

Dear Author,

Here are the proofs of your article.

- You can submit your corrections **online**, via **e-mail** or by **fax**.
- For **online** submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and **email** the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the **journal title**, **article number**, and **your name** when sending your response via e-mail or fax.
- **Check** the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- **Check** the questions that may have arisen during copy editing and insert your answers/corrections.
- **Check** that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the *Edited manuscript*.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please **do not** make changes that involve only matters of style. We have generally introduced forms that follow the journal's style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
 - If we do not receive your corrections **within 48 hours**, we will send you a reminder.
 - Your article will be published **Online First** approximately one week after receipt of your corrected proofs. This is the **official first publication** citable with the DOI. **Further changes are, therefore, not possible.**
 - The **printed version** will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: [http://dx.doi.org/\[DOI\]](http://dx.doi.org/[DOI]).

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: <http://www.link.springer.com>.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Machine-Learning-based Algorithms for Automated Image Segmentation Techniques of Transmission X-ray Microscopy (TXM)	
<hr/>		
Article Sub-Title		
Article CopyRight	The Minerals, Metals & Materials Society (This will be the copyright line in the final PDF)	
Journal Name	JOM	
Corresponding Author	Family Name	Chawla
	Particle	
	Given Name	Nikhilesh
	Suffix	
	Division	School of Materials Engineering
	Organization	Purdue University
	Address	West Lafayette, IN, 47907, USA
	Phone	
	Fax	
	Email	nikc@purdue.edu
	URL	
	ORCID	
<hr/>		
Author	Family Name	Torbati-Sarraf
	Particle	
	Given Name	Hamidreza
	Suffix	
	Division	School of Materials Engineering
	Organization	Purdue University
	Address	West Lafayette, IN, 47907, USA
	Phone	
	Fax	
	Email	
	URL	
	ORCID	
<hr/>		
Author	Family Name	Niverty
	Particle	
	Given Name	Sridhar
	Suffix	
	Division	School of Materials Engineering
	Organization	Purdue University
	Address	West Lafayette, IN, 47907, USA
	Phone	
	Fax	
	Email	
	URL	

ORCID		
Author	Family Name	Singh
	Particle	
	Given Name	Rajhans
	Suffix	
	Division	School of Arts Media and Engineering
	Organization	Arizona State University
	Address	Tempe, AZ, 85281, USA
	Phone	
	Fax	
	Email	
	URL	
	ORCID	
Author	Family Name	Barboza
	Particle	
	Given Name	Daniel
	Suffix	
	Division	School of Arts Media and Engineering
	Organization	Arizona State University
	Address	Tempe, AZ, 85281, USA
	Phone	
	Fax	
	Email	
	URL	
	ORCID	
Author	Family Name	Andrade
	Particle	De
	Given Name	Vincent
	Suffix	
	Division	Advanced Photon Source
	Organization	Argonne National Laboratory
	Address	Argonne, IL, 60439, USA
	Phone	
	Fax	
	Email	
	URL	
	ORCID	
Author	Family Name	Turaga
	Particle	
	Given Name	Pavan
	Suffix	
	Division	School of Arts Media and Engineering
	Organization	Arizona State University
	Address	Tempe, AZ, 85281, USA
	Phone	

Fax
Email
URL
ORCID

Schedule	Received Revised Accepted	15 January 2021 22 April 2021
Abstract	Four state-of-the-art Deep Learning-based Convolutional Neural Networks (DCNN) were applied to automate the semantic segmentation of a 3D Transmission x-ray Microscopy (TXM) nanotomography image data. The standard U-Net architecture as baseline along with UNet++, PSPNet, and DeepLab v3+ networks were trained to segment the microstructural features of an AA7075 micropillar. A workflow was established to evaluate and compare the DCNN prediction dataset with the manually segmented features using the Intersection of Union (IoU) scores, time of training, confusion matrix, and visual assessment. Comparing all model segmentation accuracy metrics, it was found that using pre-trained models as a backbone along with appropriate training encoder-decoder architecture of the Unet++ can robustly handle large volumes of x-ray radiographic images in a reasonable amount of time. This opens a new window for handling accurate and efficient image segmentation of <i>in situ</i> time-dependent 4D x-ray microscopy experimental datasets.	
Footnote Information	Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11837-021-04706-x .	

1
2 MICROSTRUCTURE CHARACTERIZATION: DESCRIPTORS, DATA-INTENSIVE TECHNIQUES, AND
3
4
5 UNCERTAINTY QUANTIFICATION
6
7

8 Machine-Learning-based Algorithms for Automated Image
9 Segmentation Techniques of Transmission X-ray Microscopy
10 (TXM)

11 HAMIDREZA TORBATI-SARRAF,¹ SRIDHAR NIVERTY,¹
12 RAJHANS SINGH,² DANIEL BARBOZA,² VINCENT DE ANDRADE,³
13 PAVAN TURAGA,² and NIKHILESH CHAWLA^{1,4}

14 1.—School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.

15 2.—School of Arts Media and Engineering, Arizona State University, Tempe, AZ 85281, USA.

16 3.—Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.

17 4.—e-mail: nikc@purdue.edu

18
19 Four state-of-the-art Deep Learning-based Convolutional Neural Networks
20 (DCNN) were applied to automate the semantic segmentation of a 3D
21 Transmission x-ray Microscopy (TXM) nanotomography image data. The
22 standard U-Net architecture as baseline along with UNet++, PSPNet, and
23 DeepLab v3+ networks were trained to segment the microstructural features
24 of an AA7075 micropillar. A workflow was established to evaluate and com-
25 pare the DCNN prediction dataset with the manually segmented features
26 using the Intersection of Union (IoU) scores, time of training, confusion ma-
27 trix, and visual assessment. Comparing all model segmentation accuracy
28 metrics, it was found that using pre-trained models as a backbone along with
29 appropriate training encoder-decoder architecture of the Unet++ can robustly
30 handle large volumes of x-ray radiographic images in a reasonable amount of
31 time. This opens a new window for handling accurate and efficient image
32 segmentation of *in situ* time-dependent 4D x-ray microscopy experimental
33 datasets.

INTRODUCTION

34 X-ray microtomography has become a very impor-
35 tant characterization technique for understanding
36 materials behavior. Depending on the particular
37 modality, this technique can enable image resolu-
38 tions ranging from tens of micrometers to the
39 nanometer scale. More importantly, the non-de-
40 structive nature of this technique allows us to
41 conduct *in situ* and/or time-resolved (4D) investiga-
42 tions where the evolution of microstructure¹⁻⁶ or
43 propagation of a defect⁷⁻¹⁹ can be captured as a
44 function of time. In this study, the x-ray tomogra-
45 phy technique of interest is transmission x-ray
46 microscopy (TXM) which can be used to conduct
47 *in situ* 4D experiments at high spatial resolutions
48 (~ 20 nm)²⁰⁻²⁷ using the 32-ID beamline at the
49 Advanced Photon Source (APS).

50 One of the challenges with 4D x-ray microtomog-
51 raphy experiments is the large amounts of data that
52 are generated (often in the TB range). In particular,
53 3D rendering and statistical quantification of
54 microstructurally evolving features (for example,
55 crack growth, corrosion propagation, and phase
56 transformation) require image segmentation. Thus,
57 the subsequent image processing and feature clas-
58 sification is often the rate-limiting step for tomo-
59 graphic data analysis. Pixels with a wide
60 distribution of grayscale values in the reconstructed
61 images need to be segmented based on the features'
62 density and homogeneity. These features often
63 cannot be segmented using simple histogram
64 thresholding or edge-based filtering. The presence
65 of beam-hardening, scattered or other ionizing x-ray
66 -generated "zinger" artifacts, ring artefacts, edge
67 blurring due to motion artefacts, and phases with
68 similar attenuation make the segmentation process
69 more complicated.^{28,29} This renders the
70

(Received January 15, 2021; accepted April 22, 2021)

Journal : 11837_JOM

Article No.: 4706

Dispatch : 4-5-2021

LE

CP

Pages : 12

TYPESET

DISK

requirement of human hands-on intervention for careful manual segmentation, making the process extremely cumbersome and time-intensive. Manual image segmentation is also subjective, depending on the experience and visual acuity of the person doing the analysis.³⁰ Thus, there is a need for a new set of tools to move toward automating image segmentation of large 4D x-ray tomography datasets.

With the success of machine-learning algorithms in general image analysis, numerous promising segmentation and classification approaches can be applied for image segmentation for materials science applications. Traditional machine-learning image-processing methods, such as k-means clustering and thresholding, have been employed for various segmentation tasks.^{31,32} Contemporary approaches, such as Gabor filtering, rely on neural networks to solve a given end-task, such as classification or segmentation, by learning the model parameters from training datasets³³. Nevertheless, these methods still require minimal human intervention and are known as semi-automatic segmentation approaches.

