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Abstract: NMR spectral datasets, especially in systems with limited samples, can be difficult to
interpret if they contain multiple chemical components (phases, polymorphs, molecules, crystals,
glasses, etc...) and the possibility of overlapping resonances. In this paper, we benchmark several
blind source separation techniques for analysis of NMR spectral datasets containing negative
intensity. For benchmarking purposes, we generated a large synthetic datasbase of quadrupolar
solid-state NMR-like spectra that model spin-lattice T:1 relaxation or nutation tip/flip angle
experiments. Our benchmarking approach focused exclusively on the ability of blind source
separation techniques to reproduce the spectra of the underlying pure components. In general, we
find that FastICA (Fast Independent Component Analysis), SIMPLISMA (SIMPLe-to-use-
Interactive Self-modeling Mixture Analysis), and NNMF (Non-Negative Matrix Factorization) are
top-performing techniques. We demonstrate that dataset normalization approaches prior to blind
source separation do not considerably improve outcomes. Within the range of noise levels studied,
we did not find drastic changes to the ranking of techniques. The accuracy of FastICA and
SIMPLISMA degrades quickly if excess (unreal) pure components are predicted. Our results
indicate poor performance of SVD (Singular Value Decomposition) methods, and we propose
alternative techniques for matrix initialization. The benchmarked techniques are also applied to real
solid state NMR datasets. In general, the recommendations from the synthetic datasets agree with
the recommendations and results from the real data analysis. The discussion provides some
additional recommendations for spectroscopists applying blind source separation to NMR datasets,
and for future benchmark studies. Applications of blind source separation to NMR datasets
containing negative intensity may be especially useful for understanding complex and disordered
systems with limited samples and mixtures of chemical components.

Keywords: Blind Source Separation, Component Analysis; Chemometrics; Unsupervised Machine
Learning; Endmember Extraction; Spectral Unmixing; NMR.

1. Introduction

Spectroscopic studies of chemical mixtures, which contain signals from multiple compounds,
are challenging to study. This challenge is especially present in systems where the individual
components are unknown or difficult to isolate and study individually. Examples of these systems
include compounds with multiple states of order and disorder, interfaces, multiphase materials,
dopants, biological systems which behave differently when isolated, and metabolomics. Nuclear
Magnetic Resonance (NMR) spectroscopy is a useful tool for studying these complex mixtures, as the
technique can quantitatively observe the speciation of the bulk sample, while additionally providing
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insight into the atomic environment, electronic structure, and ordering within the sample. A variety
of techniques are available to separate and simplify NMR spectra, including physically purifying
samples, selective isotopic enrichment, selective pulse sequences, multi-nuclear spectroscopic
techniques, signal filters, and blind source separation techniques. Blind source separation (or blind
separation) techniques [1] (such as principal component analysis or independent component analysis)
are statistically based algorithms which can be used to separate components of the spectra into
subsequent parts without the need to incorporate extensive information about the source signals.
These techniques are useful tools but are not commonplace, possible due to barriers in
implementation, such as software challenges, lack of experience, and limited literature examples.

1.1. What is Blind Source Separation?

Blind source separation is a broad class of approaches that separate out signals into predicted
components (or parts) that can be used to recreate the input dataset. The approach is also known as
component analysis, signal separation, end member separation, the cocktail party problem,
unscrambling, latent variable mixture modeling, multivariate curve resolution and matrix
factorization. It is a type of machine learning with both unsupervised and supervised algorithms.
Blind source separation algorithms have broad applications--in social sciences, economics, music and
sound, medical imaging--and are an especially popular tool for image analysis and interpreting
hyperspectral images. Figure 1 visualizes the application of blind source separation to NMR spectra.
“Pure components” are the perfect end members that blind source separation attempts to extract
with its “predicted components”. In the ideal case, predicted components are an exact match for the
pure component spectra and enable chemical insight and quantification previously inaccessible. In
NMR data, and often other laboratory spectroscopy techniques, spectra are scarce and relatively
valuable, and the accuracy of the predicted components must be highly accurate to enable meaningful
insight into the origin of the observed signal.
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Figure 1. A flow chart indicating how unique chemical species in molecules, materials, or compounds
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each result in an individual spectroscopic contribution (known as pure components) which additively
sum together to produce the mixture spectra. The mixture spectra (known as a dataset) are observable
by NMR. The application of a blind source separation technique to the dataset results in estimated
individual spectroscopic contributions (known as predicted components). Ideally, these predicted
components should be able to reproduce the input dataset with minimal disagreement, enable
chemical insight into the speciation, structure, and composition, and accurate quantification of the
abundance of different chemical compounds.

1.2. Previous applications of blind source separation to NMR data

Previous applications of blind source separation to NMR data are overviewed in the review
paper by Toumi et al. [2] while many of these methods for extraction of pure component spectra in a
variety of applications are often captured under the Chemometrics umbrella [3,4]. The majority of
applications focus on high-resolution 'H NMR data, typically with high signal to noise ratios and a
multitude of narrow overlapping Lorentzian peaks. These studies are primarily on complex mixtures
of small molecules in liquid samples. Many of the analysis methods utilize diffusion ordered
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spectroscopy (DOSY) to generate varying spectra which emphasize different components based on
differential diffusion behavior. The DECRA (Direct Exponential Curve Resolution Algorithm)
method [5-8] is most frequently used in diffusion applications, but an alternative example includes
studying carbohydrate beverages using TOtal Correlation SpectroscopY (also known as TOCSY-t1)
encoding and diffusion encoding or T2 relaxation [9]. Other examples of specific applications of blind
source separation methods include analysis of 'H NMR data to determining the species and ratios of
roasted seeds used to produce a popular drink using differences in sample composition [10] and
generating metabolic profiles of saffron extracts using differences in J-coupling [11]. In less common
applications, blind source separation has also been instrumental in enabling scientists to extract
additional molecular level insight from NMR data. Blind source methods have also been
characterizing surface structure of silica materials using variable contact time ¥Si{'H} cross-
polarization (CP/MAS) data sets [12,13], determining the site preference of dopants in multiphase
cements, ceramics, and minerals using Al or 4S5c NMR data sets [14], and reducing noise in *C NMR
of multiphase thermoplastics [15]. In the majority of these demonstrations use or test only a single
blind source separation algorithm, raising the questions of what is the best methods for analysis of
NMR spectra databases?

Benchmarking several algorithms is common in the computer science and mathematics
literature, especially when presenting a new algorithm that improves accuracy or speed relative to
previous work. Generalized benchmarks on all aspects of blind source separation can be challenging,
as the computational time required for some matrix decomposition methods are highly sensitive to
the input matrix, which depends on the type of data being studied [16].

Benchmarks of techniques relative to a specific application are less common, but in our
experience, they have helped lower barriers to entry into the analysis method and enabled non-
experts to more effectively and efficiently understand and apply these algorithms. Previous blind
source separation benchmarks on NMR spectra focused on overlapping Gaussian peaks. Acronyms
for the algorithms are detailed together in the methods and key terms and abbreviations section in
this paper. Monakhova et al. benchmarked MILCA, SNICA, JADE, RADICAL, SIMPLISMA, and
MCR-ALS on 'H NMR datasets collected on mixtures of stock solutions and consumer products [17].
Resulting predicted components and intensities were compared using an Amari index,
concentrations during synthesis, or corroborating chromatography and mass spectrometry data, to
indicate that SIMPLISMA and MILCA methods demonstrated the best overall performance,
SIMPLISMA and JADE produced the best quantitative analysis of concentration, and SIMPLISMA
and MCR-ALS produced the best decompositions of binary mixtures [17]. Toumi et al. compared
NNMF using sparse coding, and JADE, on NMR diffusion-ordered spectroscopy [18], and later
benchmarked NNMF using sparse coding, JADE, and NN (the Naanaa and Nuzillard method [19])
on real 'H NMR spectra of sugar mixtures [2]. Using a qualitative appraisal, they determine that at
low noise levels their work indicates good performance from JADE and NN, and at low and high
noise, NNMF demonstrated good performance [2]. These studies are somewhat unique as they have
no apparent intellectual conflicts of interest motivating results that indicate a particular technique or
algorithm as being advantageous over other techniques. Cherni et al. benchmarked projected
alternate least squares, soft threshold projected alternate least squares, proximal alternating
linearized minimization, block-coordinate variable metric forward-backward, and wavelet-based
variants on these techniques using '"H NMR datasets collected on mixtures of stock solutions and
synthetic datasets [20]. Results were compared using an Amari index, signal to distortion ratio, signal
to interference ratio, analyzed pure components, and knowledge of species quantities [20]. Cherni
and co-workers drew attention to the need for reproducible and accurate peak referencing and
alignment, as well as the influence of initialization of the matrix [20].

