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Abstract

Four state-of-the-art Deep Learning-based Convolutional Neural Networks (DCNN) were applied to
automate the semantic segmentation of a 3D Transmission x-ray Microscopy (TXM) nanotomography
image data. The standard U-Net architecture as baseline along with UNet++, PSPNet, and DeepLab v3+
networks were trained to segment the microstructural features of an AA7075 micropillar. A workflow was
established to evaluate and compare the DCNN prediction dataset with the manually segmented features
using the Intersection of Union (IoU) scores, time of training, confusion matrix, and visual assessment.
Comparing all model segmentation accuracy metrics, it was found that using pre-trained models as a
backbone along with appropriate training encoder—decoder architecture of the Unet++ can robustly handle
large volumes of x-ray radiographic images in a reasonable amount of time. This opens a new window for
handling accurate and efficient image segmentation of in situ time-dependent 4D x-ray microscopy
experimental datasets.
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MICROSTRUCTURE CHARACTERIZATION: DESCRIPTORS, DATA-INTENSIVE TECHNIQUES, AND

UNCERTAINTY QUANTIFICATION

Machine-Learning-based Algorithms for Automated Image

Segmentation Techniques of Transmission X-ray Microscopy

(TXM)

HAMIDREZA TORBATI-SARRAF,! SRIDHAR NIVERTY,!
RAJHANS SINGH; DANIEL BARBOZA,2 VINCENT DE ANDRADE,?
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Four state-of-the-art Deep Learning-based Convolutional Neural Networks
(DCNN) were applied to automate the semantic segmentation of a 3D
Transmission x-ray Microscopy (TXM) nanotomography image data. The
standard U-Net architecture as baseline along with UNet++, PSPNet, and
DeepLab v3+ networks were trained to segment the microstructural features
of an AA7075 micropillar. A workflow was established to evaluate and com-
pare the DCNN prediction dataset with the manually segmented features
using the Intersection of Union (IoU) scores, time of training, confusion ma-
trix, and visual assessment. Comparing all model segmentation accuracy
metrics, it was found that using pre-trained models as a backbone along with
appropriate training encoder—decoder architecture of the Unet++ can robustly
handle large volumes of x-ray radiographic images in a reasonable amount of
time. This opens a new window for handling accurate and efficient image
segmentation of in situ time-dependent 4D x-ray microscopy experimental

datasets.

INTRODUCTION

X-ray microtomography has become a very impor-
tant characterization technique for understanding
materials behavior. Depending on the particular
modality, this technique can enable image resolu-
tions ranging from tens of micrometers to the
nanometer scale. More importantly, the non-de-
structive nature of this technique allows us to
conduct in situ and/or time-resolved (4D) investiga-
tions where the evolution of microstructure'=® or
propagation of a defect’® can be captured as a
function of time. In this study, the x-ray tomogra-
phy technique of interest is transmission x-ray
microscopy (TXM) which can be used to conduct
in situ 4D experiments at high spatial resolutions
~ 20 nm)?**?? using the 32-ID beamline at the
Advanced Photon Source (APS).

(Received January 15, 2021; accepted April 22, 2021)

One of the challenges with 4D x-ray microtomog-
raphy experiments is the large amounts of data that
are generated (often in the TB range). In particular,
3D rendering and statistical quantification of
microstructurally evolving features (for example,
crack growth, corrosion propagation, and phase
transformation) require image segmentation. Thus,
the subsequent image processing and feature clas-
sification is often the rate-limiting step for tomo-
graphic data analysis. Pixels with a wide
distribution of grayscale values in the reconstructed
images need to be segmented based on the features’
density and homogeneity. These features often
cannot be segmented using simple histogram
thresholding or edge-based filtering. The presence
of beam-hardening, scattered or other ionizing x-ray
-generated “zinger” artifacts, ring artefacts, edge
blurring due to motion artefacts, and phases with
similar attenuation make the segmentation process
more  complicated.?®?®  This renders the
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requirement of human hands-on intervention for
careful manual segmentation, making the process
extremely cumbersome and time-intensive. Manual
image segmentation is also subjective, depending on
the experience and visual acuity of the person doing
the analysis.?° Thus, there is a need for a new set of
tools to move toward automating image segmenta-
tion of large 4D x-ray tomography datasets.

