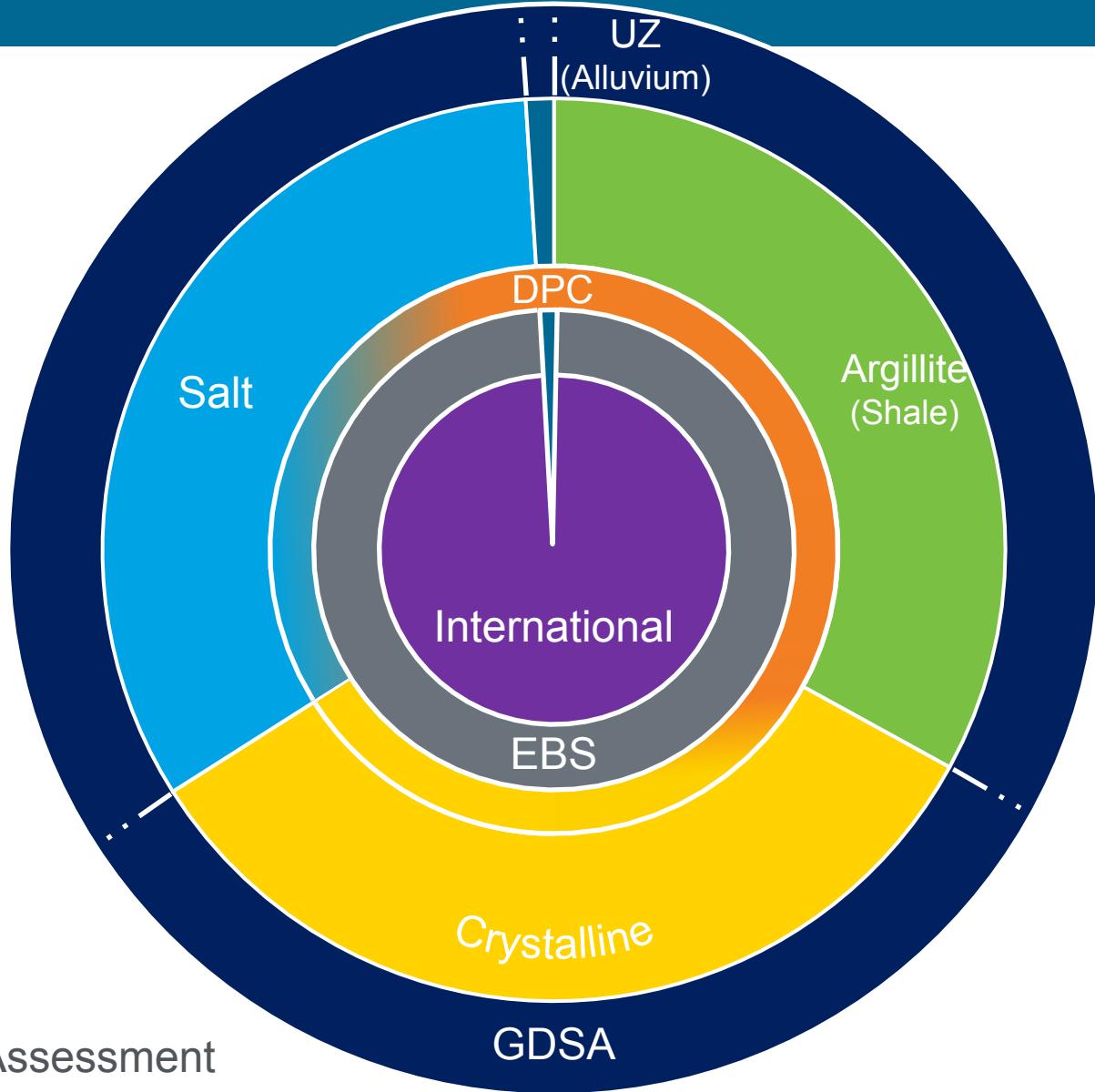





## Overview of Engineered Barrier Systems (EBS) Research

US NWTRB Fall 2020 Fact-Finding  
Meeting  
November 4-5, 2020

National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.


