmentation

Segmentation Loss function Epoch mIoU (%)

2-class (binary) Means square error) 10 95.9
3-class Categorial cross-entropy 10 91.7
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429 results for all the algorithms. In all the training
430 processes, the learning rate was set to 10-4 and the
431 dropout was 0.5.
432 Numbers of epochs, training time, prediction
433 time, and mIoU scores obtained from all the models
434 are listed in Table II, and the preferences are
435 plotted in Fig. 4. Typical predicted segmentations
436 by trained models are presented in Fig. 5. The U-
437 Net implementation took the longest amount of time
438 owing to the process of fine-tuning and presumably
439 down-sampling the input image to a fixed depth.
440 Note that a small increment was observed in the U-
441 Net mIoU score by applying a summation of the
442 categorial cross-entropy with dice loss (Table II)
443 instead of merely categorial cross-entropy loss
444 (Table I) as the loss function. This improvement is
445 attributed to the dice loss function, as it not only
446 evaluates the number of pixels correctly labelled but
447 also penalizes instances of incorrect segmentation
448 (false-positive and false-negative) and determines
449 the accuracy of the segmentation boundaries42.
450 The UNet++ training and testing process was
451 faster than U-Net as it used the pre-trained model
452 as backbone. Also, the architecture of UNet++ takes

453advantage of skip connections to operate at an
454optimal depth. Considering all of these strategies,
455UNet++ achieved significantly higher mIoU perfor-
456mance compared to all the other architectures.
457PSPNet was able to achieve favorable mIoU scores
458in a training time of just 17 h. The faster perfor-
459mance of PSPNet compared to UNet++ can be
460attributed to the application of pyramid pooling
461convolutions. However, comparing all the training
462times, the DeepLab v3+ outperformed the other
463architectures, but it has a slightly lower segmenta-
464tion accuracy than the best one. As DeepLab v3+
465takes advantage of atrous pooling convolutions with
466different rates, the kernel can move faster across
467the input feature map and extract global informa-
468tion more efficiently than the other encoder sub-
469networks used in other models (an interpretation of
470atrous pooling operation can be found in Figure S-3
471in supplementary file).
472In this study, the background class occupies the
473major portion of the x-ray micrographs compared to
474other constituent particles. Hence, the high values
475of IoU score might be coming from background
476labels. To highlight the accuracy of segmentation in

Table II. Performance analysis of the implemented architectures

Model
Batch
size Epoch Loss function

Training
time (h)

Prediction time per
image (s)

mIoU score
(%)

U-Net 1 10 Categorical cross-entropy +
dice loss

12 1.9 92.2

UNet++ 1 10 Categorical cross-entropy +
dice loss

8 1.1 95.1

PSPNet 1 10 Categorical cross-entropy +
dice loss

5 0.9 88.2

DeepLab
v3+

1 10 Categorical cross-entropy +
dice loss

4 0.8 89.1

Fig. 4. Performance of the implemented architectures: (a) time of the training, (b) accuracy.
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477 precipitates and inclusions, we calculated the con-
478 fusion matrix to evaluate the pixel-level classifica-
479 tion accuracy for each label (The description and
480 graphical interpretation of the confusion matrix can
481 be found in the supplementary document: S-4, 5).
482 Figure 6 shows the confusion matrixes extracted
483 from pixel-by-pixel comparison of ground-truth and
484 predicted images used for testing the networks. A
485 detailed look at the numbers clearly reveals that the
486 background has the highest true-positive values in
487 all the architectures, compared to other labels
488 which led to high mIoU scores. The significant
489 errors in all the architectures can be attributed to
490 the misclassification of Cu-Mg-Zn and Al-Cu-Fe
491 labels to background. These errors are more pro-
492 nounced for PSPNet and DeepLab v3+, as they use
493 larger kernels for convolution operation which can
494 potentially dilate the boundaries or small features’
495 gray value into the background in the maxpooling
496 layer. However, similar to what was observed in the
497 mIoU score in Table II, the Unet++ followed by U-
498 Net outperformed the other models in term of true-
499 positive values. In contrast, a great portion of the

500Cu-Mg-Zn precipitates and Al-Cu-Fe inclusions has
501been segmented as background by the PSPNet
502model.
503In the following, intuitive examples of segmenta-
504tion and classification are presented. Figure 7 shows
505an example of the composite particle segmentation
506predicted by all models. Surrounding and embed-
507ding a particle into another phase makes the x-ray
508image segmentation more difficult, as the phase
509boundaries are barely distinguishable. As indicated
510in the outlined boxes in Fig. 5, the U-Net and
511UNet++ outperformed other networks to segment
512Al-Cu-Fe rims around the Cu-Mg-Zn precipitate,
513presumably due to the appropriate depth of the
514convolutions. However, it appears that employing
515pyramid pooling and atrous pooling convolutions by
516PSPNet and DeepLab v3+, respectively, dilates the
517boundaries of the classes and overlooks the details
518of the feature’s periphery. This inaccurate segmen-
519tation shows the limitation of the dilated pooling
520strategy used by PSPNet and DeepLab v3+, where
521the kernel matrix size is larger than the area of the
522particle.

