

1 **Title: Identification and analysis of sugar transporters capable of co-transporting**
2 **glucose and xylose simultaneously**

3

4 Nurzhan Kuanyshев^{a,b}, Anshu Deewan^{a,b,c}, Sujit Sadashiv Jagtap^{a,c}, Jingjing Liu^{a,b}, Balaji
5 Selvam^c, Li-Qing Chen^{a,e}, Diwakar Shukla^{c,e,f,g*}, Christopher V. Rao^{a,b,c*} and Yong-Su
6 Jin^{a,b,d*}

7

8 ^aDOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at
9 Urbana-Champaign, Urbana, IL 61801, USA, ^bCarl R. Woese Institute for Genomic
10 Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, ^cDepartment
11 of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign,
12 Urbana, IL 61801, USA, ^dDepartment of Food Science and Human Nutrition, University
13 of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, ^eDepartment of Plant Biology,
14 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, ^fNIH Center for
15 Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign,
16 Urbana, IL 61801, USA, ^gBeckman Institute for Advanced Science and Technology,
17 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

18

19 **Corresponding authors:** ^{*}Diwakar Shukla, ^{*}Christopher V Rao and ^{*}Yong-Su Jin, Carl
20 R., 211 Roger Adams Laboratory, 600 S Mathews Ave, Urbana, IL 61801,
21 cvrao@illinois.edu, 203 Roger Adams Laboratory, 600 S Mathews Ave, Urbana, IL 61801
22 diwakar@illinois.edu, and Carl R. Woese Institute for Genomic Biology, 1206 W Gregory
23 Dr, Urbana, IL 61801, ysjin@illinois.edu

24 **Abstract**

25 Simultaneous co-fermentation of glucose and xylose is a key desired trait of engineered
26 *Saccharomyces cerevisiae* for efficient and rapid production of biofuels and chemicals.
27 However, glucose strongly inhibits xylose transport by endogenous hexose transporters
28 of *S. cerevisiae*. We identified structurally distant sugar transporters (*Lipomyces starkeyi*
29 LST1_205437 and *Arabidopsis thaliana* AtSWEET7) capable of co-transporting glucose
30 and xylose from previously unexplored oleaginous yeasts and plants. Kinetic analysis
31 showed that LST1_205437 had lenient glucose inhibition on xylose transport and
32 AtSWEET7 transported glucose and xylose simultaneously with no inhibition. Modelling
33 studies of LST1_205437 revealed that Ala335 residue at sugar binding site can
34 accommodates both glucose and xylose. Docking studies with AtSWEET7 revealed that
35 Trp59, Trp183, Asn145 and Asn179 residues stabilized the sugars, allowing both xylose
36 and glucose to be co-transported. In addition, we altered sugar preference of
37 LST1_205437 by single amino acid mutation at Asn365. Our findings provide a new
38 mechanistic insight on glucose and xylose transport mechanism of sugar transporters and
39 the identified sugar transporters can be employed to develop engineered yeast strains for
40 producing cellulosic biofuels and chemicals.

41

42 **Keywords:** sugar membrane transporter, co-fermentation, substrate specificity, rational
43 evolution

44

45

46

47 **1. Introduction**

48 Glucose and xylose are the two most abundant sugars in lignocellulosic biomass
49 (Carroll and Somerville, 2009). The development of efficient and economical processes
50 for the conversion of lignocellulosic biomass into various biofuels, chemicals and
51 bioproducts requires microorganisms capable of utilizing both sugars if possible
52 simultaneously (Kim et al., 2012). Xylose metabolism, however, is not native to
53 *Saccharomyces cerevisiae*, which has been used for the production of corn and
54 sugarcane ethanol. A number of studies have demonstrated that *S. cerevisiae* can be
55 engineered to efficiently utilize xylose (Brat et al., 2009; Jeffries and Jin, 2004; Jin et al.,
56 2003; Kim et al., 2013; Kotter et al., 1990; Kuyper et al., 2003; Kwak and Jin, 2017; Zhou
57 et al., 2012). However, xylose transport in these engineered strains is subject to glucose
58 repression, which leads to sequential utilization of glucose and xylose rather than
59 simultaneous co-utilization. Glucose repression in a xylose-fermenting engineered *S.*
60 *cerevisiae* is initiated from glucose inhibition on xylose uptake by endogenous sugar
61 transporters (Gardonyi et al., 2003; Hamacher et al., 2002; Parachin et al., 2011; Sedlak
62 and Ho, 2004).

63 *S. cerevisiae* has at least 18 hexose transporters. However, dedicated xylose
64 transporters in *S. cerevisiae* has not been reported. Xylose transport in *S. cerevisiae* is
65 facilitated by actively expressed hexose transporters (*HXT1-7* and *GAL2*) as *HXT8-*
66 *HXT17* are either inactive (not transcribed) or cryptic (Hamacher et al., 2002; Ozcan and
67 Johnston, 1999; Sedlak and Ho, 2004). Although these hexose transporters can facilitate
68 efficient xylose utilization when it is the sole sugar, the presence of glucose completely
69 inhibits xylose uptake due to the higher affinity of the sugar transporters toward glucose

70 (Subtil and Boles, 2012). As such, glucose inhibition of xylose transport has been
71 considered as a bottleneck preventing simultaneous co-fermentation of glucose and
72 xylose. Several attempts have been made to bypass glucose inhibition in mixed-sugar
73 fermentations. Ha *et al.* developed an engineered yeast strain capable of co-fermenting
74 cellobiose, a dimer of glucose, and xylose, thus avoiding inhibition of xylose transport by
75 glucose (Ha *et al.*, 2011). However, this strategy does not allow co-fermentation of
76 monomeric sugars present in cellulosic hydrolysates generated by matured pretreatment
77 and enzymatic hydrolysis processes (Cheng *et al.*, 2019b; Shirkavand *et al.*, 2016).
78 Therefore, many studies have focused on identifying xylose specific transporters from
79 xylose-fermenting yeast species, such as *Pichia stipitis* and *Candida intermedia* (Leandro
80 *et al.*, 2009; Young *et al.*, 2011). Although heterologous expression of the identified xylose
81 transporters in a *S. cerevisiae* lacking hexose sugar transporters conferred growth on
82 xylose, glucose inhibition on xylose transport was still observed (Leandro *et al.*, 2009;
83 Young *et al.*, 2011). In addition to bioprospecting, rational and directed-evolution
84 approaches have led to the development of xylose transporters not inhibited by glucose
85 (Farwick *et al.*, 2014; Li *et al.*, 2016; Reider Apel *et al.*, 2016; Shin *et al.*, 2015; Young *et*
86 *al.*, 2014). Using rational mutagenesis, Young *et al.* reported a conserved amino-acid
87 motif responsible for monosaccharide selectivity in sugar transporters conferring growth
88 on xylose. Further, mutation of the conserved monosaccharide recognition motifs led to
89 a designed transporter for xylose transport. However, the transporter could not transport
90 glucose and xylose simultaneously, leaving the co-fermentation problem open (Young *et*
91 *al.*, 2014). Farwick *et al.* employed adaptive laboratory evolution of an individual sugar
92 transporter, using a xylose-utilizing strain of *S. cerevisiae* lacking all hexose transporters

93 and with disrupted glycolysis, to identify evolved hexose transporters insensitive to
94 glucose repression. The authors discovered two amino-acid residues (Asn376/370 and
95 Thr219/213) of Gal2 and Hxt7 that are essential for co-transport of glucose and xylose.
96 However, modifying these two residues resulted in reduced rates of glucose and xylose
97 transport (Farwick et al., 2014). Using similar approach Shin *et al.*, identified Asn366
98 residue mutation (same as in *ScGal2/Hxt7* Asn376/370) in Hxt11 that enabled
99 simultaneous glucose and xylose co-fermentation (Shin et al., 2015).

100 While the rational design approach led to promising results, we aimed to expand
101 bioprospecting in the search of native glucose and xylose co-transporters. Oleaginous
102 yeasts, such as *Rhodosporidium toruloides* and *Lipomyces starkeyi* are receiving more
103 attention as an alternative cell factory for lipid and acetyl-CoA based products given their
104 ability to naturally consume most of the sugars including hemicellulose derived glucose
105 and xylose (Adrio, 2017; Zhang et al., 2016). Recently, genome sequence of *R. toruloides*
106 and *L. starkeyi* have been reconstructed and annotated, allowing search for putative
107 xylose transporters (Coradetti et al., 2018; Riley et al., 2016). According to our xylose
108 transporter search criteria based on conserved motif G[G/F]XXXG (Young et al., 2014)
109 and Thr213 and Asn370 residues (Farwick et al., 2014), both species contained 8 putative
110 xylose transporters.

111 In contrast to yeast transporters, the mechanism of xylose transport by SWEETs
112 has not been studied so far. SWEETs are newly discovered family of transporters with
113 distinct 7 transmembrane (TM) structure that plays a key role in plant development and
114 sugar translocation within the plant phloem (Jeena et al., 2019). SWEETs are comprised
115 by 7 TM domains, where the N-terminal three helices shares sequence similarity to C-

116 terminal three helices, connected by non-conserved fourth domain (Chen et al., 2010;
117 Han et al., 2017; Tao et al., 2015; Xuan et al., 2013). Previous studies on *Arabidopsis*
118 *thaliana* SWEETs demonstrated functional expression of the transporters in yeast,
119 conferring growth on glucose (Chen et al., 2010; Selvam et al., 2019; Tao et al., 2015).
120 Recently, Podolsky *et al.*, identified novel fungal SWEET from anaerobic fungi
121 (Neocallimastigomycota) which demonstrated co-consumption of glucose and xylose in
122 *S. cerevisiae* (Podolsky et al., 2021).

123 In this study we aimed to investigate an ability of putative xylose transporters from
124 *R. toruloides* IFO0880 and *L. starkeyi* NRRL Y-11557 and SWEET transporters from *A.*
125 *thaliana* to co-ferment glucose and xylose, a desired trait for producing cellulosic biofuels
126 by engineered *S. cerevisiae*. In the first part of the study, we expressed selected
127 transporters in engineered *S. cerevisiae* optimized for efficient xylose fermentation
128 lacking major hexose transporters to screen and characterize transporters that capable
129 to co-ferment both sugars (Xu, 2015). We identified that *L. starkeyi* LST1_205437 and *A.*
130 *thaliana* SWEET7 have an ability to co-ferment glucose and xylose simultaneously. To
131 understand kinetic background behind simultaneous glucose and xylose co-fermentation,
132 we performed kinetic study using ^{14}C labeled sugars. Kinetics studies revealed that both
133 transporters transports xylose in the presence of glucose. Cryo-EM or/and X ray
134 crystallography of the selected transporters have not been resolved. Hence, to explain
135 molecular basis of this unique trait observed in the selected transporters, we employed *in*
136 *silico* molecular modelling and dynamics simulation (MD). Using crystal structure of
137 OsSWEET2b and Xyle transporters as a homology template, we performed molecular
138 simulation of glucose and xylose transport in LST1_205437 and *A. thaliana* SWEET7.

