

Sandia
National
Laboratories

SAND2020-13290PE

Intelligent Networks for High-Performance Computing

Whit Schonbein

NM THE UNIVERSITY OF
NEW MEXICO.

**U.S. DEPARTMENT OF
ENERGY** **NNSA**
National Nuclear Security Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- Resurgence of interest in “SmartNICs”
- Expectations regarding what these systems can do
 - Free host resources
 - Accelerate application execution
 - Failure recovery
 - Data staging
 - Checkpointing
 - And more

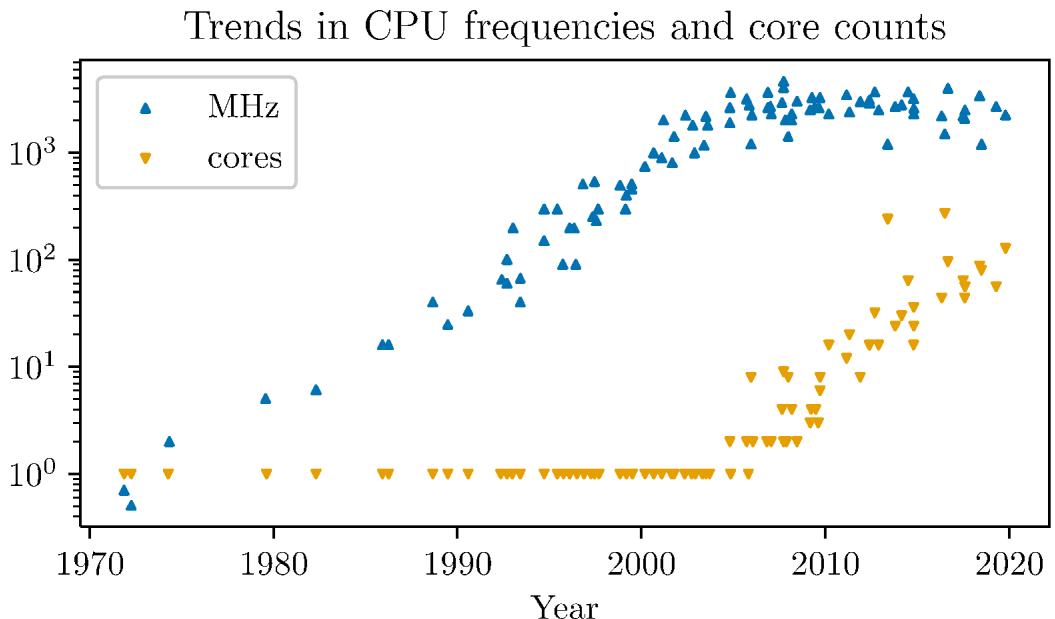
Grant, R.E., Schonbein, W., Levy, S. (2020) ‘RaDD Runtimes: Radical and Different Distributed Runtimes with SmartNICs’, *Fourth Annual Workshop on Emerging Parallel and Distributed Runtime Systems and Middleware (IPDRM)*, forthcoming.

- Contributions of this work
 - Benchmarks for assessing overheads of multithreaded communication
 - In-Network Compute Assistance (INCA)
 - Assessment of application speedups afforded by INCA
 - Demonstration that INCA can enable ‘adaptive’ networks

- What is a SmartNIC?
- A SmartNIC is a NIC that offloads core network applications
- In HPC:
 - Offloaded collectives
 - Offloaded message matching

“Our scheme is designed with the idea that as much processing as possible should be done by the host processor.” (Buntinas et al. 2000, p. 1).

- Plateauing host resources
- Increasing demands on host resources
 - Internet
 - Cellular
 - Big data/machine learning/AI
 - SC2018: 1 paper session on ML
 - SC2020: 6 paper sessions on ML



- Next generation SmartNICs
 - Netronome Agilio
 - NVIDIA Mellanox Bluefield
 - Broadcom Stingray
 - Microsoft Catapult
 - Xilinx Versal
 - Stream Processing in-Network (SPiN)
- Flexibility
 - FPGAs, CPUs
 - Execute arbitrary kernels for manipulating network data

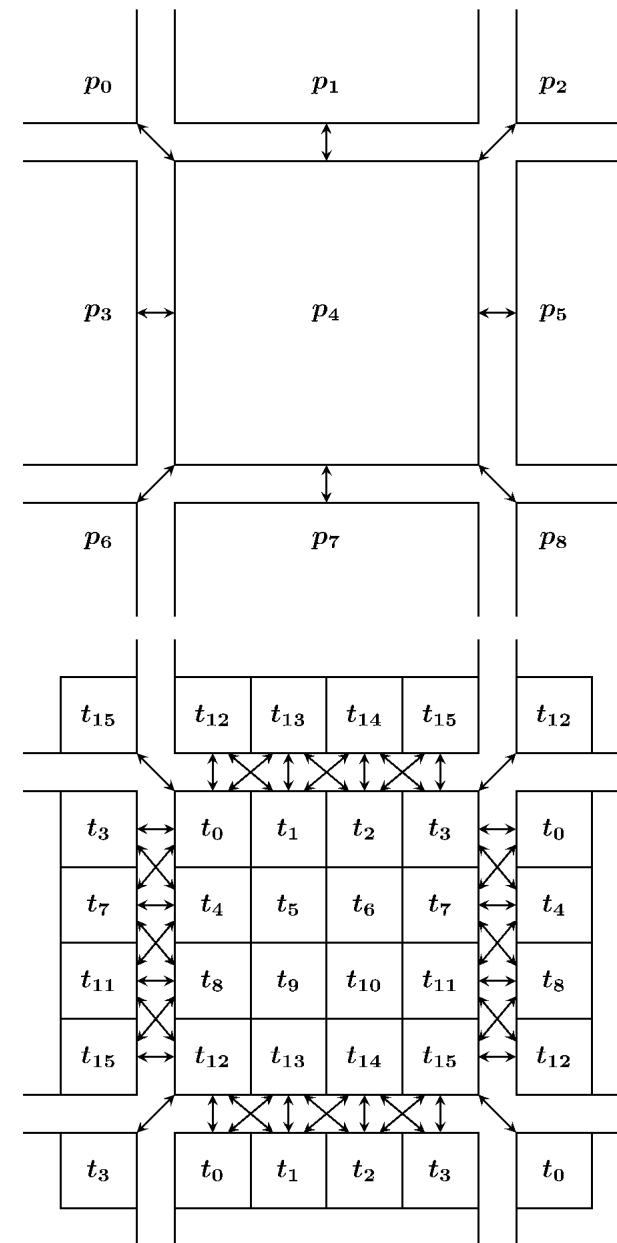
- Novel types of offloaded applications
 - Core network applications
 - Parts of host applications (data packing, consensus algorithms, CNN layers, object detection)
 - Fully independent applications (Catapult, microservices e.g. Amazon Lambda)
- Revised understanding of 'SmartNIC'
 - NICs with FPGAs (Hanford et al. 2018)
 - NICs with CPUs (Liu et al. 2019)
 - Catapult: "beyond SmartNICs" (Caufield, 2016)

- Contributions of this work
 - Benchmarks for assessing overheads of multithreaded communication
 - In-Network Compute Assistance (INCA)
 - Assessment of application speedups afforded by INCA
 - Demonstration that INCA can enable ‘adaptive’ networks

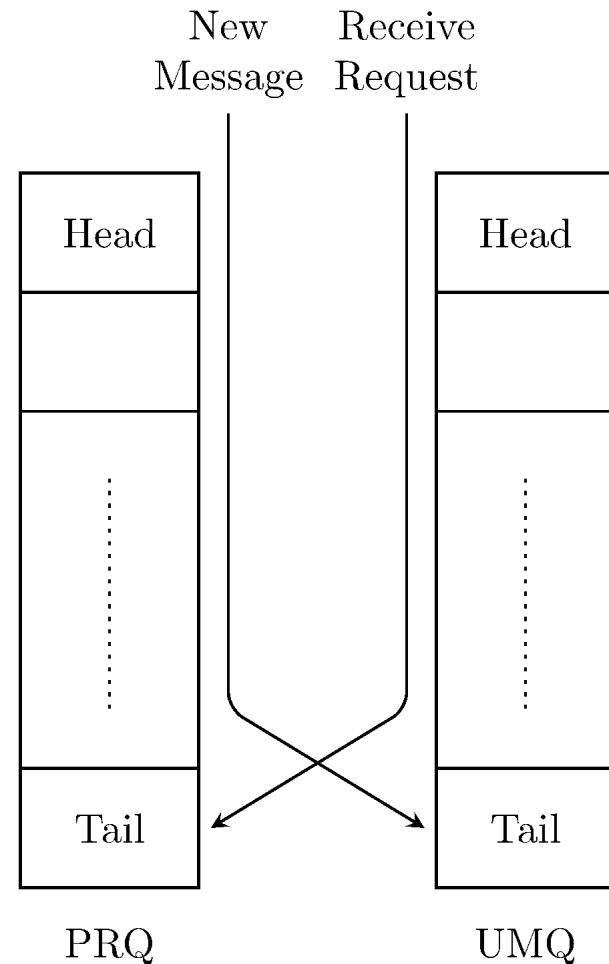
Benchmarking Multithreaded Message Matching

- Schonbein, W., Levy, S, Marts, W.P., Dosanjh, M.G.F., Grant, R.E. (2020) 'Low-Cost MPI Multithreaded Message Matching Benchmarking', *High Performance Computing and Communications (HPCC 2020)*, forthcoming.
- Levy, S., Ferreira, K.B., Schonbein, W., Grant, R.E., Dosanjh, M.G.F., (2019) 'Using Simulation to Examine the Effect of MPI Message Matching Costs on Application Performance', *Parallel Computing*, Volume 84, May 2019, pp. 63-74.
- Schonbein, W., Dosanjh, M.G.F., Grant, R.E., Bridges, P.G. (2018) 'Measuring multi-threaded message matching misery', *Euro-Par 2018: Parallel Processing*, Turin, Italy, pp. 480-491.

- Halo exchange communication
- `MPI_THREAD_MULTIPLE`
- Multithreaded halo exchanges
- Question: What will this do to message processing overhead?