In recent developments, deep-learning (DL) has pushed the boundaries in improving the robustness of segmentation methods with minimal multi-pass post-segmentation human intervention. Deep convolutional neural networks (DCNNs), have achieved excellent performance for various image-processing tasks. Krizhevsky et al.³⁴ developed the first large-scale application of DCNNs on difficult natural image classification problems, and, since then, different deep architectures have been modified in different domains to improve the time and accuracy of automated image processing. Although DL-based image segmentation techniques have been extensively implemented in medical x-ray radiographic images, only a handful of studies have applied this approach for x-ray microscopy images in materials science and engineering.^{5,23,35-41}

In this work, we study the performance of four state-of-the-art deep learning architectures for automatic image segmentation of a TXM dataset. We chose U-Net, UNet++, PSPNet, and DeepLab v3+ DCNN architectures, as the implementation of these networks are readily accessible and have shown outstanding segmentation results in multiple domains, such as intelligent transportation, geo sensing, and medical imaging.⁴²⁻⁴⁶ The architecture of all the adopted networks contains an encoder and a decoder sub-network. First, the encoder extracts the features from a given image by contracting the image into different depths (resolutions) using different down-sampling convolutions and operational layers. Then, the decoder takes the feature map from different depths of the encoder, predicts the class of the pixel, recovers spatial information, and reconstructs the image using up-sampling convolutions.⁴⁷ However, each model uses different strategies, operational layers, and convolutional arithmetic to extract and predict the features. The

U-Net was chosen as the baseline, which comprises a symmetric encoder-decoder architecture and extracts features by applying consecutive convolutions into a fixed depth. UNet++ applies similar strategies to U-Net, but its architecture has been redesigned to operate at the optimal depth.^{43,48} In contrast to U-Net and UNet++, PSPNet and DeepLab v3+ simultaneously apply multi-scale convolutional modules to convert the image into different depths, and the decoder fuses all the features at different scales to the prediction output. Applying this strategy can potentially accelerate the speed of image processing by extracting global information in the image more efficiently.^{46,49-51}

Although the application of DL tools for x-ray microscopy-based imaging is still in its early stages, here, we provide a unified framework for the analysis of x-ray tomography datasets using DCNN. To obtain an optimal segmentation output, optimized hyperparameters, methods, and backbones were identified for each architecture (a general description of DCNN parameters and terms are provided in the electronic supplementary). A supervised DL approach using stacks of 2D TXM grayscale slices (the raw data) and the corresponding manually segmented RGB images (ground-truth) were used as a training dataset. Then the adopted networks were trained, and the extracted models were used to predict the rest of the dataset images. A comparison of the ground-truth versus the predicted datasets was quantified and showed excellent agreement. In addition, the computational efficiency, based on the time taken to process an image, was also found to be favorable.

EXPERIMENTAL METHODS AND PROCEDURE

In this section, we describe the experimental details for acquiring the XCT dataset, the image segmentation, hardware details, and the analysis used for comparing the accuracy of the predicted segmented images.

X-ray Synchrotron Tomography

This study was conducted on 2D x-ray slices obtained from a TXM scan performed on 7075 aluminum alloy (AA7075). The principal constituent particles of AA7075 are the Al-Cu-Fe inclusions and the Cu-Mg-Zn precipitates.^{52,53} The size, geometry, and distribution of these phases play a significant role in determining the mechanical behavior and corrosion performance of this alloy.^{13,54,55} Rods of the AA7075 were overaged using the following heat-treatment protocol: solution treatment at 510°C for 2 h → water-quenching → overageing at 107°C for 6 h and at 163°C for 40 h, followed by further coarsening of the precipitates at 300°C for 86 h. This resulted in a significant coarsening of the precipitate particles. Al-Cu-Fe inclusions, with the composition Al_7Cu_2Fe , are intermetallic particles present

190 in the form of stringers along the rolling direction. A
 191 micropillar of overaged AA7075, approximately 15
 192 μm in diameter and 30 μm in height, was milled
 193 using a Ga^+ focused ion beam. A TXM scan was
 194 conducted on the pillar at the 32-ID-C beamline at
 195 the APS at Argonne National Laboratory. The
 196 combination of a condenser lens and custom-made
 197 Fresnel zone plates yielded a voxel size of 18 nm.
 198 Details about the beamline can be found in previous
 199 studies^{26,27}. A monochromatic x-ray beam energy of
 200 9.75 keV (just above the zinc absorption edge) was
 201 used for the scan to obtain the maximum contrast
 202 between the Cu-Mg-Zn precipitate particles, the
 203 $\text{Al}_7\text{Cu}_2\text{Fe}$ inclusions, and the matrix. A total of 1200
 204 projections were captured over an angular range of
 205 0–180° with an exposure time of 1 s/projection. A
 206 filtered back-projection algorithm was used to
 207 reconstruct the projections using the software
 208 TomoPy²⁷. The reconstructed dataset was converted
 209 into a 2D slice stack of 730 images, having an image
 210 size of 768 \times 768 pixels with a high bit-depth of 32
 211 bits.

212 Manual Segmentation Recipe

213 Due to different attenuating properties originating
 214 from different atomic weight densities of the
 215 particles, these phases can be distinguished based
 216 on their gray value range. The presence of composite
 217 phases and the formation of near-field phase
 218 contrast fringes around the periphery of the particles
 219 (shown in Fig. 1), makes the manual segmentation
 220 complicated. To this end, a non-local mean
 221 filter was employed to reduce noise, and an unsharp
 222 mask filter was used to sharpen the relevant
 223 microstructural features. Avizo 9 (Bethesda, MD,
 224 USA) was then used to perform manual image
 225 segmentation to generate the ground-truth.

226 Deep Convolutional Neural Network (DCNN) 227 Architectures

228 *U-Net*

229 The U-Net is a symmetric U-shaped encoder–
 230 decoder network originally developed for medical
 231 image processing⁵⁶. Its general architecture shown
 232 in Fig. 2(a). First, in the contraction path (encoder),
 233 the image features are extracted using consecutive
 234 3 \times 3 convolutions followed by 2 \times 2 rectified linear
 235 unit (ReLU) activation and 2 \times 2 max-pooling
 236 operations. Then, in the expansion path (decoder),
 237 the dense output of the encoder is progressively
 238 expanded. In each step of the expansion path, the
 239 spatial information of up-convolution is concate-
 240 nated with the corresponding feature maps from the
 241 contraction pathway, followed by 3 \times 3 convolutions
 242 and ReLU layers. However, this design has a major
 243 limitation. Depending on the feature sizes and the
 244 numbers of labeled classes for training, the optimal
 245 depth of an encoder–decoder network can vary for
 246 different segmentation tasks. Hence, this network

247 cannot be used for multi-scale feature segmentation
 248 as it is unnecessarily restricted to fuse feature maps
 249 into the fixed depth⁴³.

250 *UNet++*

251 The UNet++ is a redesigned U-Net architecture
 252 which extends the U-Net's abilities for achieving
 253 multi-scale and more accurate semantic segmenta-
 254 tion.^{43,48} As compared to the U-Net (Fig. 2(b)), the
 255 UNet++ consists of varying depths, and the decod-
 256 ers are densely connected at the same resolution of
 257 encoders via skip connections. It bridges the feature
 258 maps from different depths of the contraction path
 259 to the expansion path before merging them. This
 260 architectural modification not only improves the
 261 overall segmentation accuracy but also enhances
 262 the learning and prediction time by enabling the
 263 network pruning itself.⁴³ Furthermore, using deep
 264 supervision enables the model to operate in differ-
 265 ent modes by averaging all segmentation branches.
 266 In the current study, we also used pre-trained
 267 ResNet 152 as a backbone to enhance the training
 268 speed.

269 *PSPNet*

270 The pyramid scene parsing network (PSPNet)
 271 uses the spatial pyramid pooling module with
 272 different-region-based contexts to achieve superior
 273 segmentation performance.^{43,48,51,57} As shown in
 274 Fig. 2(c), the PSPNet architecture takes the feature
 275 map from the last convolutional layer as an input
 276 image and fuses the features under four different
 277 pyramid scales. The pyramid levels form pooled
 278 representations of the feature map. The low-dimen-
 279 sion feature maps are then up-sampled to the input
 280 image size and concatenated with the original input
 281 image.^{51,58} Using multi-scale pyramid pooling, con-
 282 volution aids the network to extract global features
 283 in the image more efficiently. A graphical inter-
 284 pretation of spatial pyramid pooling can be found in
 285 supplementary Fig. S-2. In this study, a pre-trained
 286 ResNet 152 backbone was used to extract the
 287 feature map as an input to the pyramid pooling
 288 module.