139 The study demonstrated that bioprospecting approach still can be a versatile tool to
140 identify novel transporters with unorthodox protein motifs and residues for glucose and
141 xylose cotransport. By combining kinetics and molecular simulation study, we were able
142 to get insights into a molecular basis and responsible amino acid residues enabling co-
143 transport of glucose and xylose in LST1_205437 and *AtSWEET7* (Fig 1).

144

145 **2. Materials and Methods**

146 **2.1 Medium and cell growth conditions**

147 Under non-selective conditions, all strains were grown YPD agar plates (2 % w/v
148 agar, 1 % w/v yeast extract, 2 % peptone and 2 % glucose). A single colony from YPD
149 agar plate was inoculated into 2 mL YPD liquid medium to obtain seed cultures. For
150 growth study, the seed cultures were then used to inoculate 25 mL of YPD and YPX
151 medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L xylose or glucose) in a 125 mL
152 shake flask with a starting OD600 of 1. The cells were then grown at 30 °C and 250 rpm.

153 For flask fermentation, a single colony was inoculated to 5 or 25 mL YPE (1 % w/v
154 yeast extract, 2 % peptone, 5 % ethanol) supplemented with 200 µg/ml of geneticin to
155 obtain seed cultures. Subsequently, seed cultures were inoculated to 25 mL of YPD, YPX
156 and YPDX medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L xylose or/and
157 glucose) in a 125 mL shake flask with a starting OD600 of 1, 5 or 10 for flask fermentation.
158 Flask fermentations were maintained at 30 °C and 250 rpm. CaCO₃ at 50g/L were added
159 for high sugar fermentations in YPDX medium (10 g/L yeast extract, 20 g/L peptone, 70g/L
160 glucose and 40g/L xylose).

161 A previously constructed xylose fermenting *S.cerevisiae* yeast (SR8) with *HXT1-*
162 *7Δ, GAL2Δ* deletions was used for transporter screening and characterization (SR8D8)
163 (Xu, 2015) (Kim et al., 2013). SR8D8 was grown in YPE medium (10 g/L yeast extract,
164 20 g/L peptone, and 5 g/L ethanol). The codon optimized sugar transporter genes from
165 *L. starkeyi*, *R. toruloides* and *A. thaliana* were expressed in SR8D8 using G418 resistance
166 dominant marker harboring plasmid for glucose and/or xylose transport characterization.
167 SR8D8 strains transformed with plasmid containing *KanMX* marker conferring resistance
168 to G418 (geneticin) were propagated on YPE supplemented with 200 µg/ml of geneticin.
169 For growth and flask fermentation experiments all media was supplemented with 200
170 µg/ml of geneticin for plasmid maintenance. Biomass was calculated from the OD600
171 measured using a Biomate 5 UV-visible spectrophotometer (Fisher, NY, USA). All growth
172 rates were measured using a Bioscreen C plate reader system (Growth Curves USA,
173 Piscataway, NJ, USA). A 2 µL inoculum of fully-grown culture was added into 200 µL YP
174 containing 200 µg/ml Geneticin with varying concentrations of different sugars. A wide
175 band filter (420–580 nm) was used to measure optical density. Bioscreen C values
176 represent mean value from three biological replicates. In all cases, the Bioscreen C was
177 set to maintain a temperature of 30 °C and high aeration through high continuous shaking.
178

179 **2.2 Plasmid construction and transformation**

180 All transporters were cloned into p42K-GPD1p-CYC1t plasmid harboring 2µ
181 replication origin and *KanMX* marker conferring resistance to G418 (geneticin) antibiotic.
182 For *AtSWEET* transporters p42K-GPD1p-CYC1t plasmid were linearized with BamHI and
183 Xhol enzymes. *AtSWEETs* were PCR amplified and digested with BamHI and Xhol.

184 Linear p42K-GPD1p-CYC1t and AtSWEETs were ligated with T4 ligase according to
185 manufacturer's protocol. For *R. toruloides* and *L. starkeyi* transporters p42K-GPD1p-
186 CYC1t plasmid were linearized with BamHI and EcoRI enzymes. The trasnporters were
187 PCR amplified and digested with BamHI and EcoRI. Both p42K-GPD1p-CYC1t and the
188 transporters were ligated with T4 ligase according to manufacturer's protocol. All plasmid
189 was transformed into *E. coli* DH5 α for propagation and maintenance. SR8D8 yeast strain
190 was grown on YPE medium for transformation. SR8D8 transformations were performed
191 using LiAc method according to Gietz *et al.* (Gietz and Schiestl, 2007). Transformants
192 were selected on YPE plate supplemented with 200 μ g/ml of geneticin. AtSWEET1 and
193 AtSWEET mutants were synthesized as gBlocks and cloned into p42K-GPD1p-CYC1t as
194 described before (Integrated DNA technologies, IA, USA). Variants of LST1_205437
195 mutant were synthesized from Twist Biosciences (Twist Biosciences, CA, USA) and
196 cloned as previously described.

197

198 **2.3 ^{14}C labeled sugar uptake assay**

199 SR8D8 containing the respective plasmid was grown on selective YPE medium to
200 an OD600 of 1-1.5, harvested by centrifugation, and washed twice in ice-cold uptake
201 buffer (100 mM potassium phosphate, pH 6.5). ^{14}C labeled sugar uptake assay was done
202 according to Boles and Oreb (Boles and Oreb, 2018). Radioactivity was analyzed in a
203 Beckman-Coulter LS6500 multi-purpose liquid scintillation counter (Beckman-Coulter,
204 CA, USA).

205 Uptake was measured at sugar concentrations 0.2, 1, 5, 25, and 100 mM for glucose
206 and 1, 5, 25, 66, 100, 200, and 500 mM for xylose. Inhibition of xylose uptake by glucose

207 was measured at 25, 66, and 100 mM xylose with additional 25 and 100 mM unlabeled
208 glucose. Sugar solutions contained 0.135–0.608 μ Ci of D-[U-¹⁴C]-glucose (290-300
209 mCi/mmol) or D-[1-¹⁴C]-xylose (55 mCi/mmol) (PerkinElmer, MA, USA). Calculation of K_m
210 (Michaelis constant), V_{max} (maximal initial uptake velocity), and K_i (inhibitor constant for
211 competitive inhibition) was done by nonlinear regression analysis and global curve fitting
212 in Prism 7 (GraphPad Software) with values of three independent measurements.

213

214 **2.4 Transporter identification**

215 Orthologs of known sugar transporters were identified in *R. toruloides* and *L. starkeyi*
216 using BlastP (Altschul et al., 1990). Glucose transporters from *S. cerevisiae* (Hxt7, Hxt2,
217 Hxt1, Hxt3) (Lewis and Bisson, 1991; Ozcan and Johnston, 1999) and xylose transporters
218 from *P. stipitis* (Xut5, Xut2, Rgt2, Xut3) (Jeffries et al., 2007) were used as query
219 sequences for blast search. Search results were filtered by e-value and gene regulation.
220 MEGA X 10.0.1 tool (Kumar et al., 2016) was used to perform ClustalW alignment for the
221 filtered putative sugar transporters and identify conserved structural domains and amino
222 acid residues. The alignment results were edited using the Jalview 2.8 tool (Waterhouse
223 et al., 2009) for enhanced visual presentation.

224

225 **2.5 Transporter modeling**

226 The homology models of ScGal2, LST_205437, AtSWEET1 and AtSWEET7 were
227 constructed using Modeller (Fiser and Sali, 2003). The OF and IF models of ScGal2 and
228 LST_205437 were built using the structural template XyIE (PDB ID: 4GBZ and 4JA4)
229 (Quistgaard et al., 2013; Sun et al., 2012). The 3D coordinates of XyIE structures are

230 obtained from protein databank. The structural models of OC and OF states of
231 *AtSWEET1* and *AtSWEET7* are obtained using MD predicted structures of OsSWEET2b
232 as template (Selvam et al., 2019). The IF OsSWEET2b (Tao et al., 2015) was used to
233 build both *AtSWEET1* and *AtSWEET7* IF models. Molecular docking was performed
234 using Autodock software package (Morris et al., 2009). The PDBQT format files for protein
235 and substrate molecules were obtained using AutoDock Tools. The grid files were
236 generated using Autogrid4 and docking was performed using Autodock4 (Morris et al.,
237 2009). The docking files were visualized using pymol (The PyMOL Molecular Graphics
238 System, Version 1.7, Schrodinger, 2015).

239

240 **3. Results**

241 **3.1 Identification of putative xylose transporters in *Rhodosporidium toruloides* and** 242 ***Lipomyces starkeyi***

243 We used knowledge of existing yeast sugar transporters to identify sugar
244 transporters in *R. toruloides* and *L. starkeyi*, which have not been searched for sugar
245 transporters. We found multiple orthologs to HXT transporters from *S. cerevisiae* and XUT
246 transporters from *P. stipitis*. We filtered the transporters with 12 TM domains and
247 conserved sequence motifs (**Fig. 2a**) (Leandro et al., 2009). Recent studies have shown
248 the involvement of the conserved motif G[G/F]XXXG (Young et al., 2014), and Thr213
249 and Asn370 residues (Farwick et al., 2014) in Hxt7 towards xylose specificity. As such,
250 we used these conserved motifs and residues to refine glucose and xylose specific
251 transporters in *R. toruloides* and *L. starkeyi*. For *L. starkeyi*, LST1_106361 and
252 LST1_205437 were identified as putative glucose transporters and LST1_76 was

253 identified as a putative xylose transporter. For *R. toruloides*, RTO4_11075 and
254 RTO4_13042 were identified as putative glucose transporters, and RTO4_13731 and
255 RTO4_10452 were identified as putative xylose transporters (**Fig. 2c**). The protein IDs'
256 were picked from respective gene models at JGI mycocosm (Farwick et al., 2014; Young
257 et al., 2014).

258

259 **3.2 Screening of *Arabidopsis thaliana* SWEET and oleaginous yeast transporters**
260 **for glucose or xylose transport**

261 It has been well reported that SWEETs transport different sugars, which encouraged
262 us to examine xylose and glucose transport capabilities of 17 *AtSWEET1-17*. We used
263 an engineered *S. cerevisiae* strain (SR8D8) capable of xylose fermentation which lacks
264 the Hxt1-7 and Gal2 transporters—rendering it unable to grow on glucose or xylose—for
265 the examination (Kim et al., 2013; Xu, 2015). We measured growth kinetics of SR8D8
266 transformants expressing the *A. thaliana* SWEETs and putative oleaginous yeast
267 transporters using glucose and xylose as a sole sugar (**Fig. 2b, Fig 2c, and Fig 3**).
268 *ScGal2* expressing SR8D8 was used as a positive control. Most of the SR8D8
269 transformants expressing *AtSWEETs* and putative oleaginous transporter were not able
270 to grow on glucose or xylose. Only *AtSWEET4*, *AtSWEET7*, and *LST1_205437*
271 expressing strains exhibited robust growth on xylose and glucose (**Fig. 3a**).

