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3 I Forward UQ for Computational Mechanics

Known Young’s modulus
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Uncertain Young’s modulus
(probabilistic solution)

Tip deflection

Model parameter uncertainty represented
by a distribution, p(E). Presumed known
(inverse UQ, expert knowledge, published data).

Forward UQ is quantify statistics of
outcomes of a physical system due to input
parameter uncertainties, p(E).

Challenging when systems are non-linear,
and/or the number of uncertain
parameters is large

Prohibitive for high-fidelity/expensive
computational systems but this is where it
is needed most.



4 I Problem: Forward UQ State-of-art

Uncertain Young’s modulus
* Focus only on global observables of interest (e.g. “tip displacement of the (probabilistic solution)

beam”).

* Get a simplified/reduced representation through surrogates or reduced
order models of the computational system that is affordable for many
samples but is typically inaccurate.
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* Intrusive Polynomial Chaos: expand the PDE system with new dimensions
representing uncertainty - prohibitive coding burden, closure issues and
stiff equations.

* In general, most methods require numerous forward solves (on the order of
103-10° of either the reduced system or full system).

Existing methods are reductive, computationally cumbersome and do not integrate : .
well with mature codes. Forward UQ is not wide spread as it should be. Tip deflection
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* In general, most methods require numerous forward solves (on the order of
103-10° of either the reduced system or full system).

Existing methods are reductive, computationally cumbersome and do not integrate : .
well with mature codes. Forward UQ is not wide spread as it should be. Tip deflection

Our proposal: Comprehensive yet computationally efficient UQ deployed directly in
HPC codes.



6 | Proposed Solution: Solve PDF equations

Comprehensive UQ (obtain full probabilistic field information), computationally efficient (without requiring
numerous forward solves).

What: Solve directly for joint PDF evolution equations:

= The solution variables (e.g. displacement, velocity) have a distribution purely due to physics parameter uncertainty (e.g.

plasticity model, diffusivity).
= The governing equations (PDEs) determine evolution equations (exact but unclosed) for the joint PDF.

How:
= The PDF equations can be solved efficiently using the original PDE machinery/code with marginal cost.
= Allows retaining details of numerics, domain/geometry, boundary conditions.

Why:

= Not seek surrogates which can be reductive/inaccurate (especially at the response extremes) and case/configuration
specific.

= More detailed UQ information (beyond the basic statistics of global QOls) since a distribution is associated with every
location and time in the system.

= Handle non-linearities better than intrusive methods (e.g. PCE).
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Background: Governing equations with uncertain parameters

Solid Mechanics: Consider transient visco-elastic problem (small strain limit):
— Computational model: pit? = V-0 = R(V uP,V u®, 1)

— Solution vector [ uP, uf] has a distribution at any (x;,t) due to uncertainty in inelastic material response properties
A (e.g., initial yield, hardening coeff, saturation modulus).

Fluid Mechanics: Consider multi-species reacting flow problem:
— Computational model: D, (pY') = -V -] + &' =R(Y, VY, Q) D, - substantial derivative
D/(pcpT) = -V-q+ o' =R(T,VT,2)

— The solution vector [Y!, T] has a distribution at any (x;,t) due to uncertainty in chemical rate parameters A (activation
energy, pre-exponential factor, temperature exponent).

D
In general, governing PDEs of a vector of solution variables ¢(x,t) can be written in a form Dt - R(P, D)

— Right hand side, R, contains all physics; micro-scale properties parametrized by A which are sources of uncertainty.
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Background: PDF equations

The PDF, py(®;x,t), has full field information of “statistics of outcomes”.

A governing equation for the PDF can be derived directly from the underlying PDE:

D _ Dpy _ _ 0 -
= =RV = Dt = " 9g, \Ps(RI0 A x0)]

— The derivation is exact [1,2], contains no approximations or assumptions.
— Side detail: The derivation involves the joint PDF, pm(cb, A; x, t), that encapsulates the parameter uncertainty, p;(A).

The PDF equation is:

— “Unclosed”, even though its derivation is exact. Closure can be understood by thinking of the PDF equation as not a
differential equation, but an integro-differential equation i.e. numerical solution requires information from far away.

— Has large dimensionality. At each (x;,t), the PDF is a multidimensional function (#dimensions = #¢ components).