1.3. Requirements and challenges in applying blind source separation

Blind source separation techniques require differences in the spectra contained within the
dataset. Variance can result from collecting multiple physical samples which contain different
mixture compositions, by employing spectroscopic techniques which selectively emphasize or filter



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 February 2020 d0i:10.20944/preprints202002.0113.v1

4 of 27

out different components of the spectra or both. The majority of applications of blind source
separation to NMR techniques investigate exclusively positive spectra, where baseline correction and
phasing produce datasets with minimal negative intensity that allows the application of blind source
separation algorithms incorporating non-negative constraints. NMR techniques that produce both
positive and negative spectra can present varying ratios of different components as the components
change sign. Examples of these techniques include nutation experiments (which explore the sample
response to changes in excitation pulse power level, also known as “tip” or “flip” angle experiments)
and spin-lattice relaxation T1 inversion recovery experiments. Since T1 inversion and nutation are
relatively straightforward experiments to preform, collecting datasets necessary for an analytical
approaches that uses them is straightforward. These approaches may present attractive tools for
applications limited number of samples and where users are unfamiliar with more advanced NMR
pulse sequences.

1.4. This work

In this paper, we set out to benchmark several blind source separation techniques on NMR
spectral datasets that have both positive and negative intensity. Synthetic datasets are constructed to
represent the spectral response in T1 inversion recovery and nutation experiments. These datasets are
used for characterizing the accuracy of sixteen blind source separation techniques in estimating pure
components. The insight obtained from the synthetic datasets is then applied to real experimental
solid state NMR datasets. In the discussion section, we review the performance of the different blind
source separation approaches and comment on their potential when applied to real datasets with
components containing negative intensity. The results from the real experimental datasets motivate
practical comments when applying blind source methods. We also review our approach for testing
blind source separation techniques and discuss successful concepts and places for improvement.

2. Materials and Methods

Our methodological approach can be summarized into the following steps: we created mixture
NMR spectral datasets, performed blind source separation using several algorithms on these datasets,
and then appraised the accuracy of the resulting predicted components by comparing them to the
pure components which were used to create the mixtures. We then applied these same blind source
separation algorithms to experimental NMR data. All synthetic and real NMR data used in this study
were in the frequency domain (i.e. the horizontal axis is the isotropic chemical shift diso in ppm and
the vertical axis is signal intensity in arbitrary units). Several computer languages were used during
software development, but all reported work was written in python [21] using the intel distribution
for python [22] version 3.6 or 3.7 on a variety of 2012 to 2018 era personal desktop or laptop computers
running Windows 10, macOS, or distributions of Linux. In addition to native python libraries, we
used NumPy 1.17.2 [23], Numba 0.39.0 [24], MatPlotLib 3.1.2 [25] and Pandas 0.23.0 [26] during
development and production. This project also made use of Microsoft Word, Adobe Illustrator CS3,
LaTeX, Google Chrome, Microsoft Edge, Mendeley, and extensive use of information and approaches
presented on forums and discussion boards. Code used in this project will be publicly available at
https://doi.org/10.25351/V3WC79 following the publication of a related paper, or by contacting the
corresponding author (R.M.)

2.1. Generated synthetic NMR-like datasets

To make the synthetic mixture NMR datasets we generated “pure” components and then created
additive mixtures of these pure components. Each set of mixture spectra was collected into a dataset,
and blind source techniques were tested on the datasets.

We generated a database of “pure” components that represent a windowed spectrum focused
on the central transition of a quadrupolar resonance. The pure components were generated using
functions from the open-source NMR analysis software ssNAKE [27]. The database contains 32,000
spectra, each with 1024 points, 10,000 Hz spectra width (sweep width), a Lamour observe frequency
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of 100 MHz, nuclear spin of I = 3/2, 10 kHz spinning speed, varied quadrupolar coupling constant
(cQ =0 to 4 MHz, split into 40 equally spaced steps), varied quadrupolar asymmetry parameter (1 =
0 to 1, split into 10 steps), and isotropic peak positions (d;5,) arranged in 10 steps across the central
7,500 Hz within the 10,000 Hz spectrum window. Gaussian smoothing was set in ssNAKE to a value
of 2", where n was an integer from 3 to 10, resulting in unnoticeably broadened spectra at n =3 and
broad peaks extending beyond the spectrum window for n = 10. The resulting pure components
presented a broad range of peak shapes, including narrow Gaussian peaks, easily recognizable
quadrupolar peaks with sharp horns, and difficult to distinguish broad features.

We created 720 mixture datasets. Each mixture dataset contains 20 spectra. Each dataset was
created with 4, 6, or a randomly selected value between 2 to 10, pure components. Pure components
were selected from the previously described database of pure components using reservoir sampling
[28]. Mixture datasets were made with no noise, or one of 5 levels of noise (0.0001, 0.000178, 0.000316,
0.000562, and 0.001). In practice, this resulted in spectra with an approximate ratio of the total signal
intensity to the absolute noise intensity of ~ 24:0, 24:1, 21:1, 15:1, 13:1, 10:1. For each set of variables
tested, we created 20 datasets which vary due to the random selection of pure components, number
of pure components, intensity of the pure components with T1 relaxation times below as described
below, and noise. The exact same datasets were used for testing of the different blind source
algorithms. The pure components used in each dataset were recorded separately for later comparison.
The intensities of the pure components were selected to represent an inversion recovery mixture or a
partially selective nutation mixture.

In the spin-lattice T1 inversion recovery datasets, the intensity values follow the ideal inversion
recovery equation (equation 1), where each spectrum in the dataset represented a different recovery
time 7.

T
intensity[i] =A—2A e(T_l) (1)

In equation 1, i is the index for each pure component which is assigned a T1 value, intensity is the
intensity of the pure component at a given time 7, A is the fully relaxed intensity of the pure
component, e is the exponential function to the base 2.71828, t (tau) is the magnetization recovery
time between an initial magnetization inverting 180 degree pulse, and a subsequent 90 pulse, and T:
is the nuclear spin-lattice relaxation time of component i. 20 mixture spectra were included in each
dataset at equally spaced tau values, and the final 7 value was always selected such that all
components were 98.5% full intensity or greater. A was randomly selected such that no component
had less than 20% of the intensity of the largest component. T1 was randomly selected between 0.5
and 2 for each i (pure component).

In the nutation NMR datasets, the intensity values were determined using equation 2, which
assumes that the first observation was at an optimal tip/flip angle and additional spectra result from
further increases in the the power level.

intensity = A X cosine(2m X f X pulse) )

In equation 2, intensity is the intensity of a specific pure component at a given “pulse”, A is the
maximum possible intensity of the pure component, @ is Archimedes' Constant (3.1415...), f is the
ordinary frequency of a specific component, and pulse is an array of values with a length equal to
the number of spectra in the dataset and values from 0 to 1. One of the pure components always had
an ordinal frequency value of 0.50 and the rest were selected randomly between 0.50 to 0.75, an
approximation for differences in peak intensity due to selective excitation. The maximum possible
intensity (A) was randomly selected between 0 and 1 for each pure component. This is a simplistic
model that does not accurately model nutation experiments; however, it provides differences among
the components which can be analogous to nutation data. We expect it to give a good indication of
the performance of blind source separation techniques on nutation datasets.

2.2. Experimental NMR dataset
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Solid state 'H magic angle spinning (MAS) NMR spectra were obtained using a Bruker Avance
III spectrometer at a proton observation frequency of 600.1 MHz on a 2.5 mm broadband MAS probe
spinning at 30 kHz. A rotor-synchronized Hahn echo pulse sequence with a 5 s recycle delay, and a
/2 pulse length of 2.5 us was used. Data consisted of 1K complex zero-filled to 4K, Fourier
transformed followed by baseline correction. An inversion recovery pulse sequence incorporating
the Hahn Echo, typically used for the determination of spin-lattice relaxation times (T1), was used to
produce the T: relaxation-modulated spectral data set.

