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Introduction

* Resurgence of interest in “SmartNICs”

* Expectations regarding what these systems can do

* Free host resources

» Accelerate application execution
 Failure recovery

» Data staging

» Checkpointing

 And more

Grant, R.E., Schonbein, W., Levy, S. (2020) ‘RaDD Runtimes: Radical and Different Distributed Runtimes with
SmartNICs’, Fourth Annual Workshop on Emerging Parallel and Distributed Runtime Systems and
Middleware (IPDRM), forthcoming.
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Introduction

* Contributions of this work

* Benchmarks for assessing overheads of multithreaded communication
* In-Network Compute Assistance (INCA)
» Assessment of application speedups afforded by INCA

* Demonstration that INCA can enable "adaptive’ networks
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Introduction

 \What is a SmartNIC?

A SmartNIC is a NIC that offloads core network applications

*In HPC:

 Offloaded collectives
 Offloaded message matching

Z



5 | From SmartNIC to ReallySmartNIC

11

Dur scheme is designed with the idea that as much processing as possi
should be done by the host processor.” (Buntinas et al. 2000, p. 1).

 Plateauing host resources

* Increasing demands on host resourt
* Internet
* Cellular

 Big data/machine learning/Al
» SC2018: 1 paper session on ML
» SC2020: 6 paper sessions on ML

b‘le

Trends in CPU frequencies and core counts
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CPU data from: https://github.com/karlrupp/microprocessor-trend-data
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From SmartNIC to ReallySmartNIC

* Next generation SmartNICs
* Netronome Agilio
* NVIDIA Mellanox Bluefield
» Broadcom Stingray
* Microsoft Catapult
* Xylinx Versal
« Stream Processing in-Network (SPiN)

* Flexibility
 FPGAs, CPUs
» Execute arbitrary kernels for manipulating network data
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From SmartNIC to ReallySmartNIC

* Novel types of offloaded applications
» Core network applications

 Parts of host applications (data packing, consensus algorithms, CNN layers,
object detection)

* Fully independent applications (Catapult, microservices e.g. Amazon Lambda)

* Revised understanding of "SmartNIC’
* NICs with FPGAs (Hanford et al. 2018)
* NICs with CPUs (Liu et al. 2019)
 Catapult: “beyond SmartNICs” (Caufield, 2016)



8

Introduction

* Contributions of this work

* Benchmarks for assessing overheads of multithreaded communication
* In-Network Compute Assistance (INCA)
» Assessment of application speedups afforded by INCA

* Demonstration that INCA can enable "adaptive’ networks



Benchmarking Multithreaded
Message Matching
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Multithreaded Message Matching

« Schonbein, W., Levy, S, Marts, W.P., Dosanjh, M.G.F., Grant, R.E. (2020) ‘Low-Cost MPI
Multithreaded Message Matching Benchmarking’, High Performance Computing and
Communications (HPCC 2020), forthcoming.

e Levy, S., Ferreira, K.B., Schonbein, W., Grant, R.E., Dosanjh, M.G.F., (2019) ‘Using Simulation
to Examine the Effect of MPI Message Matching Costs on Application Performance’, Parallel
Computing, Volume 84, May 2019, pp. 63-74.

« Schonbein, W., Dosanjh, M.G.F., Grant, R.E., Bridges, P.G. (2018) ‘Measuring multi-threaded
message matching misery’, Euro-Par 2018: Parallel Processing, Turin, ltaly, pp. 480-491.



11 1 Multithreaded Message Matching

* Halo exchange communication
 MPI_THREAD MULTIPLE
* Multithreaded halo exchanges

* Question: What will this do to message
processing overhead?