289 *DeepLab v3+*

290 This network applies atrous convolutions and
 291 atrous spatial pyramid pooling (ASPP) approach to
 292 extract the feature in its encoder sub-network.
 293 Atrous convolution are also called “dilated convolu-
 294 tions”. A graphical interpretation of ASPP is
 295 depicted in supplementary Fig. S-3. Using this
 296 module, DeepLab v3+ is able to extract global and
 297 multi-scale features of the image simultaneously,
 298 which results in a faster computational process
 299 compared to conventional convolutions used in U-
 300 Net base architectures.^{49,50} As shown in Fig. 2(d),
 301 the extracted features from atrous convolutions
 302 with different sampling rates and strides are fused

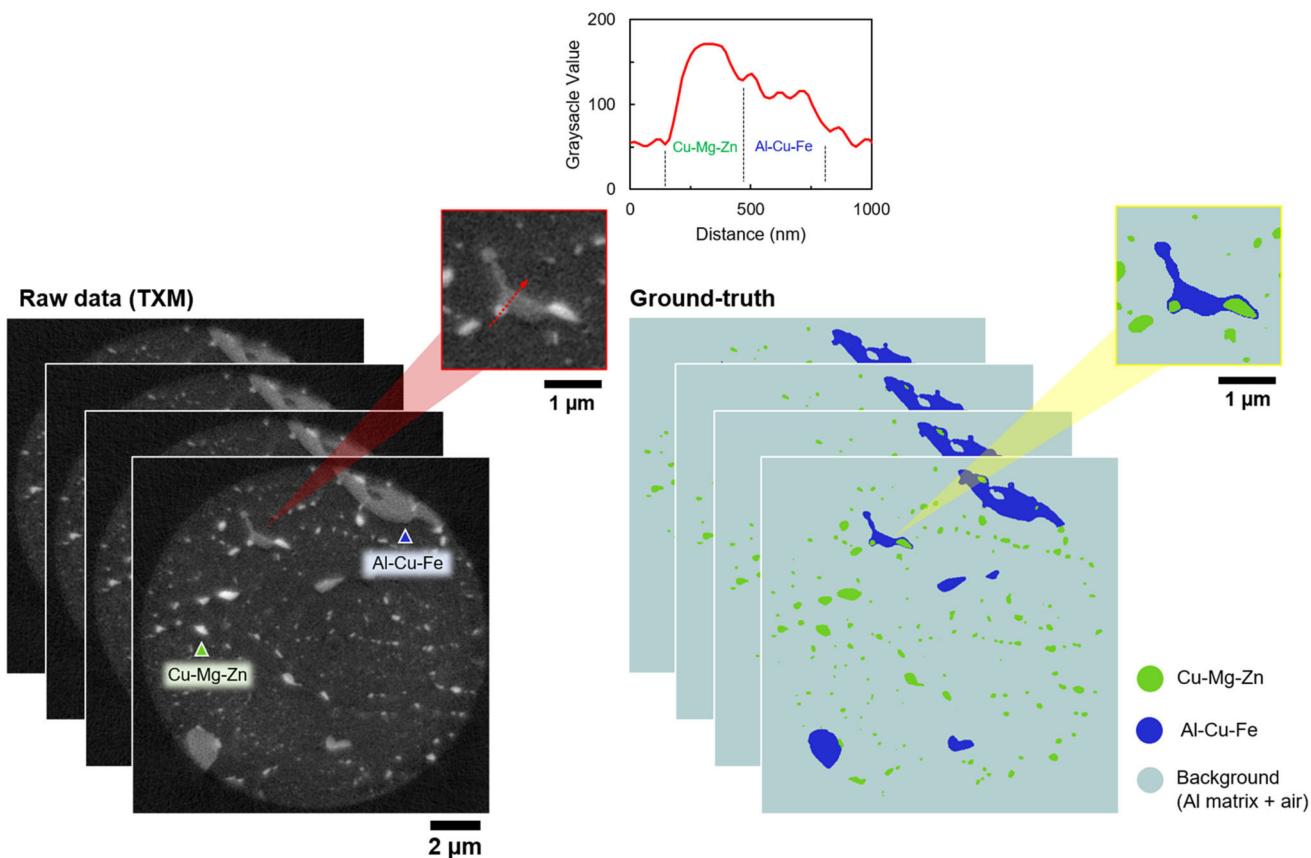


Fig. 1. Typical raw and ground-truth (manually segmented) images from a 15- μm -diameter micropillar of an overaged AA 7075 dataset obtained by the TXM technique.

303 to generate the encoder part of the network. Then,
 304 the decoder uses the fused map from the ASPP and
 305 the low-level features received from the preliminary
 306 extracted feature by DCNN layers as input and
 307 generates the output predicted output⁴⁹. In this
 308 study, this technique was paired with an Xception
 309 71 model as a backbone.

310 Training, Testing, and Evaluation of CNN 311 Algorithms

312 After normalizing of the entire batch of TXM
 313 dataset (a description of batch normalization can be
 314 found in the supplementary file: S-1), the consecutive
 315 image stack (here, each slice is a pair of raw and
 316 ground-truth images (shown in Fig. 1 as an example)
 317 was randomly split into training and testing batches
 318 based on their slice numbers. 550 images (75% of the
 319 whole data) were used for training and 180 images
 320 (25% of the whole data) were used for testing. During
 321 training, the ground-truth dataset was used as the
 322 target output to minimize the loss error. For testing,
 323 the ground-truth images were used to calculate the
 324 accuracy of the prediction. To validate and monitor
 325 training progress after each epoch, 20 images were
 326 randomly separated from the training batch for the
 327 validation loss checkpoint. All models were trained
 328 and tested with the use of GPU (NVIDIA Quadro RTX
 329 6000) computational resources.

330 We use the intersection over union (IoU) as a
 331 metric to quantify the accuracy of the segmentation
 332 models³⁶. Given the ground-truth mask and pre-
 333 dicted image, the IoU for a class m can be computed
 334 using Eq. 1:

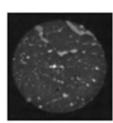
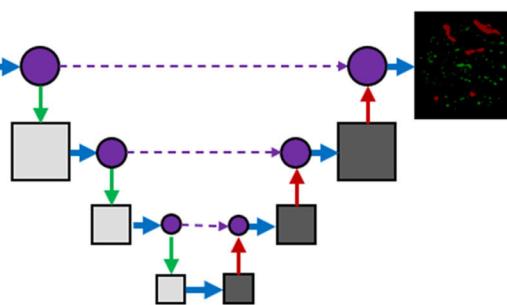
$$\text{IoU}_m = \frac{t_{pm}}{t_{pm} + f_{pm} + f_{nm}} \quad (1)$$

335 where t_{pm} and f_{pm} are the numbers of true and
 336 false positives, respectively, and f_{nm} refers to the
 337 number of false-negative pixels in the predicted
 338 image. This metric measures the ratio of the area of
 339 overlap between the predicted feature and the
 340 ground-truth, divided by the area of union between
 341 the predicted feature and the ground-truth, as
 342 shown in Fig. 3. The mean of IoU (mIoU) scores
 343 for every class present in the predicted image were
 344 used to compare different models.