With the success of machine-learning algorithms
in general image analysis, numerous promising
segmentation and classification approaches can be
applied for image segmentation for materials
science applications. Traditional machine-learning
image-processing methods, such as k-means clus-
tering and thresholding, have been employed for
various segmentation tasks.’™*? Contemporary
approaches, such as Gabor filtering, rely on neural
networks to solve a given end-task, such as classi-
fication or segmentation, by learning the model
parameters from training datasets®®. Nevertheless,
these methods still require minimal human inter-
vention and are known as semi-automatic segmen-
tation approaches.

In recent developments, deep-learning (DL) has
pushed the boundaries in improving the robustness
of segmentation methods with minimal multi-pass
post-segmentation human intervention. Deep con-
volutional neural networks (DCNNs), have achieved
excellent performance for various image-processing
tasks. Krizhevsky et al.>* developed the first large-
scale application of DCNNs on difficult natural
image classification problems, and, since then,
different deep architectures have been modified in
different domains to improve the time and accuracy
of automated image processing. Although DL-based
image segmentation techniques have been exten-
sively implemented in medical x-ray radiographic
images, only a handful of studies have applied this
approach for x-ray microscoggr images in materials
science and engineering.??3:3°41

In this work, we study the performance of four
state-of-the-art deep learning architectures for
automatic image segmentation of a TXM dataset.
We chose U-Net, UNet++, PSPNet, and DeepLab
v3+ DCNN architectures, as the implementation of
these networks are readily accessible and have
shown outstanding segmentation results in multiple
domains, such as intelligent transportation, geo
sensing, and medical imaging.***6 The architecture
of all the adopted networks contains an encoder and
a decoder sub-network. First, the encoder extracts
the features from a given image by contracting the
image into -different depths (resolutions) using
different down-sampling convolutions and opera-
tional layers. Then, the decoder takes the feature
map from different depths of the encoder, predicts
the class of the pixel, recovers spatial information,
and reconstructs the image using up-sampling
convolutions.?” However, each model uses different
strategies, operational layers, and convolutional
arithmetic to extract and predict the features. The

U-Net was chosen as the baseline, which comprises
a symmetric encoder—decoder architecture and
extracts features by applying consecutive convolu-
tions into a fixed depth. UNet++ applies similar
strategies to U-Net, but its architecture has been
redesigned to operate at the optimal depth.*>*® In
contrast to U-Net and UNet++, PSPNet and
DeepLab v3+ simultaneously apply multi-scale con-
volutional modules to convert the image into differ-
ent depths, and the decoder fuses all the features at
different scales to the prediction output. Applying
this strategy can potentially accelerate the speed of
image processing by extractinbg global information
in the image more efficiently.%47751

Although the application of DL tools for x-ray
microscopy-based imaging is still in its early stages,
here, we provide a unified framework for the
analysis of x-ray tomography datasets using DCNN.
To obtain an optimal segmentation output, opti-
mized hyperparameters, methods, and backbones
were identified for each architecture (a general
description of DCNN parameters and terms are
provided in the electronic supplementary). A super-
vised DL approach using stacks of 2D TXM
grayscale slices ( the raw data) and the correspond-
ing -manually segmented RGB images (ground-
truth) were used as a training dataset. Then the
adopted networks were trained, and the extracted
models were used to predict the rest of the dataset
images. A comparison of the ground-truth versus
the predicted datasets was quantified and showed
excellent agreement. In addition, the computational
efficiency, based on the time taken to process an
image, was also found to be favorable.

EXPERIMENTAL METHODS
AND PROCEDURE

In this section, we describe the experimental
details for acquiring the XCT dataset, the image
segmentation, hardware details, and the analysis
used for comparing the accuracy of the predicted
segmented images.