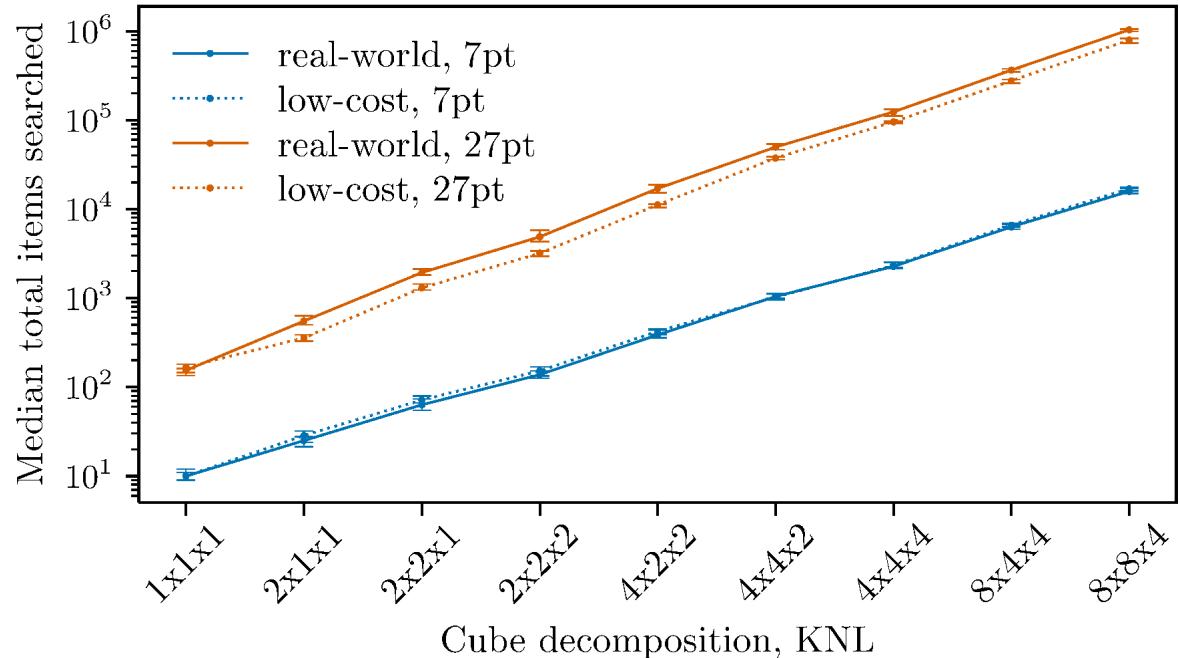
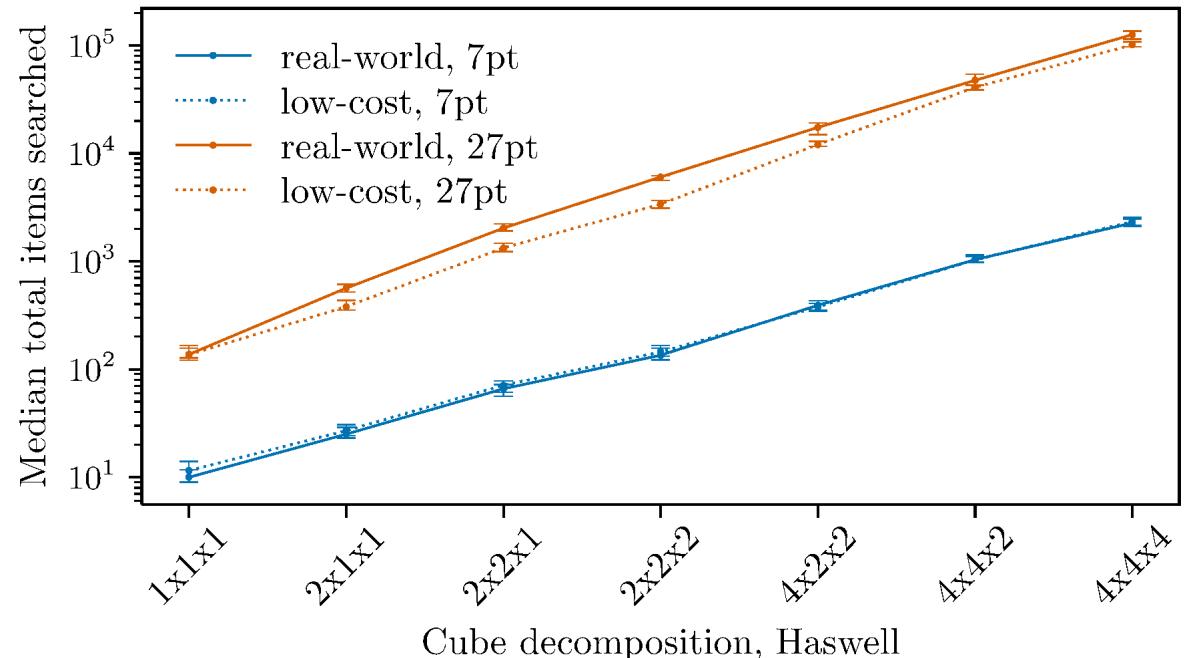


- MPI message processing overview
 - Posted Receive Queue (PRQ)
 - Unexpected Message Queue (UMQ)
- Hypothesis: MPI message processing overhead will increase
 - More messages
 - Non-determinism

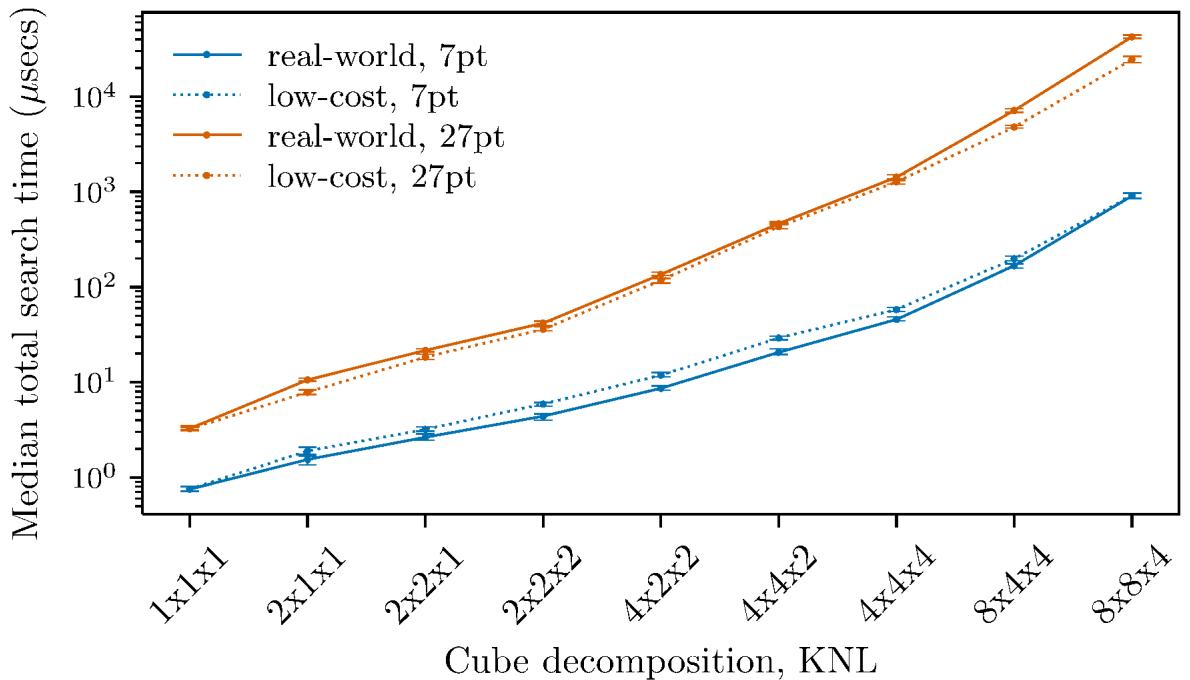
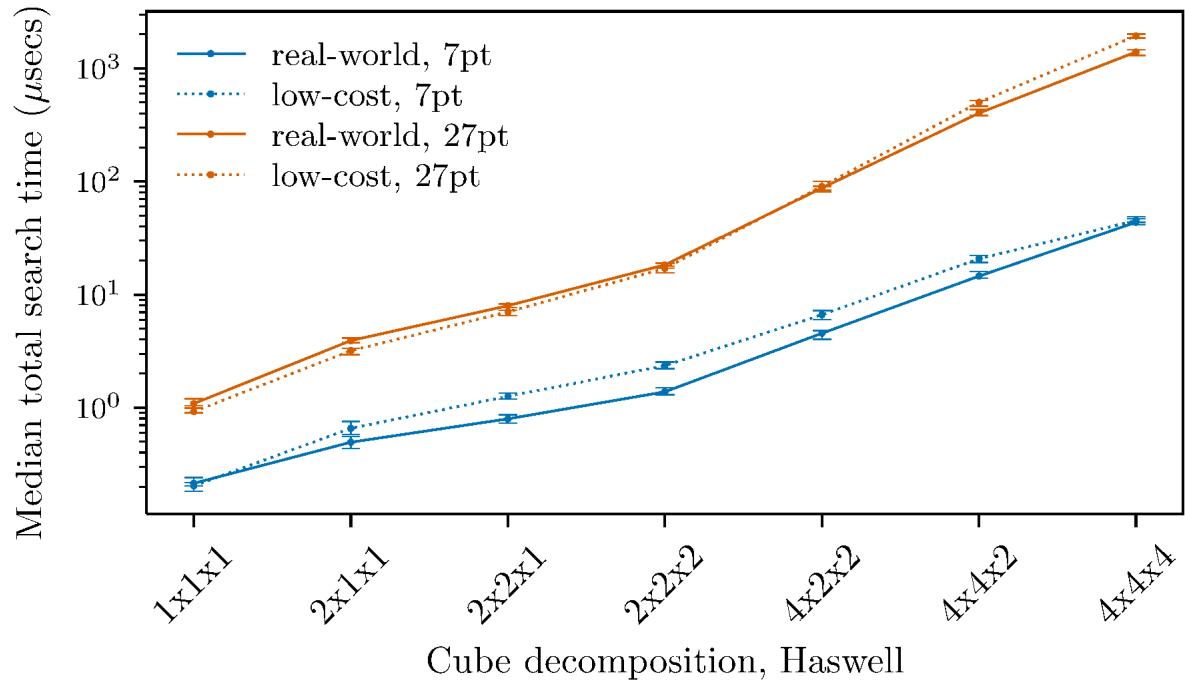


- Two benchmarks:
 - `Real-world'
 - `Low-cost'
- Executed both benchmarks on two architectures:
 - Intel Xeon (Haswell)
 - Intel Xeon Phi (KNL)
 - Recorded number of items searched and time spent searching