Ed Matteo  
Sandia National Laboratories  
Dept. of Nuclear Waste Disposal Research  
and Analysis

# Overview

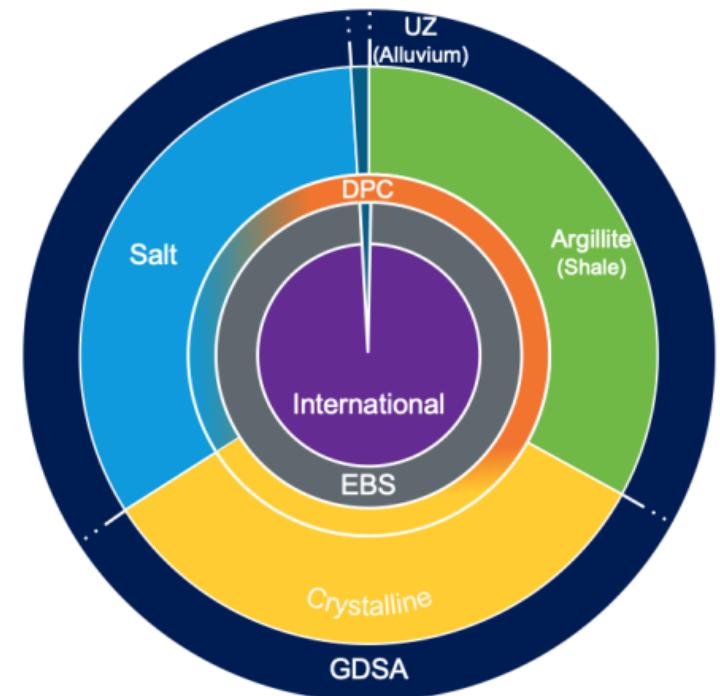
- Engineered Barrier Systems(EBS) Research relative to other SFWST research areas
- Knowledge and Capability Gaps
- Research Priorities
- HotBENT Deep Dive (presented by Liange Zheng)

# R&D Priorities

- Gaps in understanding of fundamental processes
  - Integrity of Repository Seals
    - Drift and shaft seals
    - Degradation evolution, esp. permeability evolution
  - Processes at material interfaces
    - Engineered materials and Disturbed Rock Zone (DRZ)
    - Waste Package materials, buffer, and host rock



UZ = Unsaturated Zone


DPC = Dual Purpose Canisters

EBS = Engineered Barrier System

GDSA = Geologic Disposal Safety Assessment

# Knowledge and Capability Gaps

- Gaps in understanding of fundamental processes (cont.)
  - Coupled processes
    - Chemo-mechanics
    - Thermal-Hydrologic-Mechanical-Chemical
    - Multi-phase flow
    - Multi-scale phenomenon
    - Linking microstructural scale to continuum scale
  - Particular attention on cementitious materials and bentonite



# How are EBS Knowledge Gaps Prioritized?

| High Impact R&D Topics    | High-Priority R&D Activities         | Medium-High-Priority R&D Activities |
|---------------------------|--------------------------------------|-------------------------------------|
| High Temperature Impacts  | D-1, D-4, I-4, I-6, I-16*, E-11, S-5 | I-2, I-3, I-7, E-10                 |
| Buffer and Seal Studies   | I-4, E-9, E-17*, A-8, C-15*          | I-2, I-3, I-7, A-4, C-6, C-8, C-11  |
| Coupled Processes (Salt)  | S-1, S-3, S-4, I-12, I-13            | I-14, S-2, S-7, S-8, S-11*          |
| Gas Flow in the EBS       | I-6, I-8, I-18*                      | I-9, P-17*                          |
| Criticality               | D-1, D-3, D-4, D-5                   |                                     |
| Waste Package Degradation | C-16*, P-12                          | E-4*, E-6                           |
| In-Package Chemistry      | E-14*                                | E-2, E-20, P-15*, P-16*             |
| Generic PA Models         |                                      | P-1, P-2, P-4, P-11*, P-13*, P-14   |
| Radionuclide Transport    |                                      | C-11*, C-13*, C-14*, P-15*, P-16*   |
| DFN Issues                |                                      | I-21*, C-1, C-17*                   |
| GDSA Geologic Modeling    |                                      | O-2, O-3                            |
| THC Processes in EBS      |                                      | E-3                                 |