272

273 **3.3 *A. thaliana* SWEET and *L. starkeyi* *LST1_205437* transporters conferred glucose**
274 **and xylose cofermentation ability in engineered yeast**

275 To test if the selected transporters can enable consumption of both sugars
276 simultaneously upon introduction to the SR8D8 strain, we performed flask fermentations
277 with a mixture of glucose and xylose and monitored sugar consumption over time. We
278 used the SR8D8 expressing *GAL2* as a baseline control for determining co-consumption
279 phenotypes, because it is known to transport both glucose and xylose in a sequential
280 manner (**Fig. 4a**). In addition, we included *AtSWEET1* as an additional control for
281 *AtSWEET*s, because it is most studied SWEET transporter and confers growth of SR8D8
282 on glucose (**Fig S1a**) (Chen et al., 2010; Cheng et al., 2019a; Eom et al., 2015). Both
283 *AtSWEET4* and *AtSWEET7* showed simultaneous co-utilization of glucose and xylose
284 with different rates within 24 hours. While *AtSWEET1* showed a complete preference for
285 glucose with negligible xylose consumption (**Fig S1a**), *AtSWEET4* showed co-
286 consumption of glucose and xylose with a faster glucose consumption rate than that of
287 xylose (**Fig S1b**). Interestingly, *AtSWEET7* enabled simultaneous co-consumption of
288 glucose and xylose with almost same rates of sugar consumption (**Fig. 4c**). LST1_205437
289 transporter from *L. starkeyi* showed co-consumption of glucose and xylose (**Fig. 4b**) but
290 glucose consumption was faster than xylose consumption. In further experiments, we
291 chose *AtSWEET1* as a sole glucose transporter, *AtSWEET7* as a glucose and xylose co-
292 transporter, and LST1_205437 as a semi glucose and xylose co-transporter. *AtSWEET7*
293 transports both sugars simultaneously, but suffer from slow transport capacity. While
294 LST1_205437 performs partial co-consumption, it has an efficient transport capacity for
295 both glucose and xylose. The difference could be attributed to the structure and function
296 of the transporters within the isolated organism.

297 Next, we evaluated fermentation performances of the SR8D8 transformants
298 expressing *AtSWEET1*, *AtSWEET7* and *LST1_205437* under glucose or xylose
299 conditions (**Fig S2**). As expected, *AtSWEET7* and *LST1_205437* transporters enabled
300 glucose and xylose fermentation, depleting all provided sugars. In contrast, *AtSWEET1*
301 enabled robust glucose fermentation but inefficient xylose fermentation with only 5 g/L of
302 xylose consumption within 50 h.

303

304 **3.4 Kinetic and molecular properties of *A. thaliana* SWEET7 and *L. starkeyi***
305 **LST1_205437**

306 To understand kinetic and molecular basis of *AtSWEET7* and *LST1_205437* glucose
307 and xylose co-transport phenotypes, we performed radiolabeled sugar transport kinetics
308 experiments, and *in silico* molecular modeling simulations with *ScGal2* and *AtSWEET1*
309 served as representative controls. *ScGal2* was confirmed to be a high affinity glucose
310 transporter ($K_M = 1.613$ mM, $V_{max} = 38.33$ nmol/min-mg), with low affinity toward xylose
311 ($K_M = 320.5$ mM) (**Fig S3c, and Table 1**). Glucose transport kinetics of *LST1_205437*
312 was inferior to the *ScGal2* transporter ($K_M = 4.975$ mM, $V_{max} = 46.89$ nmol/min-mg),
313 whereas xylose kinetics was superior ($K_M = 145.3$ mM, $V_{max} = 76.8$ nmol/min-mg) (**Fig**
314 **S3e, and Table 1**). These transport kinetic differences were not noticeable during sole
315 sugar fermentation, unlike mixed sugar fermentation (**Fig S2a-2b**).

316 We then compared transport kinetic properties of *AtSWEET1* and *AtSWEET7*. The
317 results showed that *AtSWEET1* transports glucose more efficiently as compared to
318 *AtSWEET7*, with very poor xylose transport kinetics (**Fig S3b and S3d**). These kinetics

319 results of *AtSWEET1* and *AtSWEET7* are consistent with the fermentation results (**Fig**
320 **S2a-2b**) by the SR8D8 strains expressing *AtSWEET1* and *AtSWEET7*.

321 Individual sugar uptake kinetics results of LST1_205437 supported the partial
322 glucose and xylose co-consumption phenotype. However, the engineered yeast
323 expressing *AtSWEET7* showed apparent co-consumption of glucose and xylose, while
324 kinetics results indicated discrepancies in K_M ($K_M=75\text{mM}$ for glucose and $K_M=308\text{mM}$)
325 (Table 1). These results prompted us to directly investigate the xylose transport rates by
326 *ScGal2*, LST1_205437 and *AtSWEET7* in the presence of glucose. We performed xylose
327 uptake assay with 25 mM or 100 mM glucose, similar conditions that were used in
328 previous study (Farwick et al., 2014). As shown in **Fig. 4d**, xylose transport by *ScGal2*
329 was completely inhibited in the presence of glucose ($K_i = 2.3\text{ mM}$). This kinetic behavior
330 of *ScGal2* is consistent with the mixed sugar fermentation result (**Fig. 4a**). Interestingly,
331 xylose transport by LST1_205437 was less inhibited by glucose than those by *ScGal2* (K_i
332 = 26.7 vs 2.3 mM) (**Fig. 4e**). As a result, the LST1_205437 expressing strain showed a
333 partial co-consumption of glucose and xylose (**Fig. 4b**). Remarkably, *AtSWEET7* showed
334 no inhibition of xylose transport by glucose (**Fig. 4f, Table 1**) (**Fig. 4c**). Next, we
335 performed a mixed sugar fermentation experiment under industrially-relevant sugar
336 concentrations of 7 % glucose and 4 % xylose to validate co-fermentation of *AtSWEET7*
337 and LST1_205437. As expected the *ScGal2* expressing strain exhibited a sequential
338 utilization of glucose and xylose (Fig. 5a). The sugar utilization profile of the LST1_20437
339 expressing strain was consistent with the kinetics data, showing partial xylose and
340 glucose co-consumption (Fig. 5b). The *AtSWEET7* expressing strain showed co-
341 consumption of glucose and xylose even at higher glucose concentrations, further

342 supporting that AtSWEET7 is indeed glucose and xylose co-transporter which is
343 insensitive to glucose inhibition even under high glucose concentrations (Fig. 5c).

344 To probe critical amino-acid residues responsible for the observed phenotypes—
345 severe and partial glucose inhibition on xylose—of ScGal2 and LST1_205437, we
346 performed *in-silico* docking studies to predict the preferred binding sites of glucose and
347 xylose in ScGal2 and LST1_205437. We constructed the homology models of outward-
348 facing (OF) and inward facing (IF) states of ScGal2 and LST1_205437 using the closest
349 homologous structure, XylE (Quistgaard et al., 2013; Sun et al., 2012) and docked
350 glucose and xylose into the primary binding site (see Methods for details) (**Fig. 6 and Fig**
351 **S4-5**). Glucose and xylose exhibited conserved binding mode in ScGal2 and
352 LST1_205437 in OF states and our docked pose shows close match with previous studies
353 based on XylE (Sun et al., 2012) (**Fig. 6a-6d**). The non-conserved residue Tyr446 in
354 ScGal2 is involved in hydrogen bond interaction with both substrates while the equivalent
355 residue Phe433 in LST1_205437 does not form any polar interaction. The presence of
356 additional hydroxymethyl moiety in glucose forms favorable contact with Thr219
357 (ScGal2)/Thr209 (LST1_205437) and stabilizes glucose in the binding site. However,
358 striking differences were observed in the binding mode of substrate molecules in the IF
359 state (**Fig. 6e-6h**). The structural transition to IF state exposes Asn346 (ScGal2) to the
360 binding site and plays crucial role in substrate translocation. Both glucose and xylose
361 were involved in hydrogen bond interaction with Tyr446 and Asn346 in ScGal2. In
362 contrast, the equivalent residues Phe433 and Ala335 in LST1_205437 cannot form
363 hydrogen bond interaction with glucose and xylose. Furthermore, dynamics involving both
364 N- and C-terminal domains in LST1_205437 leads to co-transport of both glucose and

365 xylose. In contrast xylose fails to form favorable contact with N-domain residues in ScGal2
366 which may be required for efficient transport. To validate the docking results, we
367 constructed the SR8D8 expressing LST1_205437 with Ala335Asn mutation
368 (LST1_205437_A335N) and examined the profile of glucose and xylose utilization. As
369 expected, the Ala335Asn mutation of LST1_205437 increased glucose uptake and
370 decreased the xylose uptake as compared to the wild type (**Fig S6**).