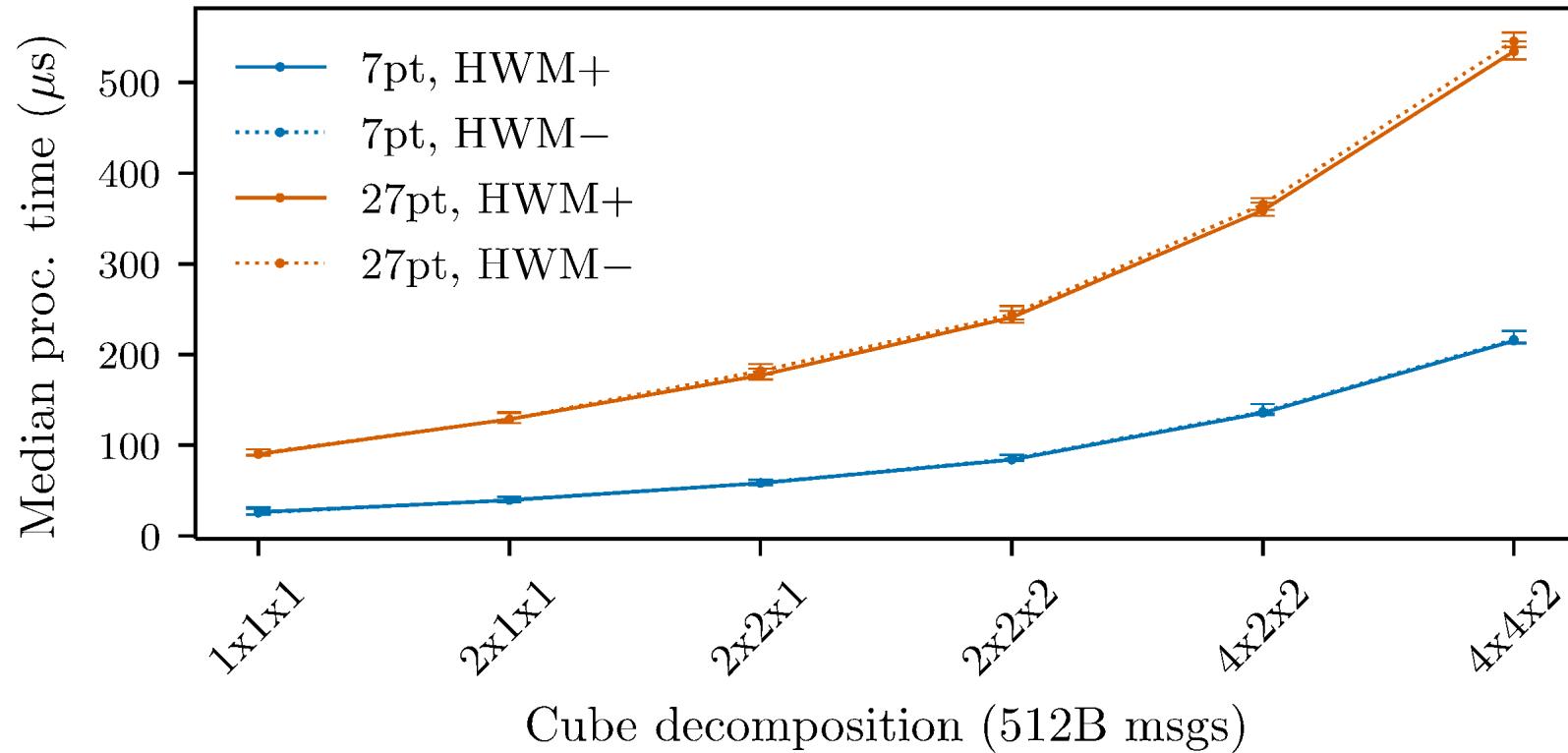
Multithreaded Message Matching: Items searched

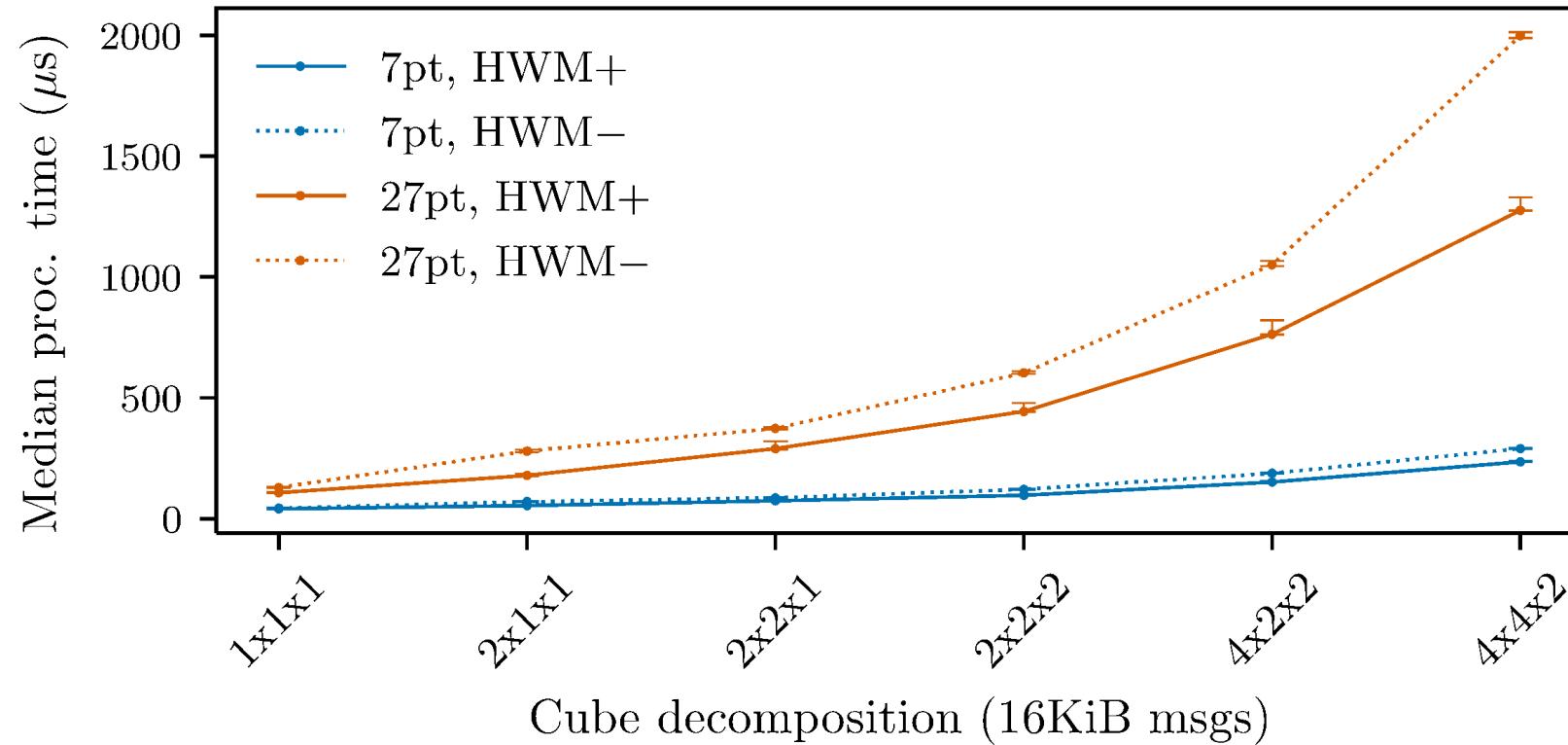


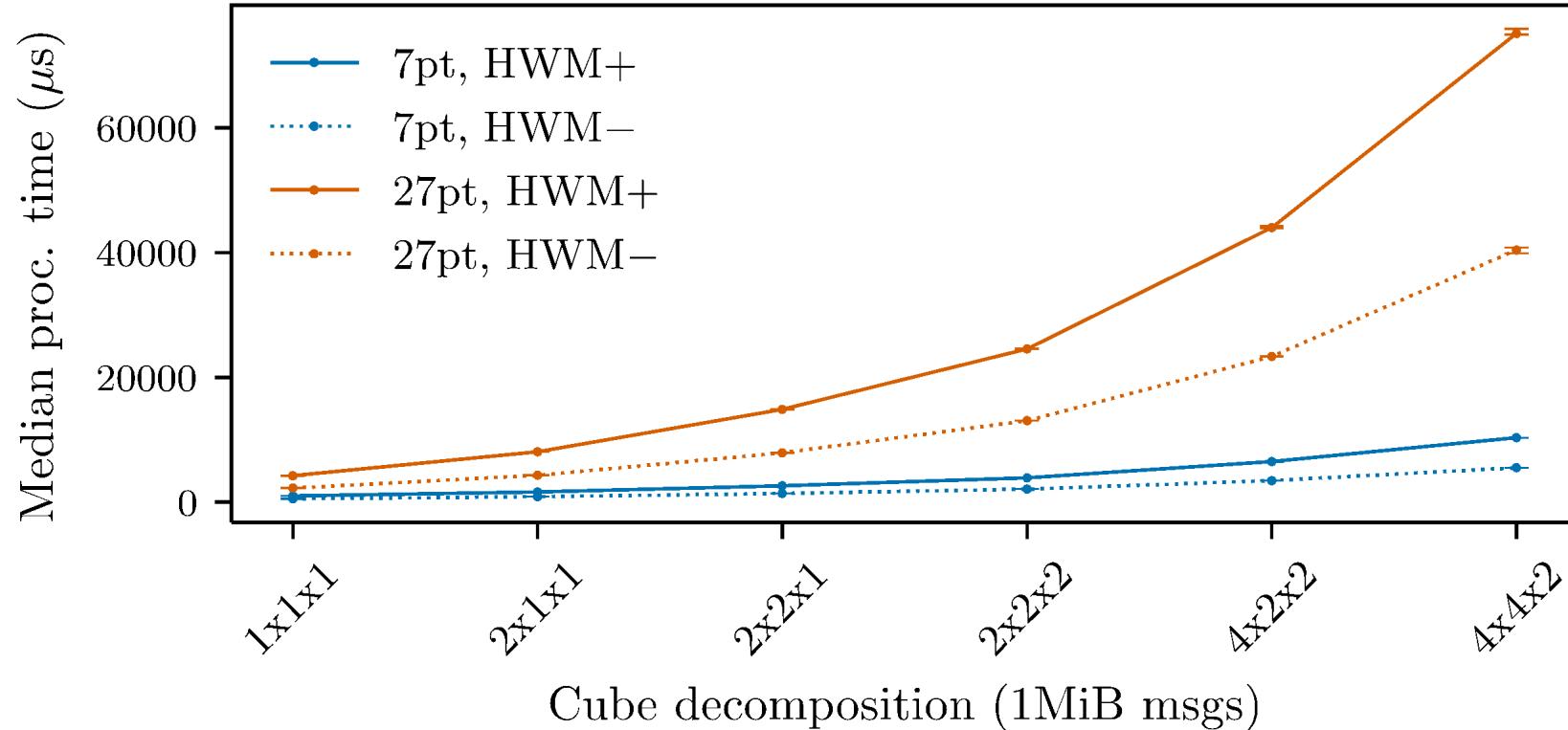
Multithreaded Message Matching: Time searching

