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Abstract: NMR spectral datasets, especially in systems with limited samples, can be difficult to

interpret if they contain multiple chemical components (phases, polymorphs, molecules, crystals,

glasses, etc...) and the possibility of overlapping resonances. In this paper, we benchmark several

blind source separation techniques for analysis of NMR spectral datasets containing negative

intensity. For benchmarking purposes, we generated a large synthetic datasbase of quadrupolar

solid-state NMR-like spectra that model spin-lattice Ti relaxation or nutation tip/flip angle

experiments. Our benchmarking approach focused exclusively on the ability of blind source

separation techniques to reproduce the spectra of the underlying pure components. In general, we

find that FastICA (Fast Independent Component Analysis), SIMPLISMA (SIMPLe-to-use-

Interactive Self-modeling Mixture Analysis), and NNMF (Non-Negative Matrix Factorization) are

top-performing techniques. We demonstrate that dataset normalization approaches prior to blind

source separation do not considerably improve outcomes. Within the range of noise levels studied,

we did not find drastic changes to the ranking of techniques. The accuracy of FastICA and

SIMPLISMA degrades quickly if excess (unreal) pure components are predicted. Our results

indicate poor performance of SVD (Singular Value Decomposition) methods, and we propose

alternative techniques for matrix initialization. The benchmarked techniques are also applied to real

solid state NMR datasets. In general, the recommendations from the synthetic datasets agree with

the recommendations and results from the real data analysis. The discussion provides some

additional recommendations for spectroscopists applying blind source separation to NMR datasets,

and for future benchmark studies. Applications of blind source separation to NMR datasets

containing negative intensity may be especially useful for understanding complex and disordered

systems with limited samples and mixtures of chemical components.

Keywords: Blind Source Separation, Component Analysis; Chemometrics; Unsupervised Machine

Learning; Endmember Extraction; Spectral Unmixing; NMR.

1. Introduction

Spectroscopic studies of chemical mixtures, which contain signals from multiple compounds,

are challenging to study. This challenge is especially present in systems where the individual

components are unknown or difficult to isolate and study individually. Examples of these systems

include compounds with multiple states of order and disorder, interfaces, multiphase materials,

dopants, biological systems which behave differently when isolated, and metabolomics. Nuclear

Magnetic Resonance (NMR) spectroscopy is a useful tool for studying these complex mixtures, as the

technique can quantitatively observe the speciation of the bulk sample, while additionally providing
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insight into the atomic environment, electronic structure, and ordering within the sample. A variety

of techniques are available to separate and simplify NMR spectra, including physically purifying

samples, selective isotopic enrichment, selective pulse sequences, multi-nuclear spectroscopic

techniques, signal filters, and blind source separation techniques. Blind source separation (or blind

separation) techniques [1] (such as principal component analysis or independent component analysis)

are statistically based algorithms which can be used to separate components of the spectra into

subsequent parts without the need to incorporate extensive information about the source signals.

These techniques are useful tools but are not commonplace, possible due to barriers in

implementation, such as software challenges, lack of experience, and limited literature examples.

1.1. What is Blind Source Separation?

Blind source separation is a broad class of approaches that separate out signals into predicted

components (or parts) that can be used to recreate the input dataset. The approach is also known as

component analysis, signal separation, end member separation, the cocktail party problem,

unscrambling, latent variable mixture modeling, multivariate curve resolution and matrix

factorization. It is a type of machine learning with both unsupervised and supervised algorithms.

Blind source separation algorithms have broad applications--in social sciences, economics, music and

sound, medical imaging--and are an especially popular tool for image analysis and interpreting

hyperspectral images. Figure 1 visualizes the application of blind source separation to NMR spectra.

"Pure components" are the perfect end members that blind source separation attempts to extract

with its "predicted components". In the ideal case, predicted components are an exact match for the

pure component spectra and enable chemical insight and quantification previously inaccessible. In

NMR data, and often other laboratory spectroscopy techniques, spectra are scarce and relatively

valuable, and the accuracy of the predicted components must be highly accurate to enable meaningful

insight into the origin of the observed signal.
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Figure 1. A flow chart indicating how unique chemical species in molecules, materials, or compounds
each result in an individual spectroscopic contribution (known as pure components) which additively
sum together to produce the mixture spectra. The mixture spectra (known as a dataset) are observable

by NMR. The application of a blind source separation technique to the dataset results in estimated
individual spectroscopic contributions (known as predicted components). Ideally, these predicted
components should be able to reproduce the input dataset with minimal disagreement, enable
chemical insight into the speciation, structure, and composition, and accurate quantification of the
abundance of different chemical compounds.