## Activity Designator Legend:

A – Argillite

C – Crystalline

S – Salt

D – Dual Purpose Canisters

E – Engineered Barrier System

I – International

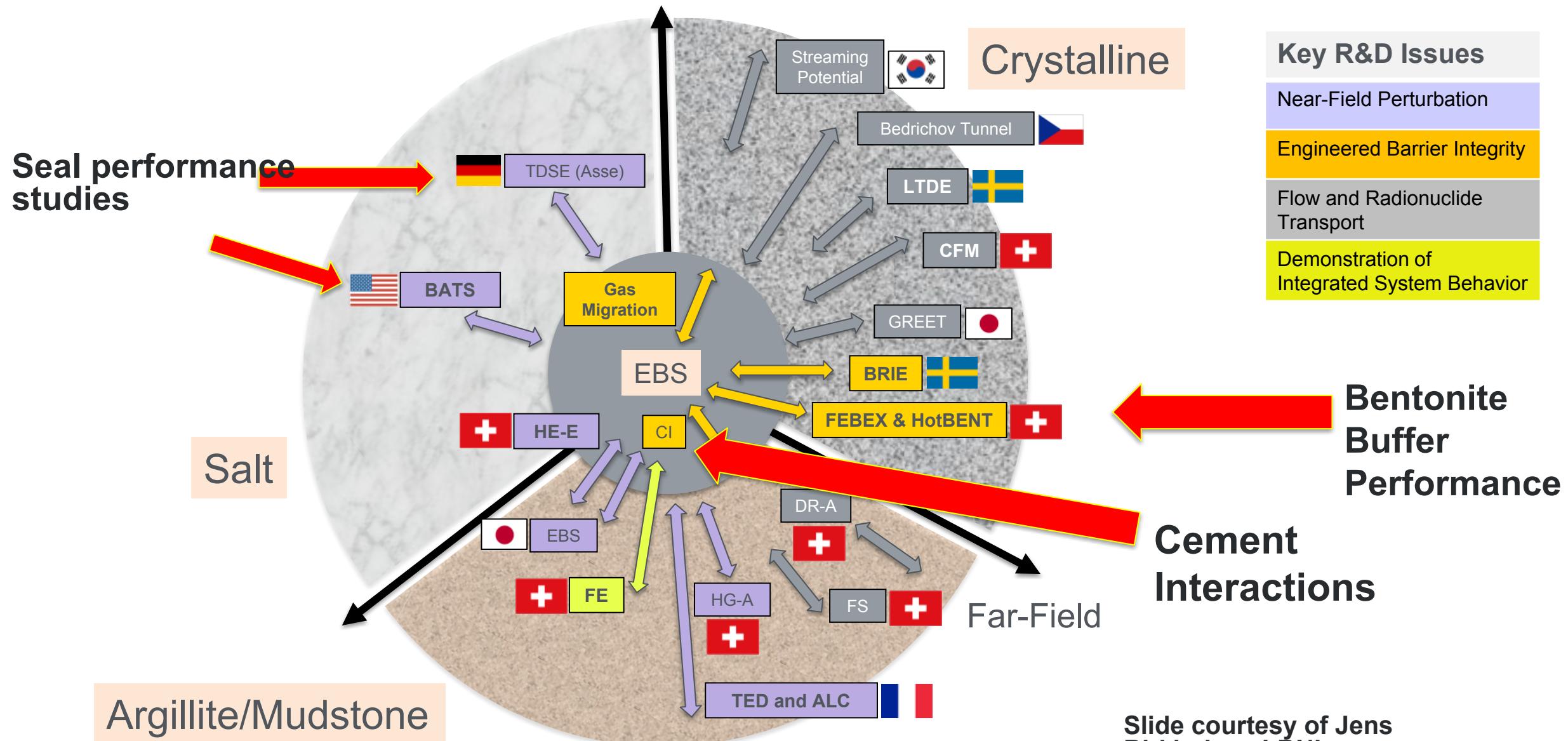
O – Other

P – Performance Assessment

\* – indicates Gap Activity

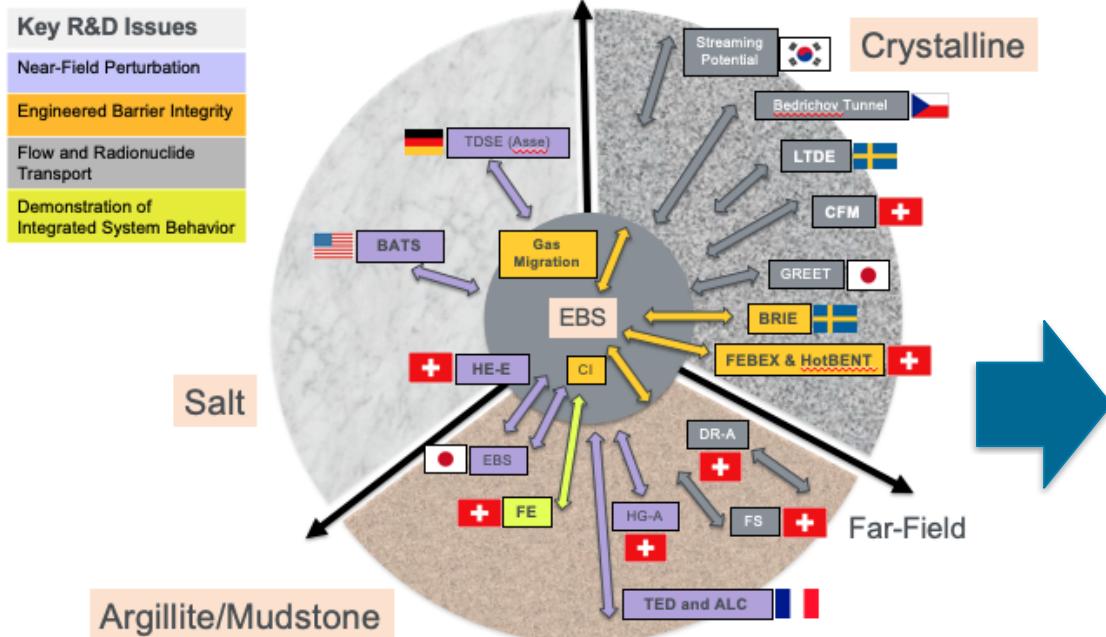
# High Priority EBS Activities

| #    | Description                                  | SFWST EBS Activity                                                                                                                                               | Int'l Tie-in                             |
|------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| E-09 | Cement plug/liner degradation                | Experimentally verified cement-geomaterial 3D model development in PFLOTRAN (crosscut with Argillite DR)                                                         | EBS Task Force Task Cement Task          |
| A-08 | Evaluation of Ordinary Portland Cement (OPC) | Seals in Salt (crosscut with Salt DR)                                                                                                                            | BATS Heater Test in Salt RANGERS Project |
| E-11 | EBS High Temperature Geochemistry/Mineralogy | Hydrothermal Experiments examining host, buffer, and canister materials interaction/evolution at elevated temperature (crosscuts with Crystalline and Argillite) | HotBENT                                  |