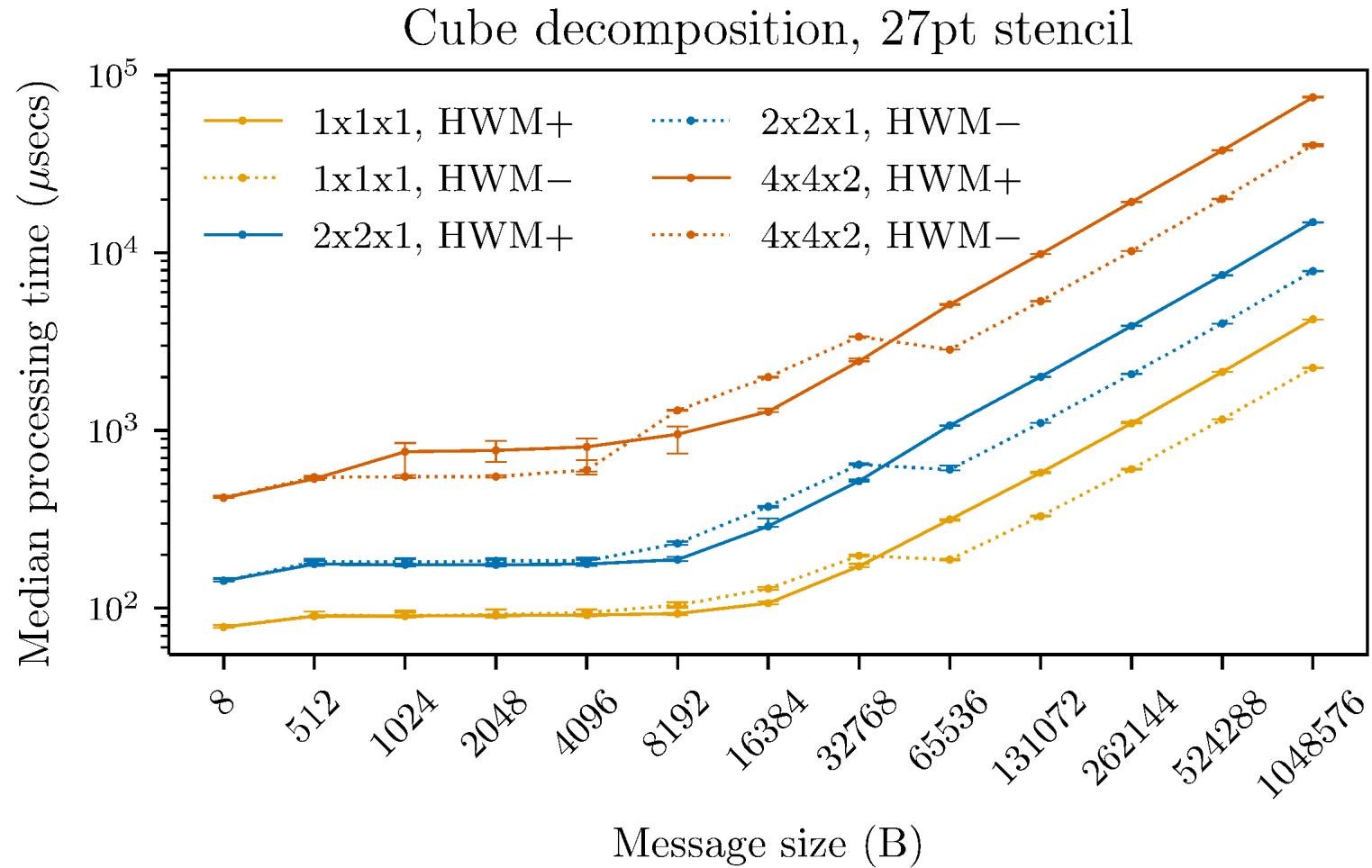


- Smart HPC NICs: offloaded MPI message matching
- Executed low-cost benchmark on system with this feature
 - Two conditions: off and on
 - On: offloading active for messages over 1024B threshold
- Instrumented benchmark to get time spent processing messages







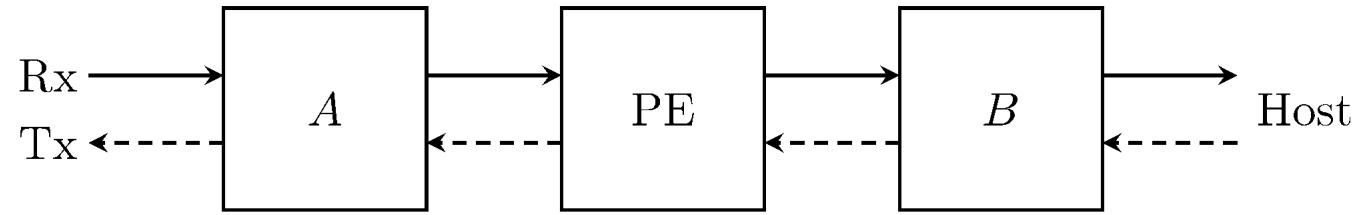


- Benchmarks to assess the overheads of multithreaded message matching
- Enabled assessment of a contemporary 'smart' offloaded application
- Revealed:
 - The offloaded capability does not fully mitigate overhead
 - And it may exacerbate the problem for larger message sizes

INCA: Recap

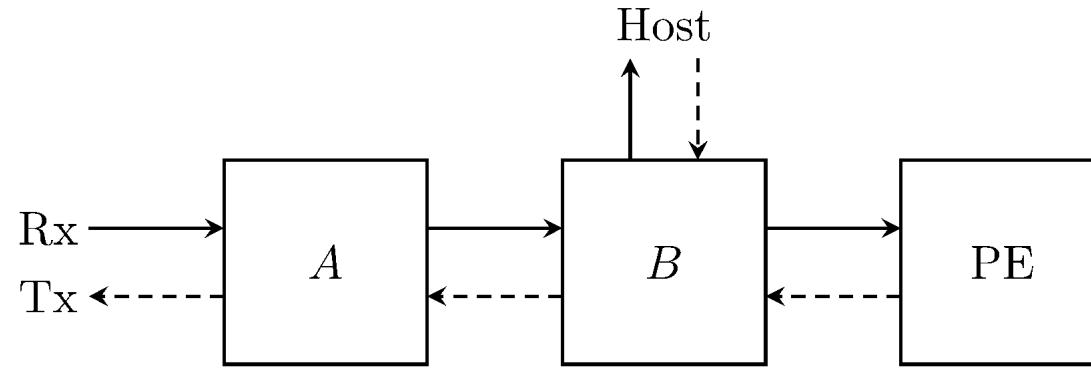
- W. Schonbein, R. E. Grant, M. G. F. Dosanjh, and D. Arnold, “INCA: in-network compute assistance,” in *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*, Denver, Colorado, Nov. 2019, pp. 1–13