X-ray Synchrotron Tomography

This study was conducted on 2D x-ray slices
obtained from a TXM scan performed on 7075
aluminum alloy (AA7075). The principal constituent
particles of AA7075 are the Al-Cu-Fe inclusions and
the Cu-Mg-Zn precipitates.’®°® The size, geometry,
and distribution of these phases play a significant
role in determining the mechanical behavior and
corrosion performance of this alloy. '*%*°® Rods of
the AA7075 were overaged using the following heat-
treatment protocol: solution treatment at 510°C for
2 h — water-quenching — overageing at 107°C
for 6 h and at 163°C for 40 h, followed by further
coarsening of the precipitates at 300°C for 86 h. This
resulted in a significant coarsening of the precipi-
tate particles. Al-Cu-Fe inclusions, with the compo-
sition Al;CuyFe, are intermetallic particles present
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in the form of stringers along the rolling direction. A
micropillar of overaged AA7075, approximately 15
um in diameter and 30 ym in height, was milled
using a Ga® focused ion beam. A TXM scan was
conducted on the pillar at the 32-ID-C beamline at
the APS at Argonne National Laboratory. The
combination of a condenser lens and custom-made
Fresnel zone plates yielded a voxel size of 18 nm.
Details about the beamline can be found in previous
studies®®?’. A monochromatic x-ray beam energy of
9.75 keV (just above the zinc absorption edge) was
used for the scan to obtain the maximum contrast
between the Cu-Mg-Zn precipitate particles, the
Al;CuyFe inclusions, and the matrix. A total of 1200
projections were captured over an angular range of
0-180° with an exposure time of 1 s/projection. A
filtered back-projection algorithm was wused to
reconstruct the projections using the software
TomoPy?’. The reconstructed dataset was converted
into a 2D slice stack of 730 images, having an image
size of 768 x 768 pixels with a high bit-depth of 32
bits.

Manual Segmentation Recipe

Due to different attenuating properties originat-
ing from different atomic weight densities of the
particles, these phases can be distinguished based
on their gray value range. The presence of compos-
ite phases and the formation of near-field phase
contrast fringes around the periphery of the parti-
cles (shown in Fig. 1), makes the manual segmen-
tation complicated. To this end, a non-local mean
filter was employed to reduce noise, and an unsharp
mask filter was used to sharpen the relevant
microstructural features. Avizo 9 (Bethesda, MD,
USA) was then used to perform manual image
segmentation to generate the ground-truth.

Deep Convolutional Neural Network (DCNN)
Architectures

U-Net

The U-Net is a symmetric U-shaped encoder—
decoder network originally developed for medical
image processing®®. Its general architecture shown
in Fig. 2(a). First, in the contraction path (encoder),
the image features are extracted using consecutive
3 x 3 convolutions followed by 2 x 2 rectified linear
unit (ReLU) activation and 2 x 2 max-pooling
operations. Then, in the expansion path (decoder),
the dense output of the encoder is progressively
expanded. In each step of the expansion path, the
spatial information of up-convolution is concate-
nated with the corresponding feature maps from the
contraction pathway, followed by 3 x 3 convolutions
and ReLU layers. However, this design has a major
limitation. Depending on the feature sizes and the
numbers of labeled classes for training, the optimal
depth of an encoder—decoder network can vary for
different segmentation tasks. Hence, this network

cannot be used for multi-scale feature segmentation
as it is unnecessarily restricted to fuse feature maps
into the fixed depth®3.

UNet++

The UNet++ is a redesigned U-Net architecture
which extends the U-Net’s abilities for achieving
multi-scale and more accurate semantic segmenta-
tion.*>*® As compared to the U-Net (Fig. 2(b)), the
UNet++ consists of varying depths, and the deco-
ders are densely connected at the same resolution of
encoders via skip connections. It bridges the feature
maps from different depths of the contraction path
to the expansion path before merging them. This
architectural modification not only improves the
overall segmentation accuracy but also enhances
the learning and prediction time by enabling the
network pruning itself.*> Furthermore, using deep
supervision enables the model to operate in differ-
ent modes by averaging all segmentation branches.
In the current study, we also used pre-trained
ResNet 152 as a backbone to enhance the training
speed.