An existing nutation dataset of 27Al (I=5/2) NMR at 14.1 Tesla of yttrium aluminum garnet doped
with 0.9% Tm [29] was used. Spinning speed was kept at 20.0 kHz, and pulse width was varied from
2 to 6 pus, where 4.25 us was approximately equal to the 180 ° tip angle of several paramagnetic peaks
resulting from AlOes sites in the material. In the original publication, this dataset was used to
distinguish the diamagnetic AlOs peak and associated paramagnetic shifts from overlapping AlOs
sites which have a different response to the pulse width. A windowed section 10200 points wide was
used for testing of the blind source methods.

2.3. Statistical methods and algorithms

We benchmarked the following blind source separation algorithms. Readers seeking additional
explanations or background on the blind source separation techniques used are encouraged to search
for tutorials and discussion online. Online materials related to machine learning and blind source
separation are, in our experience, better reviewed, more frequently updated, less one-sided, and
overall more accessible than peer-reviewed academic materials that would typically be listed here.

SVD (Singular Value Decomposition) [30,31] as implemented in NumPy [23]. Truncated SVD
as implemented scikit-learn [32] using the fast randomized solver [16] (Truncated SVD-randomized) or
the eigenvalue solver from ARPACK (ARnoldi PACKage,
https://www.caam.rice.edu/software/ARPACKY/) (Truncated SVD-arpack) used in Sci-Py [33].

PCA (Principal Component Analysis) [34,35] as implemented in scikit-learn [32]. Sparse PCA
[36] as implemented in scikit-learn [32] with both the least angle regression (Sparse PCA-lars) and
coordinate descent (Sparse PCA-cd) methods. Incremental PCA [37], a PCA approach incorporating
the Sequential Karhunen-Loeve algorithm of Levy and Lindenbaumt [38]. TGA (Trimmed
Grassmann Average) [39], a robust PCA (as implemented by Jiyuan (Glenn) Qian, a derivative of the
MATLARB version by Hauberg [39]. PARAFAC [40,41] initialized using a random (PARAFAC-random)
or SVD (PARAFAC-svd) starting matrices as implemented in TensorLy [42], a derivative the work by
Rasmus Bro [43].

Fast ICA(Independent Component Analysis) (Hyvérinen 1999) as implemented in scikit-learn
[32]. MILCA (Mutual Information Least dependent Component Analysis) [44,45] as provided by
github user nordavinden (https://github.com/nordavinden/mikstur) using least angle regression
(MILCA-lars) or coordinate descent (MILCA-cd). JADE (Joint Approximate Diagonalization of
Eigenmatrices) [46] as implemented by Gabriel J.L. Beckers [47] a derivative of the MATLAB version
available by contacting Jean Francois Cardoso [48].

VCA (Vertex Component Analysis) [49] as implemented by Adrien Lagrange [50] a derivative
of the MATLAB version provided by Nascimento and Dias.

NNMF (Non-Negative Matrix Factorization, also frequently abbreviated as NMF) [51] as
implemented in scikit-learn [32] using coordinate descent [52] and initialized using random matrices
(NNMF-random), non-negative double singular value decomposition [53] with zero values: as zeros
(NNMF-nndsvd), replaced with average point value of the input dataset (NNMF-nndsvda), or replaced
with a random very small positive values (NNMF-nndsvdar). Since our datasets intentionally break
the non-negative requirement necessary for input data using this technique, spectra with negative
values were inverted if they contained more negative intensity than positive intensity, offset from the
real baseline by a positive value which ensures no negative intensity, or both.

SOBI (Second Order Blind Identification) [54] as implemented by David Rigie [55].

MCR (Multivariate Curve Resolution) [56] as implemented by Charles H. Camp [57,58], using
ordinary least squares [32], sparse coefficients [32] non-negative least squares (MCR-NNLS) using the
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Karush-Kuhn-Tucker conditions [33,59], ridge regression [32] (-ridge), and the gaussian method (-
Gauss) found in the run/test code [58].

SIMPLISMA (SIMPLe-to-use-Interactive Self-modeling Mixture Analysis) [60-62] as
implemented by Mandy Woo and Ryan McCarty, a derivative of the MATLAB code written by
Willem Windig. The “offset” values were set to 0, 2, 8, 12, and 15 (resulting in the corresponding
SIMPLISMA-offset#).

Spectra were normalized before blind source separation with three different approaches, as raw
mixture spectra (as generated, equivalent to spectra as collected by an instrument), mixture spectra
normalized to equal peak height, and mixture spectra normalized to have equal absolute intensity.
Our implementations of SVD, JADE, incremental PCA, sparse PCA, TGA, and MILCA, were not
influenced by normalization.

Most techniques require a user inputted number of components to predict (typically unknown).
For these techniques, we set the predicted component number equal to the true number of
components used in the synthesis of the dataset, or to 1 and 2 components below the true value, or
to 1, 2, 3 and 4 components above the true number of components. Some techniques predict an
internally decided number of components (typically a number equal to the number of input spectra).
For these techniques, we exported the top components for the desired number of predicted
components and discarded the remaining components prior to error analysis.

2.4. Quantifying performance

For each technique, we appraised the accuracy (goodness of fit) by comparing predicted
component spectra of each dataset to the pure component spectra which were used to create the
dataset. Components predicted in the different algorithms are not indexed, and therefore must be
compared with each of the possible pure components to determine the best match. Furthermore, each
predicted component has an algorithm determined vertical intensity scale along with a possible
intensity offset. To compare predicted and pure components, the predicted component was fit to the
pure component by optimizing a vertical multiplier M and an additive offset value B (see equation
3) by minimizing the resulting “lack-of-fit sum of squares error” resulting from the difference
between the predicted and pure components. With our synthetic data, the statistical “pure-error sum
of squares” is so small it can be neglected. The Nelder-Mead minimization approach [63] was used
as implemented in SciPy [33]. The minimized total squared error was recorded for every possible
match.

lack-of-fitp, = Z| predicted_intensity};) — ( B + pure_intensityj; x M )|2 3)
7

In equation 3, lack-of-fit is the sum of squares due to lack of fit, n identifies the specific predicted to
pure component match, i is the index for each point in the spectrum, B is a signed offset, M is a signed
vertical multiplier, predicted_intensity is the list of intensity values for each point of the predicted
component, pure_intensity is the list of intensity values for each point of the pure components. All
intensity values of the pure component are positive, and it was not uncommon for the M multiplier
to be used to invert negative predicted components.

To assign a specific predicted component to a pure component, the ensemble of matches must
be considered. Every possible ensemble of predicted versus pure component assignments were
considered. A key constraint we imposed is that a predicted component can only be assigned to a
single pure component, and each pure component can only be assigned a single predicted component.
For selecting this match, the inverse total squared error (see equation 4) for the ensemble was
summed for each ensemble. The ensemble with the largest inverse error was selected as the most
realistic predicted component to pure components match.

1
ensemble_inverse_error = Z m (4)
n
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Where I (sigma) implies the sum of the inverse lack-of-fit of the ensemble, lack-of-fit is the total
squared errors described in equation 3 for a specific predicted to pure component match, and »
denotes each match in the ensemble. Selecting ensembles using the ensemble inverse error prevents
predicted components that have very large errors from stealing the match of a very close predicted
component to pure component. If there were more predicted components than pure components, the
best predicted to pure matches were determined, and excess predicted components were discarded,
resulting in no contribution to the ensemble_inverse_error. In this manner the predicted components
are indexed the specific pure components.

The best ensemble of matches was calculated for each prediction of each technique (15), with
each test variable and normalization (1 to 15 depending on the technique), on each dataset (20). From
this data, we determined standard measures of center, min, max, and variance for the resulting best
ensemble total squared errors for each technique. If a given technique failed on a specific dataset (i.e.
it could not produce any predicted components for the specific settings), its contribution to the errors
was not accounted for.