371 In contrast to ScGal2 and LST1_205437 with 12 TM domains, AtSWEET7 with 7 TM
372 domains showed no inhibition of xylose transport in the presence of either 25 mM or 100
373 mM glucose (**Fig. 4f and Table 1**). This unique kinetic properties of AtSWEET7 are
374 consistent with the fermentation result (**Fig. 4c and Fig 5c**). Both AtSWEET1 and
375 AtSWEET7 are structurally related to each other, but when expressed in SR8D8 they
376 showed different mixed-sugar fermentation phenotypes (**Fig S7**). The AtSWEET1
377 expressing strain consumed glucose rapidly but did not utilize xylose (**Fig S1a**). The
378 AtSWEET7 expressing strain consumed glucose and xylose simultaneously (**Fig. 4c**). In
379 a previous study, we characterized the complete glucose transport cycle in OsSWEET2b
380 using molecular dynamics (MD) simulations (Selvam et al., 2019). Using the MD predicted
381 structures of the occluded (OC) and OF states as structural templates, we constructed
382 the homology models of intermediate conformations of AtSWEET1 and AtSWEET7 (**Fig**
383 **S8**) (Selvam et al., 2019). The IF models were built using an OsSWEET2b crystal
384 structure (Tao et al., 2015). The substrate molecules were docked in three different states
385 and bound poses were predicted to be similar in both AtSWEET1 and AtSWEET7 (**Fig.**
386 **7 and Fig S9**). However, the major differences between AtSWEET1 and AtSWEET7 were
387 observed in the non-conserved residues that stabilize the glucose and xylose in the

388 binding site. The docking results reveals that substrate molecules are sandwiched
389 between Trp59 and Trp183 in *AtSWEET7* while the equivalent residues in *AtSWEET1*
390 are Ser54 and Trp176 cannot form a strong stacking interaction with substrates (**Fig. 7**).
391 Molecular simulations have also shown that the presence of two bulky aromatic residues
392 in the binding site of bacterial SemiSWEET with one THB decreases the substrate dynamics
393 and thereby increases the energetic barrier for substrate transport (28). Similarly, the non-
394 conserved residues Asn145 (Ser138) and Asn179 (Cys172) in *AtSWEET7* have an
395 extended amide group that forms favorable contact with both substrates in all three major
396 conformational states (**Fig. 7**) whereas the counterpart residues Ser138 and Cys172 in
397 *AtSWEET1* cannot form favorable interactions in all the conformational states. To validate
398 our findings, we mutated Trp59Ser in *AtSWEET7* and observed decreased xylose
399 transport without affecting the glucose uptake (**Fig S10d**). We also identified secondary
400 hydrophobic gating residues in our previous study and mutating of one of the hydrophobic
401 residues beneath these gating residues Phe168Ala in *AtSWEET1* improves the glucose
402 transport and allows the co-transport of xylose (**Fig S9, and S10c**).
403

404 **3.5 Alteration of Asn365 amino acid residue in *L. starkeyi* LST1_205437 changes
405 sugar preference**

406 Asn370/376 residues in *S. cerevisiae* hexose transporters Gal2 and Hxt7 play a
407 critical role in glucose and xylose co-transport (Farwick et al., 2014). Replacing the
408 Asn370/376 residue in Gal2 and Hxt7 with either hydrophobic or hydrophilic amino acids
409 led to alleviation of glucose inhibition on xylose transport (Farwick et al., 2014).
410 Interestingly, LST1_205437 transporter retains Asn365 (equivalent to Asn370 in Gal2)

411 residue and show partial inhibition of xylose uptake by glucose (**Fig. 4b and 4e**). We
412 sought to test if alteration of Asn365 residue in LST1_205437 to phenylalanine, serine or
413 valine would further alleviate glucose inhibition on xylose transport, allowing complete co-
414 fermentation of glucose and xylose. We found that Asn365Phe, Asn365Ser, and
415 Asn365Val mutations in LST1_205437 resulted in similar phenotypic changes as it was
416 reported by Farwick *et al.* Particularly, Asn365Phe mutation abolished glucose transport
417 while retaining xylose, Asn365Ser and Asn365Val showed co-fermentation phenotypes
418 (**Fig. 8b-8d**). Our computational investigation also showed that Asn365 mutation to
419 phenylalanine sterically hinders the binding mode of the glucose molecule and hence
420 results in loss of transport function (**Fig. 7e**). Altogether Asn365 residue mutation
421 functions not only in *S. cerevisiae* transporters but also in *L. starkeyi* LST1_205437,
422 supporting the universal importance of Asn370/376 residue in closely related yeast
423 hexose transporters.

424

425 **4. Discussion**

426 The wealth of sequencing information and recently discovered SWEET family sugar
427 transporters are still unexplored by bioprospecting for tackling glucose and xylose co-
428 transport problem. In this study, we undertook a bioprospecting approach to identify
429 glucose and xylose co-transporting transporters from unexplored oleaginous yeasts and
430 plant (**Fig. 1**). We identified 8 putative xylose transporters in *R. toruloides* and *L. starkeyi*
431 (**Fig. 2c**). However, experimental validation of the putative transporters using a xylose-
432 fermenting *S. cerevisiae* lacking major hexose transporters (SR8D8) showed that only *L.*
433 *starkeyi* LST1_205437 can enable robust growth on either glucose or xylose (**Fig. 3a**).

434 Interestingly, LST1_205437 retained conserved Thr213 and Asn370 residues, and
435 demonstrated a partial cofermentation of glucose and xylose (**Fig. 4b**). Furthermore, the
436 glucose inhibition kinetics by LST_205437 showed less glucose inhibition on xylose
437 transport whereas ScGal2 exhibited severe glucose inhibition on xylose transport even
438 under a low glucose concentration (25mM) (**Fig. 4d, and 4e**). This observation provides
439 evidence that other than Thr213 and Asn370 residues might be involved in the partial
440 cofermentation phenotype. *In silico* analysis reveals that the non-conserved residues
441 Tyr446/Phe433 and Asn346/Ala335 might play crucial role in substrate binding and
442 transport in ScGal2 and LST1_205437 (**Fig. 6**). The increase in polarity restricts the
443 binding of xylose only to C-terminus in ScGal2; however, dynamics involving both C and
444 N domains is essential for efficient transport of both glucose and xylose in LST1_205437.
445 The fermentation experiments also support our prediction and mutation of Ala335Asn
446 decreases the xylose uptake in LST1_205437.

447 Most studies related to xylose transporters focused on MFS (**Major Facilitator**
448 **Superfamily**) type transporters with 12 TM domains, and other families of sugar
449 transporters have been overlooked. Here, we expanded bioprospecting approach toward
450 SWEET family transporters. *A. thaliana* has 17 SWEET transporters that can transport
451 either monosaccharides or disaccharides across a membrane via concentration gradients
452 (**Fig. 2b**) (Chen et al., 2015). According to Han *et. al.* *A. thaliana* SWEETs can be divided
453 into two distinct groups based on conserved residues dictating sugar preference to
454 monosaccharide or disaccharide. However, the authors discovered that this division could
455 not reflect sugar specificity for all *At*SWEETs. In particular, Han *et al.* showed that
456 *At*SWEET13 have both glucose and sucrose transport activities (Han et al., 2017).

457 Therefore, in this study, we screened all 17 *At*SWEETs to identify xylose and glucose
458 transporter. Interestingly, 17 *At*SWEETs share sequence similarity and yet showed very
459 different sugar uptake phenotypes on glucose or xylose. We confirmed *At*SWEET1 to be
460 a glucose transporter with almost no xylose transport capacity, whereas *At*SWEET4 and
461 *At*SWEET7 showed both glucose and xylose transport capacities (**Fig S1 and Fig. 4c**).
462 Moreover, among screened transporters, *At*SWEET7 exhibited complete co-fermentation
463 phenotype. The kinetic analysis of *At*SWEET7 revealed no glucose inhibition of xylose
464 transport, though the glucose and xylose transport kinetic properties were poorer than
465 *ScGal2* and *LST_205437* (**Fig. 4f and Fig S3**). Moreover, *At*SWEET7 exhibited complete
466 co-fermentation of glucose and xylose even at high residual glucose concentrations,
467 suggesting the transporter is completely insensitive to glucose inhibition (**Fig. 5c**).
468 Recently, Podolsky *et al.*, demonstrated utility of fungal SWEET transporters to tackle
469 glucose and xylose cotransport problem. The authors demonstrated that the wild-type
470 *Nc*SWEET1 and the best performing chimera derived from it allowed co-transport of
471 glucose and xylose. However, in their experimental setup *S. cerevisiae* expressing wild
472 type and the chimera transporter co-consumed only 20 g/L of sugars within 120 hours
473 (Podolsky *et al.*, 2021). Similar results were achieved in engineered Asn366Thr Hxt11
474 transporter, which belongs to MFS family, engineering of native glucose and xylose co-
475 transporter with more simpler molecular structure than MFS might be advantageous for
476 transporter engineering (Shin *et al.*, 2015).

477 More recently, we investigated the glucose transport cycle in *Os*SWEET2b and
478 Bacterial SemiSWEET with 3 TMs and reported that substrate transport mechanism
479 varies between closely related families of transporters (Selvam *et al.*, 2019). We

480 constructed the homology models of *AtSWEET1* and *AtSWEET7* intermediate states and
481 docked the substrate in the binding site (**Fig. 7 and Fig S9**). The results revealed that the
482 substrate molecules were sandwiched between Trp59 and Trp183 in *AtSWEET7*, thereby
483 enables the structural transition to other states for efficient transport. The lack of one of
484 the aromatic counterpart may lead to the increase in conformation degrees of rotational
485 freedom that could possibly affects the substrate stability in the binding site and the
486 transport (Cheng et al., 2019a). As expected, the mutation of Trp59 decreased the xylose
487 transport in *AtSWEET7* (**Fig S10d**). In a previous study, we identified a hydrophobic gate
488 at the center of transporter and opening of these gates drives the conformational
489 transition of IF state (Selvam et al., 2019). In *AtSWEET1*, Phe169 is located just beneath
490 the hydrophobic gates and the mutation of this residue to alanine increases the glucose
491 uptake and shows partial cotransport of xylose (**Fig S10c**). Although SWEETs transport
492 both glucose and xylose via the same translocation pore, the free energy barriers and the
493 critical residues that facilitate the transport along the pore cavity could be different.
494 Extensive long timescale simulations are required to characterize the mechanistic
495 difference between glucose and xylose transport that provides more insights into atomic-
496 level details of the transport mechanism.

497

498 **5. Conclusion**

499 In summary, this work demonstrates how bioprospecting can identify unique
500 transporters for industrial applications. Availability of vast amounts of sequencing
501 information, allowed us to identify and characterize yeast transporter LST_205437 that
502 has partial glucose and xylose co-consumption capacity. We found that LST_205437 has

503 non conserved amino acid residue responsible for the phenotype. We characterized
504 newly discovered SWEET transporters, which are structurally different from its yeast
505 counterparts. Using *in silico* modeling, we were able to identify key amino acid residues
506 responsible for glucose and xylose co-transport. The discovered data could be further
507 used for rational transporter engineering of *At*SWEETs and yeast transporters to improve
508 xylose and glucose transport characteristics. Altogether, information gathered in this
509 study will increase the understanding of yeast hexose transporters and SWEET
510 transporters, providing valuable information for industrial biotechnology and fundamental
511 biology.

512

513 **6. Data Availability Statement**

514 Data available on request from the authors.

515

516 **7. Author contributions**

517 N.K., L.C., D.S., C.R., and Y.J. conceived and designed the study. N.K., S.J., and J.L.,
518 performed experiments. A.D. performed bioinformatics analysis. B.S. performed *in silico*
519 studies and docking analysis. N.K., and Y.J. analyzed and interpreted the data and wrote
520 the manuscript in discussion with all authors.

521

522 **8. Acknowledgements**

523 This material is based on the work supported by the US Department of Energy, Office of
524 Science, Office of Biological and Environmental Research under Award Number(s) DE-
525 SC0018420. We thank Blue Waters Supercomputing Facility funded by National Science

526 Foundation (OCI-0725070 and ACI-1238993) and the state of Illinois for the computer
527 time. D.S acknowledges New Innovator Award from the Foundation for Food and
528 Agricultural Research (FFAR) and NSF Early CAREER Award, NSF MCB 18-45606 for
529 the research support.