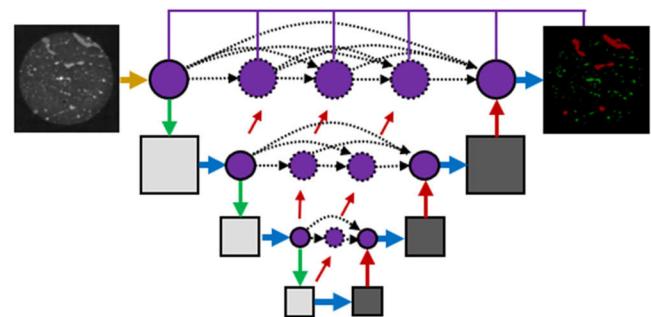
345 RESULTS AND DISCUSSION

346 The baseline U-Net architecture used for the
 347 initial experimentation was implemented in a deep-
 348 learning toolbox for x-ray imaging obtained from the
 349 “Xlearn” Github repository (github.com/tomogra-
 350 phy/xlearn). A detailed description of the Xlearn
 351 network is provided in⁴⁰. To our knowledge, for the
 352 first time, Xlearn, as a CNN segmentation tool, has
 353

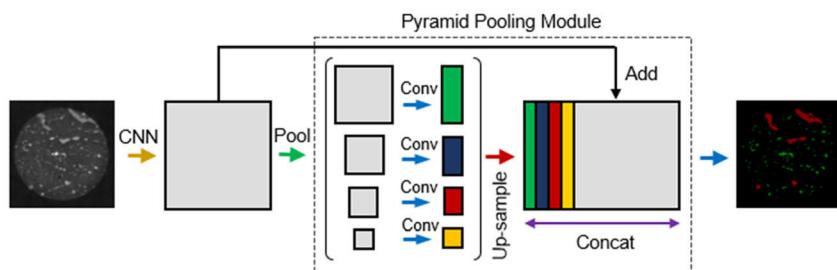
(a)



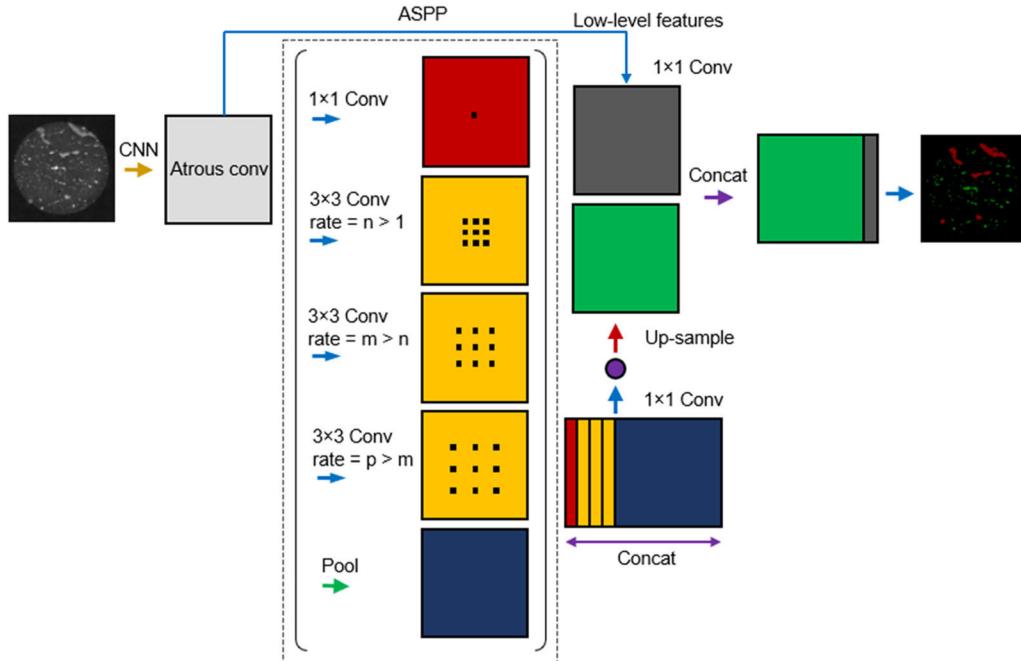
(b)



(c)



(d)



→ Convolution, Activation → Up-sampling (deconvolution) → Pooling → Concatenating → Skip connection

Fig. 2. The architecture of the four networks used for this study: (a) U-Net, (b) UNet++, (c) PSPNet, and (d) DeepLab v3+.

354 been implemented on a TXM dataset to segment 2D
 355 images and visualize the microstructural features in
 356 an Al-4%Cu alloy micropillar. This alloy mainly
 357 consists of plate-like and needle-like Al_2Cu precipi-
 358 tates in an α -Al matrix and the shape, size, and
 359 distribution of each phase is required to understand
 360 the mechanical behavior of this material.⁵⁹ How-
 361 ever, marginal differences in grayscale values

362 between the existing precipitates in this alloy made
 363 it almost impossible to conduct manual segmenta-
 364 tion on the entire TXM dataset. This entailed the
 365 application of an efficient automated technique to
 366 fully segment the whole dataset. To this end, a sub-
 367 volume (only 1/32 of the whole scan) of the TXM
 368 slices were segmented manually within 36 h. The
 369 Xlearn algorithm was trained to emulate

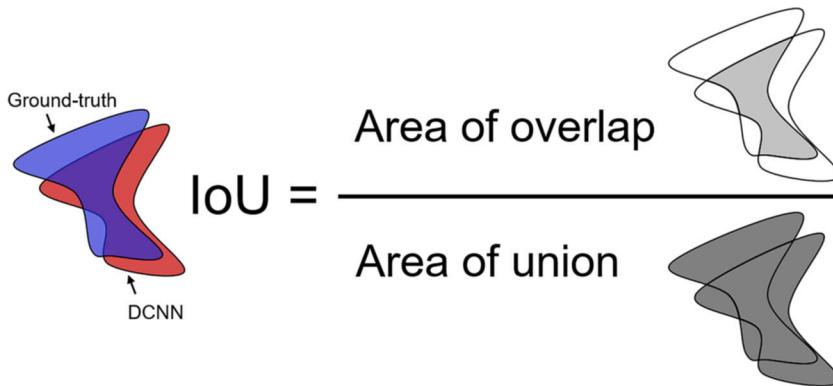


Fig. 3. Graphical interpretation of the intersection over union (IoU) metric used to compare the accuracy of the predicted feature (DCNN) with the manual segmented feature (ground-truth).

Table I. U-Net results on the testing dataset for binary (2-class) and 3-class segmentation

Segmentation	Loss function	Epoch	mIoU (%)
2-class (binary)	Means square error)	10	95.9
3-class	Categorial cross-entropy	10	91.7

370 segmenting of the precipitates of the alloy using the
 371 2D images provided from the manually segmented
 372 sub-volume. Using a CPU, this process only took 2
 373 h. Then, the entire dataset was segmented automatically
 374 using the trained Xlearn model within just 20 h using a CPU. The quantitative volume
 375 comparison of the 3D-rendered data from the man-
 376 ually and Xlearn segmented dataset revealed appre-
 377 ciable accuracy of the DCNN approach for such
 378 TXM segmentation²³. The time for automated seg-
 379 mentation is also a function of the hardware
 380 computation capability.

381 In our current study, we executed the Xlearn and
 382 other DCNN algorithms training and testing pro-
 383 cess on a GPU cluster and compared the computa-
 384 tional time reduction. The Xlearn was trained on all
 385 550 training images with a patch size of 768 × 768
 386 pixels, using the Adam optimizer with the MSE loss
 387 (binary segmentation) as default loss function.
 388 However, we changed the loss function to categorial
 389 cross-entropy be able to classify and segment the 3
 390 classes. For the binary (2-class) segmentation, both
 391 the Cu-Mg-Zn precipitates and Al-Cu-Fe inclusions
 392 were classified as a single class with the background
 393 being another class; while for 3-class segmentation,
 394 each precipitate, inclusions, and background were
 395 classified as separate classes. As shown in Table I,
 396 the U-Net gave better mIoU scores (mIoU overall all
 397 classes) in the case of binary segmentation com-
 398 pared with 3-class segmentation. However, to

399 segment Al-Cu-Fe and Cu-Mg-Zn particles sepa-
 400 rately, multi-class segmentation was employed for
 401 all four architectures under consideration.

402 The UNet++ and PSPNet were implemented on a
 403 nested U-Net architecture from the GitHub reposi-
 404 tory (github.com/MrGiovanni/UNetPlusPlus). The
 405 DeepLab v3+ architecture with the exception 71 as
 406 backbone were referred to existing open-source
 407 TensorFlow Model Garden implementations
 408 (github.com/tensorflow/models). The training and
 409 testing dataset were converted to Tensorflow's
 410 '.tfrecord' format. Used this way, the models can
 411 become trained faster, as less memory is consumed
 412 during processing, while the data can be read
 413 quickly from memory. Also, the atrous rates were
 414 set to 3, 6, and 9 for training and testing.

