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Forward UQ for Computational Mechanics3
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• Model parameter uncertainty represented 
by a distribution, 𝒑 𝑬 . Presumed known 
(inverse UQ, expert knowledge, published data).

• Forward UQ is quantify statistics of 
outcomes of a physical system due to input 
parameter uncertainties, 𝒑 𝑬 . 

• Challenging when systems are non-linear, 
and/or the number of uncertain 
parameters is large

• Prohibitive for high-fidelity/expensive 
computational systems but this is where it 
is needed most.
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Problem: Forward UQ State-of-art4

• Focus only on global observables of interest (e.g. “tip displacement of the 
beam”).

• Get a simplified/reduced representation through surrogates or reduced 
order models of the computational system that is affordable for many 
samples but is typically inaccurate.

• Intrusive Polynomial Chaos: expand the PDE system with new dimensions 
representing uncertainty – prohibitive coding burden, closure issues and 
stiff equations.

• In general, most methods require numerous forward solves (on the order of 
103-105 of either the reduced system or full system).
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(probabilistic solution)
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Existing methods are reductive, computationally cumbersome and do not integrate 
well with mature codes. Forward UQ is not wide spread as it should be.
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beam”).

• Get a simplified/reduced representation through surrogates or reduced 
order models of the computational system that is affordable for many 
samples but is typically inaccurate.

• Intrusive Polynomial Chaos: expand the PDE system with new dimensions 
representing uncertainty – prohibitive coding burden, closure issues and 
stiff equations.

• In general, most methods require numerous forward solves (on the order of 
103-105 of either the reduced system or full system).

Uncertain Young’s modulus
(probabilistic solution)

modulus

Tip deflection

E1

E2

E3

Existing methods are reductive, computationally cumbersome and do not integrate 
well with mature codes. Forward UQ is not wide spread as it should be.

Our proposal: Comprehensive yet computationally efficient UQ deployed directly in 
HPC codes.
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Proposed Solution: Solve PDF equations6

Comprehensive UQ (obtain full probabilistic field information), computationally efficient (without requiring 
numerous forward solves).

What: Solve directly for joint PDF evolution equations: 

§ The solution variables (e.g. displacement, velocity) have a distribution purely due to physics parameter uncertainty (e.g. 
plasticity model, diffusivity).

§ The governing equations (PDEs) determine evolution equations (exact but unclosed) for the joint PDF. 

How: 

§ The PDF equations can be solved efficiently using the original PDE machinery/code with marginal cost.

§ Allows retaining details of numerics, domain/geometry, boundary conditions.   

Why: 

§ Not seek surrogates which can be reductive/inaccurate (especially at the response extremes) and case/configuration 
specific.

§ More detailed UQ information (beyond the basic statistics of global QOIs) since a distribution is associated with every 
location and time in the system.

§ Handle non-linearities better than intrusive methods (e.g. PCE).
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Background: Governing equations with uncertain parameters7

• Solid Mechanics: Consider transient visco-elastic problem (small strain limit):

– Computational model: 

– Solution vector [ 𝒖!, 𝒖"] has a distribution at any (xi,t) due to uncertainty in inelastic material response properties 
𝜆 (e.g., initial yield, hardening coeff, saturation modulus).

• Fluid Mechanics: Consider multi-species reacting flow problem:

– Computational model: 

– The solution vector [𝑌!, 𝑇] has a distribution at any (xj,t) due to uncertainty in chemical rate parameters 𝜆 (activation 
energy, pre-exponential factor, temperature exponent).

• In general, governing PDEs of a vector of solution variables 𝝓(𝐱, 𝑡) can be written in a form

– Right hand side, 𝓡, contains all physics; micro-scale properties parametrized by 𝛌 which are sources of uncertainty.