3. Results

3.1. Results from synthetic datasets

We tested the blind source separation algorithms on the constructed synthetic datasets. Table 1
presents the accuracy of these techniques (in a mean (minimum, maximum) format) across our 720 test
datasets and reports an approximate “runtime factor” (the most frequent magnitude of the algorithm
runtime in seconds) of the implementations of the algorithms we used. The overall accuracy indicates
the broad most accurate technique; however, as we discuss later, the minimum values and range of
accuracy of the technique should be given consideration. Furthermore, the data reported in Table 1
assumes that the number of components in the dataset is known exactly. Figure 2 plots the nutation
and inversion datasets that contributed to Table 1 separately. The larger range of the inversion dataset
is visible in the figure, as well as the generally similar means of the two datasets.

Table 1. Synthetic Dataset mean squared errors: mean (minimum, maximum) and runtime factor for each

technique.
Runtime
Technique! No Normalization Peak Normalization =~ Area Normalization Factor?

FastICA 0.24 (2.22E-04, 4.05)  0.23 (3.40E-04, 4.05)  0.26 (2.22E-04, 7.36) -1
SIMPLISMA-offset12  0.32 (2.16E-08, 6.79)  0.43 (1.34E-03, 21.33)  0.61 (3.81E-04, 17.2) 0
SIMPLISMA-offset8 ~ 0.32 (1.10E-08, 6.99)  0.44 (1.34E-03, 21.33)  0.56 (3.81E-04, 17.2) 0
NNMF-nndsvd 0.32 (2.07E-05, 5.7) 0.33 (2.07E-05, 5.67)  0.32 (2.07E-05, 5.68) -2
NNME-nndsvdar 0.33 (2.07E-05, 5.62)  0.32 (2.07E-05, 5.63)  0.33 (2.07E-05, 5.68) -2
SIMPLISMA-offsetl5 = 0.32 (2.16E-08, 6.46)  0.44 (1.34E-03,21.33) 0.6 (3.81E-04, 16.43) 0
SIMPLISMA-offset2  0.36 (8.06E-09, 13.55)  0.48 (1.34E-03, 21.11)  0.56 (3.81E-04, 17.2) 0
NNMF-nndsvda 0.37 (2.07E-05, 4) 0.39 (2.07E-05,5.95)  0.38 (2.07E-05, 5.61) -2
NNMF-random 0.41 (9.92E-05, 6.43) 0.4 (9.12E-05, 6.94) 0.39 (9.20E-05, 7.67) -2
TGA 0.43 (1.21E-03,7.64) n.a? n.as 0
SIMPLISMA-offset0  0.44 (3.64E-09, 10.15)  0.49 (1.34E-03, 21.11)  0.52 (3.81E-04, 17.2) 0
VCA 0.44 (2.10E-03,8.79)  0.45(2.10E-03,9.43)  0.46 (2.10E-03, 11.63) -1
JADE 0.45 (1.27E-03,9.52) n.a? n.as -1
PARAFAC-random  0.45 (8.27E-04, 10.66) 0.46 (1.26E-03, 8.68)  0.45 (6.99E-04, 8.6) 2
MCR-NNLS-random  0.48 (1.34E-03, 17.51)  0.54 (1.35E-03, 18.88)  0.49 (1.34E-03, 21.25) 1

MCR-AR-Gauss-
random 0.59 (2.46E-03, 42.27)  0.48 (2.46E-03, 42.27) 0.68 (2.46E-03, 43.59) 1
MILCA-cd 0.5 (5.56E-05,21.58) n.a.? n.a? 1



MILCA-lars
MCR-NNLS
MCR-AR-Gauss
MCR-ALS-random
MCR-ALS
Truncated SVD-
random
PARAFAC-svd
Truncated SVD-arpack
PCA
MCR-AR-Ridge
MCR-AR-Ridge-
random
Incremental PCA
SOBI
Sparse PCA-cd
Sparse PCA-lars

SVD

0.5 (5.56E-05, 21.58)
0.51 (1.34E-03, 17.51)
0.56 (2.46E-03, 42.27)
0.7 (2.57E-03, 22.9)
0.7 (1.34E-03, 14.43)

0.77 (1.09E-03, 43.71)
0.77 (1.09E-03, 43.71)
0.78 (1.09E-03, 43.71)
0.8 (1.10E-03, 43.12)

0.82 (1.34E-03, 23.15)

0.83 (1.45E-03, 23.64)

0.81 (1.20E-03, 43.12)
0.89 (3.32E-04, 43)

0.9 (4.98E-03, 24.19)
0.9 (4.98E-03, 24.19)
1.09 (2.51E-03, 43.42)
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n.a.?

0.5 (1.34E-03, 17.51)
0.76 (2.46E-03, 50)
0.81 (2.08E-03, 27.62)
0.74 (1.34E-03, 23.87)

0.77 (1.09E-03, 43.71)
0.77 (1.09E-03, 43.71)
0.78 (1.09E-03, 43.71)
0.8 (1.10E-03, 43.12)

0.85 (1.34E-03, 23.01)

0.81 (1.42E-03, 23.1)
n.a.’
0.91 (3.32E-04, 42.1)
n.a.?
n.a.?

n.a.’
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n.a.

0.51 (1.34E-03, 17.51)
0.93 (2.46E-03, 43.6)
0.72 (2.91E-03, 23.06)
0.71 (1.34E-03, 17.51)

0.77 (1.09E-03, 43.71)
0.77 (1.09E-03, 43.71)
0.78 (1.09E-03, 43.71)
0.8 (1.10E-03, 43.12)
0.8 (1.34E-03, 17.5)

0.81 (1.45E-03, 17.93)
n.a.’

0.9 (3.32E-04, 42.56)
n.a.’

n.a.’

n.a.’

e Gy

For the three normalization types, the mean of the mean squared error value is given, and in parenthesis, the

minimum error and maximum error. Reported values are for blind source separation of the exact number of

components as contained in the dataset. Green highlighting is used to draw the reader’s attention to which

normalization approach provides the lowest mean squared error.

Techniques and abbreviations are described in the methods section.

2The Runtime Factor is the magnitude of the most frequent runtime on our datasets with 10,000 points, 20

individual spectra and 2 or 10 components. The time factor values should be only used for context; see

“Algorithm run times” in the discussion section for additional commentary on these values.

3 The algorithm contains internal normalization resulting in identical results regardless of normalization type.
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Log,,(Mean Squared Error)

Technique ” & - - " " f

FastICA
SIMPLISMA-offset12
SIMPLISMA-offset8
NNMF-nndsvd
NNMF-nndsvdar
SIMPLISMA-offset15
SIMPLISMA-offset2 I
NNMF-nndsvda
NNMF-random [
SIMPLISMA-offset0
PARAFAC-random []
TGA

VCA

JADE
MCR-NNLS-random
MCR-AR-Gauss
MCR-AR-Gauss-random
MILCA-lars

MILCA-cd

MCR-NNLS
MCR-ALS-random
MCR-ALS

Truncated SVD-randomized
PARAFAC-svd
Truncated SVD-arpack
MCR-AR-Ridge-random
PCA

MCR-AR-Ridge
Incremental PCA

Sobi

Sparse PCA-cd
Sparse PCA-lars

SVD |

Inversion Dataset Nutation Dataset
Below mean [ ] Above mean Below mean [l Above mean

Figure 2. The minimum, maximum and mean of the mean squared errors from the inversion and
nutation datasets plotted on a logarithmic scale base 10. The methods are arranged in the order from
Table 1. The nutation dataset (plotted on top) is slightly transparent so that the underlying inversion
dataset can be seen as well. In general, the nutation data spans a smaller range of errors and
contributes a lower mean.

The number of components in a dataset can be challenging to determine. There are methods and
techniques for estimating the number of components in a dataset, and although we do not use or
benchmark these techniques, our study does provide insight into changes in accuracy due to
predicting excess components. Table 2 summarizes the change in mean squared error relative to an
exact number of components as additional components are predicted. Since our quantification of
performance only determines the accuracy for the best matching components, values close to 1
indicate that predicting additional components does not degrade the accuracy of the previously
predicted components. Increased values over 1 indicate that intensity relating to pure components
must be mixed or separated into additional components which are discarded. Occasionally,
PARAFAC and MCR with the gaussian setting were unable to converge to a solution and did not
predict a component.

