
Sandia National Laboratories is a multimission 
laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 
Administration under contract DE-NA0003525.

Intelligent Networks for High-
Performance Computing

Whit Schonbein

1

SAND2020-13290PE



Introduction

• Resurgence of interest in “SmartNICs”

• Expectations regarding what these systems can do
• Free host resources
• Accelerate application execution
• Failure recovery
• Data staging
• Checkpointing
• And more

2

Grant, R.E., Schonbein, W., Levy, S. (2020) ‘RaDD Runtimes: Radical and Different Distributed Runtimes with 
SmartNICs’, Fourth Annual Workshop on Emerging Parallel and Distributed Runtime Systems and 

Middleware (IPDRM), forthcoming.



Introduction

• Contributions of this work

• Benchmarks for assessing overheads of multithreaded communication

• In-Network Compute Assistance (INCA)

• Assessment of application speedups afforded by INCA

• Demonstration that INCA can enable `adaptive’ networks

3



Introduction

• What is a SmartNIC?

• A SmartNIC is a NIC that offloads core network applications

• In HPC:
• Offloaded collectives
• Offloaded message matching

4



From SmartNIC to ReallySmartNIC

• Plateauing host resources

• Increasing demands on host resources
• Internet
• Cellular
• Big data/machine learning/AI

• SC2018: 1 paper session on ML
• SC2020: 6 paper sessions on ML

5

CPU data from: https://github.com/karlrupp/microprocessor-trend-data

“Our scheme is designed with the idea that as much processing as possible 
should be done by the host processor.” (Buntinas et al. 2000, p. 1).

https://github.com/karlrupp/microprocessor-trend-data


From SmartNIC to ReallySmartNIC

• Next generation SmartNICs
• Netronome Agilio
• NVIDIA Mellanox Bluefield
• Broadcom Stingray
• Microsoft Catapult 
• Xylinx Versal
• Stream Processing in-Network (SPiN)

• Flexibility
• FPGAs, CPUs
• Execute arbitrary kernels for manipulating network data

6



From SmartNIC to ReallySmartNIC

• Novel types of offloaded applications
• Core network applications
• Parts of host applications (data packing, consensus algorithms, CNN layers, 

object detection)
• Fully independent applications (Catapult, microservices e.g. Amazon Lambda)

• Revised understanding of `SmartNIC’
• NICs with FPGAs (Hanford et al. 2018)
• NICs with CPUs (Liu et al. 2019)
• Catapult: “beyond SmartNICs” (Caufield, 2016)

7



Introduction

• Contributions of this work

• Benchmarks for assessing overheads of multithreaded communication

• In-Network Compute Assistance (INCA)

• Assessment of application speedups afforded by INCA

• Demonstration that INCA can enable `adaptive’ networks

8



Benchmarking Multithreaded 
Message Matching

9



Multithreaded Message Matching

• Schonbein, W., Levy, S, Marts, W.P., Dosanjh, M.G.F., Grant, R.E. (2020) ‘Low-Cost MPI 
Multithreaded Message Matching Benchmarking’, High Performance Computing and 
Communications (HPCC 2020), forthcoming.

• Levy, S., Ferreira, K.B., Schonbein, W., Grant, R.E., Dosanjh, M.G.F., (2019) ‘Using Simulation 
to Examine the Effect of MPI Message Matching Costs on Application Performance’, Parallel 
Computing, Volume 84, May 2019, pp. 63-74.

• Schonbein, W., Dosanjh, M.G.F., Grant, R.E., Bridges, P.G. (2018) ‘Measuring multi-threaded 
message matching misery’, Euro-Par 2018: Parallel Processing, Turin, Italy, pp. 480-491.

10



Multithreaded Message Matching

• Halo exchange communication

• MPI_THREAD_MULTIPLE 

• Multithreaded halo exchanges

• Question: What will this do to message 
processing overhead?

11



Multithreaded Message Matching

• MPI message processing overview
• Posted Receive Queue (PRQ)
• Unexpected Message Queue (UMQ)

• Hypothesis: MPI message processing 
overhead will increase
• More messages
• Non-determinism

12



Multithreaded Message Matching

• Two benchmarks:
• `Real-world’
• `Low-cost’

• Executed both benchmarks on two architectures:
• Intel Xeon (Haswell)
• Intel Xeon Phi (KNL)
• Recorded number of items searched and time spent searching

13



Multithreaded Message Matching: Items searched14



Multithreaded Message Matching: Time searching15



Multithreaded Message Matching: Application to SmartNIC16

• Smart HPC NICs: offloaded MPI message matching

• Executed low-cost benchmark on system with this feature
• Two conditions: off and on
• On: offloading active for messages over 1024B threshold

• Instrumented benchmark to get time spent processing 
messages



Multithreaded Message Matching: Application to SmartNIC17



Multithreaded Message Matching: Application to SmartNIC18



Multithreaded Message Matching: Application to SmartNIC19



Multithreaded Message Matching: Application to SmartNIC20



Multithreaded Message Matching: Conclusions

• Benchmarks to assess the overheads of multithreaded message 
matching

• Enabled assessment of a contemporary `smart’ offloaded 
application

• Revealed:
• The offloaded capability does not fully mitigate overhead
• And it may exacerbate the problem for larger message sizes

