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Dynamic Power Systems Modeling

* In major emergencies, dynamics 1s paramount for system stability
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* Swing equation at generators: BHAY 5 ..
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> We use a slightly higher-fidelity flux-decay model commonly used in stability studies [1]

> An additional term (turbine with no reheating) is used to model how mechanical torque
responds to a change in setpoint

* Network power balance equations: 0 = Vo(YV)* — S,.¢

* Load dynamics
° Play an important role in stability studies [2, 3]

> We use exponential recovery model to capture load responses to voltage fluctuations [4]

* Combined, these pose a system of differential algebraic equations (DAE)
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Dynamic Optimization Literature

* Transient Stability Constrained
> Optimal Power Flow (TSCOPF)
> Emergency Control (TSEC)

* Minimize objective subject to DAE path
constraints, over some contingency
> TSCOPEF: optimize initial conditions x, for potential
contingencies

> TSEC: optimize control inputs # for realized
contingency

> Economic (generation cost) objectives
o Simple stability constraints limiting:

> Power angles with respect to center of inertia
(approximate treatment of transient stability)

o line currents

° Voltages
° Decision variables: Generator setpoints and load

shed

Min h(x,y,u)

subject to

d
ax _f(xryru)

0=g(x,yu)

c(x,y,u) <0

x(0) = X0,
y(0) = yq

objective

— DAE

=

constraints

initial
conditions
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Prepositioning and Recourse Control
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System Stability Penalty Objectives

* In severe emergencies, bound
constraints may be temporarily
exceeded, and our goal is to position the
system within bounds as quickly as
possible

*Instead of treating limits as path
constraints, we penalize approaching/
exceeding limits in the objective function

o Example: Transient stability

(want <100 degrees)

* Minimizing over penalty functions

°> Nonlinear objective cost function for
deviation from nominal

‘ Voltage penalty
Vs per-unit voltage

*Decision variables
> Mechanical torque

o Exciter voltage reference




DAE Variables

Variable Index Description

0 g Rotor angle

W g Generator frequency

E; o g-axis transient voltage

E¢q g Field voltage

I, g g-axis current

14 g d-axis current

T g Shaft mechanical torque

V b Voltage

6 b Phase angle

Py, | Active load power draw

Qr | Reactive load power draw

Tp l Load active power state variable
Tq I Load reactive power state variable

b, g,and | denote the indices
of buses, generators, and
loads respectively.




s I Parameters

Parameter Index Description Parameter Index Description

T Time horizon Por, 1 Initial active power

Ws Rated synchronous speed Qor, 1 Initial reactive power

M g Shaft inertial constant Tpr 1 Active power time constant

D g Damping coefficient Tqr, 1 Reactive power time constant

Ka g Exciter amplifier gain Qs 1 First active power exponent

Ta g Exciter amplifier time constant oy 1 Second active power exponent

R g Scaled resistance after dq Bs 1 First reactive power exponent

transformation By 1 Second reactive power exponent

Xq g g-axis synchronous reactance by 1 Bus connected to load 1

Xa g d-axis synchronous reactance Y b,b Admittance magnitude matrix

X, g d-axis transient reactance A b,b Admittance phase angle matrix

TC;O g Transient time constant T V' objective scaling parameter

T.n g Mechanical torque damping const. 72 w objective scaling parameter

by g Bus connected to generator g Y1 V" objective shaping parameter
V2 w objective shaping parameter



Stability Metrics Objective Functions

* Purpose of objective function 1s to maximize system stability margins

* Deviations between nominal voltage and frequency between each time

step were used to achieve this

1 -V
M, (t1,t2) = ( & t)
te{TeP|t1 <7<t} bEB

M, (ty, ty) = > > (

te{reP|t1<T<t2} 9g€G

) 72

Note: gamma and eta are
shaping parameters




o | Failure Contingencies

* Although failure contingencies could manifest in any number of ways, we
focus on line, load, and generator trips

* Fail ime can be any time 7., in [0, T]

* Each of these trips can be modeled by fixing variables or deactivating
constraints

* For our purposes, we only perform a maximum of one trip per failure
contingency, but any number of trips could be triggered to model realistic
tailure phenomena



i I No-Failure Deterministic Case
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2 | Voltage of Deterministic Failure Contingencies
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3 I Stochastic Model

* A stochastic programming model with two-stage recourse 1s structured as follows:

minc(z) + Ed(yy )]

T, Yy

Unique scenario

s.t.
flz)<b /

Gy (Yy) < fop Vip e W
h(z) + k(yy) < gy Vi e U

* First constraints are first-stage and only involve first-stage variables x

* Second-stage constraints contain second-stage variables y and possibly first-stage
variables x

* Objective minimizes sum of ¢(x) and expected value of 4(y) over the scenarios
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Multi-scenario Case

* Consider now four possible scenarios — the no-failure case, line trip, load trip, and

generator trip, each with probability of occurring of 0.25

* Below is prepositioning of 17, and P, to minimize total deviation actoss all

scenarios
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Multi-scenario Case Recourse Action
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6 | Impact of Optimal Prepositioning and Recourse Control

Gen Trip
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17 | Conclusion

* Both preparation (first stage) and emergency control (second stage) are
used to improve system resiliency to severe emergencies

* Coupling these decisions together in the same framework should allow
better solutions across a wide set of contingencies

* System dynamics are critical to assessing grid stability in such emergencies ]



18 I Future Research

* Add more robust objective functions such as economic generation cost,
transient stability, and line transmission power limits

* Add more controls, such as load shedding

* Scale to larger power systems such as the RTS-96 system

* Incorporate more multi-layered failure contingencies
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