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Abstract 
 Advancements in the development and understanding of the nonlinear dynamics of 

cantilevered pipes conveying fluid have been made over many decades. Although the applications of 

cantilevered pipes conveying fluid seem to be simple, researchers have continued to modify the system 

to study the interesting linear and nonlinear responses. In this study, the equations of motion of a 

modified system with multisegmented motion limiting constraints are derived and discretized using 

the Galerkin method. The response of the system with multi-segmented motion limiting is studied by 

investigating the bifurcation diagrams of the system with different constraint stiffnesses. Various 

kinds of bifurcations are characterized depending on the stiffnesses of the multi-segmented force.  

 

I. Introduction 

Cantilevered pipelines conveying fluid have been implemented in many applications 

throughout history, such as pipelines and risers [1], mechanical pumps [2], and micro\nano-pipelines 

that could be used as drug delivery devices [3, 4]. Because of the wide variety of applications and the 

importance of understanding the dynamic responses and stability of these systems, many researchers 

have studied the linear and nonlinear dynamics of cantilevered pipelines conveying fluids for many 

years. To better characterize these systems, researchers have modified the system by implementing 

new parameters including a tip mass to the pipe, linear and nonlinear springs along the length of the 

pipe, and adding motion limiting constraints. The motion limiting constraints can better control the 

motion of the pipe, but it introduces an impact force which can cause various nonlinear responses, such 

as aperiodic and chaotic oscillations at sufficient flow speed, and grazing bifurcations which occurs 

when the oscillating pipe reaches one of the constraints tangentially with zero speed [5].  

Motion limiting constraints were implemented by Païdoussis and his co-authors [6, 7]. In their 

studies, they focused on the nonlinear response of the system both experimentally and analytically. 

They assumed the motion of the pipe was occurring in one planar direction. To implement this into the 

experiments, a steel strip was embedded into the center of the pipe, as depicted in Figure 1.  
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Figure 1. Schematic of pipeline with embedded steel strip for planar motion. 

 

Although motion limiting constraints were implemented in previous studies [6, 7], it is 

interesting to consider the implementation of multi-segmented constraints with various stiffnesses. 

With the addition of these multi-segmented constraints, a better accuracy of the stoppers is introduced, 

and it is then possible to have a more desirable representation of this contact problem. It is important 

to note, however, that only the dynamic response at the tip of the pipe was deeply investigated. It is 

possible that grazing bifurcations, period doubling, and chaos could occur at different flow speeds at 

the point of contact compared to the tip. Taylor et al. [8] verified previous numerical and experimental 

results shown in at the tip of the pipe [6, 7] and expanded on it by comparing to the same key flow 

speed velocities at the point of contact. In [8], it was found that instances of chaotic behavior, sticking, 

and grazing bifurcations at the point of contact did not necessarily occur at the same flow speed at the 

tip. It was concluded that in the case of cantilevered pipelines conveying fluid with motion limiting 

constraints, more accurate responses can be described by characterizing the system at the point of 

contact [8].  

In this study, using the extended Hamilton’s principle, the full nonlinear equation of motion is 

derived while considering the multi-segmented constraints function. Then, the full nonlinear equation 

of motion is nondimensionalized and discretized using Galerkin’s method. After that, using a Runge-

Kutta based algorithm, the bifurcation diagrams are determined for various representations of the 

multi-segmented constraint.  

II. System’s reduced-order modeling 

Equation (1) shows the expression of the multi-segmented motion limiting constraints.  
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where 1  and 2  are the stiffnesses of the inner and outer constraint respectively, y denotes the 

displacement of the pipe. To have the best understanding of how a true impact affects the output of the 

system, four different increasing stiffnesses are implemented for 2 . The first stiffness is equal to the 

inner constraint’s stiffness at 1 2 980    . The second stiffness is set to ten times the inner stiffness 

at 2 9,800  . The third stiffness is set to twenty times the inner stiffness at 2 19600  , and the final 

stiffness is one thousand times the inner stiffness at 2 980,000  . This high stiffness value will give 

us a good understanding of how a system under a true impact behaves. Figure 2 shows the constraint 

force produced with multi-segmented constraints with the specified stiffnesses, and the two contacts 

are at 1 20.044 and 0.066    .  

 

Figure 2. Forcing function estimating constraint forces for multi-segmented constraints. 

 

To have a simple representation of the system under investigation and an inexpensive 

computational cost, a nonlinear reduced-order model is developed by making justified assumptions to 

neglect certain terms while maintaining the desired behaviors. Important assumptions to make with 

this study is that the pipe is inextensible, the fluid velocity is uniform, the fluid is incompressible, the 

deformation is large, but the strain is small; and the diameter of the pipe is much smaller than the length 

of pipe. Therefore, the Euler-Bernoulli beam theory can be applied. Knowing these assumptions and 
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by following the work of Semler et al. [9], the extended Hamilton’s principle and the inextensibility 

condition can be implemented to find the fully nonlinear equation of motion as: 
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where M represents the mass per unit length of the fluid, m is the mass per unit length of the pipe, L 

denotes the length of the pipe, s is the curvature, U represents the flow speed, η is the Kelvin-Voigt 

damping, and F denotes the force applied by the constraints. It is important to note that several 

nonlinearities are present from the inextensibility condition.  