415 In our code implementation, based on the initial
 416 epochs and monitoring the loss convergence and
 417 accuracy progression of the validation batch, the
 418 best sets of hyperparameters were chosen before
 419 initiating the main training process. These param-
 420 eters included learning-rate, dropout, batch size,
 421 loss function, and optimizer (the detailed descrip-
 422 tion of each term is provided in supplementary file:
 423 S-1). A fixed batch size was used for all the models.
 424 Various loss functions provided in^{60,61} were tested,
 425 and the summation of the categorial cross-entropy
 426 and dice loss (1 – dice similarity coefficient) as the
 427 loss function gave the best training and testing

Table II. Performance analysis of the implemented architectures

Model	Batch size	Epoch	Loss function	Training time (h)	Prediction time per image (s)	mIoU score (%)
U-Net	1	10	Categorical cross-entropy + dice loss	12	1.9	92.2
UNet++	1	10	Categorical cross-entropy + dice loss	8	1.1	95.1
PSPNet	1	10	Categorical cross-entropy + dice loss	5	0.9	88.2
DeepLab v3+	1	10	Categorical cross-entropy + dice loss	4	0.8	89.1

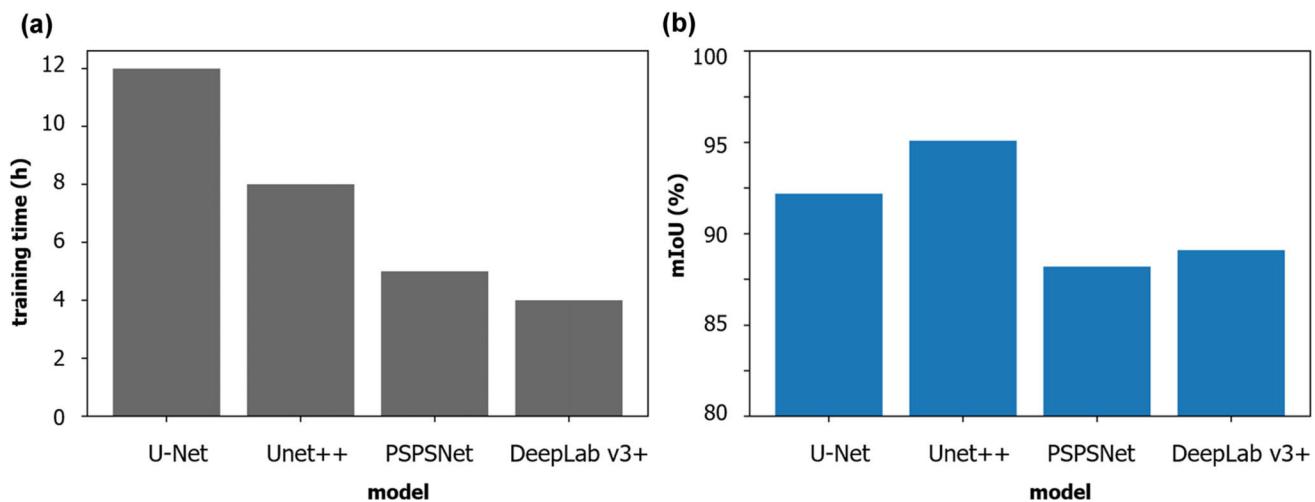


Fig. 4. Performance of the implemented architectures: (a) time of the training, (b) accuracy.

429 results for all the algorithms. In all the training
430 processes, the learning rate was set to 10^{-4} and the
431 dropout was 0.5.

432 Numbers of epochs, training time, prediction
433 time, and mIoU scores obtained from all the models
434 are listed in Table II, and the preferences are
435 plotted in Fig. 4. Typical predicted segmentations
436 by trained models are presented in Fig. 5. The U-
437 Net implementation took the longest amount of time
438 owing to the process of fine-tuning and presumably
439 down-sampling the input image to a fixed depth.
440 Note that a small increment was observed in the U-
441 Net mIoU score by applying a summation of the
442 categorial cross-entropy with dice loss (Table II)
443 instead of merely categorial cross-entropy loss
444 (Table I) as the loss function. This improvement is
445 attributed to the dice loss function, as it not only
446 evaluates the number of pixels correctly labelled but
447 also penalizes instances of incorrect segmentation
448 (false-positive and false-negative) and determines
449 the accuracy of the segmentation boundaries⁴².

450 The UNet++ training and testing process was
451 faster than U-Net as it used the pre-trained model
452 as backbone. Also, the architecture of UNet++ takes

453 advantage of skip connections to operate at an
454 optimal depth. Considering all of these strategies,
455 UNet++ achieved significantly higher mIoU perfor-
456 mance compared to all the other architectures.
457 PSPNet was able to achieve favorable mIoU scores
458 in a training time of just 17 h. The faster perfor-
459 mance of PSPNet compared to UNet++ can be
460 attributed to the application of pyramid pooling
461 convolutions. However, comparing all the training
462 times, the DeepLab v3+ outperformed the other
463 architectures, but it has a slightly lower segmenta-
464 tion accuracy than the best one. As DeepLab v3+
465 takes advantage of atrous pooling convolutions with
466 different rates, the kernel can move faster across
467 the input feature map and extract global informa-
468 tion more efficiently than the other encoder sub-
469 networks used in other models (an interpretation of
470 atrous pooling operation can be found in Figure S-3
471 in supplementary file).

472 In this study, the background class occupies the
473 major portion of the x-ray micrographs compared to
474 other constituent particles. Hence, the high values
475 of IoU score might be coming from background
476 labels. To highlight the accuracy of segmentation in

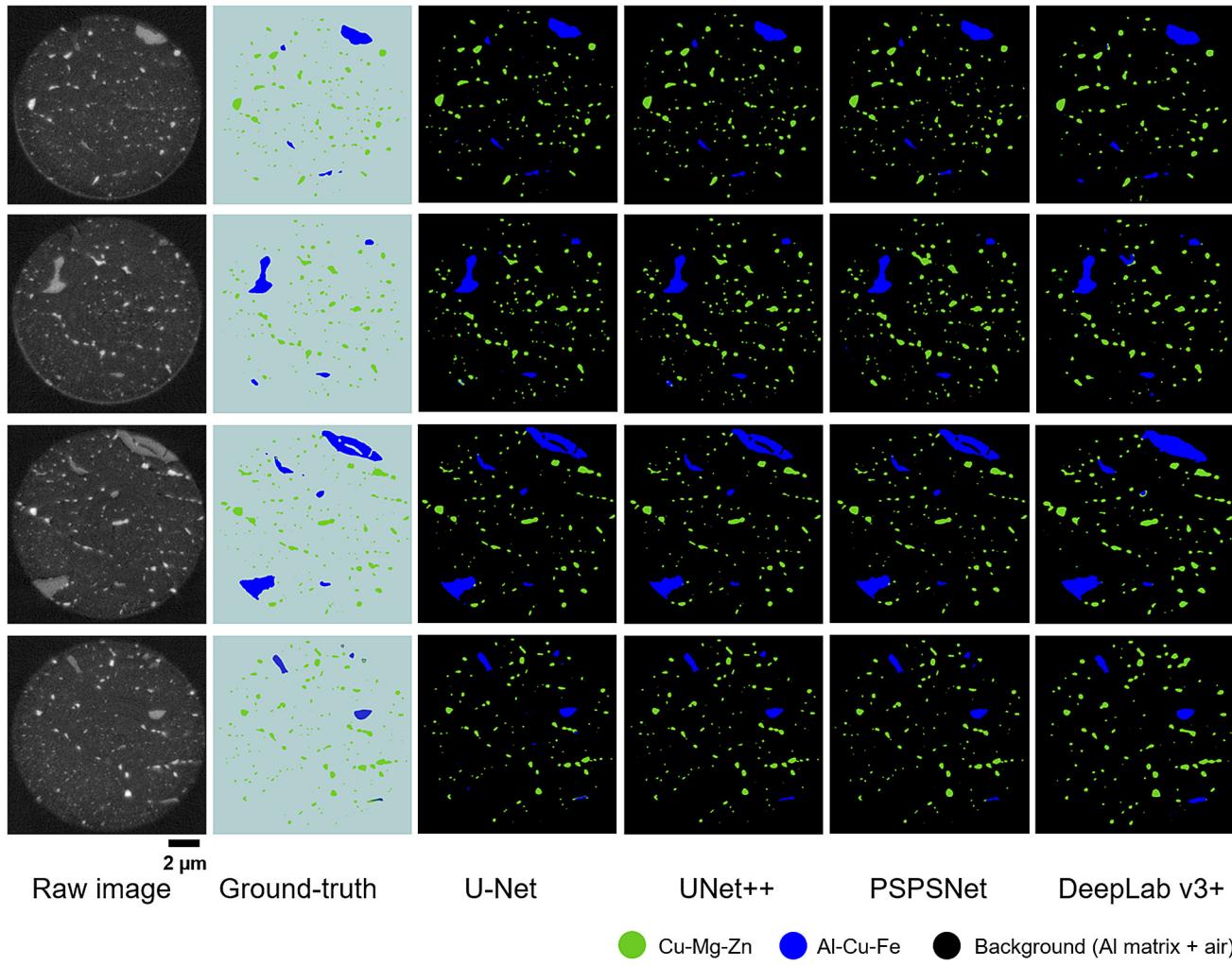


Fig. 5. Comparison of raw, ground-truth, and segmented output of images predicted by different DL architectures.