Table 2. Fractional increase in relative mean squared error with the prediction of additional components
in the synthetic Dataset.

Technique Exact +1 +2 +3 +4
VCA 1 0.96 0.95 0.96 0.96
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MCR-NNLS 1 0.96 0.99 1.00 0.98
PCA 1 1.00 1.00 1.00 1.00
Incremental PCA 1 1.00 1.00 1.00 1.00
Sparse PCA 1 1 1 1 1
TGA 1 1 1 1 1
PARAFAC 1 1.01 1.02 1.01 1.01
JADE 1 1.02 1.02 1.02 1.04
NNMF 1 1.00 1.01 1.04 1.04
MCR-AR-Ridge 1 1.04 1.07 1.07 1.09
MCR-AR-Gauss 1 1.24 1.06 1.14 1.11
MCR-ALS 1 0.99 1.04 1.18 1.11
Truncated SVD 1 1.01 1.02 1.03 1.14
MCR-ALS-random 1 1.14 1.24 1.27 1.27
MCR-NNLS-random 1 1.17 1.19 1.29 1.38
SVD 1 1.37 1.42 1.44 1.46
MCR-AR-Gauss-random 1 1.20 1.25 1.36 1.61
SOBI 1 1.42 1.57 1.64 1.67
MILCA 1 1.25 1.52 1.77 1.97
SIMPLISMA 1 1.91 2.39 2.65 2.84
FastICA 1 1.72 2.39 3.27 3.40

Sub techniques are grouped together with the exception of MCR. MCR demonstrated varied results depending
on the sub technique.

Our dataset can be separated into six groups of increasing noise level. We report the mean of the
mean squared error for each general technique for predictions at the exact number of components as
the noise level increases in Table 3, and present this information graphically in Figure 3. The best six
techniques appear to show stable to mildly decreasing performance despite the increasing noise level.

Table 3. The mean of mean squared errors for each technique at increasing noise level.

Noise Factor

Technique! 0 0.0001 0.000178 0.000316 0.000562 0.001
FastICA 0.0 0.1 0.2 04 0.3 0.3
SIMPLISMA 0.2 0.3 0.3 0.5 0.4 0.4
NNMF 0.7 0.2 0.3 04 0.3 0.4
TGA 0.4 0.4 04 0.5 0.4 0.5
VCA 0.5 0.5 0.3 04 04 0.6
JADE 0.5 04 0.4 0.4 0.4 0.6
MILCA 0.2 0.6 0.3 0.6 0.5 0.8
PARAFAC 04 0.6 0.5 0.6 0.5 1.0
MCR? 0.9 0.6 0.5 0.6 0.6 0.7
Truncated SVD 0.5 0.7 0.7 0.8 0.6 14
PCA 0.5 0.7 0.7 0.8 0.6 1.5
Incremental PCA 0.5 0.7 0.7 0.8 0.7 1.5
Sobi 0.5 0.9 0.9 0.9 1.0 1.1
Sparse PCA 0.8 0.9 0.9 0.8 0.9 1.1
SVD 2.3 0.8 0.7 0.9 0.7 1.1

Noise factor is further explained in the methods section and represents a value multiplied to Gaussian noise
added to the spectra. 'Techniques are ordered by the mean of the mean squared error at all noise levels, which
is equal to the value listed in table 1, No Normalization. 2The MCR gaussian approach is excluded from this
summary.
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Technique Performance with Increasing Noise
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Figure 3. The performance of each technique with increasing noise. The top six best preforming
techniques are detailed in the lower plot. Only “no normalization” values are plotted. Sub techniques
(such as the various offset values for SIMPLISMA) were averaged together. The plotted values relate
to those from Table 3.

3.2. Results from experimental datasets

3.2.1. Performance on real 'H MAS NMR T datasets

We applied our benchmarked techniques to real solid state 'H MAS NMR T spectral datasets
result from mixtures of two chemical species. High-quality spectra of isolated molecules were
collected for comparison. We applied the blind source separation techniques and then used our same
appraisal method used on the synthetic datasets. Figure 4 and 5, depict the dataset and the most
accurate prediction. It should be noted that possible differential spin-spin relaxation times (T2)
between the various chemical species would need to be addressed to provide accurate quantification
of the relative concentrations of the components in the mixture. This can be done by obtaining NMR
spectra for different Hahn echo times (2t), determining the concentration of each component in the
mixture, and then back extrapolating to obtain the T =0 concentration. While this was not performed
in the present analysis, collecting additional spectra and using the predicted components could be
quickly performed to produce accurate quantification the chemical species concentrations. Table 4
ranks the techniques as they performed on the two 'H MAS NMR T: datasets and visualizes the
ranking in terms of relative mean squared error.
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Alanine-Phenylalanine
'H NMR T, Dataset
6 of 32 total spectra

MCR-AR-Ridge
4 component prediction

Phenylalanine pure

ﬁ/_/h
W Alanine pure

Excess predicted component 1

Excess predicted component 2

L I I | l I I |
20 10 0 -10 20 10 0 -10

Figure 4. The '"H MAS NMR inversion recovery T1 dataset containing alanine and approximately 20%
phenylalanine. The most accurate prediction of the tested techniques was MCR-AR using ridge
regression, and overpredicting 2 excess components. The pure component of phenylalanine and
alanine are drawn on the right in red. The predicted components are superimposed over the pure
components. If the prediction were perfect, no red would be visible. The excess predicted components
contain no intensity in the pictured window, but appear to fit minor differences in baseline at the
edges of the data.

SIMPLISMA
offset = 2
2 component prediction

Alanine-Tyrosine
"H NMR T, Dataset
6 of 32 total spectra

Tyrosine pure

Alanine pure

L I l | L I I |
20 10 0 -10 20 10 0 -10

Figure 5. A figure of the 'H MAS NMR inversion recovery T1 dataset containing alanine and a small
fraction of tyrosine. The most accurate prediction of the tested techniques was SIMPLISMA, which
picture on the left. The pure component of tyrosine and alanine are drawn on the right in red. The
predicted components are superimposed over the pure components. If the prediction were perfect,
no red would be visible.

Table 4. Mean of the mean squared error for each technique applied to both real 'H MAS NMR
datasets.
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Relative Mean
Technique Squared Error 9 . 1|0 . 2|0 . 3|0 . 40|
SIMPLISMA -offset2 1.0 i
NNMF-nndsvd 4.3
NNMEF-random 6.0
MCR-NNLS 6.9
NNMF-nndsvdar 7.2
PARAFAC-random 7.6
NNMF-nndsvda 8.3
SIMPLISMA-offset( 8.5
MCR-AR-Gauss 9.1
VCA 9.6
MCR-AR-Ridge-random 9.9
SIMPLISMA -offsetl5 11.7
SIMPLISMA -offset8 11.8
SIMPLISMA-offset12 13.1
Incremental PCA 14.0
PCA 14.0
FastICA 14.1
Sparse PCA-cd 14.3
Sparse PCA-lars 14.3
Truncated SVD-arpack 14.3
Truncated SVD-randomized 14.3
PARAFAC-svd 14.3
MCR-AR-Gauss-random 15.6
MILCA-cd 16.9
MILCA-lars 16.9
TGA 194
MCR-AR-Ridge 22.0
MCR-ALS-random 22.0
MCR-ALS 22.0
SVD 22.0
MCR-NNLS-random 22.5
SOBI 28.1 B
JADE 37.9 ]

Mean squared errors are normalized relative to the best technique. Mean squared errors are the sum of the best
prediction from each technique.

Several blind source techniques produced very accurate predictions, which are colored blue in
the table and comprise approximately 1/3 of the tested techniques. There is a grouping of techniques
that demonstrate midrange performance and a later grouping of poorly performing techniques.

Despite the relatively good performance of some techniques, there are still some minor
differences across the pure and predicted components, as visible by the red lines in figures 4 and 5.