On-Path



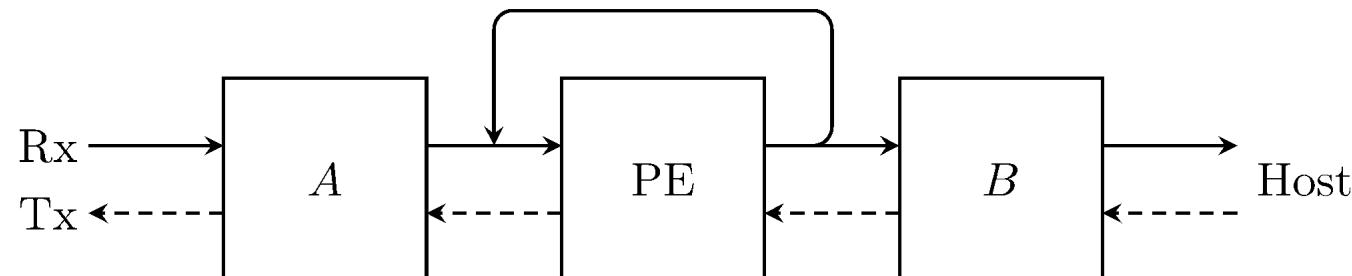
Deadlines

Off-Path



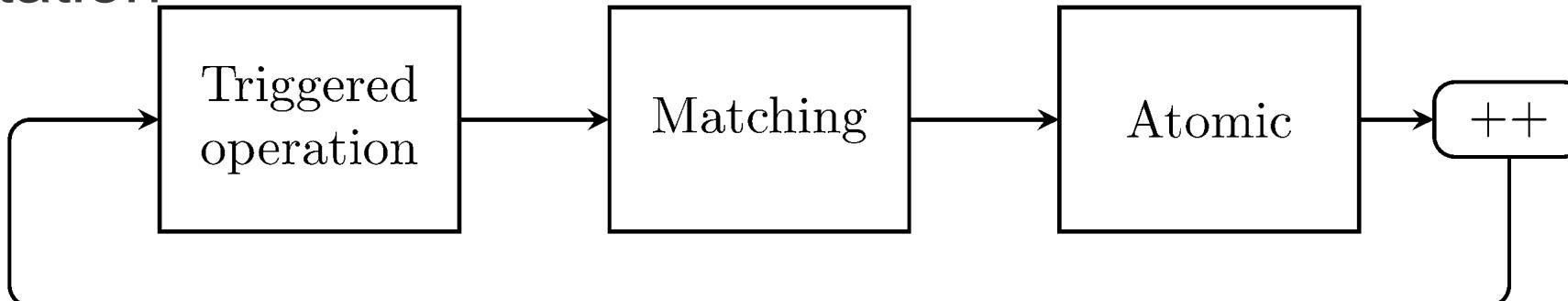
Deadline-free

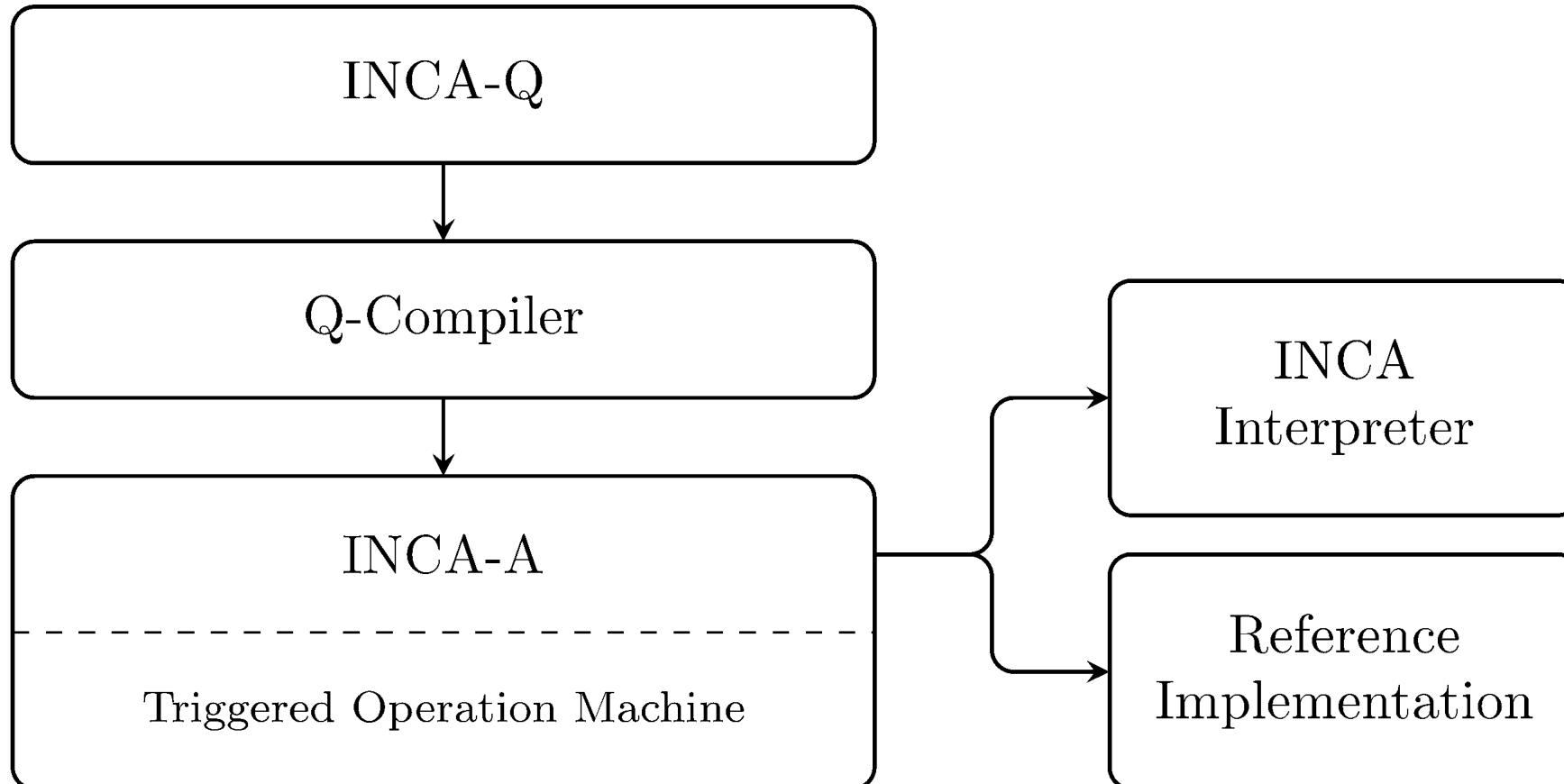
In-Path



Deadline-free

- HPC NICs often offload
 - Message matching
 - Atomic operations
 - Triggered operations
- These can be coordinated into a Turing complete model of computation





- INCAsim: simulator for estimating INCA kernel runtimes
- With software and hardware optimizations (SIMD), in some cases kernel runtimes are comparable with contemporary CPUs
- Application speedups up to 30%

INCA: NIC-as-Coprocessor

- Quiescent applications: applications with idle networks
- Opportunity:
 - Harvest idle NIC resources
- Ray tracing application for enabling over-the-horizon radar
- One hour cadence; idle 56 minutes/hour
- Resolution proportional to time available to process data

- Bottlenecks:
 - **solve_normal_dist**
 - **convolve_normal**
- Two scenarios:
 - No hardware acceleration
 - Hardware acceleration

Network	Packet Size	Memory	Hardware
400 Gb/s	64 B	1 MiB, 1ns	exp: 100 ns conv: 80 usecs

Kernel	Time in function (usecs)		
	Original	INCA scratchpad	INCA hardware
solve_normal_dist	78600	69496 (1.13x)	63981 (1.23x)
convolve_normal	28487	28470 (1.0006x)	23628 (1.21x)

- Quiescent applications (idle networks)
- Harvest idle NIC resources to assist host applications
- INCA may speedup portions of host applications to free resources

INCA: Enabling Adaptive Networks

- Variations in network workloads can impact overall quality of service
 - Elephant vs. mouse flows
 - Ingress problem
 - Network-induced memory contention
- Emerging research suggests techniques from ML have potential
 - Avoid network-induced memory contention (Groves et al. 2018)
 - Energy consumption (Dickov et al. 2014)
 - Dynamic network tuning (Kiran & Chhabra, 2019)

- SmartNICs are in a good position help
 - Situated between the network and the host
 - If the NIC can predict incoming traffic (e.g., expected data over time):
 - Intelligently schedule DMA transfers
 - Pre-emptively adjust credits to senders
 - Adjust power usage
 - Schedule processors (SPiN) to adjust allocated time

- Is it feasible to offload ML kernels to an INCA-enabled SmartNIC?
- Do these kernels generate accurate predictions?
- How well do these kernels address the issues raised above?

Yes

- INCA is Turing-complete
- INCA is deadline-free
- Constraint: lower memory requirements are better
- Constraint: faster execution is better