[T

(XXX




2 | Multithreaded Message Matching

* MPI message processing overview
* Posted Receive Queue (PRQ)
« Unexpected Message Queue (UMQ)

* Hypothesis: MP| message processing
overhead will increase

* More messages
* Non-determinism

New  Receive
Message Request

Head Head

Tail ‘>< Tail

PRQ UMQ
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Multithreaded Message Matching

 Two benchmarks:
* "Real-world’
* ‘Low-cost’

e Executed both benchmarks on two architectures:

* Intel Xeon (Haswell)
* Intel Xeon Phi (KNL)
* Recorded number of items searched and time spent searching



14 | Multithreaded Message Matching: Items searched
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5 | Multithreaded Message Matching:
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16 | Multithreaded Message Matching: Application to SmartNIC

 Smart HPC NICs: offloaded MPI message matching

* Executed low-cost benchmark on system with this feature
* Two conditions: off and on
* On: offloading active for messages over 1024B threshold

* Instrumented benchmark to get time spent processing
messages
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Multithreaded Message Matching

Median proc. time (us)

. Application to SmartNIC
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s | Multithreaded Message Matching: Application to SmartNIC

Median proc. time (us)
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Multithreaded Message Matching: Application to SmartNIC
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Multithreaded Message Matching: Application to SmartNIC

Median processing time (usecs)
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21 | Multithreaded Message Matching: Conclusions

* Benchmarks to assess the overheads of multithreaded message
matching

* Enabled assessment of a contemporary smart’ offloaded
application

* Revealed:
» The offloaded capability does not fully mitigate overhead
* And it may exacerbate the problem for larger message sizes






3 | INCA
ju

* W. Schonbein, R. E. Grant, M. G. F. Dosanjh, and D. Arnold, “INCA: in-network compute
assistance,” in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Denver, Colorado, Nov. 2019, pp. 1-13
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INCA: Recap: SmartNIC Architectures
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25 | INCA: Recap: Program Execution

* HPC NICs often offload

* Message matching
e Atomic operations
 Triggered operations

* These can be coordinated into a Turing complete model of

computation

Triggered
operation

B

Matching

Atomic




26 ‘ INCA: Recap: Ecosystem
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7 | INCA: Kernel Runtimes

* INCAsim: simulator for estimating INCA kernel runtimes

 With software and hardware optimizations (SIMD), in some cases
kernel runtimes are comparable with contemporary CPUs

* Application speedups up to 30%



INCA: NIC-as-Coprocessor
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INCA: NIC-as-Coprocessor

* Quiescent applications: applications with idle networks

* Opportunity:

 Harvest idle NIC resources

* Ray tracing application for enabling over-the-horizon radar
* One hour cadence; idle 56 minutes/hour

* Resolution proportional to time available to process data

Z
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INCA: NIC-as-Coprocessor

* Bottlenecks:
* solve _normal_dist
e convolve _normal

* TWO scenarios:

* No hardware acceleration

* Hardware acceleration

Network Packet Size Memory Hardware
400 Gb/s 64 B 1 MiB, 1ns exp.: 100 ns
conv: 80 usecs




31 | INCA: NIC-as-Coprocessor

Time in function (usecs)

Kernel
INCA scratchpad | INCA hardware

solve_normal_dist 78600 69496 (1.13x) 63981 (1.23x)
convolve_normal 28487 28470 (1.0006x) 23628 (1.21x) I




32 | INCA: NIC-as-Coprocessor

* Quiescent applications (idle networks)
* Harvest idle NIC resources to assist host applications

* INCA may speedup portions of host applications to free resources

A
el



INCA: Enabling Adaptive
Networks
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INCA: Enabling Adaptive Networks

* Variations in network workloads can impact overall quality of
service

* Elephant vs. mouse flows
* Ingress problem
* Network-induced memory contention

* Emerging research suggests techniques from ML have potential
 Avoid network-induced memory contention (Groves et al. 2018)
* Energy consumption (Dickov et al. 2014)
* Dynamic network tuning (Kiran & Chhabra, 2019)
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INCA: Enabling Adaptive Networks

 SmartNICs are in a good position help
* Situated between the network and the host

* If the NIC can predict incoming traffic (e.g., expected data over time):
* Intelligently schedule DMA transfers
* Pre-emptively adjust credits to senders
* Adjust power usage
» Schedule processors (SPiN) to adjust allocated time