3.2.2. 27 A1 NMR nutation dataset

Determining the best technique and most accurate predicted components can be challenging
when working in largely unknown systems. To demonstrate the realistic challenges and potential
value and limits of using blind source separation on datasets without a known answer, we applied
the best techniques to a solid-state aluminum Al NMR dataset of solid-state lasing rod material
Thulium (Tm?®) doped yttrium aluminum garnet, which presents overlapping paramagnetically
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shifted AlOs and AlOs peaks. Al is a quadrupolar nuclei (spin I = 5/2) with the magnitude of the
quadrupolar interaction depending on the local bonding environments of the Al (AlOs, AlOs, AlOs
etc). When this material is not paramagnetic, the spectra are easy to interpret, with two clear
resonances relating to an AlOs coordination environment and an AlOs environment. The addition of
Tm? (paramagnetic with 2 unpaired electron spins) to the material shifts peak intensity from its
diamagnetic isotopic chemical shift, resulting in peak broadening and the appearance of additional
peaks. This nutation NMR dataset was originally used to identify the location of paramagnetically
shifted peaks related to the AlOs site, but clear identification of shifted AlOs peaks was unobtainable.
The dataset contains at least 2 components, one related to the AlOs site, and the other to the AlOs site,
both with multiple peaks and sidebands overlapping in the region studied. Additional components
could originate from differences between the central and satellite quadrupole transitions, or due to
the distribution and local structure of doping lanthanide metal.

27Al NMR Nutaiton Dataset Predicted Components
0.9% Tm Yttrium Aluminum Garnet
All spectra
C
A 1
A2
o D
¢
M B /\
W\/\ B - W L/\
W
W 83 E ‘
W o 8 AlO, AlOs
BLUUL Bulk
Simulation Simulation
100 50 0 50 100 50 0 50 100 50 0 50

Figure 6. The Al NMR nutation spectra from [29], and predicted components. All 10 spectra are
depicted on the left side. Examples of predicted components are depicted on the right side, as well as
a simulation of the bulk sample (resulting from the majority of Al cations, which are structurally
distant to the paramagnetic dopants but still show some paramagnetic broadening and shift). The
letters refer to Table 5, and indicate which techniques produce components that qualitatively resemble
these examples.

Table 5. A summary of common components predicted from the 2?Al NMR nutation dataset

1 predicted 2 predicted 3 predicted
Technique component components components
FastICA A A, B2 A,B2,D
JADE A A A A, A2, Bl
MCR-AR-Ridge-random A-t A-t, B2-t A-t, B1-t, noise
MCR-NNLS-random A-t A-t, A-t A-t, A-t, Bl-t
NNMF-nndsvd A A, Bl A, B1,B,1
NNMF-nndsvda A artifacts A2, B1-t, B1-t
NNMF-nndsvdar A A, Bl Al, B1, Bl
NNMF-random A A, Bl A2, B1, B2
PARAFAC-random A A, A-B mixed A, A2, A2
SIMPLISMA-offset0 A A, B3 A, B2, E
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SIMPLISMA -offset12 A A, A2 A,BL C
SIMPLISMA -offset15 A2 A A A, A2,D
SIMPLISMA -offset2 A A, B3 A2, A2, E
SIMPLISMA -offset8 A A A A2, A2, E
TGA A A, B2 A,B2,D
VCA A B2, B2 A2,B2,C

Refer to Figure 6 for a depiction of the predicted components. “-t” indicates truncated baselines or peaks of
components. “noise” indicates a component with no discernable peaks or features. “artifacts” indicates a
component with large single-pixel spike-like artifacts.

The top two predicted components, A and B, are related to the AlO¢ site and the AlO: site
respectively. The A peak and A2 peak are substantially similar with the exception of the small peak
(marked with a f in Figure 6). The agreement of these two features and the prevalence of an A-like
features from each method gives strong evidence that the many peaks in A originate from the same
component. The disagreement between the two components indicates that the inclusion of the I peak
as an AlOs feature is uncertain. If the origin of the § peak was chemically important, a similar study
to this one at a different spinning speed, higher magnetic field, different sample temperature, or by
incorporating a wider spectrum window would likely confirm which pure component (A or A2) is
most accurate. The identification of the B component highlights the usefulness of blind source
separation. The input data (the experimental Al NMR Nutation Dataset in Figure 6) was
intentionally collected to minimize the AlOs feature, and is difficult, near impossible, to visually
identify in the dataset. Furthermore, the left-most peak appears to be a combination of two peaks
with identical peak width (marked in figure 6 with a filled and hollow diamond, ¢, 4), one of which
can be easily produced by broadening the AlO4 at its expected location, and a neighboring peak which
could be explained by a small paramagnetic shift. The similar location of the { peak in component A,
and the expected AlOs peak (0) adds to the uncertainty. A common inaccuracy in blind source
separation is the mixing of pure components, an example of which is visible in the B3 and marked
with a e. The C D and E components hint at the possibility of additional paramagnetic shifts that
were unidentified in the original study. C, D and E also indicate the limits of blind source separation.
With the given dataset size, quality of the spectra, and the inconsistency of the C, D and E predictions,
the accuracy of these later components should be view with skepticism. The C, D and E predictions
do suggest possible peaks that could be investigated and confirmed or ruled out using additional
data, interpretation, and chemical constraints.

When attempting to interpret a large number of predicted components (96 total: 16 methods and
1, 2 and 3 components), we found it useful to first group the predictions into visually similar groups.
Naming the components and creating the table and figure while interpreting the results was useful
in interpreting and understanding the results. If we were studying the material and spectra above,
the next steps would be to use traditional peak modeling and fitting constrained by reasonable
quadrupolar parameters, incorporating both the blind source separation results and the original
spectra to produce a model. Resonances visible in some of the predicted components, such as B, C
and D, could likely be ruled out or assigned chemical meaning by collecting an additional dataset at
a higher magnetic field, different radio frequency nutation field, or at a different spinning speed.

3.3. Computational performance of our testing framework

Using the functions modified from ssNake [27], generating and saving 32,000 unique pure
components took less than 5 core hours @ 3.7 GHz, considerably faster than other NMR peak
modeling techniques we have used in the past. Generating mixture datasets from pure components
took ~2 core minutes @ 3.7 GHz for ~400 mixture spectra. Testing the blind source separation
techniques on our X datasets, containing a total of Y spectra took ~6000 core hours @ 3.7 GHz (3 weeks
X 7 days X 24 hr X 12 cores). Creating the optimized matched ensembles of pure to predicted
components took ~1000 core hours @ 3.7 GHz, the majority of the time spent on the mixtures with 7,
8,9 and 10 pure components.
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4. Discussion

4.1. General performance

The mean of the mean squared error of all the blind source techniques explored are within 1
order of magnitude of each other and indicates that the most accurate technique is FastICA. However,
the relatively similar mean squared errors stresses that including other performance metrics (e.g.,
minimum and variance of mean squared error) when selecting the best technique is important.
SIMPLISMA has the capacity to produce remarkably exact pure components, as evident in Figure 2
and demonstrated in Figure 5. NNMF also stands out as a good technique in this regard. MILCA, a
technique that otherwise does not seem particularly noteworthy, also produced accurate predicted
components. As noise level increases, FastlICA, SIMPLISMA, and NNMF again show the best
performance. Under conditions of overprediction, where too many components were used during
prediction, about half of the techniques (VCA, MCR-NNLS, PCA, Incremental PCA, Sparse PCA,
TGA, PARAFAC, JADE, and NNMF) show stable performance. Caution should be used when
employing the other techniques in systems where the number of pure components cannot be
independently determined. On our small real data test set, SIMPLISMA, NNMF, MCR and
PARAFAC performed well. Overall, our characterization of performance supports FastICA,
SIMPLISMA, and NNMF as top-performing blind source prediction techniques.

Including the MCR-AR-Gauss method set an intriguing point of comparison. The method
creates a single Gaussian peak per component, but within these constraints, it does a good job of
minimizing the total error. When included peaks are not Gaussian (i.e. 2"¢ order quadrupolar line
shape), resulting predictions can be comically wrong (a Gaussian peak fit to a quadrupolar peak) but
the resulting errors are often competitive to the other blind source separation techniques. This seems
to imply that techniques with similar or higher mean squared errors are performing poorly.

Assessing technique performance on the inversion and nutation dataset supports a similar
ranking scheme to the synthetic dataset. The nutation dataset revealed superior algorithm
performance. This can be explained by the larger variation between the intensity of the different
components, a product of the dataset’s construction. This serves as a good reminder that the larger
the variation between the individual components, the higher the likelihood of being able to identify
individual components.