477 precipitates and inclusions, we calculated the con-
 478 fusion matrix to evaluate the pixel-level classifica-
 479 tion accuracy for each label (The description and
 480 graphical interpretation of the confusion matrix can
 481 be found in the supplementary document: S-4, 5).
 482 Figure 6 shows the confusion matrixes extracted
 483 from pixel-by-pixel comparison of ground-truth and
 484 predicted images used for testing the networks. A
 485 detailed look at the numbers clearly reveals that the
 486 background has the highest true-positive values in
 487 all the architectures, compared to other labels
 488 which led to high mIoU scores. The significant
 489 errors in all the architectures can be attributed to
 490 the misclassification of Cu-Mg-Zn and Al-Cu-Fe
 491 labels to background. These errors are more pro-
 492 nounced for PSPNet and DeepLab v3+, as they use
 493 larger kernels for convolution operation which can
 494 potentially dilate the boundaries or small features'
 495 gray value into the background in the maxpooling
 496 layer. However, similar to what was observed in the
 497 mIoU score in Table II, the Unet++ followed by U-
 498 Net outperformed the other models in term of true-
 499 positive values. In contrast, a great portion of the

500 Cu-Mg-Zn precipitates and Al-Cu-Fe inclusions has
 501 been segmented as background by the PSPNet
 502 model.

503 In the following, intuitive examples of segmenta-
 504 tion and classification are presented. Figure 7 shows
 505 an example of the composite particle segmenta-
 506 tion predicted by all models. Surrounding and embed-
 507 ding a particle into another phase makes the x-ray
 508 image segmentation more difficult, as the phase
 509 boundaries are barely distinguishable. As indicated
 510 in the outlined boxes in Fig. 5, the U-Net and
 511 UNet++ outperformed other networks to segment
 512 Al-Cu-Fe rims around the Cu-Mg-Zn precipitate,
 513 presumably due to the appropriate depth of the
 514 convolutions. However, it appears that employing
 515 pyramid pooling and atrous pooling convolutions by
 516 PSPNet and DeepLab v3+, respectively, dilates the
 517 boundaries of the classes and overlooks the details
 518 of the feature's periphery. This inaccurate seg-
 519 mentation shows the limitation of the dilated pooling
 520 strategy used by PSPNet and DeepLab v3+, where
 521 the kernel matrix size is larger than the area of the
 522 particle.

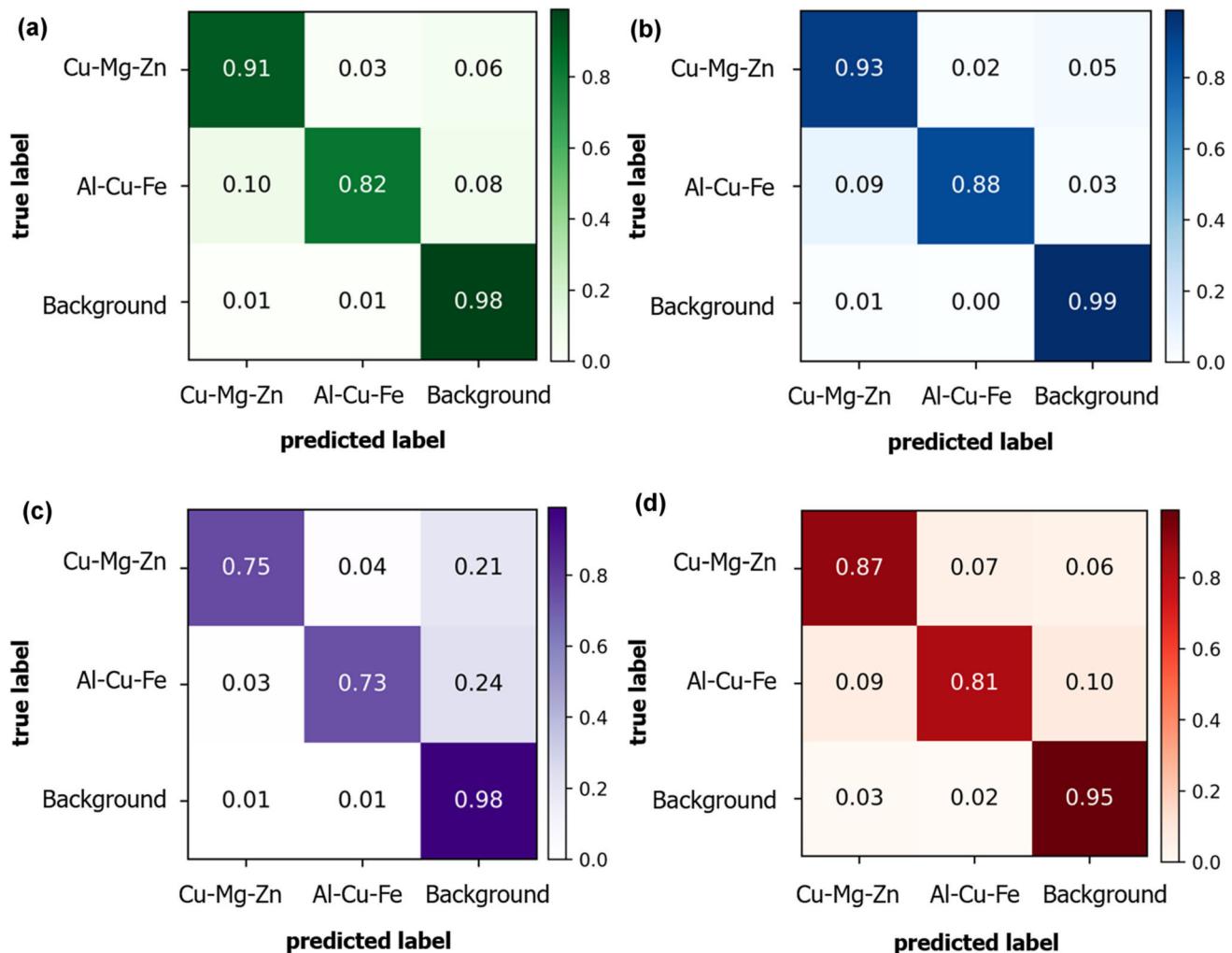


Fig. 6. Normalized confusion results from (a) U-Net, (b) UNet++, (c) PSPNet, and (d) DeepLab v3+.

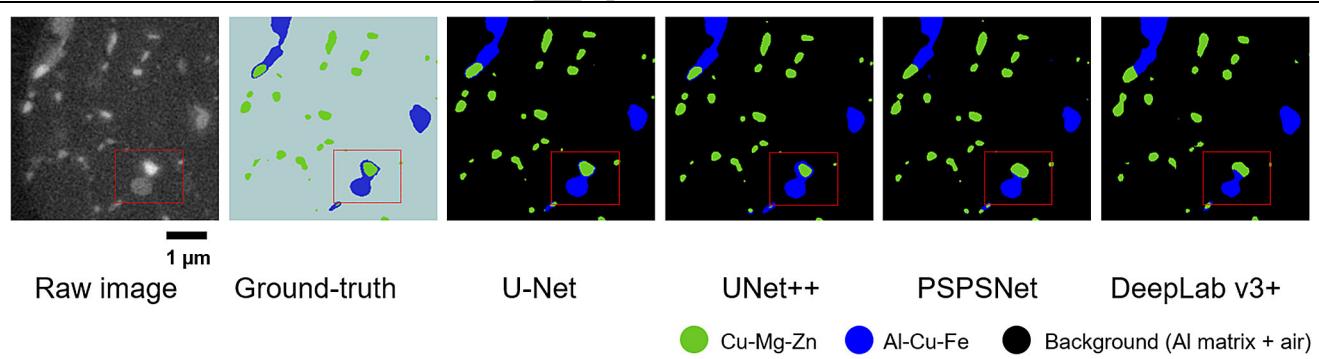


Fig. 7. Example of composite particle segmentation outputs by different DL architectures.

523
524
525
526
527
528
529
530
531
Figure 8 shows some examples of incorrect seg-
mentation/classification outputs. All the architec-
tures misclassified the features where the classes
(background and particles) seemed to share similar
gray values. Formation of near-field phase contrast
fringes around the periphery of the particles or
sample edges can potentially form brighter spots in
some regions OF THE x-ray micrographs. For a few

531
532
533
534
535
536
output images (10% of the Prediction dataset), U-
Net and Unet++ classified some regions of the
micropillar edges (background class) as Al-Cu-Fe
inclusions. In addition, in numerous cases, Al-Cu-Fe
inclusions were partially classified as Cu-Mg-Zn
precipitates.