[1] S.B. Pope, 1985, Prog. Energy Combust Sci., vol.11, pp: 119-192.
[2] D. Venturi, D.M. Tartakovsky, A.M. Tartakovsky, G.E. Karniadakis, 2013, J. Comp. Phys., vol.243, pp:323-343.



Challenge |: Solving PDF equations efficiently

The PDF equation needs to be solved in ®-A-x-¢ space. Leverage
Eulerian-Lagrangian equivalence of continuum mechanics:

— Use existing x-t discretizations i.e. spatial mesh, time stepping
of existing solvers.

— Sample the ®-A space using notional Lagrangian samples (e.g.
Monte-Carlo). Numerically efficient for large-dimensional spaces.

The PDF equation (itself a PDE) is solved in a stochastically equivalent
manner by solving Lagrangian ODEs:

— Each sample has state (¢, 1, z) that is evolved by:

do ~
¢/ dt = )
— PDF constructed from samples ensemble satisfies the PDF
equation.
Dby _

©_[pp(RId:, A %,0)] 2 (=@ [3.2)
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uncertalnty

[P@(R | i, Asx, t)]

Nochastlcally

equivalent
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Challenge 2: Solving PDF equations accurately

» Accuracy determined by closure; not circumvented in the Lagrangian Dq)

system:

— Each sample state update needs the unclosed rate-of-change
dao e A
— Problem for terms involving derivatives w.r.t. x or £ (e.g., Laplace op)

« Use independent information, guided by physics/domain intuition:

under
) . . . uncertalnty
— Have an independent “nominal mesh solution” guide closure
Dp
P(x,t, A =Ay,) S = 3% [P (R | i, Asx, 1)
> H 2 tochastically
R tAe ) } =  (RZ,1)|P,4) \equwalem )
Y - n

- 12 = (R(%, 1), A) |

— Physics-informed scaling laws can guide such closure models.

— Also available, unconditional averages, (¢(x,t)) and (R(x,t)), from
average over particles-in-cell. These can constrain the closure.




11 ‘ Implementation in existing HPC codes

Existing codes: Construct mesh, initialize, time-advance

Time advance
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12 I Implementation in existing HPC codes

Existing codes: Construct mesh, initialize, time-advance + Augment with Lagrangian PDF samples

Samples initial state corresponds to
uncertain parameter distribution and
initial field ¢(x, t=0) .
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» Samples state advance by ODE,
requires nominal solution R to

close (R(z,t)|¢, 1)

Time advance

* Coupling is one-way, i.e., no
feedback from samples state to
mesh state.
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Demonstration of the PDF method

Solid mechanics explicit dynamics (total Lagrangian FE):

— Elastic bar with impact

— Notched plate with impact

Computational fluid mechanics (Eulerian FV):

— Oblique shock in flow past ramp

The rest of the talk will focus exclusively on the solid mechanics problems.
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PDF method for Computational Solid Mechanics

Computational solid mechanics (mostly) adopts Lagrangian formulation:
— Displacement itself is one of the solution variables.
Our “Lagrangian samples” approach becomes an “intrusive multi-sampled” approach.
— Multiple solution states, at each node, each corresponding to a different parameter realization.
Basic strategy: solve only few samples exactly, rest approximately.
For explicit dynamics:
— Time explicit solution of linear momentum pyii = V.P = R(Vu,1;t)
— For exact solution samples all quantities (def gradient, Vue, rate-of-change, R.(Vue, 1 ;t) ) are known exactly.
— For other samples, approximate (close) their rate of change from exact quantities Vue, R.(Vue, 1;t), etc.

Ratio of exact to approximate samples, and closure scheme, represent accuracy vs cost tradeoff.



15 I Closure schemes under investigation

« Taylor series with one exact solution:
— Approximate Vu from Vue, evaluate R(V'u, 1 ; t) using constitutive model for stress.
— Approximate R(Vu, 1;t) directly from R.(Vue, 1;t).
« “Structured” grid approximations (exact samples form a structured grid in parameter space):
— Finite difference extrapolation with Taylor series
— Polynomial (global, piecewise) tensor product bases interpolation.
— Sparse grid interpolation.

« “Unstructured” grid approximations (exact samples can be chosen freely and not at specific locations in parameter
space):

— Simplicial tessellation.
— Reproducing kernel approximation.

— Maximum entropy approximation.



16 | Results: Taylor Series approximation

* Method implemented in mini-app NimbleSM (https://github.com/NimbleSM).

- Demo Problem: bar impact, elastic, 1 uncertain parameter (shear modulus). S

» Has exact analytical solution.