Common errors encountered in predicted components include mixed pure components and
splitting of components. Mixed pure components consist of two or more pure components
represented in a predicted component, often with opposite sign. An example of this effect is visible
in Figure 4, where the large peak of alanine results in a small reduction of tyrosine’s intensity. Split
components occur when the combination of multiple predicted components is needed to produce a
single pure component. This error seemed less common in the synthetic dataset than we anticipated,
but was most frequently encountered when overpredicting components with the lower-ranked
techniques of Table 2.

These techniques, although tested on data representative of NMR results, should be expected to
transfer well to other spectroscopy datasets containing negative components, and we suspect that
much of this is relevant to exclusively positive spectra. Our synthetic datasets containing
quadrupolar peaks should be directly transferable to error analysis Gaussian peaks datasets, with the
exception of the MCR-AR-Gauss methods, that we expect to demonstrate improved performance.

4.1.1. Performance relative to dataset normalization

The influence of normalization type, displayed in Table 1, can be useful in determining a choice
of normalization. A large difference in the mean squared error between normalization types implies
that the choice of normalization is important, whereas a small difference implies that this selection is
unimportant. Several techniques, such as TGA, JADE, MILCA, Incremental PCA, Sparse PCA, and
SVD, are not influenced by external normalization as they incorporate normalization within the
algorithm. Our datasets are also constructed such that most spectra have related and somewhat
similar intensity as is likely experienced when working with real datasets. We grouped techniques
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that were influenced by normalization into three categories, moderately influenced, minimally
influenced, and negligibly influenced.

In general, our synthetic results seem to indicate that no normalization should be applied to the
input data. SIMPLISMA is moderately influenced by normalization, and the best performance
originates from the dataset without normalization. MCR is moderately to minimally influenced by
normalization. However, the selection of normalization varies. When using ridge regression (MCR-
AR-Ridge), a peak area normalization results in the lowest mean squared error and alternating least
squares (MCR-ALS) prefers no normalization. MCR-AR-Gauss and MCR-NNLS methods do not
have a consistent choice and are split between no normalization and normalization on by peak
maximum. FastlCA, PARAFAC-random, NNMF, VCA, and SOBI are minimally influenced by
normalization type. PCA and NNMF-nndsvdar, NNMF-nndsvd, truncated SVD methods, and
PARAFAC-svd are so minimally influenced by normalization, that the choice of normalization is
unimportant. This finding is an expected outcome from the mathematical construction of PCA or the
incorporation of SVD initialization. We were expecting drastic differences in terms of normalization
from our personal experience in applying blind source separation techniques; however, on average,
our study does not support this. These values may be useful in future studies as an initial hypothesis
for determining the statistical significance of normalization results.

4.1.2. Overprediction of components

The correct number of components to predict can be challenging to determine in fully unknown
systems. Table 2 gives some indication as to the risk and algorithm response when incorrectly
choosing the number of components. It is desirable that when predicting excess (unreal) components,
the previously predicted real components will not be degraded or changed. The majority of the
techniques perform considerably well at maintaining accurate predictions when predicting excess
components. It is important to remember that our approach for appraising the accuracy of a technique
will discard predicted components which result in poor matches when there are excess predictions.
Meaningful implementation of table 2’s results in unknown systems requires that the human user
can identify and discard excess components when using these techniques.

As the number of components predicted increases beyond the real number of components, VCA,
MCR-NNLS, PCA, Incremental PCA, Sparse PCA, TGA do not degrade the accuracy of previously
predicted components. Overprediction with these techniques does not have any additional
drawbacks besides having excess components. Spectroscopists familiar with their systems can often
identify excess components that are unrealistic and discard them from their analysis. The overall
quality of predicted components is minimally degraded when overpredicting with PARAFAC, JADE,
NNME. MCR-AR-Ridge, MCR-AR-Gauss, MCR-ALS, and Truncated SVD show some disadvantage
when overpredicting, and SOBI, MCR approaches using random initialization conditions, MILCA,
and SVD result in poorer quality fits when predicting too many components. The top two techniques
in terms of accuracy, FastICA and SIMPLISMA, perform poorly when overpredicting additional
components.

In our experience, when working with real datasets, predicting additional components can often
be useful, as “real” components are often unintentionally preset in the datasets. Examples of
unintentional components include components that correct for inaccuracies in phasing or
background signal, which reproducibly originate from the spectrometer. When using FastICA,
SIMPLISMA, SOBI, MILCA, SVD, or MCR, practitioners should be wary about overpredicting
components. The alanine-phenylalanine dataset presents an example of advantageous
overprediction. Minor differences in baseline correction at the edges of the spectral window (and not
pictured in Figure 4) were fit with excess predicted components, and the pure components were
predicted most accurately. These two excess components are flat in the chemically relevant region of
the spectra and would be easy for a human user to exclude from further analysis.

4.1.3. Experimental Results
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The experimental results seem to agree with our synthetic benchmarks. Figures 4 and 5 indicate
how accurate and potentially useful blind source separation can be, and show great performance for
using the approach on NMR datasets with negative intensity. The close match on the central peaks
as well as the spinning sidebands illustrate the effectiveness of blind source techniques at separating
large and small related components.

The ranking produced on the two experimental datasets is similar to the ranking produced on
the synthetic dataset. JADE and TGA are an exception to the similar performance, as they perform
poorly and drop significantly in ranking. The synthetic dataset ranking is based on the averaging
values, and as indicated in Figure 2, bad results from even the best techniques are expected some of
the time. A fundamental challenge when using blind source separation techniques is determining if
a good approach is producing unreasonable results.

The results in Table 4 may have implications for blind source separation practitioners. On only
two very similar datasets, the techniques’ performance varied widely. Great accuracy was produced
in some cases with dismal performance in others. The variety of results seems to indicate that for a
given dataset, it is likely that some technique will outperform the others. This implies that the
traditional chemometric approach of using the results from only one or two algorithms misses the
opportunity to identify much more accurate predictions. Broader consideration of the results from
an ensemble of techniques for each dataset has the potential of connecting users with useful insight.

With the Al NMR nutation dataset, we used multiple blind source separation techniques to
begin to build an interpretation of the data. This approach produces many predicted components for
the user to interpret but does provide information that is unrealistic to decern directly from the
dataset. Incorporating other chemical insight, such as physical constraints from the chemical system,
as well as other modeling techniques and NMR peak fitting, could likely help identify which of the
predicted components are most reasonable.

4.2. Recommended techniques for matrix initialization

Initializing a starting matrix, especially when the number of components is not known, VCA
appears to be an ideal choice. If the number of components is known exactly, FastiCA and
SIMPLISMA are better alternatives, and when the real number of components is not known, TGA or
JADE appear to be acceptable alternatives to VCA. Typically, if a blind source separation practitioner
is initializing a matrix, the number of components is likely not known. VCA, TGA, and JADE have
comparable accuracy on the synthetic dataset, run times within the same order of magnitude on
datasets our size, and maintain the accuracy of predicted components when overpredicting.

In other fields, the standard choice for matrix initialization is SVD (as we use in this study for
initializing several techniques), but our work seems to indicate that this is not an advantageous choice
for NMR-like data. There is some precedent for alternative initialization techniques for NMR spectra;
Cherni et al. use the work of Toumi et al. to motivate the choice of JADE for initializing the starting
matrix [18,20]. Although we also recommend JADE, an interesting drawback of JADE is its reliance
on a SVD initialization, which for large datasets, can result in considerably slow performance. A
directed study on matrix initialization for NMR datasets would be useful to confirm the VCA
recommendation our data seems to support.

4.3. Recommendations for collecting datasets

While inspecting the synthetic and real datasets, we noticed that spectra near the inflection from
negative to positive signal intensity often contained the largest degree of variance between
components. Larger variance between components is typically advantageous for blind source
separation techniques. This implies that the data near the inflection point is valuable for the
separation, and when collecting data, additional or higher quality data close to the inversion point
may be useful for increasing the accuracy of the predicted components.

4.4. Drawbacks of the present study
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In our effort to understand the influence of noise on the techniques, we included synthetic
datasets without any noise. Although most techniques applied to the no-noise spectra present a trend
that agrees with increasing noise, MCR and SVD appear to have a particular challenge when working
with no-noise datasets and the no-noise datasets somewhat unfairly skew their overall performance.
Since no-noise datasets are unrealistic in the real-world settings, we recommend no-noise datasets be
avoided in future work benchmarking techniques for application to spectroscopic data.