PSPNet

The pyramid scene parsing network (PSPNet)
uses the spatial pyramid pooling module with
different-region-based contexts to achieve superior
segmentation performance.*>*®5157 Ag shown in
Fig. 2(c), the PSPNet architecture takes the feature
map from the last convolutional layer as an input
image and fuses the features under four different
pyramid scales. The pyramid levels form pooled
representations of the feature map. The low-dimen-
sion feature maps are then up-sampled to the input
image size and concatenated with the original input
image.’!"® Using multi-scale pyramid pooling, con-
volution aids the network to extract global features
in the image more efficiently. A graphical interpre-
tation of spatial pyramid pooling can be found in
supplementary Fig. S-2. In this study, a pre-trained
ResNet 152 backbone was used to extract the
feature map as an input to the pyramid pooling
module.

DeepLab v3+

This network applies atrous convolutions and
atrous spatial pyramid pooling (ASPP) approach to
extract the feature in its encoder sub-network.
Atrous convolution are also called “dilated convolu-
tions”. A graphical interpretation of ASPP is
depicted in supplementary Fig. S-3. Using this
module, DeepLab v3+ is able to extract global and
multi-scale features of the image simultaneously,
which results in a faster computational process
compared to conventional convolutions used in U-
Net base architectures.**®® As shown in Fig. 2(d),
the extracted features from atrous convolutions
with different sampling rates and strides are fused
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Fig. 1. Typical raw and ground-truth (manually segmented) images from a 15-um-diameter micropillar of an overaged AA 7075 dataset obtained

by the TXM technique.

to generate the encoder part of the network. Then,
the decoder uses the fused map from the ASPP and
the low-level features received from the preliminary
extracted feature by DCNN layers as input and
generates the output predicted output®®. In this
study, this technique was paired with an Xception
71 model as a backbone.

Training, Testing, and Evaluation of CNN
Algorithms

After normalizing of the ‘entire batch of TXM
dataset (a description of batch normalization can be
found in the supplementary file: S-1), the consecutive
image stack (here, each slice is a pair of raw and
ground-truth images (shownin Fig. 1 as an example)
was randomly split into training and testing batches
based on their slice numbers. 550 images (75% of the
whole data) were used for training and 180 images
(25% of the whole data) were used for testing. During
training, the ground-truth dataset was used as the
target output to minimize the loss error. For testing,
the ground-truth images were used to calculate the
accuracy of the prediction. To validate and monitor
training progress after each epoch, 20 images were
randomly separated from the training batch for the
validation loss checkpoint. All models were trained
and tested with the use of GPU (NVIDIA Quadro RTX
6000) computational resources.

We use the intersection over union (IoU) as a
metric to quantify the accuracy of the segmentation
models®®. Given the ground-truth mask and pre-
dicted image, the IoU for a class m can be computed
using Eq. 1:

t
IoU, = " 1
fom + Fom +Fom D

where t,, and f,, are the numbers of true and
false positives, respectively, and f,,, refers to the
number of false-negative pixels in the predicted
image. This metric measures the ratio of the area of
overlap between the predicted feature and the
ground-truth, divided by the area of union between
the predicted feature and the ground-truth, as
shown in Fig. 3. The mean of IoU (mloU) scores
for every class present in the predicted image were
used to compare different models.