1.2. Previous applications of blind source separation to NMR data

Previous applications of blind source separation to NMR data are overviewed in the review

paper by Toumi et al. [2] while many of these methods for extraction of pure component spectra in a

variety of applications are often captured under the Chemometrics umbrella [3,4]. The majority of

applications focus on high-resolution 1H NMR data, typically with high signal to noise ratios and a

multitude of narrow overlapping Lorentzian peaks. These studies are primarily on complex mixtures

of small molecules in liquid samples. Many of the analysis methods utilize diffusion ordered
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spectroscopy (DOSY) to generate varying spectra which emphasize different components based on

differential diffusion behavior. The DECRA (Direct Exponential Curve Resolution Algorithm)

method [5-8] is most frequently used in diffusion applications, but an alternative example includes

studying carbohydrate beverages using TOtal Correlation SpectroscopY (also known as TOCSY-ti)

encoding and diffusion encoding or T2 relaxation [9]. Other examples of specific applications of blind

source separation methods include analysis of 1H NMR data to determining the species and ratios of

roasted seeds used to produce a popular drink using differences in sample composition [10] and

generating metabolic profiles of saffron extracts using differences in J-coupling [11]. In less common

applications, blind source separation has also been instrumental in enabling scientists to extract

additional molecular level insight from NMR data. Blind source methods have also been

characterizing surface structure of silica materials using variable contact time 29Si{11-1} cross-

polarization (CP/MAS) data sets [12,13], determining the site preference of dopants in multiphase

cements, ceramics, and minerals using 27A1 or 45Sc NMR data sets [14], and reducing noise in 13C NMR

of multiphase thermoplastics [15]. In the majority of these demonstrations use or test only a single

blind source separation algorithm, raising the questions of what is the best methods for analysis of

NMR spectra databases?

Benchmarking several algorithms is common in the computer science and mathematics

literature, especially when presenting a new algorithm that improves accuracy or speed relative to

previous work. Generalized benchmarks on all aspects of blind source separation can be challenging,

as the computational time required for some matrix decomposition methods are highly sensitive to

the input matrix, which depends on the type of data being studied [16].

Benchmarks of techniques relative to a specific application are less common, but in our

experience, they have helped lower barriers to entry into the analysis method and enabled non-

experts to more effectively and efficiently understand and apply these algorithms. Previous blind

source separation benchmarks on NMR spectra focused on overlapping Gaussian peaks. Acronyms

for the algorithms are detailed together in the methods and key terms and abbreviations section in

this paper. Monakhova et al. benchmarked MILCA, SNICA, JADE, RADICAL, SIMPLISMA, and

MCR-ALS on 1H NMR datasets collected on mixtures of stock solutions and consumer products [17].

Resulting predicted components and intensities were compared using an Amari index,

concentrations during synthesis, or corroborating chromatography and mass spectrometry data, to

indicate that SIMPLISMA and MILCA methods demonstrated the best overall performance,

SIMPLISMA and JADE produced the best quantitative analysis of concentration, and SIMPLISMA

and MCR-ALS produced the best decompositions of binary mixtures [17]. Toumi et al. compared

NNMF using sparse coding, and JADE, on NMR diffusion-ordered spectroscopy [18], and later

benchmarked NNMF using sparse coding, JADE, and NN (the Naanaa and Nuzillard method [19])

on real 1H NMR spectra of sugar mixtures [2]. Using a qualitative appraisal, they determine that at

low noise levels their work indicates good performance from JADE and NN, and at low and high

noise, NNMF demonstrated good performance [2]. These studies are somewhat unique as they have

no apparent intellectual conflicts of interest motivating results that indicate a particular technique or

algorithm as being advantageous over other techniques. Cherni et al. benchmarked projected

alternate least squares, soft threshold projected alternate least squares, proximal alternating

linearized minimization, block-coordinate variable metric forward-backward, and wavelet-based

variants on these techniques using 1H NMR datasets collected on mixtures of stock solutions and

synthetic datasets [20]. Results were compared using an Amari index, signal to distortion ratio, signal

to interference ratio, analyzed pure components, and knowledge of species quantities [20]. Cherni

and co-workers drew attention to the need for reproducible and accurate peak referencing and

alignment, as well as the influence of initialization of the matrix [20].

1.3. Requirements and challenges in applying blind source separation

Blind source separation techniques require differences in the spectra contained within the

dataset. Variance can result from collecting multiple physical samples which contain different

mixture compositions, by employing spectroscopic techniques which selectively emphasize or filter
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out different components of the spectra or both. The majority of applications of blind source

separation to NMR techniques investigate exclusively positive spectra, where baseline correction and

phasing produce datasets with minimal negative intensity that allows the application of blind source

separation algorithms incorporating non-negative constraints. NMR techniques that produce both

positive and negative spectra can present varying ratios of different components as the components

change sign. Examples of these techniques include nutation experiments (which explore the sample

response to changes in excitation pulse power level, also known as "tip" or "flip" angle experiments)

and spin-lattice relaxation Ti inversion recovery experiments. Since Ti inversion and nutation are

relatively straightforward experiments to preform, collecting datasets necessary for an analytical

approaches that uses them is straightforward. These approaches may present attractive tools for

applications limited number of samples and where users are unfamiliar with more advanced NMR

pulse sequences.