530

531 **9. Competing interests**

532 The Authors declare that there is no conflict of interest

533

534 **10. References**

535 Adrio, J.L., (2017) Oleaginous yeasts: Promising platforms for the production of oleochemicals and
536 biofuels. *Biotechnol Bioeng* 114, 1915-1920.

537 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., (1990) Basic local alignment search tool. *J
538 Mol Biol* 215, 403-410.

539 Boles, E., Oreb, M., (2018) A Growth-Based Screening System for Hexose Transporters in Yeast. *Methods
540 Mol Biol* 1713, 123-135.

541 Brat, D., Boles, E., Wiedemann, B., (2009) Functional expression of a bacterial xylose isomerase in
542 *Saccharomyces cerevisiae*. *Appl Environ Microbiol* 75, 2304-2311.

543 Carroll, A., Somerville, C., (2009) Cellulosic biofuels. *Annu Rev Plant Biol* 60, 165-182.

544 Chen, L.Q., Cheung, L.S., Feng, L., Tanner, W., Frommer, W.B., (2015) Transport of sugars. *Annu Rev
545 Biochem* 84, 865-894.

546 Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G.,
547 Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F.F., Somerville, S.C., Mudgett, M.B.,
548 Frommer, W.B., (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. *Nature*
549 468, 527-532.

550 Cheng, K.J., Selvam, B., Chen, L.Q., Shukla, D., (2019a) Distinct Substrate Transport Mechanism Identified
551 in Homologous Sugar Transporters. *J Phys Chem B* 123, 8411-8418.

552 Cheng, M.H., Dien, B.S., Lee, D.K., Singh, V., (2019b) Sugar production from bioenergy sorghum by using
553 pilot scale continuous hydrothermal pretreatment combined with disk refining. *Bioresour Technol* 289,
554 121663.

555 Coradetti, S.T., Pinel, D., Geiselman, G.M., Ito, M., Mondo, S.J., Reilly, M.C., Cheng, Y.F., Bauer, S.,
556 Grigoriev, I.V., Gladden, J.M., Simmons, B.A., Brem, R.B., Arkin, A.P., Skerker, J.M., (2018) Functional
557 genomics of lipid metabolism in the oleaginous yeast *Rhodosporidium toruloides*. *Elife* 7.

558 Eom, J.S., Chen, L.Q., Sosso, D., Julius, B.T., Lin, I.W., Qu, X.Q., Braun, D.M., Frommer, W.B., (2015)
559 SWEETs, transporters for intracellular and intercellular sugar translocation. *Curr Opin Plant Biol* 25, 53-
560 62.

561 Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., Boles, E., (2014) Engineering of yeast hexose
562 transporters to transport D-xylose without inhibition by D-glucose. *Proc Natl Acad Sci U S A* 111, 5159-
563 5164.

564 Fiser, A., Sali, A., (2003) Modeller: generation and refinement of homology-based protein structure
565 models. *Methods Enzymol* 374, 461-491.

566 Gardonyi, M., Jeppsson, M., Liden, G., Gorwa-Grauslund, M.F., Hahn-Hagerdal, B., (2003) Control of
567 xylose consumption by xylose transport in recombinant *Saccharomyces cerevisiae*. *Biotechnol Bioeng*
568 82, 818-824.

569 Gietz, R.D., Schiestl, R.H., (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG
570 method. *Nat Protoc* 2, 31-34.

571 Ha, S.J., Galazka, J.M., Kim, S.R., Choi, J.H., Yang, X., Seo, J.H., Glass, N.L., Cate, J.H., Jin, Y.S., (2011)
572 Engineered *Saccharomyces cerevisiae* capable of simultaneous cellobiose and xylose fermentation. *Proc
573 Natl Acad Sci U S A* 108, 504-509.

574 Hamacher, T., Becker, J., Gardonyi, M., Hahn-Hagerdal, B., Boles, E., (2002) Characterization of the
575 xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization.
576 *Microbiology* 148, 2783-2788.

577 Han, L., Zhu, Y., Liu, M., Zhou, Y., Lu, G., Lan, L., Wang, X., Zhao, Y., Zhang, X.C., (2017) Molecular
578 mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter. *Proc Natl Acad
579 Sci U S A* 114, 10089-10094.

580 Jeena, G.S., Kumar, S., Shukla, R.K., (2019) Structure, evolution and diverse physiological roles of SWEET
581 sugar transporters in plants. *Plant Mol Biol* 100, 351-365.

582 Jeffries, T.W., Grigoriev, I.V., Grimwood, J., Laplaza, J.M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E.,
583 Dehal, P., Shapiro, H., Jin, Y.S., Passoth, V., Richardson, P.M., (2007) Genome sequence of the
584 lignocellulose-bioconverting and xylose-fermenting yeast *Pichia stipitis*. *Nat Biotechnol* 25, 319-326.

585 Jeffries, T.W., Jin, Y.S., (2004) Metabolic engineering for improved fermentation of pentoses by yeasts.
586 *Appl Microbiol Biotechnol* 63, 495-509.

587 Jin, Y.S., Ni, H., Laplaza, J.M., Jeffries, T.W., (2003) Optimal growth and ethanol production from xylose
588 by recombinant *Saccharomyces cerevisiae* require moderate D-xylulokinase activity. *Appl Environ
589 Microbiol* 69, 495-503.

590 Kim, S.R., Ha, S.J., Wei, N., Oh, E.J., Jin, Y.S., (2012) Simultaneous co-fermentation of mixed sugars: a
591 promising strategy for producing cellulosic ethanol. *Trends Biotechnol* 30, 274-282.

592 Kim, S.R., Skerker, J.M., Kang, W., Lesmana, A., Wei, N., Arkin, A.P., Jin, Y.S., (2013) Rational and
593 evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose
594 fermentation in *Saccharomyces cerevisiae*. *PLoS One* 8, e57048.

595 Kotter, P., Amore, R., Hollenberg, C.P., Ciriacy, M., (1990) Isolation and characterization of the *Pichia*
596 *stipitis* xylitol dehydrogenase gene, *XYL2*, and construction of a xylose-utilizing *Saccharomyces cerevisiae*
597 transformant. *Curr Genet* 18, 493-500.

598 Kumar, S., Stecher, G., Tamura, K., (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0
599 for Bigger Datasets. *Mol Biol Evol* 33, 1870-1874.

600 Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S., de Laat, W.T., den Ridder, J.J., Op den
601 Camp, H.J., van Dijken, J.P., Pronk, J.T., (2003) High-level functional expression of a fungal xylose
602 isomerase: the key to efficient ethanolic fermentation of xylose by *Saccharomyces cerevisiae*? *FEMS
603 Yeast Res* 4, 69-78.

604 Kwak, S., Jin, Y.S., (2017) Production of fuels and chemicals from xylose by engineered *Saccharomyces*
605 *cerevisiae*: a review and perspective. *Microb Cell Fact* 16, 82.

606 Leandro, M.J., Fonseca, C., Goncalves, P., (2009) Hexose and pentose transport in ascomycetous yeasts:
607 an overview. *FEMS Yeast Res* 9, 511-525.

608 Lewis, D.A., Bisson, L.F., (1991) The HXT1 gene product of *Saccharomyces cerevisiae* is a new member of
609 the family of hexose transporters. *Mol Cell Biol* 11, 3804-3813.

610 Li, H., Schmitz, O., Alper, H.S., (2016) Enabling glucose/xylose co-transport in yeast through the directed
611 evolution of a sugar transporter. *Appl Microbiol Biotechnol* 100, 10215-10223.

612 Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., (2009)
613 AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *J Comput Chem*
614 30, 2785-2791.

615 Ozcan, S., Johnston, M., (1999) Function and regulation of yeast hexose transporters. *Microbiol Mol Biol*
616 Rev 63, 554-569.

617 Parachin, N.S., Bergdahl, B., van Niel, E.W., Gorwa-Grauslund, M.F., (2011) Kinetic modelling reveals
618 current limitations in the production of ethanol from xylose by recombinant *Saccharomyces cerevisiae*.
619 *Metab Eng* 13, 508-517.

620 Podolsky, I.A., Seppala, S., Xu, H., Jin, Y.S., O'Malley, M.A., (2021) A SWEET surprise: Anaerobic fungal
621 sugar transporters and chimeras enhance sugar uptake in yeast. *Metab Eng*.

622 Quistgaard, E.M., Low, C., Moberg, P., Tresaugues, L., Nordlund, P., (2013) Structural basis for substrate
623 transport in the GLUT-homology family of monosaccharide transporters. *Nat Struct Mol Biol* 20, 766-
624 768.

625 Reider Apel, A., Ouellet, M., Szmidt-Middleton, H., Keasling, J.D., Mukhopadhyay, A., (2016) Evolved
626 hexose transporter enhances xylose uptake and glucose/xylose co-utilization in *Saccharomyces*
627 *cerevisiae*. *Sci Rep* 6, 19512.

628 Riley, R., Haridas, S., Wolfe, K.H., Lopes, M.R., Hittinger, C.T., Goker, M., Salamov, A.A., Wisecaver, J.H.,
629 Long, T.M., Calvey, C.H., Aerts, A.L., Barry, K.W., Choi, C., Clum, A., Coughlan, A.Y., Deshpande, S.,
630 Douglass, A.P., Hanson, S.J., Klenk, H.P., LaButti, K.M., Lapidus, A., Lindquist, E.A., Lipzen, A.M., Meier-
631 Kolthoff, J.P., Ohm, R.A., Otillar, R.P., Pangilinan, J.L., Peng, Y., Rokas, A., Rosa, C.A., Scheuner, C., Sibirny,
632 A.A., Slot, J.C., Stielow, J.B., Sun, H., Kurtzman, C.P., Blackwell, M., Grigoriev, I.V., Jeffries, T.W., (2016)
633 Comparative genomics of biotechnologically important yeasts. *Proc Natl Acad Sci U S A* 113, 9882-9887.

634 Sedlak, M., Ho, N.W., (2004) Characterization of the effectiveness of hexose transporters for
635 transporting xylose during glucose and xylose co-fermentation by a recombinant *Saccharomyces* yeast.
636 *Yeast* 21, 671-684.

637 Selvam, B., Yu, Y.C., Chen, L.Q., Shukla, D., (2019) Molecular Basis of the Glucose Transport Mechanism
638 in Plants. *ACS Cent Sci* 5, 1085-1096.

639 Shin, H.Y., Nijland, J.G., de Waal, P.P., de Jong, R.M., Klaassen, P., Driessen, A.J., (2015) An engineered
640 cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in *Saccharomyces cerevisiae*.
641 *Biotechnol Biofuels* 8, 176.