RESULTS AND DISCUSSION

The baseline U-Net architecture used for the
initial experimentation was implemented in a deep-
learning toolbox for x-ray imaging obtained from the
“Xlearn” Github repository (github.com/tomogra-
phy/xlearn). A detailed description of the Xlearn
network is provided in*’. To our knowledge, for the
first time, Xlearn, as a CNN segmentation tool, has
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Fig. 2. The architecture of the four networks used for this study: (a) U-Net, (b) UNet++, (c) PSPNet, and (d) DeepLab v3+.

been implemented on a TXM dataset to segment 2D
images and visualize the microstructural features in
an Al-4%Cu alloy micropillar. This alloy mainly
consists of plate-like and needle-like AloCu precip-
itates in an o-Al matrix and the shape, size, and
distribution of each phase is required to understand
the mechanical behavior of this material. *How-
ever, marginal differences in grayscale values

between the existing precipitates in this alloy made
it almost impossible to conduct manual segmenta-
tion on the entire TXM dataset. This entailed the
application of an efficient automated technique to
fully segment the whole dataset. To this end, a sub-
volume (only 1/32 of the whole scan) of the TXM
slices were segmented manually within 36 h. The

Xlearn algorithm was trained to emulate
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Fig. 3. Graphical interpretation of the intersection over union (loU) metric used to compare the accuracy of the predicted feature (DCNN) with the

manual segmented feature (ground-truth).

Table I. U-Net results on the testing dataset for binary (2-class) and 3-class segmentation

Segmentation Loss function

2-class (binary)
3-class

Means square error)
Categorial cross-entropy

Epoch mloU (%)
10 95.9
10 91.7

segmenting of the precipitates of the alloy using the
2D images provided from the manually segmented
sub-volume. Using a CPU, this process only took 2
h. Then, the entire dataset was segmented auto-
matically using the trained Xlearn model within
just 20 h using a CPU. The quantitative volume
comparison of the 3D-rendered data from the man-
ually and Xlearn segmented dataset revealed appre-
ciable accuracy of the DCNN approach for such
TXM segmentation®®. The time for automated seg-
mentation is also a function of the hardware
computation capability.

In our current study, we executed the Xlearn and
other DCNN algorithms training and testing pro-
cess on a GPU cluster and compared the computa-
tional time reduction. The Xlearn was trained on all
550 training images with a patch size of 768 x 768
pixels, using the Adam optimizer with the MSE loss
(binary segmentation) as default loss function.
However, we changed the loss function to categorial
cross-entropy be able to classify and segment the 3
classes. For the binary (2-class) segmentation, both
the Cu-Mg-Zn precipitates and Al-Cu-Fe inclusions
were classified as a single class with the background
being another class; while for 3-class segmentation,
each precipitate, inclusions, and background were
classified as separate classes. As shown in Table I,
the U-Net gave better mIoU scores (mIoU overall all
classes) in the case of binary segmentation com-
pared with 3-class segmentation. However, to

segment Al-Cu-Fe and Cu-Mg-Zn particles sepa-
rately, multi-class segmentation was employed for
all four architectures under consideration.

The UNet++ and PSPNet were implemented on a
nested U-Net architecture from the GitHub repos-
itory (github.com/MrGiovanni/UNetPlusPlus). The
DeepLab v3+ architecture with the exception 71 as
backbone were referred to existing open-source
TensorFlow Model Garden implementations
(github.com/tensorflow/models). The training and
testing dataset were converted to Tensorflow’s
".tfrecord’ format. Used this way, the models can
become trained faster, as less memory is consumed
during processing, while the data can be read
quickly from memory. Also, the atrous rates were
set to 3, 6, and 9 for training and testing.

In our code implementation, based on the initial
epochs and monitoring the loss convergence and
accuracy progression of the validation batch, the
best sets of hyperparameters were chosen before
initiating the main training process. These param-
eters included learning-rate, dropout, batch size,
loss function, and optimizer (the detailed descrip-
tion of each term is provided in supplementary file:
S-1). A fixed batch size was used for all the models.
Various loss functions provided in%%! were tested,
and the summation of the categorial cross-entropy
and dice loss (1 — dice similarity coefficient) as the
loss function gave the best training and testing
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Table II. Performance analysis of the implemented architectures

Batch Training Prediction time per mloU score
Model size Epoch Loss function time (h) image (s) (%)
U-Net 1 10 Categorical cross-entropy + 12 1.9 92.2
dice loss
UNet++ 1 10 Categorical cross-entropy + 8 1.1 95:1
dice loss
PSPNet 1 10 Categorical cross-entropy + 5 0.9 88.2
dice loss
DeepLab 1 10 Categorical cross-entropy + 4 0.8 89.1
v3+ dice loss
(a) (b)
100
= -~
5 q
E N
= =)
o !
£ £
£
s
et

U-Net

PSPSNet

model

Unet++ DeeplLab v3+

U-Net PSPSNet

model

Unet++

DeeplLab v3+

Fig. 4. Performance of the implemented architectures: (a) time of the training, (b) accuracy.

results for all the algorithms. In all the training
processes, the learning rate was set to 10 and the
dropout was 0.5.