1.4. This work

In this paper, we set out to benchmark several blind source separation techniques on NMR

spectral datasets that have both positive and negative intensity. Synthetic datasets are constructed to

represent the spectral response in Ti inversion recovery and nutation experiments. These datasets are

used for characterizing the accuracy of sixteen blind source separation techniques in estimating pure

components. The insight obtained from the synthetic datasets is then applied to real experimental

solid state NMR datasets. In the discussion section, we review the performance of the different blind

source separation approaches and comment on their potential when applied to real datasets with

components containing negative intensity. The results from the real experimental datasets motivate

practical comments when applying blind source methods. We also review our approach for testing

blind source separation techniques and discuss successful concepts and places for improvement.

2. Materials and Methods

Our methodological approach can be summarized into the following steps: we created mixture

NMR spectral datasets, performed blind source separation using several algorithms on these datasets,

and then appraised the accuracy of the resulting predicted components by comparing them to the

pure components which were used to create the mixtures. We then applied these same blind source

separation algorithms to experimental NMR data. All synthetic and real NMR data used in this study

were in the frequency domain (i.e. the horizontal axis is the isotropic chemical shift biso in ppm and

the vertical axis is signal intensity in arbitrary units). Several computer languages were used during

software development, but all reported work was written in python [21] using the intel distribution

for python [22] version 3.6 or 3.7 on a variety of 2012 to 2018 era personal desktop or laptop computers

running Windows 10, macOS, or distributions of Linux. In addition to native python libraries, we

used NumPy 1.17.2 [23], Numba 0.39.0 [24], MatPlotLib 3.1.2 [25] and Pandas 0.23.0 [26] during

development and production. This project also made use of Microsoft Word, Adobe Illustrator CS3,

LaTeX, Google Chrome, Microsoft Edge, Mendeley, and extensive use of information and approaches

presented on forums and discussion boards. Code used in this project will be publicly available at

https://doi.org/10.25351/V3WC79 following the publication of a related paper, or by contacting the

corresponding author (R.M.)

2.1. Generated synthetic NMR-like datasets

To make the synthetic mixture NMR datasets we generated "pure" components and then created

additive mixtures of these pure components. Each set of mixture spectra was collected into a dataset,

and blind source techniques were tested on the datasets.

We generated a database of "pure" components that represent a windowed spectrum focused

on the central transition of a quadrupolar resonance. The pure components were generated using

functions from the open-source NMR analysis software ssNAKE [27]. The database contains 32,000

spectra, each with 1024 points, 10,000 Hz spectra width (sweep width), a Lamour observe frequency
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of 100 MHz, nuclear spin of I = 3/2, 10 kHz spinning speed, varied quadrupolar coupling constant

(cQ = 0 to 4 MHz, split into 40 equally spaced steps), varied quadrupolar asymmetry parameter (77 =

0 to 1, split into 10 steps), and isotropic peak positions (Sts„) arranged in 10 steps across the central

7,500 Hz within the 10,000 Hz spectrum window. Gaussian smoothing was set in ssNAKE to a value

of 2', where n was an integer from 3 to 10, resulting in unnoticeably broadened spectra at n = 3 and

broad peaks extending beyond the spectrum window for n = 10. The resulting pure components

presented a broad range of peak shapes, including narrow Gaussian peaks, easily recognizable

quadrupolar peaks with sharp horns, and difficult to distinguish broad features.

We created 720 mixture datasets. Each mixture dataset contains 20 spectra. Each dataset was

created with 4, 6, or a randomly selected value between 2 to 10, pure components. Pure components

were selected from the previously described database of pure components using reservoir sampling

[28]. Mixture datasets were made with no noise, or one of 5 levels of noise (0.0001, 0.000178, 0.000316,

0.000562, and 0.001). In practice, this resulted in spectra with an approximate ratio of the total signal

intensity to the absolute noise intensity of - 24:0, 24:1, 21:1, 15:1, 13:1, 10:1. For each set of variables

tested, we created 20 datasets which vary due to the random selection of pure components, number

of pure components, intensity of the pure components with Ti relaxation times below as described

below, and noise. The exact same datasets were used for testing of the different blind source

algorithms. The pure components used in each dataset were recorded separately for later comparison.

The intensities of the pure components were selected to represent an inversion recovery mixture or a

partially selective nutation mixture.