D𝝓
D𝑡 = 𝓡(𝝓, 𝛌)
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𝜌𝒖̈! = 𝛻 / 𝝈 = 𝓡 𝛻 𝒖!, 𝛻 𝒖" , 𝜆

𝐷# 𝜌𝑌$ = −𝛻 ⋅ 𝐽 + 𝜔̇$ = 𝓡(𝑌$ , 𝛻𝑌$ , 𝜆) 𝐷# - substantial derivative

𝐷# 𝜌𝑐%𝑇 = −𝛻 ⋅ 𝑞 + 𝜔̇& = 𝓡(𝑇, 𝛻𝑇, 𝜆)



Background: PDF equations8

• The PDF, 𝒑𝝓(𝚽; 𝐱, 𝑡), has full field information of “statistics of outcomes”.

• A governing equation for the PDF can be derived directly from the underlying PDE:

– The derivation is exact [1,2], contains no approximations or assumptions.

– Side detail: The derivation involves the joint PDF, 𝒑𝝓𝛌(𝚽, Λ; 𝐱, 𝑡), that encapsulates the parameter uncertainty, 𝒑# 𝚲 .

• The PDF equation is:

– “Unclosed”, even though its derivation is exact. Closure can be understood by thinking of the PDF equation as not a 
differential equation, but an integro-differential equation i.e. numerical solution requires information from far away.

– Has large dimensionality. At each (xj,t), the PDF is a multidimensional function (#dimensions = #𝝓 components). 

D𝝓
D𝑡 = 𝓡 𝝓, 𝛌

D𝒑𝝓
D𝑡 = −

𝜕
𝜕𝜙𝑖

𝒑𝝓 𝓡 𝜙𝑖 , Λ; 𝒙, 𝑡⟹

[1] S.B. Pope, 1985, Prog. Energy Combust Sci., vol.11, pp: 119-192.
[2] D. Venturi, D.M. Tartakovsky, A.M. Tartakovsky, G.E. Karniadakis, 2013, J. Comp. Phys., vol.243, pp:323-343.
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Challenge 1: Solving PDF equations efficiently9

• The PDF equation needs to be solved in 𝚽-𝚲-𝒙-𝐭 space. Leverage 
Eulerian-Lagrangian equivalence of continuum mechanics:

– Use existing 𝒙-𝐭 discretizations i.e. spatial mesh, time stepping 
of existing solvers. 

– Sample the 𝚽-𝚲 space using notional Lagrangian samples (e.g. 

Monte-Carlo). Numerically efficient for large-dimensional spaces. 

• The PDF equation (itself a PDE) is solved in a stochastically equivalent 
manner by solving Lagrangian ODEs:

– Each sample has state ( #𝝓, %𝝀, '𝒙) that is evolved by:

– PDF constructed from samples ensemble satisfies the PDF 
equation.

!𝐝#𝝓
𝐝𝒕 = )𝓡(*𝒙, 𝐭 #𝝓, .𝝀

D𝒑𝝓
D𝑡

= −
𝜕
𝜕𝜙𝑖

𝒑𝝓 𝓡 𝜙𝑖 , Λ; 𝒙, 𝑡
𝐝:𝝓
𝐝𝒕 =

)𝓡(<𝒙, 𝐭 :𝝓, =𝝀≡



Challenge 2: Solving PDF equations accurately10

• Accuracy determined by closure; not circumvented in the Lagrangian
system:

– Each sample state update needs the unclosed rate-of-change

– Problem for terms involving derivatives w.r.t. 𝒙 or 𝐭 (e.g., Laplace op)

• Use independent information, guided by physics/domain intuition:

– Have an independent “nominal mesh solution” guide closure

– Physics-informed scaling laws can guide such closure models.

– Also available, unconditional averages, )𝝓(𝒙, 𝐭 and )𝓡(𝒙, 𝐭 , from 
average over particles-in-cell. These can constrain the closure.

𝝓(𝒙, 𝑡, 𝜆 = Λ))

𝓡(𝒙, 𝑡, 𝜆 = Λ))
⟹

!𝐝#𝝓
𝐝𝒕 = )𝓡(*𝒙, 𝐭 #𝝓, .𝝀

)𝓡(D𝒙, 𝐭 F𝝓, G𝝀



Implementation in existing HPC codes11
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Existing codes: Construct mesh, initialize, time-advance
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Existing codes: Construct mesh, initialize, time-advance
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Augment with Lagrangian PDF samples

Samples state at 
time k

Samples state at 
time k+1

( &𝝓, (𝝀, *𝒙,𝑡k)

𝓡(𝝓(𝐱, 𝑡k+1), 𝛌 = Λ!)