Applications

HPCG

LAMMPS-Ij

LAMMPS-rhodo

Lulesh

MILC

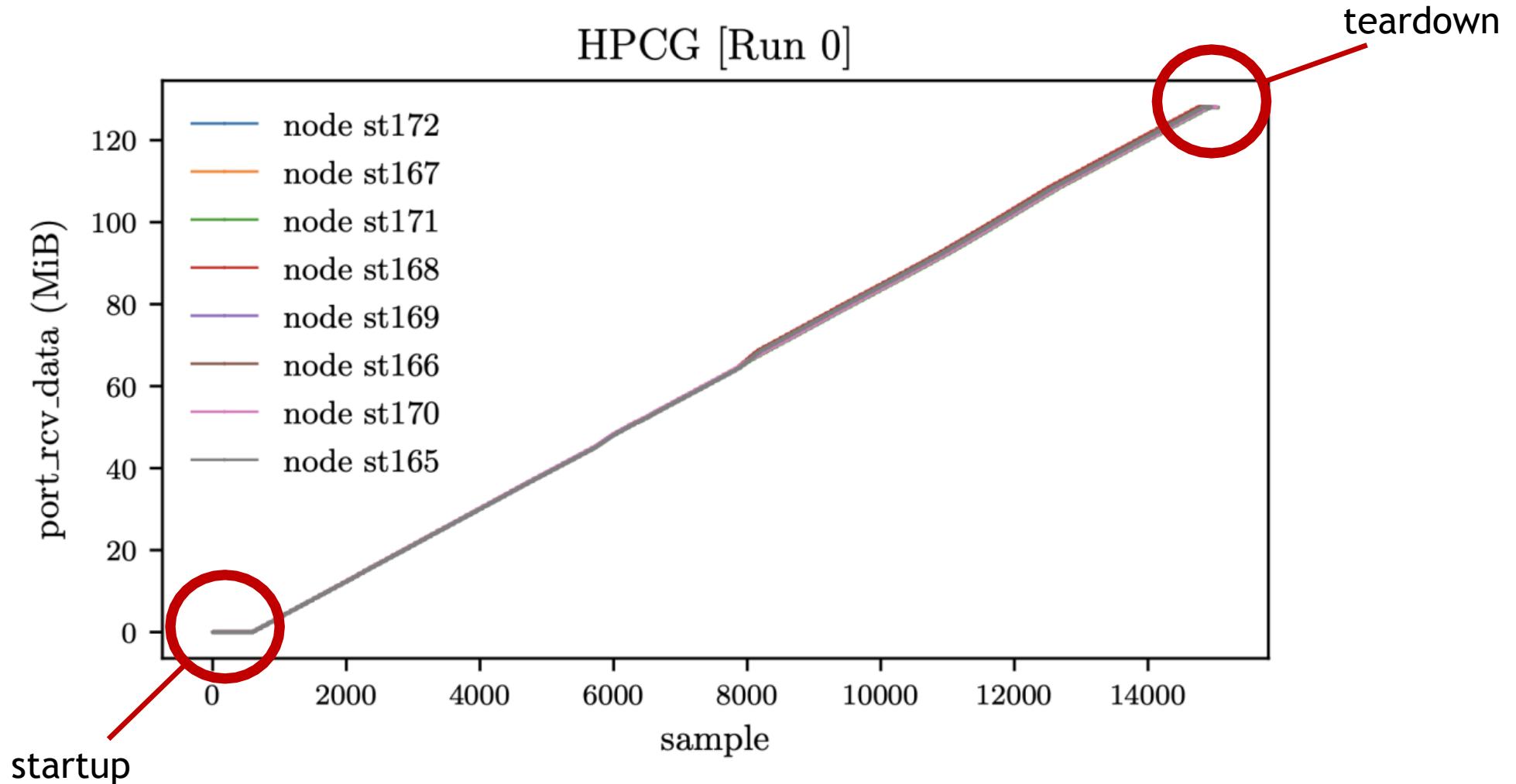
MiniAMR

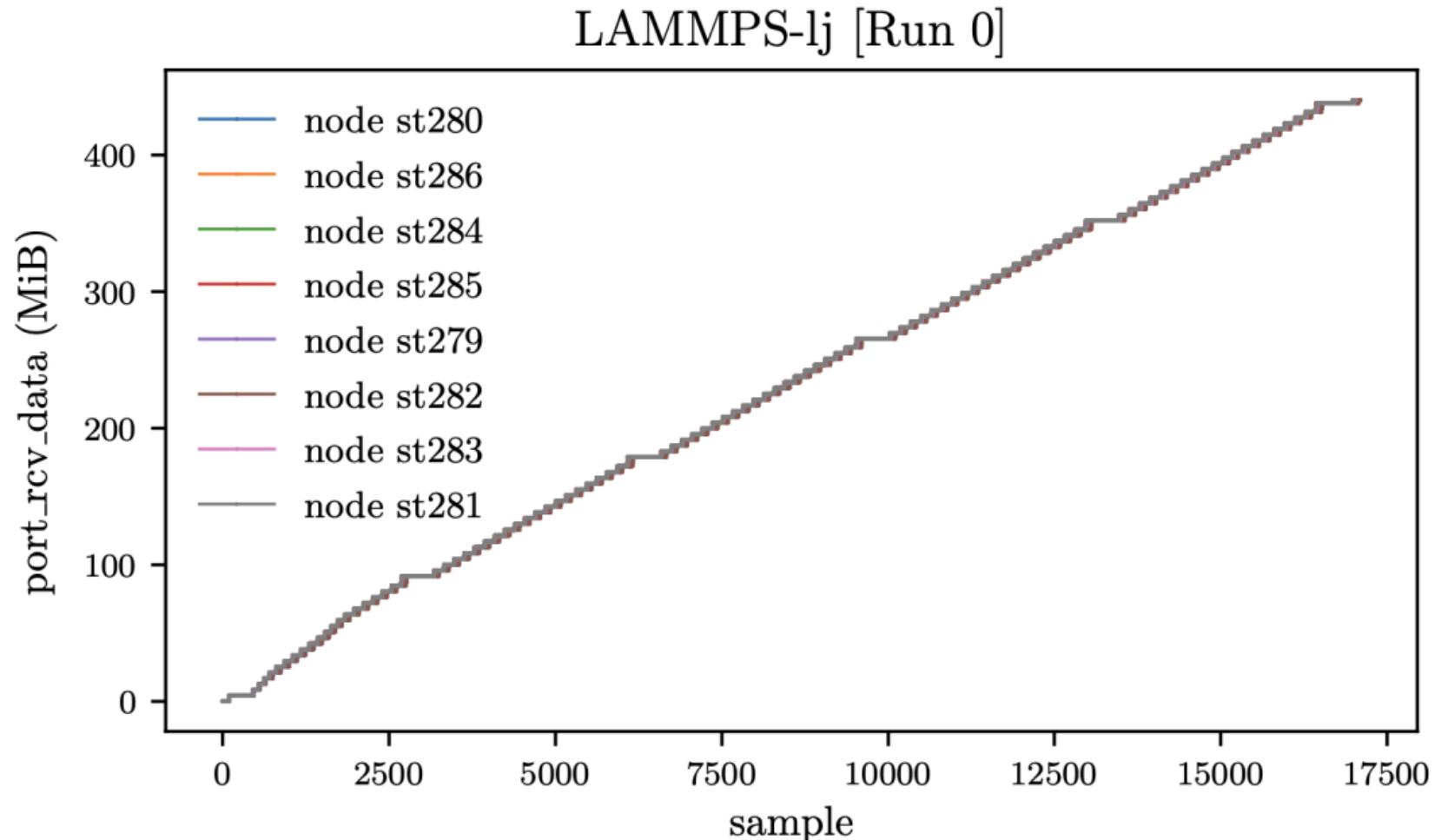
MiniFE

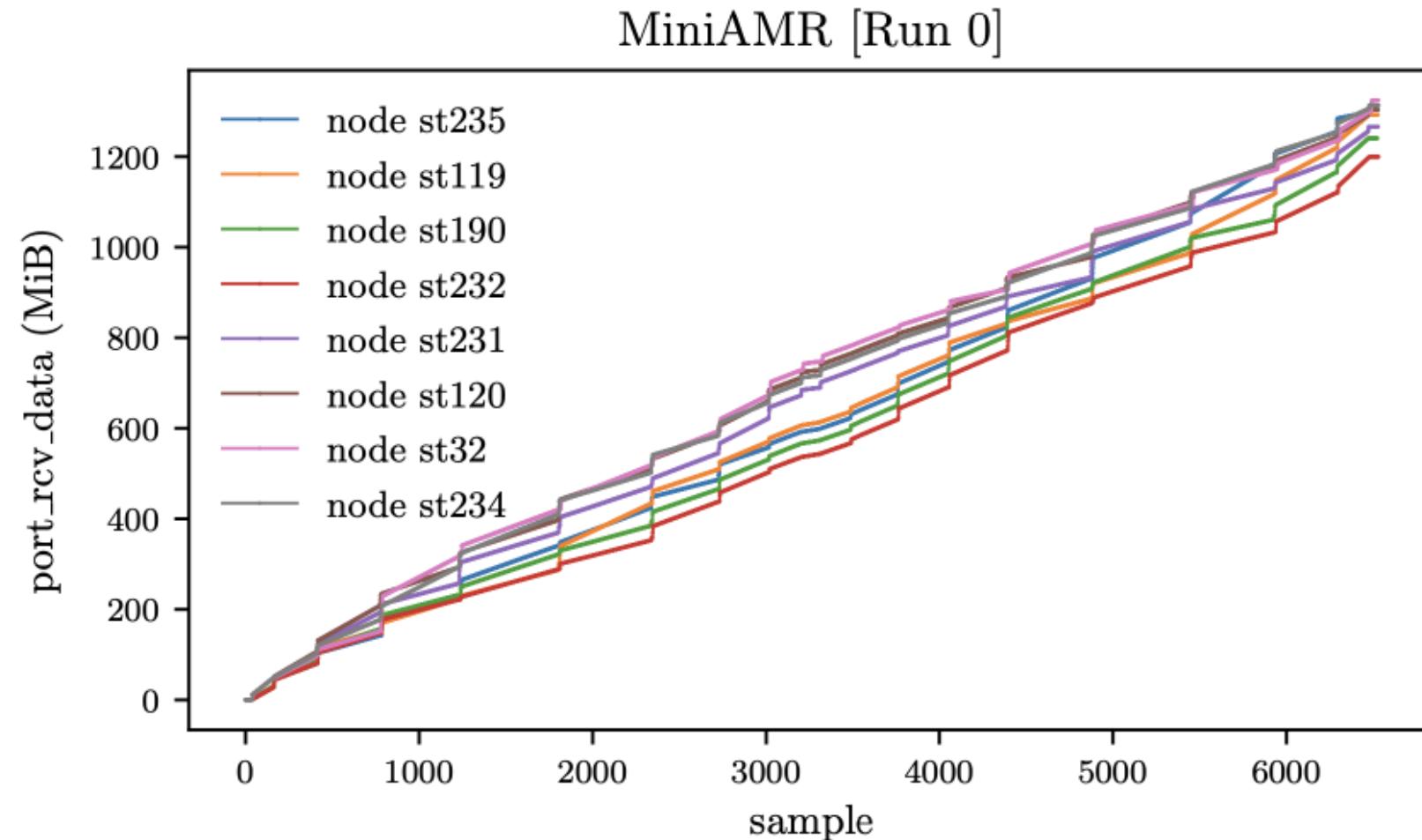
MiniMD

- **System:**
 - ARM
 - 2 sockets/node
 - Each socket has a 28-core Cavium ThunderX2 ARM CPU @ 2 GHz
 - NVIDIA Mellanox ConnectX-5 NICs
- **NIC hardware performance counters**
 - Bytes received

- Performance counter data collection
 - Filesystem interface
 - Sampling rate 20 Hz (period = 50 ms)
 - Tool is pinned to one socket, application MPI process pinned other socket.
 - Each application executed 11 times, 8 MPI processes, 1 process per node





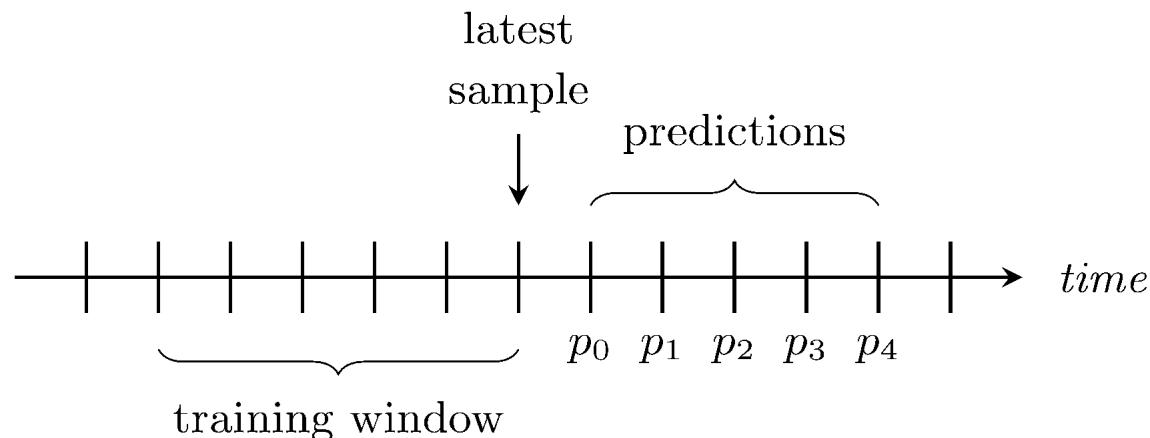


- Given the general shape of the data
- Constraints on INCA kernels
- We selected linear regression as a method

- Ordinary LR

- Train model on known data set, and apply to subsequent runs of the same application
- *Static*: model does not dynamically adapt to incoming data

- Rolling LR

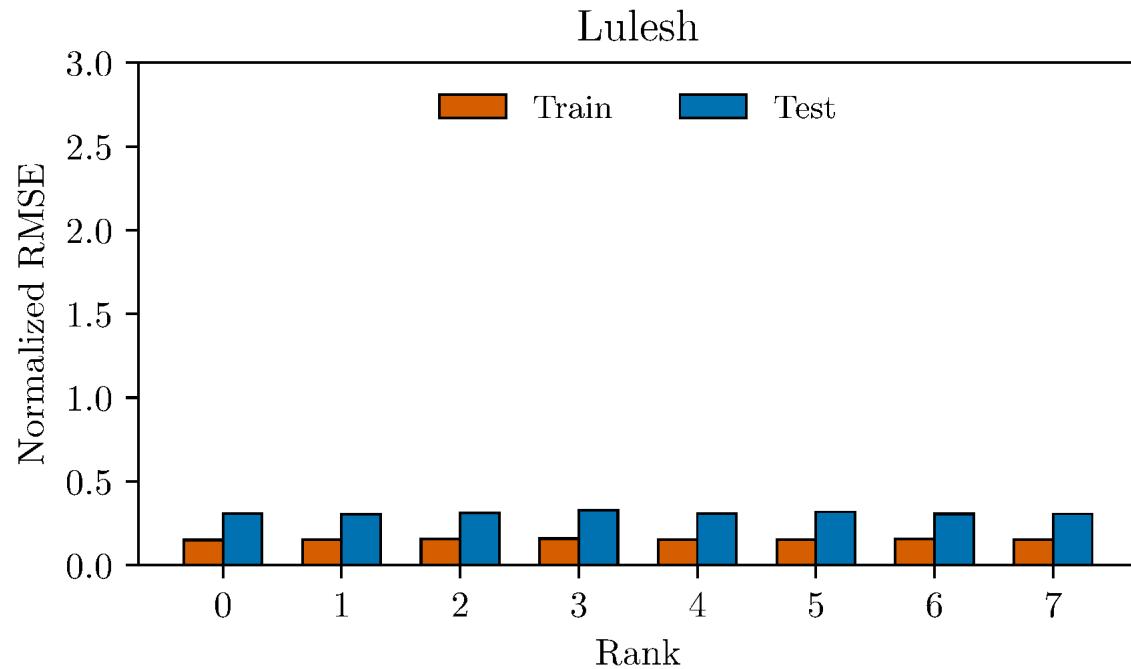
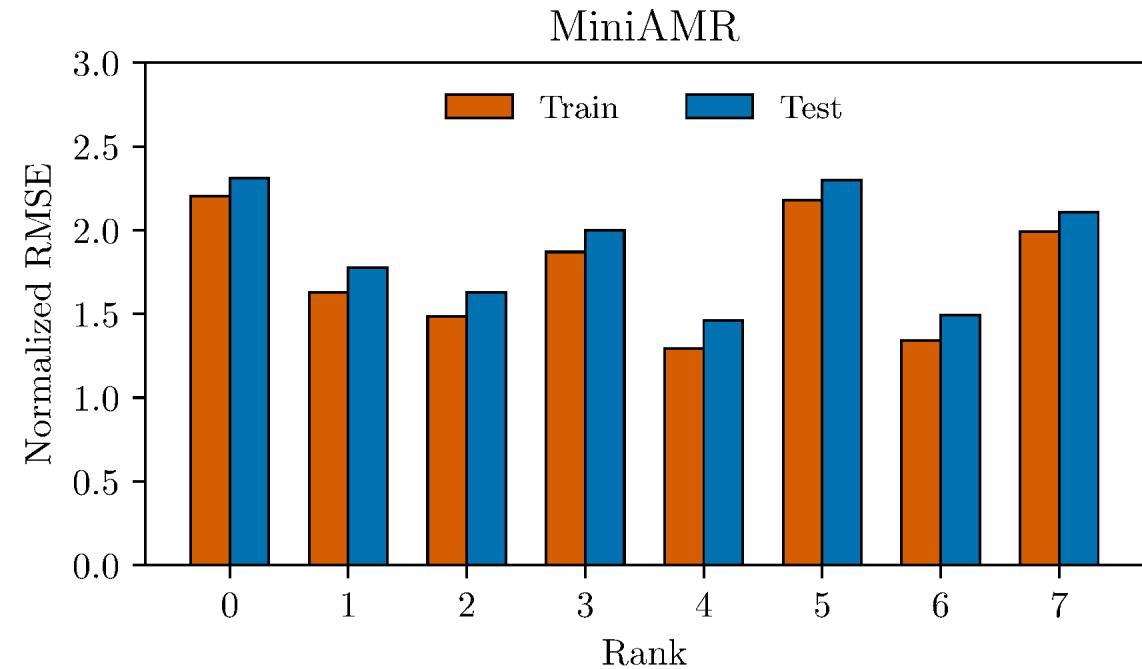