36 ‘ INCA: Enabling Adaptive Networks

* |s it feasible to offload ML kernels to an INCA-enabled SmartNIC?
* Do these kernels generate accurate predictiorgs?

e How well do these kernels address the issue

jised hbove? I



37 | Constraints on INCA ML Kernels

* INCA is Turing-complete i
* INCA is deadline-free i

» Constraint: lower memory requirements are better

e Constraint: faster execution is better |



33 | Applications and Data Collection

Applications

HPCG
LAMMPS-[j
LAMMPS-rhodo
Lulesh
MILC
MiniAMR
MiniFE
MiniMD




39 | Applications and Data Collection

* System:
 ARM
» 2 sockets/node
« Each socket has a 28-core Cavium ThunderX2 ARM CPU @ 2 GHz
* NVIDIA Mellanox ConnectX-5 NICs

* NIC hardware performance counters
* Bytes received



s | Applications and Data Collection

* Performance counter data collection
* Filesystem interface
« Sampling rate 20 Hz (period = 50 ms)
* Tool is pinned to one socket, application MPI process pinned other socket.
e Each application executed 11 times, 8 MP| processes, 1 process per node



4 | Data and ML Methods
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» | Data and ML Methods
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Data and ML Methods

MiniAMR [Run 0]
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Data and ML Methods

* Given the general shape of the data
* Constraints on INCA kernels

* We selected linear regression as a method

Z



4 | Data and ML Methods

N1
* Ordinary LR
 Train model on known data set, and apply to subsequent runs of the same
application

 Static.: model does not dynamically adapt to incoming data

* Rolling LR

latest

sample
l predictions

A

4+ ey s
T > bme

“ ~  Po P1 P2 P3 P4

training window

I I Em B



4 | Data and ML Methods

N1
* Ordinary LR
 Train model on known data set, and apply to subsequent runs of the same
application

 Static.: model does not dynamically adapt to incoming data

* Rolling LR

* As each data point arrives, train model on the points in the training window,
and generate predicted values

* Dynamic:. model adapts to incoming data



47 | Data and ML Methods

* Rolling LR
* Ordinary
* Weighted

» Exponential increasing (exp-inc)
» Exponential decreasing (exp-dec)




s | Results: Ordinary LR

* Report normalized RMSE (NRMSE)
 For training, averaged across 11 runs
 For testing, averaged across 110 runs

* For each run, train and then test against the remaining 10 runs i
i
* Error bars are standard deviations
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Normalized RMSE

Results: Ordinary LR

Tl
a1
Lulesh MiniAMR
3.0 3.0
B Train B Test B Train B Test :
2.5 1
=]
=
2.0 +
0 nef
e
1.5 1 .GN)
=
1.0 A é
o
Z.
0.5 -
0.0 __‘_‘_‘_M
0 1 2 3 4 5 6 7 5) 6 7
Rank

Best (Lulesh) and worst (MiniAMR) performing ordinary LR applications



50 | Results: Ordinary LR
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Results: Ordinary LR

O b w N

PUTL output, b0, £

PUTL R1, bl, £

MUL R1, R1, x, £

ADD output, output, R1, £
END

INCA-A ordinary LR inference kernel

Memory: < 64 B (64b operands)

Runtime @ 200 Gb/s: 26.48 ns

Runtime @ 400 Gb/s: 16.24 ns
(64 B packets, scratchpad)



52 | Results: Rolling LR

latest

sample
l predictions
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training window

* How large should the training window be"?
* Same for all prediction points?