21



INCA: Recap

22



INCA

• W. Schonbein, R. E. Grant, M. G. F. Dosanjh, and D. Arnold, “INCA: in-network compute 
assistance,” in Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis, Denver, Colorado, Nov. 2019, pp. 1–13

23



INCA: Recap: SmartNIC Architectures24

On-Path

Off-Path

In-Path

Deadlines

Deadline-free

Deadline-free



INCA: Recap: Program Execution

• HPC NICs often offload
• Message matching
• Atomic operations
• Triggered operations

• These can be coordinated into a Turing complete model of 
computation

25



INCA: Recap: Ecosystem26



INCA: Kernel Runtimes

• INCAsim: simulator for estimating INCA kernel runtimes

• With software and hardware optimizations (SIMD), in some cases 
kernel runtimes are comparable with contemporary CPUs

• Application speedups up to 30%

27



INCA: NIC-as-Coprocessor

28



INCA: NIC-as-Coprocessor

• Quiescent applications: applications with idle networks

• Opportunity: 
• Harvest idle NIC resources

• Ray tracing application for enabling over-the-horizon radar

• One hour cadence; idle 56 minutes/hour

• Resolution proportional to time available to process data

29



INCA: NIC-as-Coprocessor

• Bottlenecks:
• solve_normal_dist
• convolve_normal

• Two scenarios:
• No hardware acceleration
• Hardware acceleration

30

Network Packet Size Memory Hardware

400 Gb/s 64 B 1 MiB, 1ns exp: 100 ns
conv: 80 usecs



INCA: NIC-as-Coprocessor31

Kernel
Time in function (usecs)

Original INCA scratchpad INCA hardware

solve_normal_dist 78600 69496 (1.13x) 63981 (1.23x)

convolve_normal 28487 28470 (1.0006x) 23628 (1.21x)



INCA: NIC-as-Coprocessor

• Quiescent applications (idle networks)

• Harvest idle NIC resources to assist host applications

• INCA may speedup portions of host applications to free resources

32



INCA: Enabling Adaptive 
Networks

33



INCA: Enabling Adaptive Networks

• Variations in network workloads can impact overall quality of 
service
• Elephant vs. mouse flows
• Ingress problem
• Network-induced memory contention

• Emerging research suggests techniques from ML have potential
• Avoid network-induced memory contention (Groves et al. 2018)
• Energy consumption (Dickov et al. 2014)
• Dynamic network tuning (Kiran & Chhabra, 2019)

34



INCA: Enabling Adaptive Networks

• SmartNICs are in a good position help
• Situated between the network and the host
• If the NIC can predict incoming traffic (e.g., expected data over time):

• Intelligently schedule DMA transfers
• Pre-emptively adjust credits to senders
• Adjust power usage
• Schedule processors (SPiN) to adjust allocated time

35



INCA: Enabling Adaptive Networks

• Is it feasible to offload ML kernels to an INCA-enabled SmartNIC?

• Do these kernels generate accurate predictions?

• How well do these kernels address the issues raised above?

36

Yes



Constraints on INCA ML Kernels

• INCA is Turing-complete

• INCA is deadline-free

• Constraint: lower memory requirements are better

• Constraint: faster execution is better

37



Applications and Data Collection38

Applications
HPCG

LAMMPS-lj
LAMMPS-rhodo

Lulesh
MILC

MiniAMR
MiniFE
MiniMD



Applications and Data Collection

• System:
• ARM
• 2 sockets/node
• Each socket has a 28-core Cavium ThunderX2 ARM CPU @ 2 GHz
• NVIDIA Mellanox ConnectX-5 NICs

• NIC hardware performance counters
• Bytes received

39



Applications and Data Collection

• Performance counter data collection
• Filesystem interface
• Sampling rate 20 Hz (period = 50 ms)
• Tool is pinned to one socket, application MPI process pinned other socket.
• Each application executed 11 times, 8 MPI processes, 1 process per node

40



Data and ML Methods41

startup

teardown



Data and ML Methods42



Data and ML Methods43



Data and ML Methods

• Given the general shape of the data

• Constraints on INCA kernels

• We selected linear regression as a method

44



Data and ML Methods

• Ordinary LR
• Train model on known data set, and apply to subsequent runs of the same 

application
• Static: model does not dynamically adapt to incoming data

• Rolling LR

45



Data and ML Methods

• Ordinary LR
• Train model on known data set, and apply to subsequent runs of the same 

application
• Static: model does not dynamically adapt to incoming data

• Rolling LR
• As each data point arrives, train model on the points in the training window, 

and generate predicted values
• Dynamic: model adapts to incoming data

46



Data and ML Methods

• Rolling LR
• Ordinary
• Weighted

• Exponential increasing (exp-inc)
• Exponential decreasing (exp-dec)

47



Results: Ordinary LR

• For each run, train and then test against the remaining 10 runs
• Report normalized RMSE (NRMSE)
• For training, averaged across 11 runs
• For testing, averaged across 110 runs
• Error bars are standard deviations

48



Results: Ordinary LR49

Best (Lulesh) and worst (MiniAMR) performing ordinary LR applications



Results: Ordinary LR50

Overfitting due to startup phase



Results: Ordinary LR51

1 PUTL output, b0, f
2 PUTL _R1, b1, f
3 MUL _R1, _R1, x, f
4 ADD output, output, _R1, f
5 END

INCA-A ordinary LR inference kernel

Memory: < 64 B (64b operands)
Runtime @ 200 Gb/s: 26.48 ns
Runtime @ 400 Gb/s: 16.24 ns

(64 B packets, scratchpad)



Results: Rolling LR

• How large should the training window be?
• Same for all prediction points?