In the spin-lattice Ti inversion recovery datasets, the intensity values follow the ideal inversion

recovery equation (equation 1), where each spectrum in the dataset represented a different recovery

time T.

intensity[d = A - 2A evrif (1)

In equation 1, i is the index for each pure component which is assigned a Ti value, intensity is the

intensity of the pure component at a given time r, A is the fully relaxed intensity of the pure

component, e is the exponential function to the base 2.71828, (tau) is the magnetization recovery

time between an initial magnetization inverting 180 degree pulse, and a subsequent 90 pulse, and Ti

is the nuclear spin-lattice relaxation time of component i. 20 mixture spectra were included in each

dataset at equally spaced tau values, and the final T value was always selected such that all

components were 98.5% full intensity or greater. A was randomly selected such that no component

had less than 20% of the intensity of the largest component. Ti was randomly selected between 0.5

and 2 for each i (pure component).

In the nutation NMR datasets, the intensity values were determined using equation 2, which

assumes that the first observation was at an optimal tip/flip angle and additional spectra result from

further increases in the the power level.

intensity = A x cosine(ar x f x pulse) (2)

In equation 2, intensity is the intensity of a specific pure component at a given "pulse, A is the

maximum possible intensity of the pure component, 7r is Archimedes' Constant (3.1415...), f is the

ordinary frequency of a specific component, and pulse is an array of values with a length equal to

the number of spectra in the dataset and values from 0 to 1. One of the pure components always had

an ordinal frequency value of 0.50 and the rest were selected randomly between 0.50 to 0.75, an

approximation for differences in peak intensity due to selective excitation. The maximum possible

intensity (A) was randomly selected between 0 and 1 for each pure component. This is a simplistic

model that does not accurately model nutation experiments; however, it provides differences among

the components which can be analogous to nutation data. We expect it to give a good indication of

the performance of blind source separation techniques on nutation datasets.

2.2. Experimental NMR dataset
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Solid state 1H magic angle spinning (MAS) NMR spectra were obtained using a Bruker Avance

III spectrometer at a proton observation frequency of 600.1 MHz on a 2.5 mm broadband MAS probe

spinning at 30 kHz. A rotor-synchronized Hahn echo pulse sequence with a 5 s recycle delay, and a

Tr/2 pulse length of 2.5 ps was used. Data consisted of 1K complex zero-filled to 4K, Fourier

transformed followed by baseline correction. An inversion recovery pulse sequence incorporating

the Hahn Echo, typically used for the determination of spin-lattice relaxation times (Ti), was used to

produce the Ti relaxation-modulated spectral data set.

An existing nutation dataset of 27A1 (I =5/2) NMR at 14.1 Tesla of yttrium aluminum garnet doped

with 0.9% Tm [29] was used. Spinning speed was kept at 20.0 kHz, and pulse width was varied from

2 to 611s, where 4.25 1.1s was approximately equal to the 180 ° tip angle of several paramagnetic peaks

resulting from A106 sites in the material. In the original publication, this dataset was used to

distinguish the diamagnetic A106 peak and associated paramagnetic shifts from overlapping A104

sites which have a different response to the pulse width. A windowed section 10200 points wide was

used for testing of the blind source methods.

2.3. Statistical methods and algorithms

We benchmarked the following blind source separation algorithms. Readers seeking additional

explanations or background on the blind source separation techniques used are encouraged to search

for tutorials and discussion online. Online materials related to machine learning and blind source

separation are, in our experience, better reviewed, more frequently updated, less one-sided, and

overall more accessible than peer-reviewed academic materials that would typically be listed here.

SVD (Singular Value Decomposition) [30,31] as implemented in NumPy [23]. Truncated SVD

as implemented scikit-learn [32] using the fast randomized solver [16] (Truncated SVD-randomized) or

the eigenvalue solver from ARPACK (ARnoldi PACKage,

https://www.caam.rice.edu/software/ARPACK/) (Truncated SVD-arpack) used in Sci-Py [33].

PCA (Principal Component Analysis) [34,35] as implemented in scikit-learn [32]. Sparse PCA

[36] as implemented in scikit-learn [32] with both the least angle regression (Sparse PCA-lars) and

coordinate descent (Sparse PCA-cd) methods. Incremental PCA [37], a PCA approach incorporating

the Sequential Karhunen—Loeve algorithm of Levy and Lindenbaumt [38]. TGA (Trimmed

Grassmann Average) [39], a robust PCA (as implemented by Jiyuan (Glenn) Qian, a derivative of the

MATLAB version by Hauberg [39]. PARAFAC [40,41] initialized using a random (PARAFAC-random)

or SVD (PARAFAC-svd) starting matrices as implemented in TensorLy [42], a derivative the work by

Rasmus Bro [43].

Fast ICA(Independent Component Analysis) (Hyvärinen 1999) as implemented in scikit-learn

[32]. MILCA (Mutual Information Least dependent Component Analysis) [44,45] as provided by

github user nordavinden (https://github.com/nordavinden/mikstur) using least angle regression

(MILCA-lars) or coordinate descent (MILCA-cd). JADE (Joint Approximate Diagonalization of

Eigenmatrices) [46] as implemented by Gabriel J.L. Beckers [47] a derivative of the MATLAB version

available by contacting Jean François Cardoso [48].