642 Shirkavand, E., Baroutian, S., Gapes, D.J., Young, B.R., (2016) Combination of fungal and physicochemical
643 processes for lignocellulosic biomass pretreatment – A review. *Renewable and Sustainable Energy*
644 *Reviews* 54, 217-234.

645 Subtil, T., Boles, E., (2012) Competition between pentoses and glucose during uptake and catabolism in
646 recombinant *Saccharomyces cerevisiae*. *Biotechnol Biofuels* 5, 14.

647 Sun, L., Zeng, X., Yan, C., Sun, X., Gong, X., Rao, Y., Yan, N., (2012) Crystal structure of a bacterial
648 homologue of glucose transporters GLUT1-4. *Nature* 490, 361-366.

649 Tao, Y., Cheung, L.S., Li, S., Eom, J.S., Chen, L.Q., Xu, Y., Perry, K., Frommer, W.B., Feng, L., (2015)
650 Structure of a eukaryotic SWEET transporter in a homotrimeric complex. *Nature* 527, 259-263.

651 Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J., (2009) Jalview Version 2--a
652 multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25, 1189-1191.

653 Xu, H., (2015) Engineering *Saccharomyces cerevisiae* for cellulosic ethanol production. *Food Science &*
654 *Human Nutrition*. University of Illinois at Urbana-Champaign.

655 Xuan, Y.H., Hu, Y.B., Chen, L.Q., Sosso, D., Ducat, D.C., Hou, B.H., Frommer, W.B., (2013) Functional role
656 of oligomerization for bacterial and plant SWEET sugar transporter family. *Proc Natl Acad Sci U S A* 110,
657 E3685-3694.

658 Young, E., Poucher, A., Comer, A., Bailey, A., Alper, H., (2011) Functional survey for heterologous sugar
659 transport proteins, using *Saccharomyces cerevisiae* as a host. *Appl Environ Microbiol* 77, 3311-3319.

660 Young, E.M., Tong, A., Bui, H., Spofford, C., Alper, H.S., (2014) Rewiring yeast sugar transporter
661 preference through modifying a conserved protein motif. *Proc Natl Acad Sci U S A* 111, 131-136.
662 Zhang, S., Skerker, J.M., Rutter, C.D., Maurer, M.J., Arkin, A.P., Rao, C.V., (2016) Engineering
663 *Rhodotoruloides toruloides* for increased lipid production. *Biotechnol Bioeng* 113, 1056-1066.
664 Zhou, H., Cheng, J.S., Wang, B.L., Fink, G.R., Stephanopoulos, G., (2012) Xylose isomerase overexpression
665 along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid
666 xylose utilization and ethanol production by *Saccharomyces cerevisiae*. *Metab Eng* 14, 611-622.

667

668 **Figures and Table legends**

669

670 **Fig. 1: Bioprospecting strategy implemented in this study.** This figure depicts the
671 main steps applied to identify novel xylose and glucose co-transporting transporters. **a**
672 Identification transporters from emerging oleaginous yeasts *Lipomyces starkeyi* and
673 *Rhodosporidium toruloides*. **b** Characterization of SWEET transporters from *Arabidopsis*
674 *thaliana*. **c** Schematic fermentation profile of a sugar mixture containing glucose and
675 xylose by the engineered *S. cerevisiae*. Glucose presence inhibits xylose transport
676 leading to sequential sugar utilization. Application of the discovered transporters relief
677 glucose inhibition of xylose transport, leading to glucose and xylose co-consumption.

678

679 **Fig. 2: Bioinformatics analysis for transporter identification.** **a** Most monosaccharide
680 transporters in yeasts have 12 TM domains (represented in blue). The conserved motifs
681 identified in yeasts transporters are marked in orange (I-V). Motif X (marked in green) has
682 recently been identified as a key motif involved in xylose specificity. **b** A phylogenetic tree
683 of the 17 *A. thaliana* SWEET transporters clusters the monosaccharide and disaccharide
684 transporters independently. **c** Multiple sequence alignment of putative transporters:
685 Thr213 and Ans370 are conserved in reported glucose transporters in yeasts.

686

687 **Fig. 3: *L. starkeyi*, *R. toruloides* and *A. thaliana* SWEET transporter screening for**
688 **growth on glucose or xylose.** **a** Growth characteristics of the SR8D8 strain expressing
689 transporters were summarized using a plot with. X axis represents the cell densities on
690 glucose and Y axis represents the cell densities on xylose. Cell densities of the

691 transporter-expressing strains at 40 hrs were presented. **b** Growth curves of the four
692 strains with an overexpression cassette of *GAL2*, *AtSWEET4*, *AtSWEET7*, or a control
693 plasmids (SRD8) on xylose and glucose. The dots and line lines are means from
694 duplicated cultures.

695

696

697 **Fig. 4: Glucose and xylose mixed sugar fermentation profile and inhibitory effect**
698 **of glucose on xylose transport.** 20 g/L of glucose and xylose mixed sugar fermentation
699 by SR8D8 expressing *ScGal2* (sequential fermentation) **(a)**, LST1_205437 (partial
700 cofermentation) **(b)**, *AtSWEET7* (true co-fermentation) **(c)**. Symbols: glucose (square),
701 xylose (triangle up), DCW (circle). Inhibitory effect of 0 mM, 25 mM and 100 mM glucose
702 on xylose transport in SR8D8 expressing *ScGal2* **(d)**, LST1_205437 **(e)** and *AtSWEET7*
703 **(f)**. Global curve fitting for Michaelis–Menten kinetics with competitive inhibition was
704 applied to data of three independent measurements at each concentration.

705

706 **Fig. 5: Glucose and xylose mixed sugar fermentation profile using industrially**
707 **relevant sugar concentrations.** 70 g/L of glucose and 40g/L xylose mixed sugar
708 fermentation by SR8D8 expressing *ScGal2* **(a)**, LST1_205437 **(b)**, *AtSWEET7* **(c)**.
709 Symbols: glucose (square), xylose (triangle up), DCW (circle). The values are the means
710 of two independent experiments, and the error bars indicate the standard errors

711

712 **Fig. 6: Predicted binding orientation of glucose and xylose in *ScGal2* and**
713 **LST1_205437.** The dock poses of glucose and xylose in OF conformations for

714 LST1_205437 (**a**, **c**) and ScGal2 (**b**, **d**), respectively. The dock poses of glucose and
715 xylose in IF conformations for LST1_205437 (**e**, **g**) and ScGal2 (**f**, **h**), respectively.

716

717 **Fig. 7: Dockposes of glucose and xylose in AtSWEET1 and AtSWEET7.** The
718 predicted binding mode of glucose and xylose in AtSWEET1 and AtSWEET7 in OF (**a**
719 and **d**), OC (**b** and **e**) and IF (**c** and **f**) conformations.

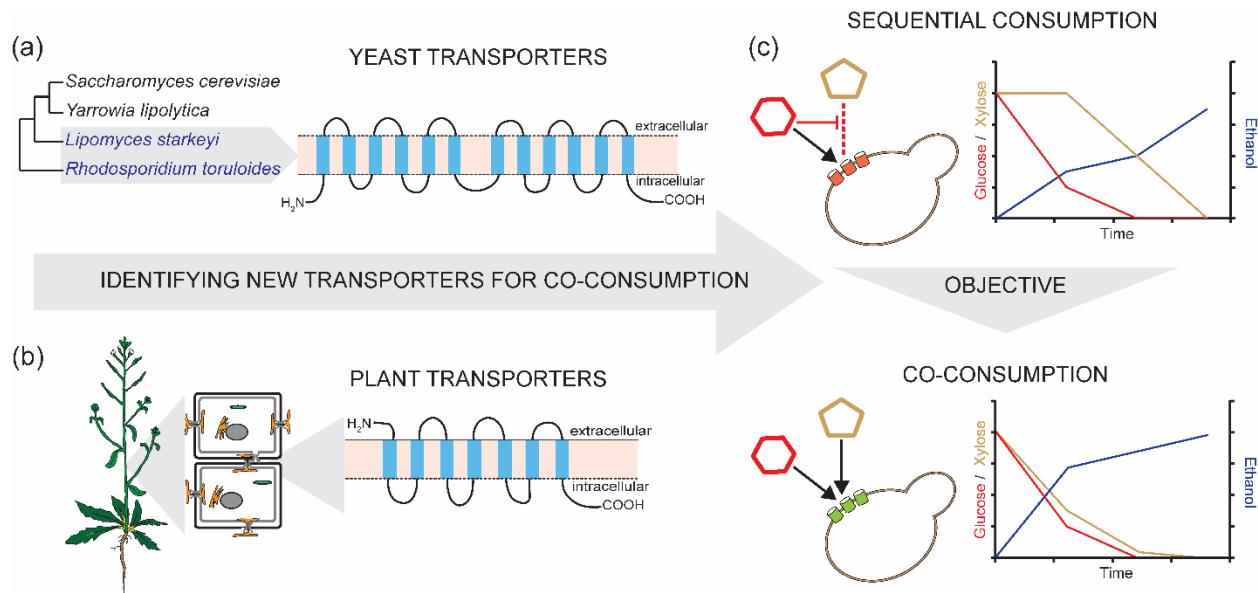
720

721 **Fig. 8: Glucose and xylose mixed sugar fermentation profile of SR8D8 expressing**
722 **LST1_205437 Asn365 mutant variants and glucose dockpose of LST1_205437**

723 **Asn365Phe.** LST1_205437 Asn365Phe mutant, LST1_205437 Asn365Ser and
724 LST1_205437 Asn365Val. 20 g/L of glucose and xylose mixed sugar fermentation in YP
725 medium of LST1_205437 wild type (**a**), LST1_205437 Asn365Phe (**b**), LST1_205437
726 Asn365Ser (**c**) and LST1_205437 Asn365Val (**d**). Mutation of Asn365 to phenylalanine
727 in LST1_205437 (**e**). Asn365 form crucial contact with glucose molecule in stabilize the
728 IF state. The mutation to phenylalanine results in steric clash with substrate and affects
729 the conformational transition to intermediate states and transport. Symbols: glucose
730 (square), xylose (triangle up), DCW (circle). The values are the means of two
731 independent experiments, and the error bars indicate the standard errors