Numbers of epochs, training time, prediction
time, and mlIoU scores obtained from all the models
are listed in Table II, and the preferences are
plotted in Fig. 4. Typical predicted segmentations
by trained models are presented in Fig. 5. The U-
Net implementation took the longest amount of time
owing to the process of fine-tuning and presumably
down-sampling the input image to a fixed depth.
Note that a small increment was observed in the U-
Net mIoU score by applying a summation of the
categorial cross-entropy with dice loss (Table II)
instead of merely categorial cross-entropy loss
(Table I) as the loss function. This improvement is
attributed to the dice loss function, as it not only
evaluatesthe number of pixels correctly labelled but
also penalizes instances of incorrect segmentation
(false-positive and false-negative) and determines
the accuracy of the segmentation boundaries*?.

The UNet++ training and testing process was
faster than U-Net as it used the pre-trained model
as backbone. Also, the architecture of UNet++ takes

advantage of skip connections to operate at an
optimal depth. Considering all of these strategies,
UNet++ achieved significantly higher mIoU perfor-
mance compared to all the other architectures.
PSPNet was able to achieve favorable mloU scores
in a training time of just 17 h. The faster perfor-
mance of PSPNet compared to UNet++ can be
attributed to the application of pyramid pooling
convolutions. However, comparing all the training
times, the DeepLab v3+ outperformed the other
architectures, but it has a slightly lower segmenta-
tion accuracy than the best one. As DeepLab v3+
takes advantage of atrous pooling convolutions with
different rates, the kernel can move faster across
the input feature map and extract global informa-
tion more efficiently than the other encoder sub-
networks used in other models (an interpretation of
atrous pooling operation can be found in Figure S-3
in supplementary file).

In this study, the background class occupies the
major portion of the x-ray micrographs compared to
other constituent particles. Hence, the high values
of IoU score might be coming from background
labels. To highlight the accuracy of segmentation in
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2 uym
Raw image

Ground-truth

U-Net
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UNet++ PSPSNet DeepLab v3+

. Al-Cu-Fe . Background (Al matrix + air)

Fig. 5. Comparison of raw, ground-truth, and segmented output of images predicted by different DL architectures.

precipitates and inclusions, we calculated the con-
fusion matrix to evaluate the pixel-level classifica-
tion accuracy for each label (The description and
graphical interpretation of the confusion matrix can
be found in the supplementary document: S-4, 5).
Figure 6 shows the confusion matrixes extracted
from pixel-by-pixel comparison of ground-truth and
predicted images used for testing the networks. A
detailed look at the numbers clearly reveals that the
background has the highest true-positive values in
all the architectures, compared to other labels
which led to high mloU scores. The significant
errors in all the architectures can be attributed to
the misclassification of Cu-Mg-Zn and Al-Cu-Fe
labels to background. These errors are more pro-
nounced for PSPNet and DeepLab v3+, as they use
larger kernels for convolution operation which can
potentially dilate the boundaries or small features’
gray value into the background in the maxpooling
layer. However, similar to what was observed in the
mloU score in Table II, the Unet++ followed by U-
Net outperformed the other models in term of true-
positive values. In contrast, a great portion of the

Cu-Mg-Zn precipitates and Al-Cu-Fe inclusions has
been segmented as background by the PSPNet
model.