ACCURACY Black: discretization error, Blue: Total error
Red: approximation error = total - discretization
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https://github.com/NimbleSM
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PDFs of displacements, and other
derivable quantities, available at all
nodes and times

Four times, bar mid-point, shown for
comparison, 30 sample run:
« Analytical
* Brute Force FE (many query)
 PDF method

Comprehensive information at a
small fraction of the cost.

Leading order error is due to FE
discretization

Results: Taylor Series approximation

Comprehensive Information
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Results: Sparse Grid Interpolation

Demo Problem: notched plate with impact, neo-Hookean materials aluminum
(grey) and glass (red), 4 uncertain parameters.

Simulations run with 512 approximate, 8 exact samples.

Brute force “many query” runs (all 512 samples treated exactly) for accuracy
comparisons.

Note: The PDF method is similar in spirit to sparse grid stochastic collocation (5C):

- Key difference: SC directly interpolates solution states u. Our method
interpolates rate-of-change, R, and time advances u.

- Mathematical analysis shows error between the two different by a pre-factor

We compare mean/stdev of individual stress components, and distributions of
‘failure stress’, an important Qol.

Comparisons between PDF method and exact (brute force), SC and exact (brute
force).



19 | Results: Sparse Grid Interpolation

* Mean (left), stdev (right) of three stress
components: gy, 0yy, Oxy-

« Exact (top), Stochastic Collocation (middle),
PDF method (bottom).

» Reasonably good agreement. Small
differences compared to exact solution.

» Stochastic collocation and PDF solutions are
almost identical.

mean standard dev




20 I Results: Sparse Grid Interpolation

» Distributions of ‘failure stresses’.
» Space-time maximum of Von Mises and tensile stresses compared against failure limit.

» Reasonable agreement, small differences.

exact SC PDF

von Mises 11} von Mises 11} von Mises
—— max tension —— max tension —— max tension

3 4 5 6 -2 -1 0 1 2 3 4 5 6 -2 -1 0 1 2 3 4 5
STRESS [MPa] STRESS [MPa] STRESS [MPa]



21 I Conclusions and Future Work

We propose solving PDF equations as an inexpensive approach to propagate parameter uncertainty.
The PDF equations are derived exactly from governing PDEs, subject to uncertain parameter distribution.
PDF equations can be solved efficiently by leveraging Eulerian-Lagrangian equivalence:
— Sample the uncertain parameter(s), approximately evolve solution corresponding to the samples.
For computational solid mechanics, the method is equivalent to “intrusive many-samples” approach.
Accuracy of method dependent on approximation (closure) schemes.
Various approaches, with varying accuracy vs cost tradeoff are being investigated.
Results from simple target problems (elastic bar with impact, dual material notch with impact) are promising.

Extending method for quasi-static and fully implicit methods is part of future work.
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23 I Closure loop: Information flow from mesh to Lagrangian samples

Hat quantities, ¢, are sample states, which is what we are primarily trying to advance.

What we need is RHS for each sample ODE, which is a conditional expectation: (R(%, t)|¢, 1) .

What we have are:

— the nominal solution on the mesh, i.e., ¢,(x,t), at each cell in the mesh. Also gives nominal RHS, R(¢(x, ty), A = A;)

— the unconditional average, (¢) (x,t), in each mesh cell. This average is obtained by simply averaging over all particles-

in-cell. This also gives the unconditional average of the RHS, (R) (x, t) (since averaging and derivatives commute).

(@) (x, 1)

from
particles-in-
each-cell

|

¢n (x, 1)

from
nominal
mesh soln

(R) (x,1)
from
derivatives

on (¢)

— —

(
i
.

R, (x,)
from
derivatives

on ¢,

®) = [(R]2) p2(a)an

Closure statement
From constitutive model

Give (R(%,1)|$, 2)

You are essentially translating two
quantities that apply across the cell, (R)
and R,, , to a quantity specific to each
individual particle, (R | 2). In the process
you’re embedding physics knowledge in

the form of £(*/, ).



24 I Results: Sparse Grid Interpolation

* Histograms of stress components (0, 0yy) in element of interest

« Comparing Stochastic Collocation vs exact (Top), PDF method vs exact (Bottom)
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25 I Results: Sparse Grid Interpolation

« Comparisons at later time.

* Both methods have comparable accuracy.

* Error (KL divergence) increases for oy,, decreases for gy,,.
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