VCA (Vertex Component Analysis) [49] as implemented by Adrien Lagrange [50] a derivative

of the MATLAB version provided by Nascimento and Dias.

NNMF (Non-Negative Matrix Factorization, also frequently abbreviated as NMF) [51] as

implemented in scikit-learn [32] using coordinate descent [52] and initialized using random matrices

(NNMF-random), non-negative double singular value decomposition [53] with zero values: as zeros

(NNMF-nndsvd), replaced with average point value of the input dataset (NNMF-nndsvda), or replaced

with a random very small positive values (NNMF-nndsvdar). Since our datasets intentionally break

the non-negative requirement necessary for input data using this technique, spectra with negative

values were inverted if they contained more negative intensity than positive intensity, offset from the

real baseline by a positive value which ensures no negative intensity, or both.

SOBI (Second Order Blind Identification) [54] as implemented by David Rigie [55].

MCR (Multivariate Curve Resolution) [56] as implemented by Charles H. Camp [57,58], using

ordinary least squares [32], sparse coefficients [32] non-negative least squares (MCR-NNLS) using the
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Karush-Kuhn-Tucker conditions [33,59], ridge regression [32] (-ridge), and the gaussian method (-

Gauss) found in the run/test code [58].

SIMPLISMA (SIMPLe-to-use-Interactive Self-modeling Mixture Analysis) [60-62] as

implemented by Mandy Woo and Ryan McCarty, a derivative of the MATLAB code written by

Willem Windig. The "offser values were set to 0, 2, 8, 12, and 15 (resulting in the corresponding

SIMPLISMA-offset#).

Spectra were normalized before blind source separation with three different approaches, as raw

mixture spectra (as generated, equivalent to spectra as collected by an instrument), mixture spectra

normalized to equal peak height, and mixture spectra normalized to have equal absolute intensity.

Our implementations of SVD, JADE, incremental PCA, sparse PCA, TGA, and MILCA, were not

influenced by normalization.

Most techniques require a user inputted number of components to predict (typically unknown).

For these techniques, we set the predicted component number equal to the true number of

components used in the synthesis of the dataset, or to 1 and 2 components below the true value, or

to 1, 2, 3 and 4 components above the true number of components. Some techniques predict an

internally decided number of components (typically a number equal to the number of input spectra).

For these techniques, we exported the top components for the desired number of predicted

components and discarded the remaining components prior to error analysis.

2.4. Quantifying performance

For each technique, we appraised the accuracy (goodness of fit) by comparing predicted

component spectra of each dataset to the pure component spectra which were used to create the

dataset. Components predicted in the different algorithms are not indexed, and therefore must be

compared with each of the possible pure components to determine the best match. Furthermore, each

predicted component has an algorithm determined vertical intensity scale along with a possible

intensity offset. To compare predicted and pure components, the predicted component was fit to the

pure component by optimizing a vertical multiplier M and an additive offset value B (see equation

3) by minimizing the resulting "lack-of-fit sum of squares erroe resulting from the difference

between the predicted and pure components. With our synthetic data, the statistical "pure-error sum

of squares" is so small it can be neglected. The Nelder-Mead minimization approach [63] was used

as implemented in SciPy [33]. The minimized total squared error was recorded for every possible

match.

lack-of-fitm = I predictedintensity[i] — ( B pureintensity[i] x M )12 
(3)

In equation 3, lack-of-fit is the sum of squares due to lack of fit, n identifies the specific predicted to

pure component match, i is the index for each point in the spectrum, B is a signed offset, M is a signed

vertical multiplier, predicted_intensity is the list of intensity values for each point of the predicted

component, pure_intensity is the list of intensity values for each point of the pure components. All

intensity values of the pure component are positive, and it was not uncommon for the M multiplier

to be used to invert negative predicted components.

To assign a specific predicted component to a pure component, the ensemble of matches must

be considered. Every possible ensemble of predicted versus pure component assignments were

considered. A key constraint we imposed is that a predicted component can only be assigned to a

single pure component, and each pure component can only be assigned a single predicted component.

For selecting this match, the inverse total squared error (see equation 4) for the ensemble was

summed for each ensemble. The ensemble with the largest inverse error was selected as the most

realistic predicted component to pure components match.

ensemble_inverse_error =
1

lack-of-fit[n]
(4)
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Where E (sigma) implies the sum of the inverse lack-of-fit of the ensemble, lack-of-fit is the total

squared errors described in equation 3 for a specific predicted to pure component match, and n

denotes each match in the ensemble. Selecting ensembles using the ensemble inverse error prevents

predicted components that have very large errors from stealing the match of a very close predicted

component to pure component. If there were more predicted components than pure components, the

best predicted to pure matches were determined, and excess predicted components were discarded,

resulting in no contribution to the ensemble_inverse_error. In this manner the predicted components

are indexed the specific pure components.