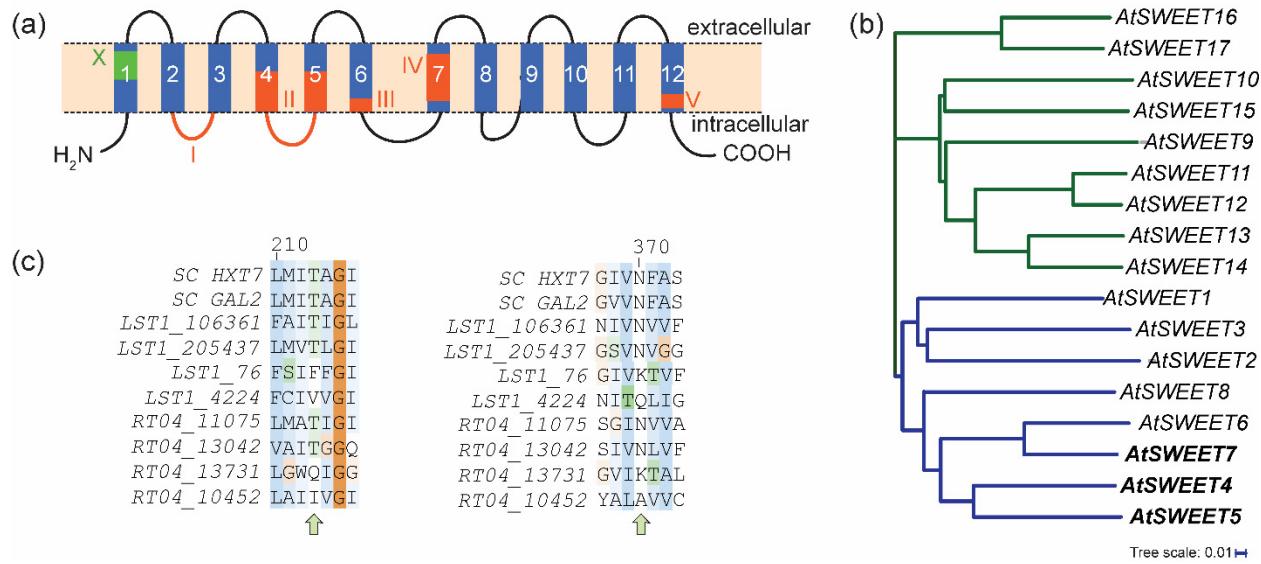
732

733 **Table 1 Kinetic properties of ScGal2, AtSWEET7 and LST1_205437**


734

735 **Figures**

736


737 **Fig. 1**

738

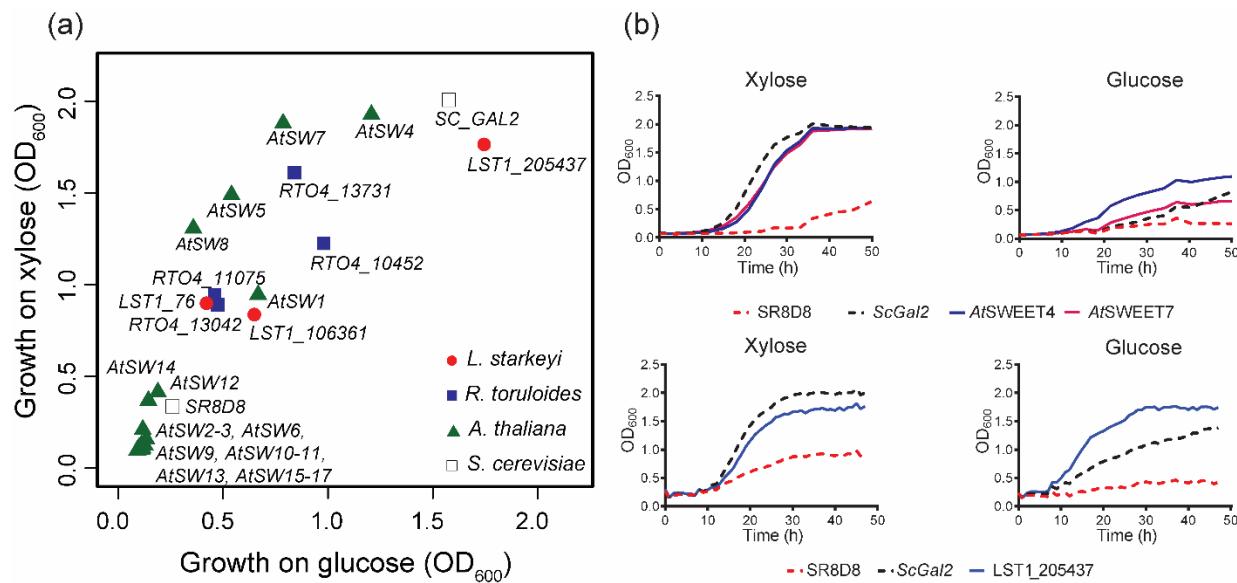
751 **Fig. 2**

752

753

754

Fig. 2: Bioinformatics analysis for transporter identification. a Most monosaccharide transporters in yeasts have 12 TM domains (represented in blue). The conserved motifs identified in yeasts transporters are marked in orange (I-V). Motif X (marked in green) has recently been identified as a key motif involved in xylose specificity. **b** A phylogenetic tree of the 17 *A. thaliana* SWEET transporters clusters the monosaccharide and disaccharide transporters independently. **c** Multiple sequence alignment of putative transporters: Thr213 and Ans370 are conserved in reported glucose transporters in yeasts.


761

763

764

765 **Fig. 3**

766

767

768

769 **Fig. 3: *L. starkeyi*, *R. toruloides* and *A. thaliana* SWEET transporter screening for**

770 growth on glucose or xylose. a Growth characteristics of the SR8D8 strain expressing

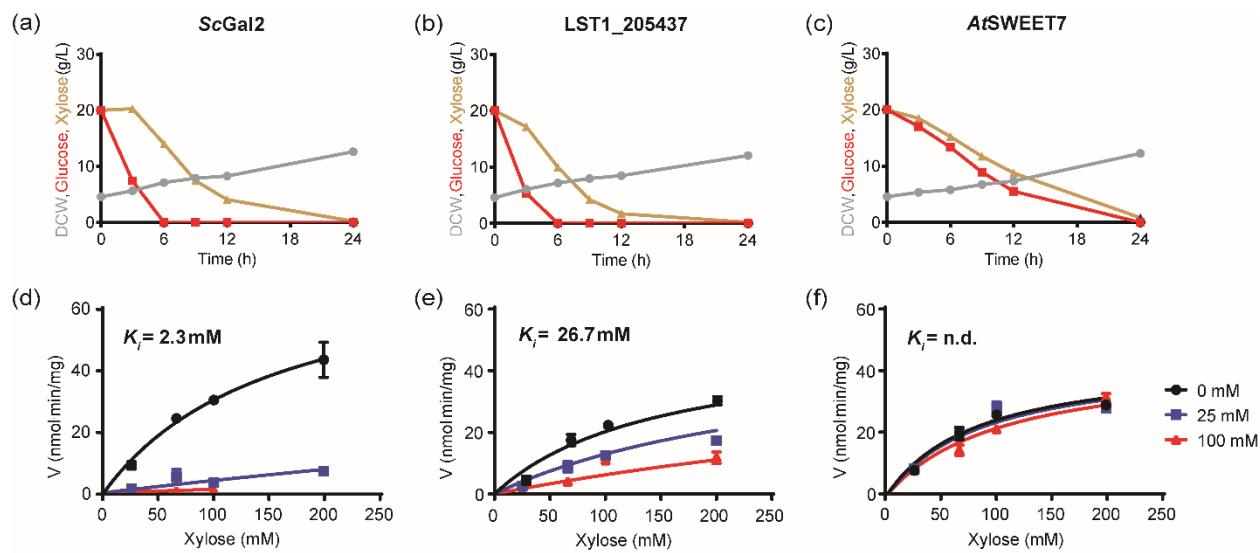
771 transporters were summarized using a plot with. X axis represents the cell densities on

772 glucose and Y axis represents the cell densities on xylose. Cell densities of the

773 transporter-expressing strains at 40 hrs were presented. b Growth curves of the four

774 strains with an overexpression cassette of GAL2, AtSWEET4, AtSWEET7, or a control

775 plasmids (SRD8) on xylose and glucose. The dots and line lines are means from

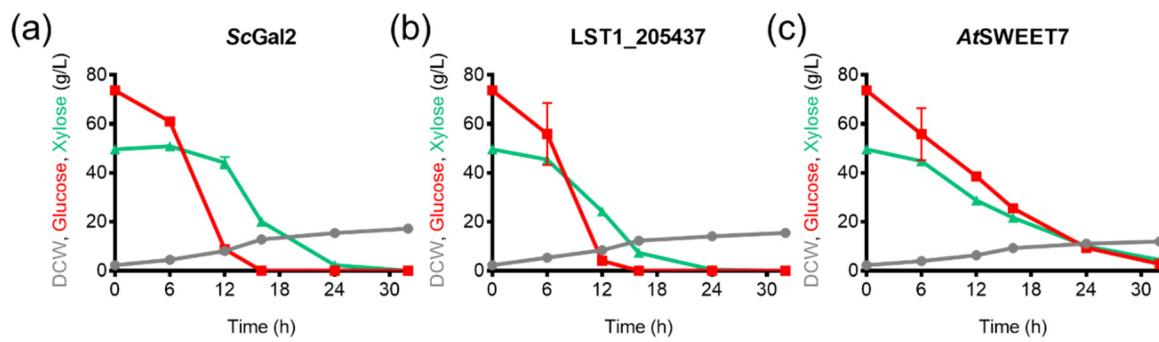

776 duplicated cultures.