- Ordinary LR
 - Train model on known data set, and apply to subsequent runs of the same application
 - *Static*: model does not dynamically adapt to incoming data
- Rolling LR
 - As each data point arrives, train model on the points in the training window, and generate predicted values
 - *Dynamic*: model adapts to incoming data

- Rolling LR
 - Ordinary
 - Weighted
 - Exponential increasing (exp-inc)
 - Exponential decreasing (exp-dec)

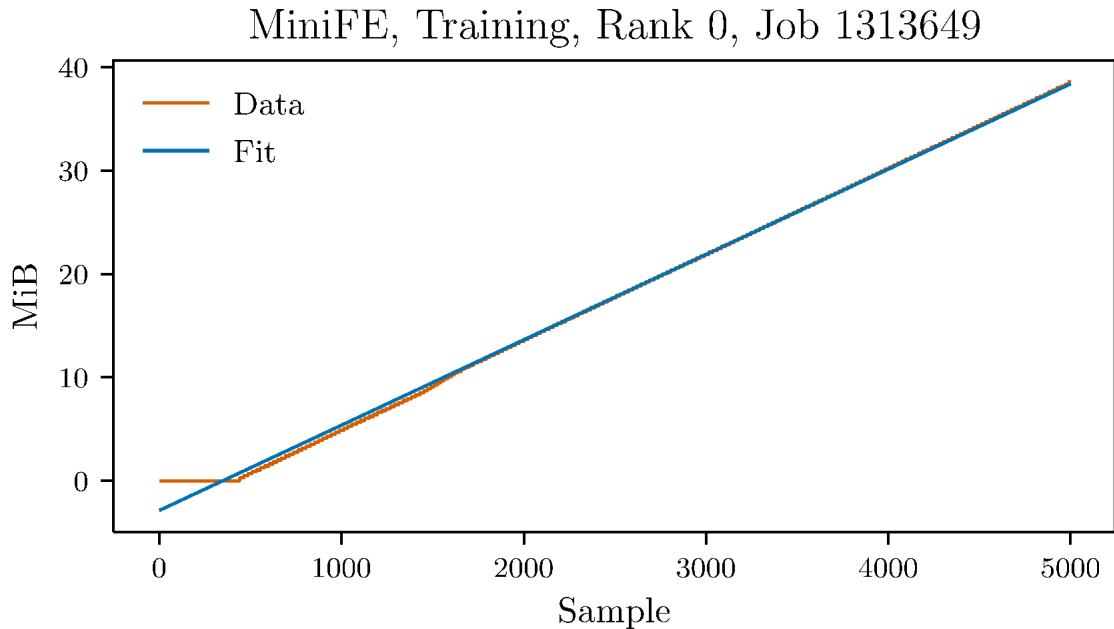
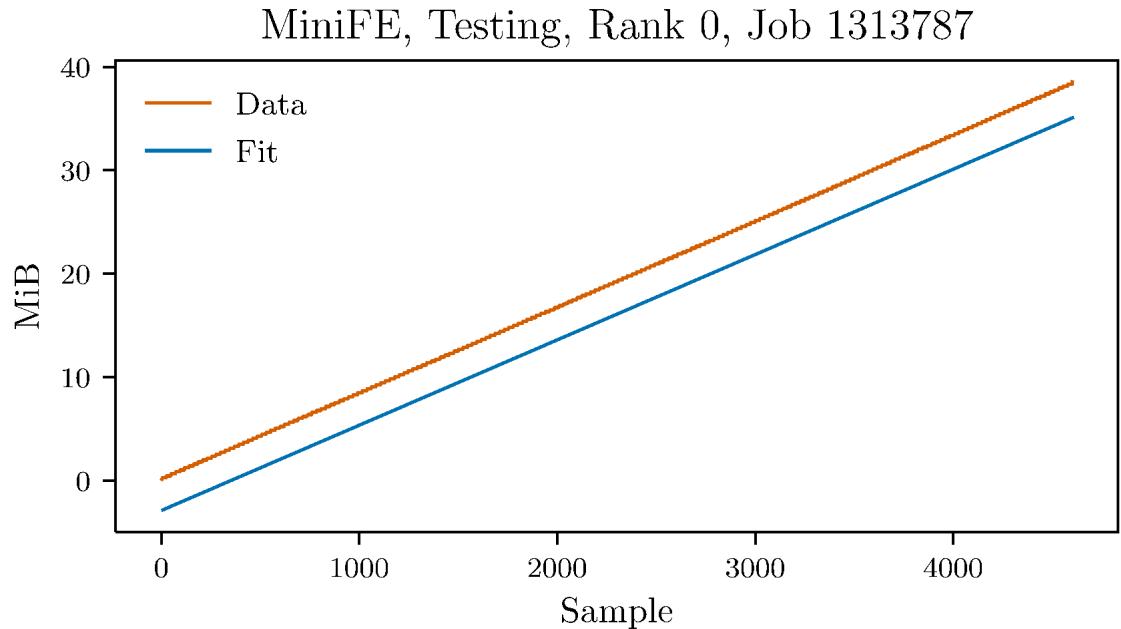
- For each run, train and then test against the remaining 10 runs
 - Report normalized RMSE (NRMSE)
 - For training, averaged across 11 runs
 - For testing, averaged across 110 runs
 - Error bars are standard deviations

Results: Ordinary LR



Best (Lulesh) and worst (MiniAMR) performing ordinary LR applications

Results: Ordinary LR

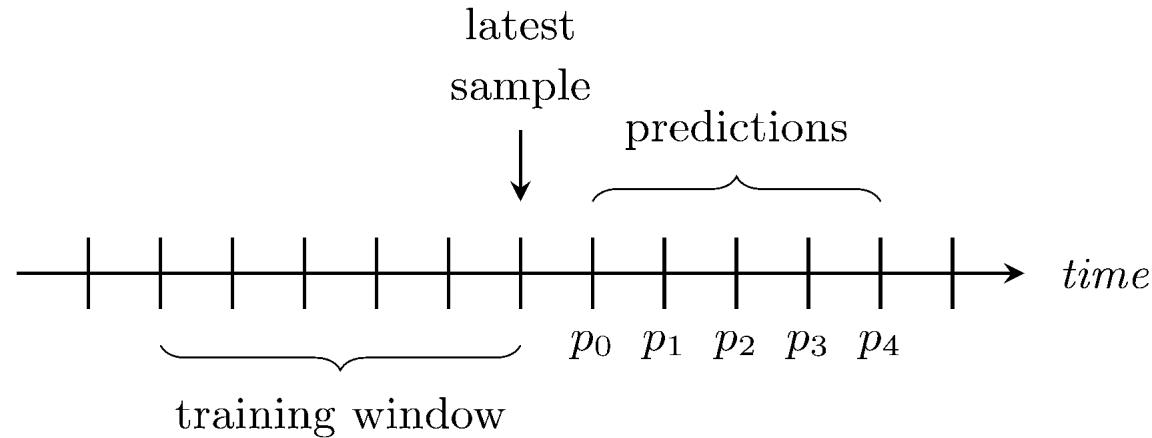


Overfitting due to startup phase

```
1 PPUTL output, b0, f
2 PPUTL _R1, b1, f
3 MUL _R1, _R1, x, f
4 ADD output, output, _R1, f
5 END
```

Memory: < 64 B (64b operands)
Runtime @ 200 Gb/s: 26.48 ns
Runtime @ 400 Gb/s: 16.24 ns
(64 B packets, scratchpad)

INCA-A ordinary LR inference kernel



- How large should the training window be?
- Same for all prediction points?