The best ensemble of matches was calculated for each prediction of each technique (15), with

each test variable and normalization (1 to 15 depending on the technique), on each dataset (20). From

this data, we determined standard measures of center, min, max, and variance for the resulting best

ensemble total squared errors for each technique. If a given technique failed on a specific dataset (i.e.

it could not produce any predicted components for the specific settings), its contribution to the errors

was not accounted for.

3. Results

3.1. Results from synthetic datasets

We tested the blind source separation algorithms on the constructed synthetic datasets. Table 1

presents the accuracy of these techniques (in a mean (minimum, maximum) format) across our 720 test

datasets and reports an approximate "runtime factor' (the most frequent magnitude of the algorithm

runtime in seconds) of the implementations of the algorithms we used. The overall accuracy indicates

the broad most accurate technique; however, as we discuss later, the minimum values and range of

accuracy of the technique should be given consideration. Furthermore, the data reported in Table 1

assumes that the number of components in the dataset is known exactly. Figure 2 plots the nutation

and inversion datasets that contributed to Table 1 separately. The larger range of the inversion dataset

is visible in the figure, as well as the generally similar means of the two datasets.

Table 1. Synthetic Dataset mean squared errors: mean (minimum, maximum) and runtime factor for each

technique.

Technique' No Normalization Peak Normalization Area Normalization

Runtime

Factor2

FastICA 0.24 (2.22E-04, 4.05) 0.23 (3.40E-04, 4.05) 0.26 (2.22E-04, 7.36) -1

SIMPLISMA-offsetl2 0.32 (2.16E-08, 6.79) 0.43 (1.34E-03, 21.33) 0.61 (3.81E-04, 17.2) 0

SIMPLISMA-offset8 0.32 (1.10E-08, 6.99) 0.44 (1.34E-03, 21.33) 0.56 (3.81E-04, 17.2) 0

NNMF-nndsvd 0.32 (2.07E-05, 5.7) 0.33 (2.07E-05, 5.67) 0.32 (2.07E-05, 5.68) -2

NNMF-nndsvdar 0.33 (2.07E-05, 5.62) 0.32 (2.07E-05, 5.63) 0.33 (2.07E-05, 5.68) -2

SIMPLISMA-offsetl5 0.32 (2.16E-08, 6.46) 0.44 (1.34E-03, 21.33) 0.6 (3.81E-04, 16.43) 0

SIMPLISMA-offset2 0.36 (8.06E-09, 13.55) 0.48 (1.34E-03, 21.11) 0.56 (3.81E-04, 17.2) 0

NNMF-nndsvda 0.37 (2.07E-05, 4) 0.39 (2.07E-05, 5.95) 0.38 (2.07E-05, 5.61) -2

NNMF-random 0.41 (9.92E-05, 6.43) 0.4 (9.12E-05, 6.94) 0.39 (9.20E-05, 7.67) -2

TGA 0.43 (1.21E-03, 7.64) n.a.3 n.a.3 0

SIMPLISMA-offset0 0.44 (3.64E-09, 10.15) 0.49 (1.34E-03, 21.11) 0.52 (3.81E-04, 17.2) 0

VCA 0.44 (2.10E-03, 8.79) 0.45 (2.10E-03, 9.43) 0.46 (2.10E-03, 11.63) -1

JADE 0.45 (1.27E-03, 9.52) n.a.3 n.a.3 -1

PARAFAC-random 0.45 (8.27E-04, 10.66) 0.46 (1.26E-03, 8.68) 0.45 (6.99E-04, 8.6) -2

MCR-NNLS-random 0.48 (1.34E-03, 17.51) 0.54 (1.35E-03, 18.88) 0.49 (1.34E-03, 21.25) 1

MCR-AR-Gauss-

random 0.59 (2.46E-03, 42.27) 0.48 (2.46E-03, 42.27) 0.68 (2.46E-03, 43.59) 1

MILCA-cd 0.5 (5.56E-05, 21.58) n.a.3 n.a.3 1
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n.a.3 10.5 (5.56E-05, 21.58)

MCR-NNLS 0.51 (1.34E-03, 17.51) 0.5 (1.34E-03, 17.51) 0.51 (1.34E-03, 17.51) 1
MCR-AR-Gauss 0.56 (2.46E-03, 42.27) 0.76 (2.46E-03, 50) 0.93 (2.46E-03, 43.6) 1

MCR-ALS-random 0.7 (2.57E-03, 22.9) 0.81 (2.08E-03, 27.62) 0.72 (2.91E-03, 23.06) 1
MCR-ALS 0.7 (1.34E-03, 14.43) 0.74 (1.34E-03, 23.87) 0.71 (1.34E-03, 17.51) 1