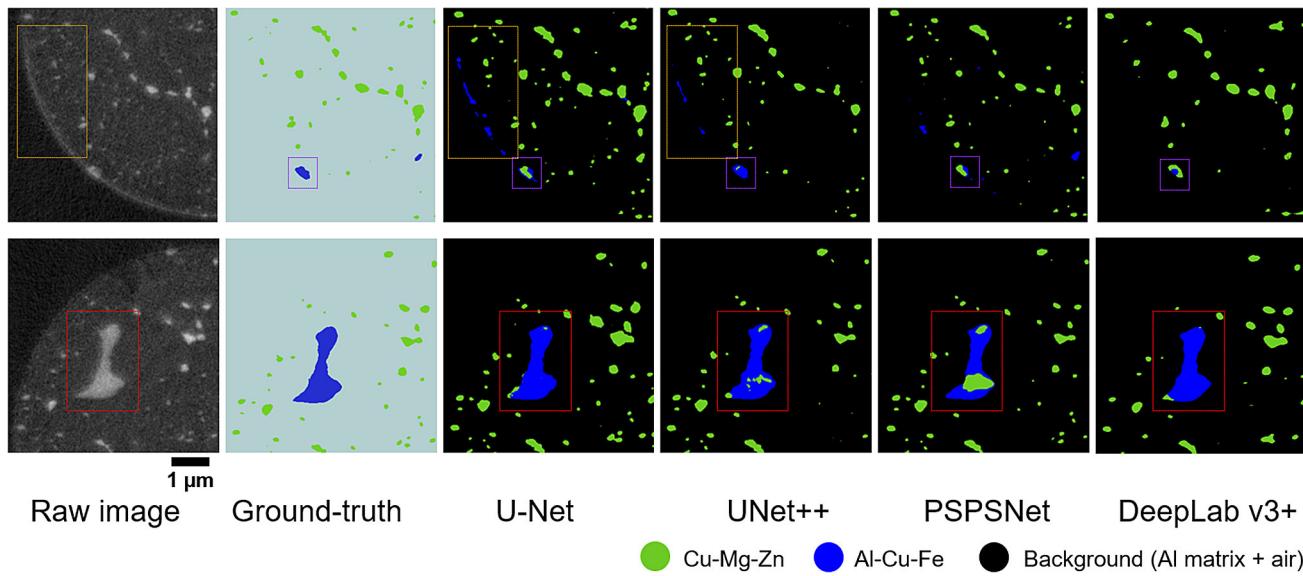


Fig. 8. Examples of incorrect misclassified feature outputs by different DL architectures.

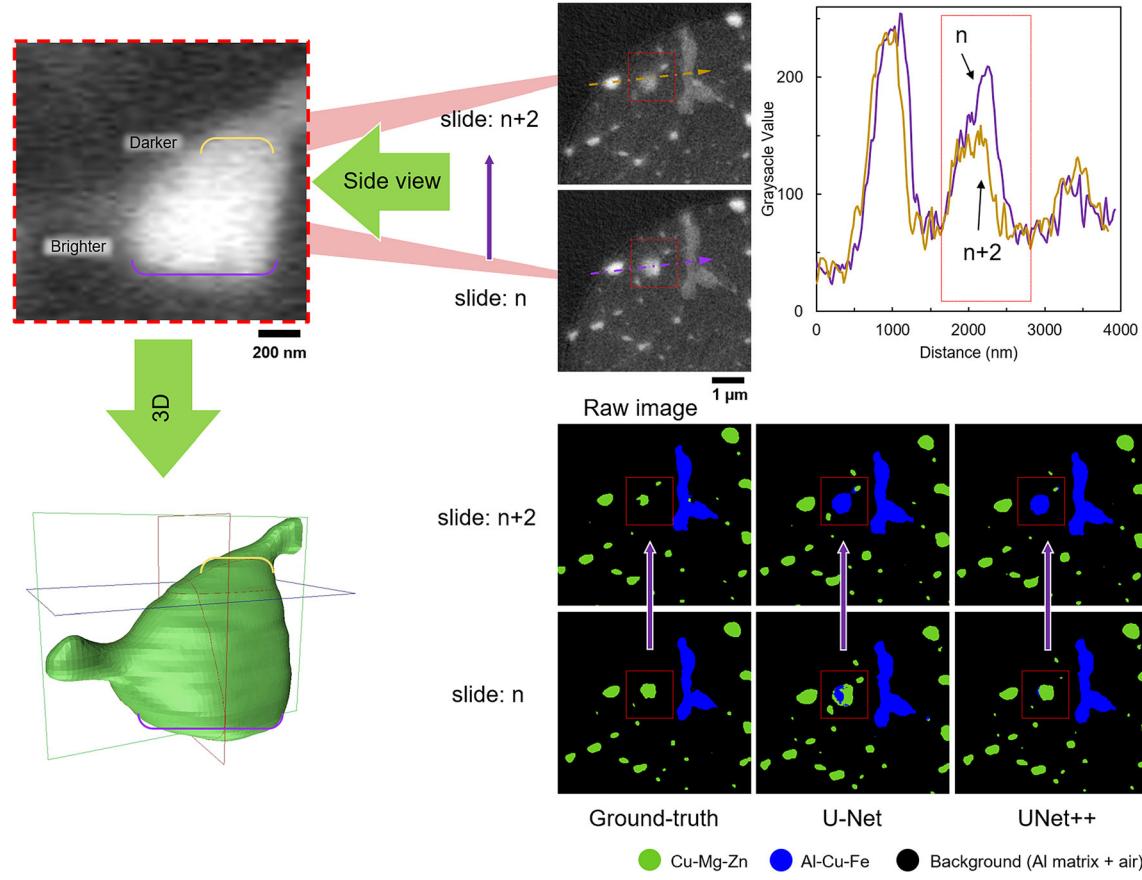


Fig. 9. Examples of inconsistent segmentation outputs predicted by U-Net and UNet++ architectures.

537 Inconsistent classifications were also observed for
 538 a few cases predicted by U-Net and UNet++.
 539 Figure 9 shows an example misclassification output
 540 on a particular precipitate in different slices. Both
 541 models were able to outline the Cu-Mg-Zn

542 precipitate as a feature, but this particle was
 543 misclassified as Al-Cu-Fe inclusions in the neigh-
 544 boring slice. As shown in the grayscale value plot
 545 and 3D-rendered volume of the outlined Cu-Mg-Zn
 546 precipitate, this misclassification is primarily due to

547 gray value changes within the thickness of this
548 particle. The thinner region of the particle appears
549 to have decreased attenuation compared with center
550 of the particle. This leads the Cu-Mg-Zn precipitate
551 to appear darker and look like an Al-Cu-Fe inclu-
552 sion in its thinner cross-section in the nearby slice.

553 CONCLUSION

554 This study focused on the effectiveness of utilizing
555 four state-of-the art deep learning architectures to
556 perform automated segmentation on a complex
557 nanotomography dataset obtained by TXM. A work-
558 flow was introduced to train, apply, and compare
559 the models. All four architectures were successfully
560 implemented and shown to perform well on an x-ray
561 tomography (XRT) dataset.

562 The U-Net as the baseline and most common
563 model in x-ray microscopy imageprocessing meth-
564 ods showed a modest performance and the slowest
565 training time as compared with other models. By
566 redesigning U-Net and applying skip connections as
567 in UNet++, a significantly improved performance
568 was achieved.

569 Furthermore, it was shown that backbones from
570 open source libraries such as imangenet could also be
571 used for XRT image-processing tasks. Promising
572 performances with superior training times were
573 achieved by application of pyramid and ASPP
574 convolutions. However, there is room for further
575 improvement in the configurations and implemen-
576 tations of the PSPNet and DeepLab v3+ models
577 using other libraries, backbones, and shape-aware
578 loss functions.

579 In addition to metrics such as mIoU, extracting
580 the confusion matrix and visual assessment of the
581 output help to interpret the strength of different
582 CNN architectures for multi-class semantic seg-
583 mentation, especially when the sizes of the labels
584 (pixel proportion of the classes) are not balanced.
585 This approach guides a practitioner to select an
586 optimized architecture and parameters for auto-
587 mated segmentation. It has to be noted that the
588 images used in this study was not pre-processed. In
589 future, it would be ideal to apply various 2D and 3D
590 filters, and also to implement data augmentation
591 techniques to reduce misclassification, inconsis-
592 tency, and incorrect segmentations.