I I Em B



Results: Rolling LR

53

Application | Weights

HPCG exp-inc 3 12 14 17 19 247 250 250 250 250

exp-dec 2 2 5 117 148 147 146 146 145 144

ord 6 5 5 5 5 6 6 6 6 242

LAMMPS-|j exp-inc 8 9 8 8 9 10 13 18 26 34
exp-dec 2 5 4 5 5 6 6 6 7 7
MILC exp-inc 5 7 7 8 8 7 7 7 7 7
exp-dec 2 2 2 2 3 3 4 4 4 4

Median best performing window size by prediction point across all ranks and all runs

Prediction Point
Pa oF P> P2 Pa Ps Pa P~ Ps Pq
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Data and ML Methods

HPCG 0.15
LAMMPS-j 0.03
LAMMPS-rhodo 0.09
Lulesh 0.93
MILC 1.00
MiniAMR 0.79
MiniFE 0.14
MiniMD 0.06

Probability of data arriving at any given sample (i.e., probability of positive slope)

averaged across all ranks of all runs

0.85
0.97
0.91
0.07
0.00
0.21
0.86
0.94



Results: Rolling LR
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Application | Weights

HPCG exp-inc 3 12 14 17 19 247 250 250 250 250

exp-dec 2 2 5 117 148 147 146 146 145 144

ord 6 5 5 5 5 6 6 6 6 242

LAMMPS-|j exp-inc 8 9 8 8 9 10 13 18 26 34
exp-dec 2 5 4 5 5 6 6 6 7 7
MILC exp-inc 5 7 7 8 8 7 7 7 7 7
exp-dec 2 2 2 2 3 3 4 4 4 4

Median best performing window size by prediction point across all ranks and all runs

Prediction Point
Pa oF P> P2 Pa Ps Pa P~ Ps Pq



5 | Results: Rolling LR

* Small window for near-term predictions
 Large window for far-term predictions

* Two-window strategy: i
i

e Bifurcate each set of window sizes, take median of each



Results: Rolling LR

HPCG

—— ord small (6)

---- ord large (149)
0.20 i
—— inc small (14)
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0.15 - dec small (2)
dec large (146)

0.05
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Prediction

Average NMRSE by prediction point for HPCG, for
small and large training window sizes



ss | Results: Rolling LR

NRMSE

0.005

0.004

0.003

0.002

0.001

MILC

ord small (3)
ord large (5)
inc small (7)
inc large (8)
dec small (2)
dec large (4)

P1 D2 p3 P4 D5 Pe pr Y2
Prediction

Average NMRSE by prediction point for MILC, for
small and large training window sizes

P9
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Results: Rolling LR

* Rolling methods outperform static ordinary LR in all cases

« HPCG: Static approaches 1.0%, while best performing rolling methods <
0.1%

 LAMMPS-|j: Static exceed 1.0%, best performing rolling < 0.3%
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Results: Rolling LR

* INCA kernel is more complex
* INCA kernels admit of SIMD parallelization

* Simulator parameters:
« 200 Gb/s and 400 Gb/s network speeds (64B messages)
« Small window (5 samples) and large window (250 samples)
 Vanilla and optimized



o+ I Results: Rolling LR

NV E
()
Instructions
executed
200 0.68 21.87 101 '
ord <4
400 0.41 13.46 3286
200 0.28 0.69 42
ord-parallel <4
400 0.17 0.34 42
200 1.17 38.10 179 |
weighted <8
2 400 0.71 23.22 58124 |
weighted- 200 0.74 15.72 112
<12
parallel 400 0.45 9.65 2317

Estimated runtimes and memory requirements for rolling LR methods
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INCA: Enabling Adaptive Networks

* Simple ML techniques can generate accurate results
* NRMSE ranges from 2.5% to 0.1%

 Offloading these ML kernels in INCA is feasible
* Runtimes (200 Gb/s) range from 26.48 ns to 38.10 usecs
 Memory never exceeds 12 KiB



Conclusion & Future Work




¢« | Conclusion

* Benchmarks for assessing overheads of multithreaded communication

e Contributions of this work '
i

* In-Network Compute Assistance (INCA)

%

» Assessment of application speedups afforded by INCA |

* Demonstration that INCA can enable "adaptive’ networks



o5 | Future Work
* FPGA prototype
*Portals 5.0
 Follow-up on quiescent network applications
* Distributed applications

* INCA as a mechanism for coordinating heterogeneous on-NIC
compute resources

* Other ML techniques

A
el
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