In the following, intuitive examples of segmenta-
tion and classification are presented. Figure 7 shows
an example of the composite particle segmentation
predicted by all models. Surrounding and embed-
ding a particle into another phase makes the x-ray
image segmentation more difficult, as the phase
boundaries are barely distinguishable. As indicated
in the outlined boxes in Fig. 5, the U-Net and
UNet++ outperformed other networks to segment
Al-Cu-Fe rims around the Cu-Mg-Zn precipitate,
presumably due to the appropriate depth of the
convolutions. However, it appears that employing
pyramid pooling and atrous pooling convolutions by
PSPNet and DeepLab v3+, respectively, dilates the
boundaries of the classes and overlooks the details
of the feature’s periphery. This inaccurate segmen-
tation shows the limitation of the dilated pooling
strategy used by PSPNet and DeepLab v3+, where
the kernel matrix size is larger than the area of the
particle.
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Fig. 6. Normalized confusion matrixes of segmentation results from (a) U-Net, (b) UNet++, (c) PSPNet, and (d) DeeplLab v3+.
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Fig. 7. Example of composite particle segmentation outputs by different DL architectures.

Figure 8 shows some examples of incorrect seg-
mentation/classification outputs. All the architec-
tures misclassified the features where the classes
(background and particles) seemed to share similar
gray values. Formation of near-field phase contrast
fringes around the periphery of the particles or
sample edges can potentially form brighter spots in
some regions OF THE x-ray micrographs. For a few

output images (10% of the Prediction dataset), U-
Net and Unet++ classified some regions of the
micropillar edges (background class) as Al-Cu-Fe
inclusions. In addition, in numerous cases, Al-Cu-Fe
inclusions were partially classified as Cu-Mg-Zn
precipitates.
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Fig. 8. Examples of incorrect misclassified feature outputs by different DL architectures.
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Fig. 9. Examples of inconsistent segmentation outputs predicted by U-Net and UNet++ architectures.

Inconsistent classifications were also observed for
a few cases predicted by U-Net and UNet++.
Figure 9 shows an example misclassification output
on a particular precipitate in different slices. Both
models were able to outline the Cu-Mg-Zn

precipitate as a feature, but this particle was
misclassified as Al-Cu-Fe inclusions in the neigh-
boring slice. As shown in the grayscale value plot
and 3D-rendered volume of the outlined Cu-Mg-Zn
precipitate, this misclassification is primarily due to
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gray value changes within the thickness of this
particle. The thinner region of the particle appears
to have decreased attenuation compared with center
of the particle. This leads the Cu-Mg-Zn precipitate
to appear darker and look like an Al-Cu-Fe inclu-
sion in its thinner cross-section in the nearby slice.

CONCLUSION

This study focused on the effectiveness of utilizing
four start-of-the art deep learning architectures to
perform automated segmentation on a complex
nanotomography dataset obtained by TXM. A work-
flow was introduced to train, apply, and compare
the models. All four architectures were successfully
implemented and shown to perform well on an x-ray
tomography (XRT) dataset.

The U-Net as the baseline and most common
model in x-ray microscopy imageprocessing meth-
ods showed a modest performance and the slowest
training time as compared with other models. By
redesigning U-Net and applying skip connections as
in UNet++, a significantly improved performance
was achieved.

Furthermore, it was shown that backbones from
open source libraries such as imagenet could also be
used for XRT image-processing tasks. Promising
performances with superior training times were
achieved by application of pyramid and ASPP
convolutions. However, there is room for further
improvement in the configurations and implemen-
tations of the PSPNet and DeepLab v3+ models
using other libraries, backbones, and shape-aware
loss functions.

In addition to metrics such as mloU, extracting
the confusion matrix and visual assessment of the
output help to interpret the strength of different
CNN architectures for multi-class semantic seg-
mentation, especially when the sizes of the labels
(pixel proportion of the classes) are not balanced.
This approach guides a practitioner to select an
optimized architecture and parameters for auto-
mated segmentation. It has to be noted that the
images used in this study was not pre-processed. In
future, it would be ideal to apply various 2D and 3D
filters, and also to implement data augmentation
techniques to reduce misclassification, inconsis-
tency, and incorrect segmentations.
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