Additionally, we used only Gaussian noise, which does not reflect the full range of complications
experienced in real-life experimental applications. Real applications do frequently include substantial
Gaussian noise, but also many other issues such as baseline correction artifacts, phasing, acoustic
probe ringing, digital filtering anomalies, and background signals. Future studies with an expanded
amount of noise and additional types of noise would be useful.

Our experimental NMR test datasets contain only 2 (or likely 2) pure components. Although this
enables a simple demonstration of blind source separation to negative intensity NMR spectra, it is
somewhat removed from applications where blind source separation is needed: datasets with a large
number of components that are challenging to address using more traditional spectroscopic and
analysis techniques.

4.5. Algorithm run times

Although we reported a rough run time speed for each blind source separation technique,
runtime is a nuanced characteristic. First and foremost, due to the relatively small volume of NMR
data (often dictated by spectrometer time and the expense of samples), only in exceptional cases
should the run time of the algorithms be an important practical consideration. Slower techniques are
still sufficiently fast when dealing with a single experimental dataset. However, slow run time
techniques do limit the ability of a scientist to check and optimize hyperparameters (such as the
number of components or choice of spectra normalization), and limit rapid, hands-on, iterative
testing which can be useful in helping the user understand the dataset and algorithm. The run time
of matrix decomposition algorithms may not be transferable to other matrices, as discussed in Halko
et al., as the properties of a matrix can vary greatly, and some matrix decomposition techniques are
strongly influenced by the starting matrix [16].

Slow algorithms are limiting for benchmark studies. Several blind source separation techniques
which we intended to report on became prohibitively expensive in terms of CPU time to benchmark
on the large number of test spectra we used. This includes an alternative robust PCA approach,
RADICAL (Robust, Accurate, Direct ICA aLgorithm), and Kernel PCA. Some of the algorithms we
used would have been unrealistic for our project if the spectra contained additional points. In a few
exploratory test cases, we tested larger synthetic spectra (c.a. 160,000 points instead of 10,000 or 1024),
and did not notice a significant decline in algorithm accuracy, although the runtimes were
substantially longer. Further work addressing the performance of windowed (cropped) spectra vs.
large sweep widths would likely be useful for blind source separation practitioners. Other techniques
that we were interested in benchmarking became prohibitively expensive in terms of the coding time
needed to implement them. In a few cases, reproducibility of recently published algorithms for which
source code was not provided was complicated by sparse methodical descriptions, unresponsiveness
when contacted, or lost research materials.

4.6. Our benchmarking framework

The method we used for matching predicted components to pure components has several
drawbacks. The combinatoric matching approach works well for a small number of components (1-
6 or so), but as the number of components increases, the combinations that need to be considered
grows exponentially. In its unmodified form, benchmarking datasets with more than 15 pure
components become computationally unfeasible, and benchmarking datasets with more than 6 pure
components can take considerable time (~2 or more hours). Determining goodness of fit using the
lack-of-fit sum of squares seems to provide meaningful insight. However, it could discredit a possible
match in a few realistic settings. For instance, a nearly perfect predicted component with a few
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extreme-valued points resulted in a large squared error to a pure component despite an otherwise
close match. While not present in our dataset, datasets with extreme artifacts or large amounts of
noise could produce these. More importantly, a human can easily identify these few points as
erroneous, something our method could not do.

While our matched ensemble approach is unable to perform well under the above circumstances,
it maintains some advantage over human appraisal. Our method for benchmarking techniques is
entirely blind to predicted components containing contributions from two or more pure components.
If predicted components contain aspects of two pure components, one of these pure components is
lost entirely, and its contributions are counted as error. In reality, an observant scientist could infer
extra meaning from such a predicted component, where negative (subtractive) features associated
with a positive feature implies an inverse correlation, and two positive features imply correlation. In
our experience, this additional insight can be valuable in real settings, and this extra information can
be incorporated into a final model. When considering settings which have predicted too few, or too
many components, our matched ensemble approach is unable to meaningfully incorporate this
information as it discards extra unused predicted components, and does not account for errors
resulting from too few components. In contrast to these disadvantages, our matched ensemble
approach is very accurate at determining the best ensemble match, and is not confused or deluded
by predicted components that appear to be significant but are the products of noise or overlaps
(which can create realistic looking peaks that have no meaning).

5. Conclusions

FastICA, SIMPLISMA, and NNMF all have several desirable characteristics that support a
recommendation as top choice techniques for blind source separation on NMR spectral datasets
containing negative intensity. We arrived at this recommendation after testing 15 different blind
source separation algorithms, some of which contained an opportunity for additional settings,
resulting in 33 total techniques tested. We benchmarked these techniques on two large datasets of
synthetically generated NMR spectra representing T1 inversion or nutation experiments. The mean
accuracy of the most accurate technique and of the least accurate technique are within one order of
magnitude, implying similar performance on average. The techniques also show wide variation in
accuracy. SIMPLISMA and NNMF have the potential of predicting the most accurate pure
components. Poor performance of FastICA and SIMPLISMA is expected if additional components
beyond the correct number of pure components are employed during prediction.

Because of the variation of techniques on synthetic NMR datasets and the results from our
application of the techniques to experimental NMR data, we recommend incorporating predictions
from multiple blind source separation techniques. Using multiple techniques has the potential of
connecting the user with a more accurate prediction than an approach that considers only a single
technique. Due to the similar appearance and related qualities of NMR data to other spectroscopic
techniques, we anticipate the conclusions in this paper to extend to analysis of data originating from
other spectroscopic methods.

Key recommendations for blind source separation practitioners working with NMR T1 inversion
or nutation data:

e FastICA, SIMPLISMA, and NNMF are top choice techniques.

e A comparison of predicted components from multiple techniques applied to the same dataset

may be useful in identifying the best predicted components.

e Normalizing the input dataset is likely not necessary.

e SVD preforms poorly. To initialize starting matrices, a more accurate alternative to SVD may
result in lower errors. We recommend FastICA or SIMPLISMA when there is a clear
expectation of pure components within a dataset, or VCA for a less accurate but more reliable
approach.

e Collecting data clustered around the positive-negative spectral intensity inversion point may
help increase accuracy.
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Key Terms and Abbreviations

Pure component (The XY data from a single source, it is the signal of a single compound from the
samples of interest)

Predicted component (An algorithm'’s estimation of the pure component)

Mixture spectra (Sets of X, Y data which contain a contribution from one or more pure components
+ noise)

Dataset (A collection of mixture spectra which are thought to share similar features)

Algorithm (any computational method which receives input data and returns an outcome)
Technique (the application of an algorithm to data, where the user must select options (such as: what
data, algorithm-specific settings, and if the results are valid))

Blind Source Separation Acronyms:

BSS Blind Source Separation
ICA Independent Component Analysis
JADE Joint Approximate Diagonalization of Eigenmatrices
MCR Multivariate Curve Resolution
MILCA Mutual Information Least dependent Component Analysis
NN Naanaa and Nuzillard method
NNMF Non-Negative Matrix Factorization
PARAFAC  Parallel Factor Analysis
PCA Principal Component Analysis
SIMPLISMA  SIMPLe-to-use-Interactive Self-modeling Mixture Analysis
SOBI Second Order Blind Identification
SVD Singular Value Decomposition
TGA Trimmed Grassmann Average, a PCA variation
VCA Vertex Component Analysis
Sub-technique Acronyms:
ALS Alternating Least Squares
AR Alternating Regression

ARPACK ARnoldi PACKage, a fortran software package
cd Coordinate Decent method
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lars Least Angle Regression
nndsvd Non-Negative Double Singular Value Decomposition
nndsvda nndsvd with zero values replaced with the average point value of the input dataset
nndsvdar nndsvd with zero values replaced with small random values
NNLS Non-Negative Least Squares
NMR Acronyms:
NMR Nuclear Magnetic Resonance
CP/MAS Cross-Polarization Magic Angle Spinning, an NMR technique
TOCSY-t1 TOtal Correlation SpectroscopY
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