Fig. 5. Comparison of raw, ground-truth, and segmented output of images predicted by different DL architectures.
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523 Figure 8 shows some examples of incorrect seg-
524 mentation/classification outputs. All the architec-
525 tures misclassified the features where the classes
526 (background and particles) seemed to share similar
527 gray values. Formation of near-field phase contrast
528 fringes around the periphery of the particles or
529 sample edges can potentially form brighter spots in
530 some regions OF THE x-ray micrographs. For a few

531output images (10% of the Prediction dataset), U-
532Net and Unet++ classified some regions of the
533micropillar edges (background class) as Al-Cu-Fe
534inclusions. In addition, in numerous cases, Al-Cu-Fe
535inclusions were partially classified as Cu-Mg-Zn
536precipitates.

Fig. 6. Normalized confusion matrixes of segmentation results from (a) U-Net, (b) UNet++, (c) PSPNet, and (d) DeepLab v3+.

Fig. 7. Example of composite particle segmentation outputs by different DL architectures.
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537 Inconsistent classifications were also observed for
538 a few cases predicted by U-Net and UNet++.
539 Figure 9 shows an example misclassification output
540 on a particular precipitate in different slices. Both
541 models were able to outline the Cu-Mg-Zn

542precipitate as a feature, but this particle was
543misclassified as Al-Cu-Fe inclusions in the neigh-
544boring slice. As shown in the grayscale value plot
545and 3D-rendered volume of the outlined Cu-Mg-Zn
546precipitate, this misclassification is primarily due to

Fig. 8. Examples of incorrect misclassified feature outputs by different DL architectures.

Fig. 9. Examples of inconsistent segmentation outputs predicted by U-Net and UNet++ architectures.
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547 gray value changes within the thickness of this
548 particle. The thinner region of the particle appears
549 to have decreased attenuation compared with center
550 of the particle. This leads the Cu-Mg-Zn precipitate
551 to appear darker and look like an Al-Cu-Fe inclu-
552 sion in its thinner cross-section in the nearby slice.

553 CONCLUSION

554 This study focused on the effectiveness of utilizing
555 four start-of-the art deep learning architectures to
556 perform automated segmentation on a complex
557 nanotomography dataset obtained by TXM. A work-
558 flow was introduced to train, apply, and compare
559 the models. All four architectures were successfully
560 implemented and shown to perform well on an x-ray
561 tomography (XRT) dataset.
562 The U-Net as the baseline and most common
563 model in x-ray microscopy imageprocessing meth-
564 ods showed a modest performance and the slowest
565 training time as compared with other models. By
566 redesigning U-Net and applying skip connections as
567 in UNet++, a significantly improved performance
568 was achieved.
569 Furthermore, it was shown that backbones from
570 open source libraries such as imagenet could also be
571 used for XRT image-processing tasks. Promising
572 performances with superior training times were
573 achieved by application of pyramid and ASPP
574 convolutions. However, there is room for further
575 improvement in the configurations and implemen-
576 tations of the PSPNet and DeepLab v3+ models
577 using other libraries, backbones, and shape-aware
578 loss functions.
579 In addition to metrics such as mIoU, extracting
580 the confusion matrix and visual assessment of the
581 output help to interpret the strength of different
582 CNN architectures for multi-class semantic seg-
583 mentation, especially when the sizes of the labels
584 (pixel proportion of the classes) are not balanced.
585 This approach guides a practitioner to select an
586 optimized architecture and parameters for auto-
587 mated segmentation. It has to be noted that the
588 images used in this study was not pre-processed. In
589 future, it would be ideal to apply various 2D and 3D
590 filters, and also to implement data augmentation
591 techniques to reduce misclassification, inconsis-
592 tency, and incorrect segmentations.
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641Denneulin, J. Pailhès, and G.L. Vignoles, Acta Mater. 140,
642130. (2017).
64312. S. Niverty, (2020).
64413. S.S. Singh, T.J. Stannard, X. Xiao, and N. Chawla, JOM 69,
6451404. (2017).
64614. J. Samei, C. Pelligra, M. Amirmaleki, and D.S. Wilkinson,
647Mater. Lett. 269, 127664. (2020).
64815. A. Isaac, F. Sket, W. Reimers, B. Camin, G. Sauthoff, and
649A.R. Pyzalla, Mater. Sci. Eng. A 478, 108. (2008).
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