The governing equation is then nondimensionalized with the following relationships: 
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The nonlinear equation of motion is then expressed as follows [9]:  
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 After that, using the known cantilever beam mode shapes Φ𝑖(𝑠), and the general modal 

coordinate 𝑞𝑖(𝜏), the Galerkin method is applied and simplified into a nonlinear reduced-order model 

as follows: 
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III. Results 

The nonlinear reduced-order model is then analyzed, and bifurcation diagrams are produced. The 

bifurcation diagram shows the oscillation of the pipe. Each point on the diagram represents a 

local/global peak value in the time history of the system’s oscillation. This allows researchers to 

understand how the behavior changes as the pipe moves. The bifurcation diagram for each stiffness is 

shown in Figure 3. It should be mentioned that only some preliminary results are shown in this study. 

It follows from the plotted curves in Figure 3 that as the system starts conveying fluid, it remains 

still and does not oscillate. However, once a critical internal flow speed is reached, the system starts 

oscillating. Then, for all considered configurations, it is clear that the onset of Hopf bifurcation is 

independent of the constraint and a supercritical Hopf bifurcation takes place. The dashed black lines 

in Figure 3 show where the behavior of the pipe changes and the blue dotted lines show the locations 

of the boundaries of each stiffness. Inspecting the plots in Figure 3, it can be noted that the pipe 

oscillates periodically near Hopf bifurcation, but once the pipe strikes the first constraint, the pipe has 

aperiodic responses around the two constraint locations. This aperiodic response may be due to a 

grazing bifurcation which occurs when the pipe comes into the contact with the constraint tangentially 

at zero velocity. This behavior continues for a time, but eventually, the system begins to oscillate 

periodically again, although, it is no longer centered around its original position. Then, the pipe 

contacts the second constraint. As expected, the four systems behave the same until the pipe contacts 

the outer constraint. This is because the inner constraint stiffness and other initial conditions remain 

the same between each case. It is also clear that the system behaves as if there is only one constraint in 

Figure 3(a) because the stiffness of the outer constraint is equal to the stiffness of the inner constraint.  

 
          (a)                                                                                  (b) 
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            (c)                                                                                  (d) 

Fig. 3 Bifurcation diagrams at point of contact where (a) 
1 2

980    , (b) 
2

9,800  , (c) 

2
19,600  , and (d) 

2
980,000  . 

 

 A deep investigation is performed when the pipe contacts the second constraint, as shown in Figure 

4. One behavior of note is that at a certain flow speed, the pipe begins to stick to one wall or the other 

and no longer oscillates. In Figure 4(a), the pipe sticks in the wall on the negative axis, where the other 

three pipes stick to the positive axis constraint. By increasing the stiffness of the outer constraint, the 

flow speed to reach sticking lowers. This behavior is expected as the stiffness of the constraints 

increase. The values for the flow speed at sticking for each stiffness are listed in Table 1. It is clear that 

as the outer constraint stiffness is increased, all behavior is shifted towards lower flow speeds. By 

looking at Figures 4(a-c), the pipe travels into the second constraint, but it does not at the highest 

stiffness value. When the pipe is displacing into these constraints, it is possible that a new bifurcation 

is occurring called grazing-sliding bifurcation. This is like the grazing bifurcation mentioned earlier, 

but in grazing sliding bifurcation the pipe meets the constraint tangentially at zero velocity and slides 

along the wall for a time. This is the beginning of the pipe sticking to the constraint. More 

investigations are needed by studying the pipe’s time histories, phase portraits, and Poincare maps. 

Indeed, time histories and Poincare maps will be developed for each bifurcation diagram before and 

after each behavior change to gain a better understanding of the system’s response and to characterize 

the different bifurcations. Additionally, the stiffness of the first constraint will be investigated. Once a 

group of stiffnesses has been selected for each constraint, different combinations of stiffnesses will be 

analyzed to determine which pairing has the most positive effect. 
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  (a)                                                                                  (b) 

  
  (c)                                                                                  (d) 

Fig. 4 Bifurcation diagrams at point of contact zoomed in to show where the pipe contacts the outer 

constraint where (a) 
1 2

980    , (b) 
2

9,800  , (c) 
2

19,600  , and (d) 
2

980,000  . 
 

Table 1. Internal flow speed at which sticking occurs for each outer constraint stiffness investigated. 

 Flow speed at sticking 

𝜅2 = 980 9.89 

𝜅2 = 9,800 9.73 

𝜅2 = 19,600 9.7 

𝜅2 = 980,000 9.62 
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IV. Conclusions 

An understanding of the linear and nonlinear dynamics of cantilevered pipelines conveying fluid 

is essential because of the wide variety of important applications. Researchers have been studying these 

systems for decades, with each new researcher modifying the system in a new way that helps better 

the common understanding of the dynamic and chaotic behaviors these systems can induce. Previous 

researchers have found a way to assist in controlling the pipeline by adding motion limiting constraints, 

but these constraints can cause chaotic behaviors from grazing bifurcations and others. This work 

developed the use of multi-segmented motion limiting constraints and showed that the result of 

increasing the stiffness of the outer constraint decreases the critical flow speed at which sticking occurs. 

This decreases the overall period of chaotic behavior and might be useful to future engineers while 

designing these pipeline systems.  
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