52



Results: Rolling LR53

Application Weights
Prediction Point

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

HPCG
ord 5 6 6 13 151 150 149 148 148 147

exp-inc 8 12 14 17 19 247 250 250 250 250
exp-dec 2 2 5 117 148 147 146 146 145 144

LAMMPS-lj
ord 6 5 5 5 5 6 6 6 6 242

exp-inc 8 9 8 8 9 10 13 18 26 34
exp-dec 2 5 4 5 5 6 6 6 7 7

MILC
ord 2 4 5 5 5 5 5 5 5 5

exp-inc 5 7 7 8 8 7 7 7 7 7
exp-dec 2 2 2 2 3 3 4 4 4 4

Median best performing window size by prediction point across all ranks and all runs



Data and ML Methods54

Application Pr(data) Pr(~data)

HPCG 0.15 0.85

LAMMPS-lj 0.03 0.97

LAMMPS-rhodo 0.09 0.91

Lulesh 0.93 0.07

MILC 1.00 0.00

MiniAMR 0.79 0.21

MiniFE 0.14 0.86

MiniMD 0.06 0.94

Probability of data arriving at any given sample (i.e., probability of positive slope)
averaged across all ranks of all runs



Results: Rolling LR55

Application Weights
Prediction Point

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

HPCG
ord 5 6 6 13 151 150 149 148 148 147

exp-inc 8 12 14 17 19 247 250 250 250 250
exp-dec 2 2 5 117 148 147 146 146 145 144

LAMMPS-lj
ord 6 5 5 5 5 6 6 6 6 242

exp-inc 8 9 8 8 9 10 13 18 26 34
exp-dec 2 5 4 5 5 6 6 6 7 7

MILC
ord 2 4 5 5 5 5 5 5 5 5

exp-inc 5 7 7 8 8 7 7 7 7 7
exp-dec 2 2 2 2 3 3 4 4 4 4

Median best performing window size by prediction point across all ranks and all runs



Results: Rolling LR

• Two-window strategy:
• Small window for near-term predictions
• Large window for far-term predictions

• Bifurcate each set of window sizes, take median of each

56



Results: Rolling LR57

Average NMRSE by prediction point for HPCG, for 
small and large training window sizes



Results: Rolling LR58

Average NMRSE by prediction point for MILC, for 
small and large training window sizes



Results: Rolling LR

• Rolling methods outperform static ordinary LR in all cases
• HPCG: Static approaches 1.0%, while best performing rolling methods < 

0.1%
• LAMMPS-lj: Static exceed 1.0%, best performing rolling < 0.3%

59



Results: Rolling LR

• INCA kernel is more complex

• INCA kernels admit of SIMD parallelization

• Simulator parameters:
• 200 Gb/s and 400 Gb/s network speeds (64B messages)
• Small window (5 samples) and large window (250 samples)
• Vanilla and optimized

60



Results: Rolling LR61

Rolling LR 
Method

Network 
Gb/s

Runtime (usecs)
Memory (KiB) Instructions 

executed5 sample 
window

250 sample 
window

ord
200 0.68 21.87

< 4 101
3286400 0.41 13.46

ord-parallel
200 0.28 0.69

< 4 42
42400 0.17 0.34

weighted
200 1.17 38.10

< 8 179
58124400 0.71 23.22

weighted-
parallel

200 0.74 15.72
< 12 112

2317400 0.45 9.65

Estimated runtimes and memory requirements for rolling LR methods



INCA: Enabling Adaptive Networks

• Simple ML techniques can generate accurate results
• NRMSE ranges from 2.5% to 0.1%

• Offloading these ML kernels in INCA is feasible
• Runtimes (200 Gb/s) range from 26.48 ns to 38.10 usecs
• Memory never exceeds 12 KiB

62



Conclusion & Future Work

63



Conclusion

• Contributions of this work

• Benchmarks for assessing overheads of multithreaded communication

• In-Network Compute Assistance (INCA)

• Assessment of application speedups afforded by INCA

• Demonstration that INCA can enable `adaptive’ networks

64



Future Work

• FPGA prototype

• Portals 5.0

• Follow-up on quiescent network applications

• Distributed applications

• INCA as a mechanism for coordinating heterogeneous on-NIC 
compute resources

• Other ML techniques

65



Acknowledgements

Dorian Arnold
Ryan Grant

Trilce Estrada
Jinho Choi

Matthew Dosanjh
Noah Evans
Scott Levy

David DeBonis
Jeremy Benson

66