Truncated SVD-

random 0.77 (1.09E-03, 43.71) 0.77 (1.09E-03, 43.71) 0.77 (1.09E-03, 43.71) -3

PARAFAC-svd 0.77 (1.09E-03, 43.71) 0.77 (1.09E-03, 43.71) 0.77 (1.09E-03, 43.71) -2

Truncated SVD-arpack 0.78 (1.09E-03, 43.71) 0.78 (1.09E-03, 43.71) 0.78 (1.09E-03, 43.71) -3

PCA 0.8 (1.10E-03, 43.12) 0.8 (1.10E-03, 43.12) 0.8 (1.10E-03, 43.12) -2

MCR-AR-Ridge 0.82 (1.34E-03, 23.15) 0.85 (1.34E-03, 23.01) 0.8 (1.34E-03, 17.5) 1

MCR-AR-Ridge-

random 0.83 (1.45E-03, 23.64) 0.81 (1.42E-03, 23.1) 0.81 (1.45E-03, 17.93) 1

Incremental PCA 0.81 (1.20E-03, 43.12) n.a.3 n.a.3 -3

SOBI 0.89 (3.32E-04, 43) 0.91 (3.32E-04, 42.1) 0.9 (3.32E-04, 42.56) 1

Sparse PCA-cd 0.9 (4.98E-03, 24.19) n.a.3 n.a.3 -2

Sparse PCA-lars 0.9 (4.98E-03, 24.19) n.a.3 n.a.3 -2

SVD 1.09 (2.51E-03, 43.42) n.a.3 n.a.3 -2

For the three normalization types, the mean of the mean squared error value is given, and in parenthesis, the

minimum error and maximum error. Reported values are for blind source separation of the exact number of

components as contained in the dataset. Green highlighting is used to draw the reader's attention to which

normalization approach provides the lowest mean squared error.

'Techniques and abbreviations are described in the methods section.

2The Runtime Factor is the magnitude of the most frequent runtime on our datasets with 10,000 points, 20

individual spectra and 2 or 10 components. The time factor values should be only used for context; see

"Algorithm run times" in the discussion section for additional commentary on these values.

3 The algorithm contains internal normalization resulting in identical results regardless of normalization type.
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Technique

FastICA

SIMPLISMA-offset12

SIMPLISMA-offset8

NNMF-nndsvd

NNMF-nndsvdar

SIMPLISMA-offsetl 5

SIMPLISMA-offset2

NNMF-nndsvda

NNMF-random

SIMPLISMA-offset0

PARAFAC-random

TGA

VCA

JADE

MCR-NNLS-random

MCR-AR-Gauss

MCR-AR-Gauss-random

MILCA-lars

MILCA-cd

MCR-NNLS

MCR-ALS-random

MCR-ALS

Truncated SVD-randomized

PARAFAC-svd

Truncated SVD-arpack

MCR-AR-Ridge-random

PCA

MCR-AR-Ridge

Incremental PCA
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Figure 2. The minimum, maximum and mean of the mean squared errors from the inversion and

nutation datasets plotted on a logarithmic scale base 10. The methods are arranged in the order from

Table 1. The nutation dataset (plotted on top) is slightly transparent so that the underlying inversion

dataset can be seen as well. In general, the nutation data spans a smaller range of errors and

contributes a lower mean.

The number of components in a dataset can be challenging to determine. There are methods and

techniques for estimating the number of components in a dataset, and although we do not use or

benchmark these techniques, our study does provide insight into changes in accuracy due to

predicting excess components. Table 2 summarizes the change in mean squared error relative to an

exact number of components as additional components are predicted. Since our quantification of

performance only determines the accuracy for the best matching components, values close to 1

indicate that predicting additional components does not degrade the accuracy of the previously

predicted components. Increased values over 1 indicate that intensity relating to pure components

must be mixed or separated into additional components which are discarded. Occasionally,

PARAFAC and MCR with the gaussian setting were unable to converge to a solution and did not

predict a component.

Table 2. Fractional increase in relative mean squared error with the prediction of additional components

in the synthetic Dataset.