# High Priority EBS Activities (cont.)

| #    | Description                                  | SFWST EBS Activity                                                                                  | Int'l Tie-in                                                                                                                                                                                                    |
|------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-03 | TH/THC Processes in EBS                      | Various Bentonite Studies<br>-chemical controls<br>-molecular scale<br>-bench scale<br>-drift scale | FEBEX activities<br>DECOVALEX 2023                                                                                                                                                                              |
| I-08 | Advectional gas flow in bentonite            |                                                                                                     | <ul style="list-style-type: none"> <li>Task B: Modeling Advection of Gas in Clays (MAGIC)</li> <li>Task C: THM Modeling of the FE Experiment</li> <li>Task E: Brine Availability Test in Salt (BATS)</li> </ul> |
| I-04 | Experiments of Bentonite at High Temperature | Benchtop High Temp Bentonite Column Test                                                            | HotBENT<br>EBS Task Force Column Test                                                                                                                                                                           |
| E-10 | High Temperature Behavior                    | Modelling Support of HotBENT and Benchtop Tests                                                     |                                                                                                                                                                                                                 |

# Knowledge and Capability Gaps


- **Gaps in Process Models**
  - Cement models for evolution of plugs and liners
    - Chemo-mechanical coupling
    - Fracture models
  - Saturation/Re-saturation of Cementitious Materials and Bentonite
  - Bentonite buffer
    - THMC models refinement
- **Benefits of filling these gaps:**
  - Impact representation of seal representation in GDSA, or at least improve confidence in permeability values for seals/interfaces
  - Improve understanding of near field geochemistry

# Knowledge and Capability Gaps also Crosscut with the International Field Test Portfolio and Host Media



Slide courtesy of Jens Birkholzer, LBNL

# EBS Involvement with International Activities



- **FEBEX**
  - Two-stage heater test with bentonite block buffer in the Grimsel granodiorite
  - Engineered Barrier System Task Force Task 9 (completed March 2020)
- **DECOVALEX 2023 Task B, Task C, Task E**
- **Engineered Barrier System Task Force New Tasks**
  - Cement-Bentonite Interactions
  - HotBENT Column Test at LBNL
- **RANGERS**
  - shaft and drift performance study in collaboration with Germany
- **HotBENT Field Test**

FEBEX = Full-scale Engineered Barriers EXperiment

DECOVALEX = Development of Coupled models and their Validation against Experiments

RANGERS = Entwicklung eines Leitfadens zur Auslegung und zum Nachweis von geo-technischen Barrieren für ein HAW Endlager in Salzformationen

HotBENT = High Temperature Effects on Bentonite Buffers

# Priority R&D – A Forward Look

- Continued participation in International EBS Studies
  - Continued participation in EBS Task Force, DECOVALEX, HotBENT, etc.
  - Collaboration with German partners in salt investigations of seal performance
  - Other emerging collaborative URL-based activities
- Improved understanding of fracture development in EBS materials, esp. cementitious materials and bentonite
  - Leverage tools for fracture representation from Crystalline or GDSA
  - Meshless methods for fracture representation
- Next generation materials, including cementitious materials
  - 21<sup>st</sup> century materials for are evolving towards a decarbonized energy infrastructure
  - Availability of supplemental cementitious materials (e.g. fly ash)
  - New materials, e.g. cements /binders with lower carbon intensity

# SFWST EBS Research Teams

## **Lawrence Berkeley National Laboratory**

*L. Zheng, L. Lammers, P. Fox, C. Chang, H. Xu, S. Borglin, M. Whittaker, C. Chou, C. Tournassat, N. Subramanian, Y. Wu, P. Nico, B. Gilbert, T. Kneafsey*

## **Los Alamos National Laboratory**

*F. Caporuscio, K.B. Sauer, M.J. Rock*

## **Sandia National Laboratories**

*E.N. Matteo, T. Dewers, S. Gomez, T. Hadgu*

## **Vanderbilt University**

*C. Gruber, M. Steen, K.G. Brown, R. Delapp, A. Taylor, J. Ayers, D.S. Kosson*