593 ACKNOWLEDGEMENTS

594 H.T., S.N., and N.C. are grateful for financial
595 support from the Office of Naval Research (ONR)
596 under Contract No. N00014-10-1-0350 (Dr. W.
597 Mullins, Program Manager). We acknowledge the
598 use of resources at Beamline 32-ID-C of the Ad-
599 vanced Photon Source, a U.S. Department of Energy
600 (DOE) Office of Science User Facility operated for
601 the DOE Office of Science by Argonne National
602 Laboratory under Contract No. DE-AC02-
603 06CH11357.

604

605 CONFLICT OF INTEREST

606 The authors declare that they have no conflict of
607 interest.

611 SUPPLEMENTARY INFORMATION

612 The online version contains supplementary
613 material available at <https://doi.org/10.1007/s11837-021-04706-x>.

616 REFERENCES

1. Q. Zhang, S. Niverty, A.S.S. Singaravelu, J.J. Williams, E. Guo, T. Jing, and N. Chawla, *Mater. Charact.* 148, 52. (2019).
2. J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Markötter, A. Manzoni, F. Vogel, T. Arlt, I. Manke, and J. Banhart, *Acta Mater.* 129, 194. (2017).
3. Q. Krol, and H. Löwe, *Acta Mater.* 151, 478. (2018).
4. N. Limodin, L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliègue, and K. Madi, *Acta Mater.* 57, 2300. (2009).
5. C.S. Kaira, V. De Andrade, S. Singh, C. Kantzios, A. Kirubanandham, F. De Carlo, and N. Chawla, *Adv. Mater.* 29, 1703482. (2017).
6. E. Boulard, C. Denoual, A. Dewaele, A. King, Y. Le Godec, and N. Guignot, *Acta Mater.* 192, 30. (2020).
7. S. Niverty, C. Kale, K.N. Solanki, and N. Chawla, *Corros. Sci.* 185, 109429. (2021).
8. M.B. Kelly, S. Niverty, and N. Chawla, *J. Alloys Compds.* 818, 152918. (2020).
9. A.S.S. Singaravelu, J.J. Williams, H.D. Goyal, S. Niverty, S.S. Singh, T.J. Stannard, X. Xiao, and N. Chawla, *Metall. Mater. Trans. A* 51, 28. (2020).
10. M.B. Kelly, S. Niverty, and N. Chawla, *Acta Mater.* 189, 118. (2020).
11. V. Mazars, O. Caty, G. Couégnat, A. Bouterf, S. Roux, S. Denneulin, J. Pailhès, and G.L. Vignoles, *Acta Mater.* 140, 130. (2017).
12. S. Niverty, (2020).
13. S.S. Singh, T.J. Stannard, X. Xiao, and N. Chawla, *JOM* 69, 1404. (2017).
14. J. Samei, C. Pelligra, M. Amirmaleki, and D.S. Wilkinson, *Mater. Lett.* 269, 127664. (2020).
15. A. Isaac, F. Sket, W. Reimers, B. Camin, G. Sauthoff, and A.R. Pyzalla, *Mater. Sci. Eng. A* 478, 108. (2008).
16. T. Lacondemine, J. Réthoré, É. Maire, F. Célarie, P. Houizot, C. Roux-Langlois, C.M. Schleputz, and T. Rouxel, *Acta Mater.* 179, 424. (2019).
17. H.A. Bale, A. Haboub, A.A. MacDowell, J.R. Nasiatka, D.Y. Parkinson, B.N. Cox, D.B. Marshall, and R.O. Ritchie, *Nature Mater.* 12, 40. (2013).
18. A.S.S. Singaravelu, J.J. Williams, J. Ruppert, M. Henderson, C. Holmes, and N. Chawla, *J. Mater. Sci.* (2020).
19. B.M. Patterson, L. Kuettner, T. Shear, K. Henderson, M.J. Herman, A. Ionita, N. Chawla, J. Williams, T. Sun, K. Fezzaa, X. Xiao, and C. Welch, *J. Mater. Sci.* 55, 11353. (2020).
20. C.S. Kaira, C.R. Mayer, V. De Andrade, F. De Carlo, and N. Chawla, *Microsc. Microanal.* 22, 808. (2016).
21. X. Yang, D. Gürsoy, C. Phatak, V. De Andrade, E.B. Gulsoy, and F. De Carlo, *Microsc. Microanal.* 22, 240. (2016).
22. C.S. Kaira, V. De Andrade, S.S. Singh, C. Kantzios, F. De Carlo, and N. Chawla, *Microsc. Microanal.* 23, 2220. (2017).
23. C. Shashank Kaira, X. Yang, V. De Andrade, F. De Carlo, W. Scullin, D. Gursoy, and N. Chawla, *Mater. Charact.* 142, 203. (2018).

671 24. Y. Wang, J. Gao, Y. Ren, V. De Andrade, and A.J. Shahani, 715
 672 *JOM* 72, 2965. (2020). 716
 673 25. L.J. Ausderau, H.J. Gonzalez Malabet, J.R. Buckley, V. De 717
 674 Andrade, Y. Liu, and G.J. Nelson, *JOM* 69, 1478. (2017). 718
 675 26. V. De Andrade, A. Deriy, M.J. Wojcik, D. Gürsoy, D. Shu, K. 719
 676 Fezzaa and F. De Carlo, SPIE Newsroom, (2016). 720
 677 27. D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, *J. Syn- 721
 678 chrotron Radiat.* 21, 1188. (2014). 722
 679 28. J.J. Williams, Z. Flom, A.A. Amell, N. Chawla, X. Xiao, and 723
 680 F. De Carlo, *Acta Mater.* 58, 6194. (2010). 724
 681 29. J.C.E. Mertens, J.J. Williams, and N. Chawla, *Nucl. In- 725
 682 strum. Methods Phys. Res. A* 800, 82. (2015). 726
 683 30. C. Gobert, A. Kudzal, J. Sietins, C. Mock, J. Sun, and B. 727
 684 McWilliams, *Add. Manuf.* 36, 101460. (2020). 728
 685 31. A. Kumar, and G.K.H. Pang, *IEEE Trans. Syst. Man 729
 686 Cybernet. B* 32, 553. (2002). 730
 687 32. P.I. Guntoro, G. Tiu, Y. Ghorbani, C. Lund, and J. Ros- 731
 688 senkranz, *Miner. Eng.* 142, 105882. (2019). 732
 689 33. C. Bishop, *Pattern Recognition and Machine Learning* 733
 690 (Springer, New York, 2006). 734
 691 34. T.F. Gonzalez, *Handbook of Approximation Algorithms and 735
 692 Metaheuristics 1* (Taylor & Francis, London, 2007). 736
 693 35. B. Ma, X. Ban, H. Huang, Y. Chen, W. Liu, and Y. Zhi, 737
 694 *Symmetry* 10, 107. (2018). 738
 695 36. T. Stan, Z.T. Thompson, and P.W. Voorhees, *Mater. Char- 739
 696 act.* 160, 110119. (2020). 740
 697 37. A. Tekawade, B.A. Sforzo, K.E. Matusik, A.L. Kastengren 741
 698 and C.F. Powell, in *Developments in X-Ray Tomography XII*, 742
 699 ed. B. Müller and G. Wang (SPIE, 2019), p. 67. 743
 700 38. S. Evsevleev, S. Paciornik, and G. Bruno, *Adv. Eng. Mater.* 744
 701 22, 1. (2020). 745
 702 39. D. Chen, D. Guo, S. Liu, and F. Liu, *Symmetry* 12, 639. 746
 703 (2020). 747
 704 40. X. Yang, F. De Carlo, C. Phatak, and D. Gürsoy, *J. Syn- 748
 705 chrotron Radiat.* 24, 469. (2017). 749
 706 41. X. Yang, V. De Andrade, W. Scullin, E.L. Dyer, N. Kasthuri, 750
 707 F. De Carlo, and D. Gürsoy, *Sci. Rep.* 8, 2575. (2018). 751
 708 42. I. Rizwan, I. Haque, and J. Neubert, *Inform. Med. Unlock.*
 709 18, 100297. (2020).
 710 43. Z. Zhou, R. Siddiquee, N. Tajbakhsh, and J. Liang, 1 (n.d.).
 711 44. W. Zhang, X. He, W. Li, Z. Zhang, Y. Luo, L. Su, and P. 751
 712 Wang, *Image Vis. Comput.* 93, 103824. (2020).
 713 45. X. Liu, Z. Deng, and Y. Yang, *Artif. Intell. Rev.* 52, 1089. (2019).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Journal : **11837**
Article : **4706**

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details Required	Author's Response
AQ1	Author names: Please confirm that the author names are presented accurately and in the correct sequence (given names/initials, family name).	
AQ2	Journal instruction requires a city and country for affiliations. Please verify if the provided city and country are correct and amend if necessary.	