( &𝝓, (𝝀, *𝒙,𝑡k+1)

Initialize samples 
to 𝒑! 𝚲

Samples initial state corresponds to 
uncertain parameter distribution and 
initial field 𝝓(𝐱, 𝑡=0) .

• Samples state advance by ODE, 
requires nominal solution 𝓡 to 
close )𝓡('𝒙, 𝐭 #𝝓, %𝝀

• Coupling is one-way, i.e., no 
feedback from samples state to 
mesh state.

Implementation in existing HPC codes



Demonstration of the PDF method13

• Solid mechanics explicit dynamics (total Lagrangian FE):

– Elastic bar with impact

– Notched plate with impact

• Computational fluid mechanics (Eulerian FV):

– Oblique shock in flow past ramp

The rest of the talk will focus exclusively on the solid mechanics problems.



PDF method for Computational Solid Mechanics 14

• Computational solid mechanics (mostly) adopts Lagrangian formulation:

– Displacement itself is one of the solution variables.

• Our “Lagrangian samples” approach becomes an “intrusive multi-sampled” approach.

– Multiple solution states, at each node, each corresponding to a different parameter realization.

• Basic strategy: solve only few samples exactly, rest approximately.

• For explicit dynamics:

– Time explicit solution of linear momentum 𝜌.𝑢̈ = ∇. P = R(𝛻𝑢, 𝜆 ; 𝑡)

– For exact solution samples all quantities (def gradient, 𝛻𝑢𝑒, rate-of-change, R𝒆(𝛻𝑢𝑒, 𝜆 ; 𝑡) ) are known exactly.

– For other samples, approximate (close) their rate of change from exact quantities 𝛻𝑢𝑒, R𝒆(𝛻𝑢𝑒, 𝜆 ; 𝑡), etc.

• Ratio of exact to approximate samples, and closure scheme, represent accuracy vs cost tradeoff. 



Closure schemes under investigation15

• Taylor series with one exact solution:

– Approximate 𝛻𝑢 from 𝛻𝑢𝑒, evaluate R(𝛻𝑢, 𝜆 ; 𝑡) using constitutive model for stress.

– Approximate R(𝛻𝑢, 𝜆 ; 𝑡) directly from R𝒆(𝛻𝑢𝑒, 𝜆 ; 𝑡). 

• “Structured” grid approximations (exact samples form a structured grid in parameter space):

– Finite difference extrapolation with Taylor series

– Polynomial (global, piecewise) tensor product bases interpolation.

– Sparse grid interpolation.

• “Unstructured” grid approximations (exact samples can be chosen freely and not at specific locations in parameter 
space):

– Simplicial tessellation.

– Reproducing kernel approximation.

– Maximum entropy approximation.



Results: Taylor Series approximation16

• Method implemented in mini-app NimbleSM (https://github.com/NimbleSM).

• Demo Problem: bar impact, elastic, 1 uncertain parameter (shear modulus).

• Has exact analytical solution.

ACCURACY Black: discretization error, Blue: Total error
Red: approximation error = total – discretization

COST
• Cost is linear with #samples; less than a full system cost by a 

factor of 2.5.
• We expect more gains in parallel implementation.
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• PDFs of displacements, and other 
derivable quantities, available at all 
nodes and times

• Four times, bar mid-point, shown for 
comparison, 30 sample run: 
• Analytical
• Brute Force FE (many query)
• PDF method

• Comprehensive information at a 
small fraction of the cost.

• Leading order error is due to FE 
discretization

Comprehensive Information

0.25 Tfinal

0.5 Tfinal

0.75 Tfinal

Tfinal

Results: Taylor Series approximation



18 Results: Sparse Grid Interpolation

• Demo Problem: notched plate with impact, neo-Hookean materials aluminum 
(grey) and glass (red), 4 uncertain parameters.

• Simulations run with 512 approximate, 8 exact samples.

• Brute force “many query” runs (all 512 samples treated exactly) for accuracy 
comparisons. 

