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Dynamic Power Systems Modeling

• In major emergencies, dynamics is paramount for system stability

• Swing equation at generators:

◦ We use a slightly higher-fidelity flux-decay model commonly used in stability studies [1]

◦ An additional term (turbine with no reheating) is used to model how mechanical torque 

responds to a change in setpoint 

• Network power balance equations: 0 = 𝑉 𝑌𝑉 ∗ − 𝑆𝑛𝑒𝑡

• Load dynamics 

◦ Play an important role in stability studies [2, 3]

◦ We use exponential recovery model to capture load responses to voltage fluctuations [4] 

• Combined, these pose a system of  differential algebraic equations (DAE)
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Dynamic Optimization Literature

• Transient Stability Constrained
◦ Optimal Power Flow (TSCOPF)

◦ Emergency Control (TSEC)

• Minimize objective subject to DAE path 
constraints, over some contingency
◦ TSCOPF: optimize initial conditions x0 for potential

contingencies

◦ TSEC: optimize control inputs u for realized
contingency

◦ Economic (generation cost) objectives

◦ Simple stability constraints limiting:
◦ Power angles with respect to center of  inertia

(approximate treatment of  transient stability)

◦ Line currents

◦ Voltages

◦ Decision variables: Generator setpoints and load 
shed
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Min ℎ(𝑥, 𝑦, 𝑢)

subject to

𝑑

𝑑𝑡
𝑥 = 𝑓 𝑥, 𝑦, 𝑢

0 = 𝑔 𝑥, 𝑦, 𝑢

𝑐 𝑥, 𝑦, 𝑢 < 0

𝑥 0 = 𝑥0,
𝑦 0 = 𝑦0
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Prepositioning and Recourse Control 5

t

fail time

Contingency 1

Contingency 2

Contingency 3

TSCOPF-like 

control problem

TSEC problems



System Stability Penalty Objectives6

• In severe emergencies, bound 
constraints may be temporarily 
exceeded, and our goal is to position the 
system within bounds as quickly as 
possible

•Instead of  treating limits as path 
constraints, we penalize approaching/
exceeding limits in the objective function

◦ Example: Transient stability

𝛿𝑖 = 𝛿𝑖 −
σ𝑘=1
𝑛𝑔

𝐻𝑘𝛿𝑘

σ
𝑘=1
𝑛𝑔

𝐻𝑘

(want <100 degrees)

• Minimizing over penalty functions

◦ Nonlinear objective cost function for 

deviation from nominal

•Decision variables

◦ Mechanical torque

◦ Exciter voltage reference

Voltage penalty 

vs per-unit voltage

meet limit

provide margin



DAE Variables 7

b, g, and l denote the indices 

of buses, generators, and 

loads respectively.
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Stability Metrics Objective Functions

• Purpose of  objective function is to maximize system stability margins

• Deviations between nominal voltage and frequency between each time 
step were used to achieve this
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Note: gamma and eta are 

shaping parameters 



Failure Contingencies

• Although failure contingencies could manifest in any number of  ways, we 
focus on line, load, and generator trips

• Fail time can be any time tfail in [0, T]

• Each of  these trips can be modeled by fixing variables or deactivating 
constraints

• For our purposes, we only perform a maximum of  one trip per failure 
contingency, but any number of  trips could be triggered to model realistic 
failure phenomena 
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No-Failure Deterministic Case11

Voltage

PrefVref

Frequency

Note:
η = 1

γ = 2

T = 3



Voltage of Deterministic Failure Contingencies12

Line Trip from Buses 5 - 7 Gen Trip at Gen 1

Load Trip at Bus 5

Significant differences in 

system dynamics for each 

failure contingency. 

Fail time at t = 1.5



Stochastic Model 

• A stochastic programming model with two-stage recourse is structured as follows:

• First constraints are first-stage and only involve first-stage variables x

• Second-stage constraints contain second-stage variables y and possibly first-stage 
variables x

• Objective minimizes sum of  c(x) and expected value of  d(y) over the scenarios
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Multi-scenario Case

• Consider now four possible scenarios – the no-failure case, line trip, load trip, and 
generator trip, each with probability of  occurring of  0.25

• Below is prepositioning of  Vref and Pref to minimize total deviation across all 
scenarios
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Multi-scenario Case Recourse Action15

Vref Pref

Gen Trip

Load Trip

Line Trip



Impact of Optimal Prepositioning and Recourse Control16

• Despite sudden loss of  24% total 
generation, voltages are kept centered 
around 1.0 p.u.

• Coupling first and second-stage controls is 
particularly effective, yielding:

• 65% reduction in objective value compared to 
pre-positioning alone

• 61% reduction compared to recourse control 
alone

Gen Trip



Conclusion

• Both preparation (first stage) and emergency control (second stage) are 
used to improve system resiliency to severe emergencies

• Coupling these decisions together in the same framework should allow 
better solutions across a wide set of  contingencies

• System dynamics are critical to assessing grid stability in such emergencies
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Future Research

• Add more robust objective functions such as economic generation cost, 
transient stability, and line transmission power limits

• Add more controls, such as load shedding

• Scale to larger power systems such as the RTS-96 system

• Incorporate more multi-layered failure contingencies
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