777

778

779 **Fig. 4**

780


781

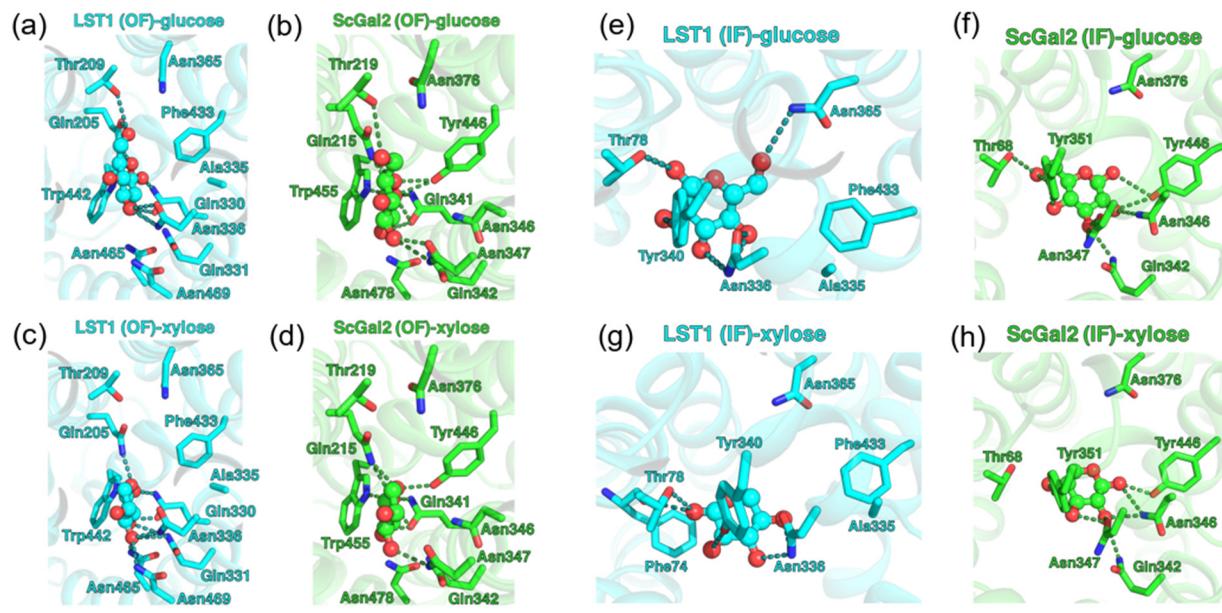
782 **Fig. 4: Glucose and xylose mixed sugar fermentation profile and inhibitory effect**
783 **of glucose on xylose transport.** 20 g/L of glucose and xylose mixed sugar fermentation
784 by SR8D8 expressing ScGal2 (sequential fermentation) (a), LST1_205437 (partial
785 co-fermentation) (b), AtSWEET7 (true co-fermentation) (c). Symbols: glucose (square),
786 xylose (triangle up), DCW (circle). Inhibitory effect of 0 mM, 25 mM and 100 mM glucose
787 on xylose transport in SR8D8 expressing ScGal2 (d), LST1_205437 (e) and AtSWEET7
788 (f). Global curve fitting for Michaelis-Menten kinetics with competitive inhibition was
789 applied to data of three independent measurements at each concentration.

790

791 **Fig. 5**

792

793


794 **Fig. 5: Glucose and xylose mixed sugar fermentation profile using industrially**
795 **relevant sugar concentrations.** 70 g/L of glucose and 40g/L xylose mixed sugar
796 fermentation by SR8D8 expressing *ScGal2* (a), *LST1_205437* (b), *AtSWEET7* (c).
797 Symbols: glucose (square), xylose (triangle up), DCW (circle). The values are the means
798 of two independent experiments, and the error bars indicate the standard errors

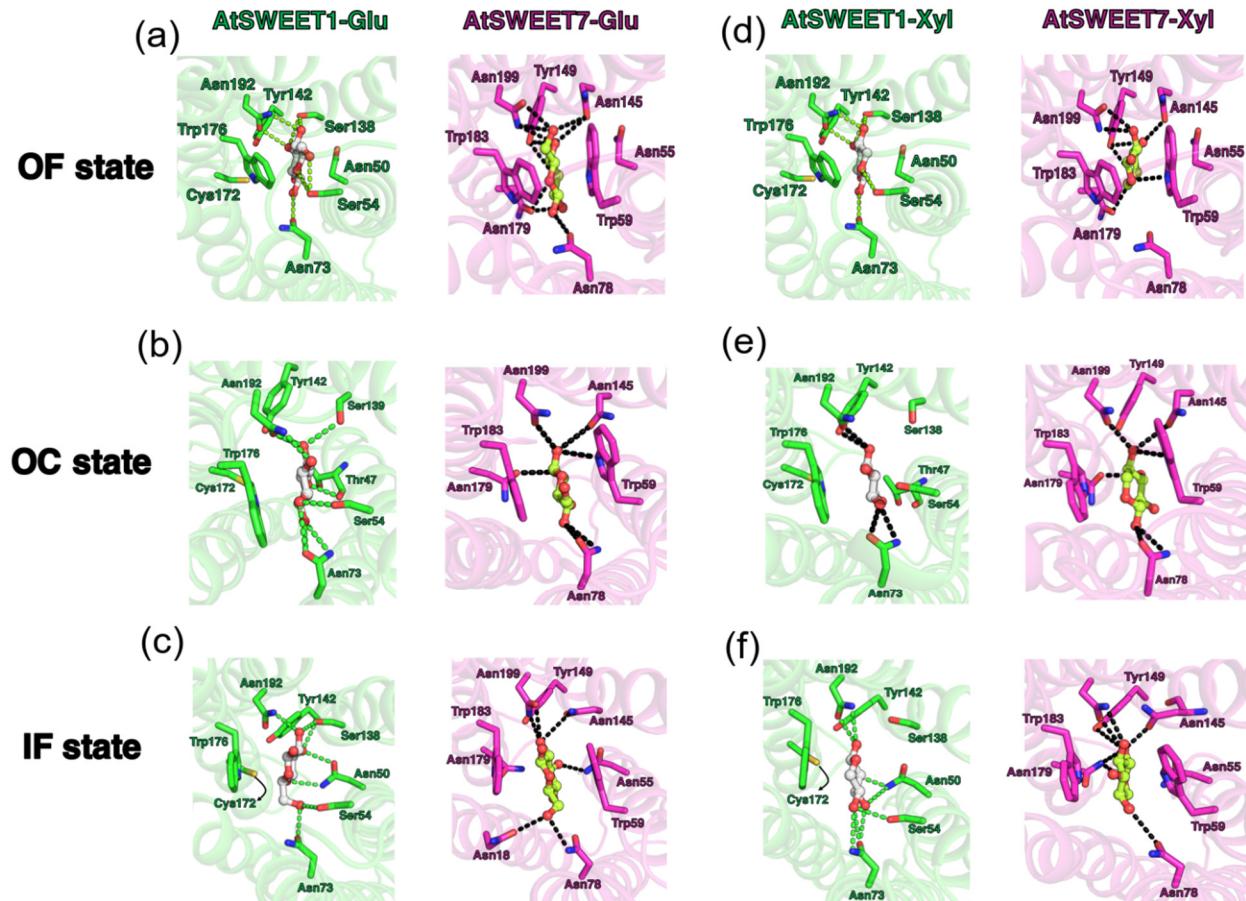
799

800

801 **Fig. 6**

802

803


804

805 **Fig. 6: Predicted binding orientation of glucose and xylose in ScGal2 and**
 806 **LST1_205437.** The dock poses of glucose and xylose in OF conformations for
 807 LST1_205437 (a, c) and ScGal2 (b, d), respectively. The dock poses of glucose and
 808 xylose in IF conformations for LST1_205437 (e, g) and ScGal2 (f, h), respectively.

809

810 **Fig. 7**

811

812

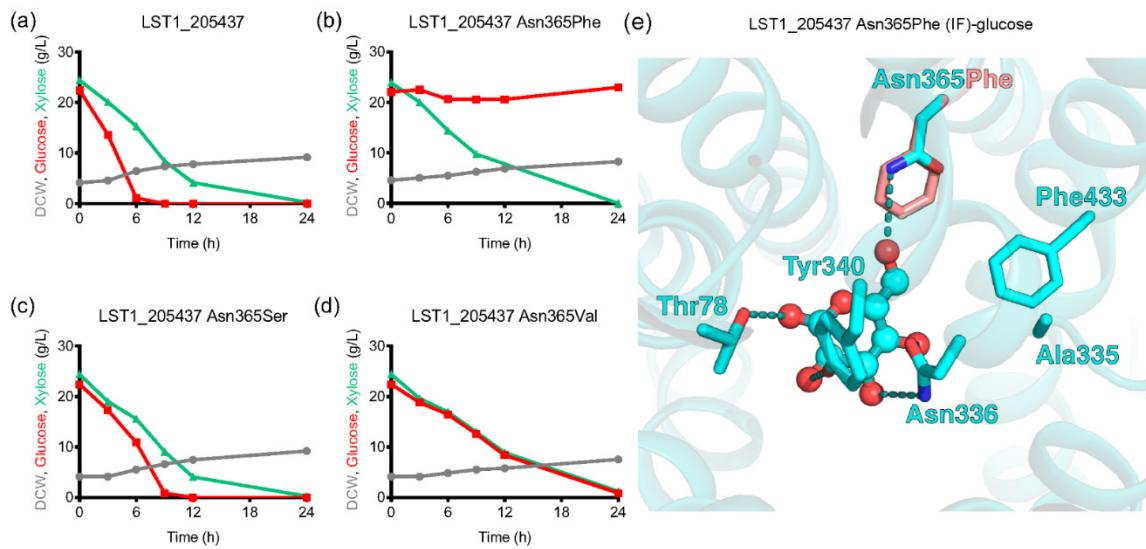
813

814 **Fig. 7: Dockposes of glucose and xylose in AtSWEET1 and AtSWEET7.** The
 815 predicted binding mode of glucose and xylose in AtSWEET1 and AtSWEET7 in OF (a
 816 and d), OC (b and e) and IF (c and f) conformations.

817

818

819


820

821

822

823 **Fig. 8**

824

825

826

827 **Fig. 8: Glucose and xylose mixed sugar fermentation profile of SR8D8 expressing**
 828 **LST1_205437 Asn365 mutant variants and glucose dockpose of LST1_205437**
 829 **Asn365Phe.** LST1_205437 Asn365Phe mutant, LST1_205437 Asn365Ser and
 830 LST1_205437 Asn365Val. 20 g/L of glucose and xylose mixed sugar fermentation in YP
 831 medium of LST1_205437 wild type (a), LST1_205437 Asn365Phe (b), LST1_205437
 832 Asn365Ser (c) and LST1_205437 Asn365Val (d). Mutation of Asn365 to phenylalanine
 833 in LST1_205437 (e). Asn365 form crucial contact with glucose molecule in stabilize the
 834 IF state. The mutation to phenylalanine results in steric clash with substrate and affects
 835 the conformational transition to intermediate states and transport. Symbols: glucose
 836 (square), xylose (triangle up), DCW (circle). The values are the means of two independent
 837 experiments, and the error bars indicate the standard errors

838

839

840

841

842

843

Table 1 Kinetic properties of *ScGal2*, *AtSWEET7* and *LST1_205437*

Transporter	Glucose		Xylose		
	K_m (mM)	V_{max} (nmol·min ⁻¹ ·mg ⁻¹)	K_m (mM)	V_{max} (nmol·min ⁻¹ ·mg ⁻¹)	K_i (mM)
<i>ScGal2</i>	1.6 ± 0.2	38.3 ± 1.4	320.5 ± 70	88.7 ± 10.0	2.4 ± 0.5
<i>AtSWEET7</i>	74.1 ± 13.0	110.3 ± 7.2	308.7 ± 86	100.9 ± 14.8	370.6 ± 109
<i>LST1_205437</i>	5.0 ± 1.0	47.0 ± 2.6	145.3 ± 43	76.8 ± 9.0	26.7 ± 6

Determined by zero-trans influx measurements with transporter-overexpressing SR8D8 and calculated with cell wet weight. SEM is indicated.