• Note: The PDF method is similar in spirit to sparse grid stochastic collocation (SC):

- Key difference: SC directly interpolates solution states 𝑢. Our method 
interpolates rate-of-change, R, and time advances 𝑢.

- Mathematical analysis shows error between the two different by a pre-factor

• We compare mean/stdev of individual stress components, and distributions of 
‘failure stress’, an important QoI.

• Comparisons between PDF method and exact (brute force), SC and  exact (brute 
force).



19 Results: Sparse Grid Interpolation

• Mean (left), stdev (right) of three stress 
components: 𝜎**, 𝜎++, 𝜎*+.

• Exact (top), Stochastic Collocation (middle), 
PDF method (bottom).

• Reasonably good agreement. Small 
differences compared to exact solution.

• Stochastic collocation and PDF solutions are
almost identical.
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20 Results: Sparse Grid Interpolation

• Distributions of ‘failure stresses’.

• Space-time maximum of Von Mises and tensile stresses compared against failure limit. 

• Reasonable agreement, small differences.
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21 Conclusions and Future Work

• We propose solving PDF equations as an inexpensive approach to propagate parameter uncertainty.

• The PDF equations are derived exactly from governing PDEs, subject to uncertain parameter distribution. 

• PDF equations can be solved efficiently by leveraging Eulerian-Lagrangian equivalence:

– Sample the uncertain parameter(s), approximately evolve solution corresponding to the samples.

• For computational solid mechanics, the method is equivalent to “intrusive many-samples” approach.

• Accuracy of method dependent on approximation (closure) schemes.

• Various approaches, with varying accuracy vs cost tradeoff are being investigated. 

• Results from simple target problems (elastic bar with impact, dual material notch with impact) are promising.

• Extending method for quasi-static and fully implicit methods is part of future work.
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Closure loop: Information flow from mesh to Lagrangian samples

OFFICIAL USE ONLY

23

• Hat quantities, =𝜙, are sample states, which is what we are primarily trying to advance.

• What we need is RHS for each sample ODE, which is a conditional expectation: )𝓡(<𝒙, 𝐭 :𝝓, =𝝀 .

• What we have are: 

– the nominal solution on the mesh, i.e., 𝜙/(𝑥, 𝑡), at each cell in the mesh. Also gives nominal RHS, 𝓡(𝝓(𝐱, 𝑡k), 𝛌 = Λ/)

– the unconditional average, 𝜙 (𝑥, 𝑡), in each mesh cell. This average is obtained by simply averaging over all particles-
in-cell. This also gives the unconditional average of the RHS, 𝓡 𝑥, 𝑡 (since averaging and derivatives commute).

𝝓 (𝒙, 𝒕)
from 

particles-in-
each-cell

𝓡 (𝒙, 𝒕)
from

derivatives 
on 𝝓

𝝓𝒏 (𝒙, 𝒕)
from 

nominal 
mesh soln

𝓡𝒏 (𝒙, 𝒕)
from 

derivatives 
on 𝝓𝒏

Give )𝓡(<𝒙, 𝐭 :𝝓, =𝝀

𝓡 = I 𝓡 =𝝀 𝒑# 𝚲 𝑑Λ

𝓡 =𝝀 = 𝒇 L=𝝀 𝜦𝒏 ∗ 𝓡𝒏

Closure statement
From constitutive model

You are essentially translating two 
quantities that apply across the cell, 𝓡
and 𝓡𝒏 , to a quantity specific to each 
individual particle, 𝓡 -𝝀 . In the process 
you’re embedding physics knowledge in 
the form of 𝒇 3#𝝀 𝜦𝒏 . 



24 Results: Sparse Grid Interpolation

• Histograms of stress components (𝜎**, 𝜎*+) in element of interest

• Comparing Stochastic Collocation vs exact (Top), PDF method vs exact (Bottom)

𝜎LL 𝜎LM

SC vs exact

PDF vs exact



25 Results: Sparse Grid Interpolation

• Comparisons at later time.

• Both methods have comparable accuracy.

• Error (KL divergence) increases for 𝜎**, decreases for 𝜎*+.
𝜎LL 𝜎LM

SC vs exact

PDF vs exact