Results: Rolling LR

Application	Weights	Prediction Point									
		p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9
HPCG	ord	5	6	6	13	151	150	149	148	148	147
	exp-inc	8	12	14	17	19	247	250	250	250	250
	exp-dec	2	2	5	117	148	147	146	146	145	144
LAMMPS-lj	ord	6	5	5	5	5	6	6	6	6	242
	exp-inc	8	9	8	8	9	10	13	18	26	34
	exp-dec	2	5	4	5	5	6	6	6	7	7
MILC	ord	2	4	5	5	5	5	5	5	5	5
	exp-inc	5	7	7	8	8	7	7	7	7	7
	exp-dec	2	2	2	2	3	3	4	4	4	4

Median best performing window size by prediction point across all ranks and all runs

Application	Pr(data)	Pr(~data)
HPCG	0.15	0.85
LAMMPS-Ij	0.03	0.97
LAMMPS-rhodo	0.09	0.91
Lulesh	0.93	0.07
MILC	1.00	0.00
MiniAMR	0.79	0.21
MiniFE	0.14	0.86
MiniMD	0.06	0.94

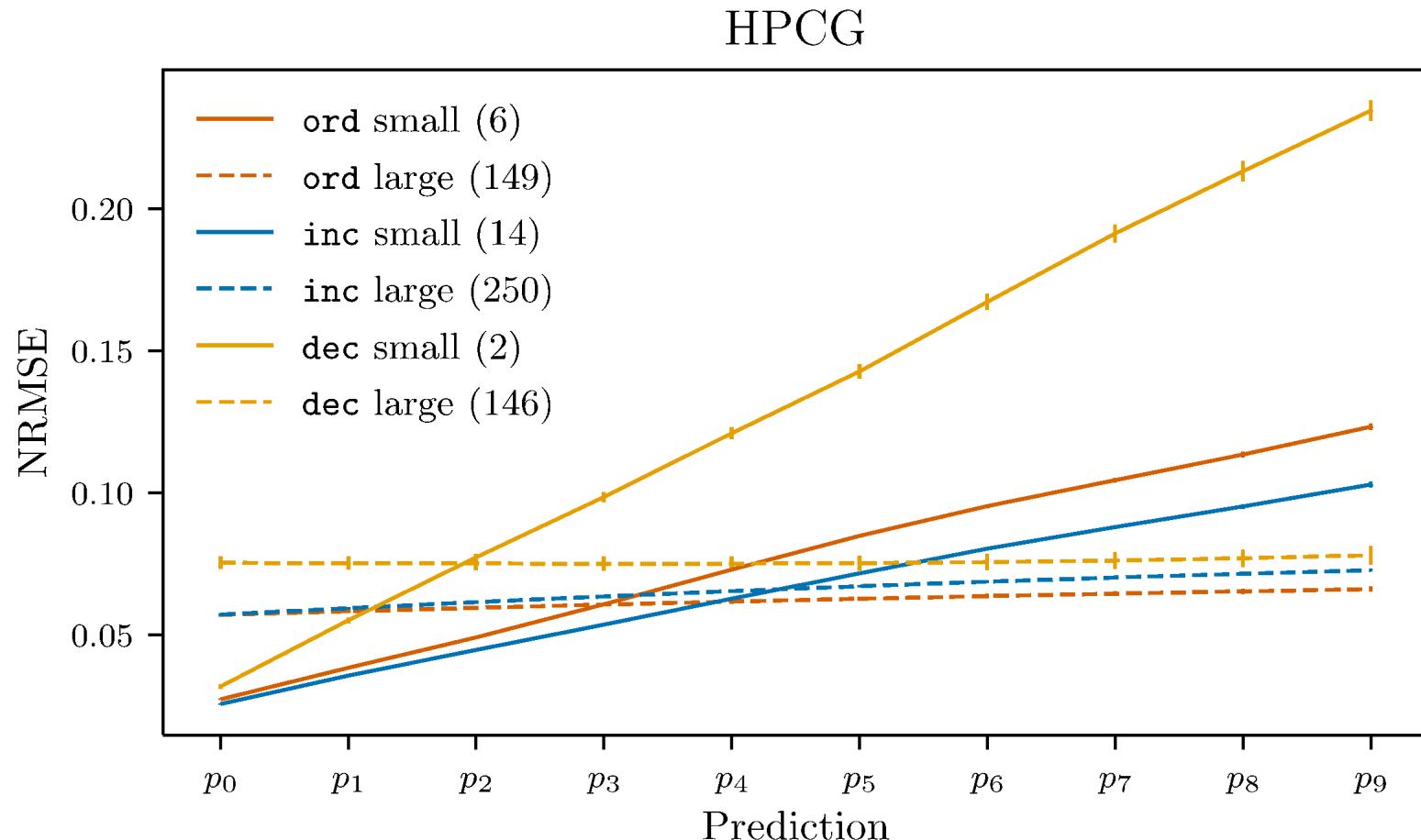
Probability of data arriving at any given sample (i.e., probability of positive slope)
averaged across all ranks of all runs

Results: Rolling LR

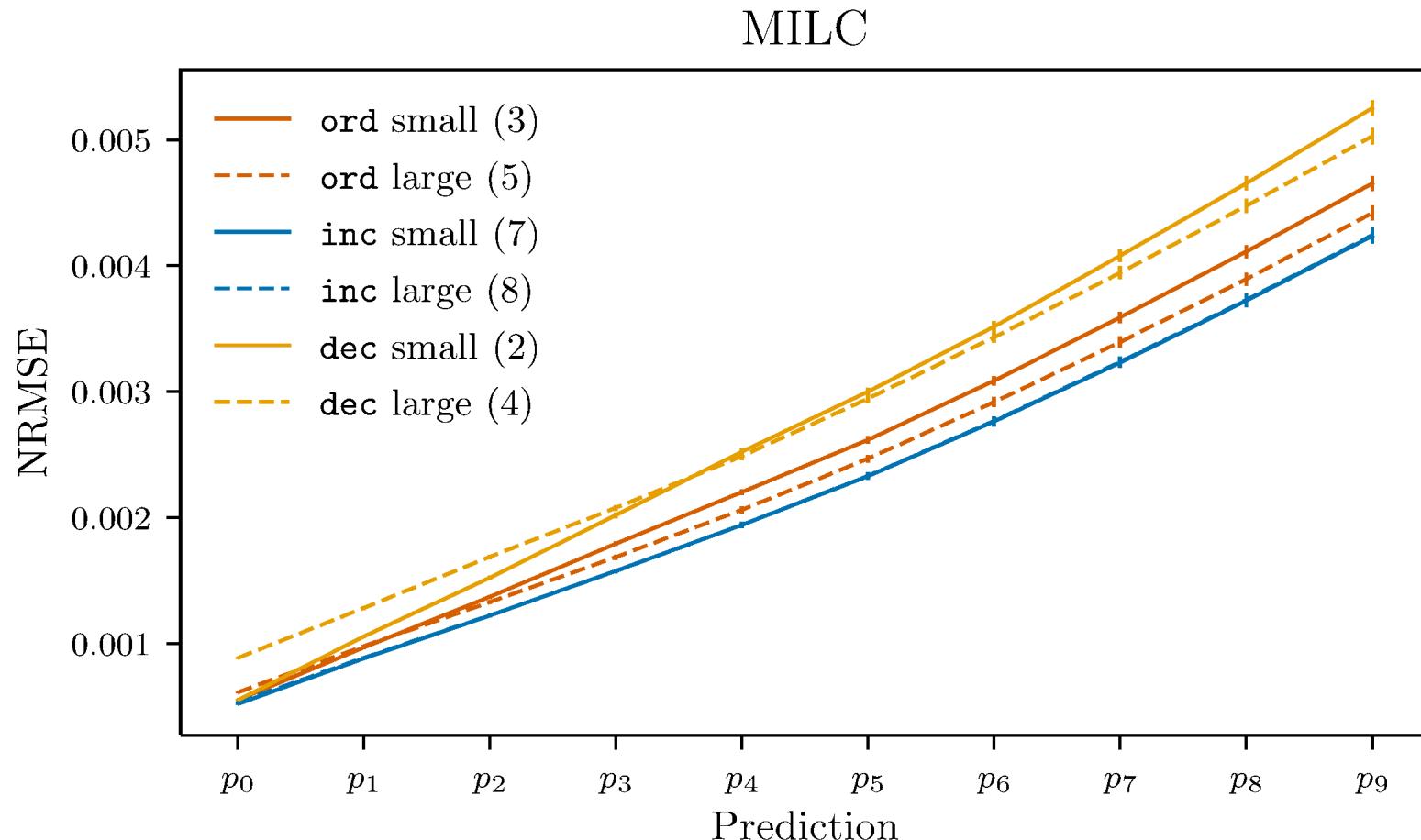
Application	Weights	Prediction Point									
		p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9
HPCG	ord	5	6	6	13	151	150	149	148	148	147
	exp-inc	8	12	14	17	19	247	250	250	250	250
	exp-dec	2	2	5	117	148	147	146	146	145	144
LAMMPS-lj	ord	6	5	5	5	5	6	6	6	6	242
	exp-inc	8	9	8	8	9	10	13	18	26	34
	exp-dec	2	5	4	5	5	6	6	6	7	7
MILC	ord	2	4	5	5	5	5	5	5	5	5
	exp-inc	5	7	7	8	8	7	7	7	7	7
	exp-dec	2	2	2	2	3	3	4	4	4	4

Median best performing window size by prediction point across all ranks and all runs

- Two-window strategy:
 - Small window for near-term predictions
 - Large window for far-term predictions
- Bifurcate each set of window sizes, take median of each



Average NMRSE by prediction point for HPCG, for small and large training window sizes



Average NMRSE by prediction point for MILC, for small and large training window sizes

- Rolling methods outperform static ordinary LR in all cases
 - HPCG: Static approaches 1.0%, while best performing rolling methods < 0.1%
 - LAMMPS-IJ: Static exceed 1.0%, best performing rolling < 0.3%

- INCA kernel is more complex
- INCA kernels admit of SIMD parallelization
- Simulator parameters:
 - 200 Gb/s and 400 Gb/s network speeds (64B messages)
 - Small window (5 samples) and large window (250 samples)
 - Vanilla and optimized

Results: Rolling LR

Rolling LR Method	Network Gb/s	Runtime (usecs)		Memory (KiB)	Instructions executed
		5 sample window	250 sample window		
ord	200	0.68	21.87	< 4	101
	400	0.41	13.46		3286
ord-parallel	200	0.28	0.69	< 4	42
	400	0.17	0.34		42
weighted	200	1.17	38.10	< 8	179
	400	0.71	23.22		58124
weighted-parallel	200	0.74	15.72	< 12	112
	400	0.45	9.65		2317

Estimated runtimes and memory requirements for rolling LR methods

- Simple ML techniques can generate accurate results
 - NRMSE ranges from 2.5% to 0.1%
- Offloading these ML kernels in INCA is *feasible*
 - Runtimes (200 Gb/s) range from 26.48 ns to 38.10 usecs
 - Memory never exceeds 12 KiB

Conclusion & Future Work

- Contributions of this work

- Benchmarks for assessing overheads of multithreaded communication
 - In-Network Compute Assistance (INCA)
- Assessment of application speedups afforded by INCA
- Demonstration that INCA can enable 'adaptive' networks

- FPGA prototype
- Portals 5.0
- Follow-up on quiescent network applications
- Distributed applications
- INCA as a mechanism for coordinating heterogeneous on-NIC compute resources
- Other ML techniques

Dorian Arnold
Ryan Grant
Trilce Estrada
Jinho Choi

Matthew Dosanjh
Noah Evans
Scott Levy
David DeBonis
Jeremy Benson