Technique Exact + 1 + 2 + 3 + 4

VCA 1 0.96 0.95 0.96 0.96
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MCR-NNLS 1 0.96 0.99 1.00 0.98

PCA 1 1.00 1.00 1.00 1.00

Incremental PCA 1 1.00 1.00 1.00 1.00

Sparse PCA 1 1 1 1 1

TGA 1 1 1 1 1

PARAFAC 1 1.01 1.02 1.01 1.01

JADE 1 1.02 1.02 1.02 1.04

NNMF 1 1.00 1.01 1.04 1.04

MCR-AR-Ridge 1 1.04 1.07 1.07 1.09

MCR-AR-Gauss 1 1.24 1.06 1.14 1.11

MCR-ALS 1 0.99 1.04 1.18 1.11

Truncated SVD 1 1.01 1.02 1.03 1.14

MCR-ALS-random 1 1.14 1.24 1.27 1.27

MCR-NNLS-random 1 1.17 1.19 1.29 1.38

SVD 1 1.37 1.42 1.44 1.46

MCR-AR-Gauss-random 1 1.20 1.25 1.36 1.61

SOBI 1 1.42 1.57 1.64 1.67

MILCA 1 1.25 1.52 1.77 1.97

SIMPLISMA 1 1.91 2.39 2.65 2.84

FastICA 1 1.72 2.39 3.27 3.40

Sub techniques are grouped together with the exception of MCR. MCR demonstrated varied results depending

on the sub technique.

Our dataset can be separated into six groups of increasing noise level. We report the mean of the

mean squared error for each general technique for predictions at the exact number of components as

the noise level increases in Table 3, and present this information graphically in Figure 3. The best six

techniques appear to show stable to mildly decreasing performance despite the increasing noise level.

Table 3. The mean of mean squared errors for each technique at increasing noise level.

Noise Factor

Technique' 0 0.0001 0.000178 0.000316 0.000562 0.001

FastICA 0.0 0.1 0.2 0.4 0.3 0.3

SIMPLISMA 0.2 0.3 0.3 0.5 0.4 0.4

NNMF 0.7 0.2 0.3 0.4 0.3 0.4

TGA 0.4 0.4 0.4 0.5 0.4 0.5

VCA 0.5 0.5 0.3 0.4 0.4 0.6

JADE 0.5 0.4 0.4 0.4 0.4 0.6

MILCA 0.2 0.6 0.3 0.6 0.5 0.8

PARAFAC 0.4 0.6 0.5 0.6 0.5 1.0

MCR2 0.9 0.6 0.5 0.6 0.6 0.7

Truncated SVD 0.5 0.7 0.7 0.8 0.6 1.4

PCA 0.5 0.7 0.7 0.8 0.6 1.5

Incremental PCA 0.5 0.7 0.7 0.8 0.7 1.5

Sobi 0.5 0.9 0.9 0.9 1.0 1.1

Sparse PCA 0.8 0.9 0.9 0.8 0.9 1.1

SVD 2.3 0.8 0.7 0.9 0.7 1.1

Noise factor is further explained in the methods section and represents a value multiplied to Gaussian noise

added to the spectra. 'Techniques are ordered by the mean of the mean squared error at all noise levels, which

is equal to the value listed in table 1, No Normalization. 2The MCR gaussian approach is excluded from this
summary.
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Figure 3. The performance of each technique with increasing noise. The top six best preforming

techniques are detailed in the lower plot. Only "no normalization" values are plotted. Sub techniques
(such as the various offset values for SIMPLISMA) were averaged together. The plotted values relate
to those from Table 3.

3.2. Results from experimental datasets

3.2.1. Performance on real 1F1 MAS NMR Ti datasets

We applied our benchmarked techniques to real solid state 1H MAS NMR Ti spectral datasets

result from mixtures of two chemical species. High-quality spectra of isolated molecules were

collected for comparison. We applied the blind source separation techniques and then used our same

appraisal method used on the synthetic datasets. Figure 4 and 5, depict the dataset and the most

accurate prediction. It should be noted that possible differential spin-spin relaxation times (T2)

between the various chemical species would need to be addressed to provide accurate quantification

of the relative concentrations of the components in the mixture. This can be done by obtaining NMR

spectra for different Hahn echo times (2t), determining the concentration of each component in the

mixture, and then back extrapolating to obtain the T = 0 concentration. While this was not performed

in the present analysis, collecting additional spectra and using the predicted components could be

quickly performed to produce accurate quantification the chemical species concentrations. Table 4

ranks the techniques as they performed on the two 1H MAS NMR Ti datasets and visualizes the

ranking in terms of relative mean squared error.
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Alanine-Phenylalanine

+I NMR T1 Dataset

6 of 32 total spectra
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Figure 4. The II-IMAS NMR inversion recovery Ti dataset containing alanine and approximately 20%

phenylalanine. The most accurate prediction of the tested techniques was MCR-AR using ridge

regression, and overpredicting 2 excess components. The pure component of phenylalanine and

alanine are drawn on the right in red. The predicted components are superimposed over the pure

components. If the prediction were perfect, no red would be visible. The excess predicted components

contain no intensity in the pictured window, but appear to fit minor differences in baseline at the

edges of the data.

Alanine-Tyrosine

1 1-I NMR Ti Dataset

6 of 32 total spectra
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Figure 5. A figure of the 1I-1 MAS NMR inversion recovery Ti dataset containing alanine and a small

fraction of tyrosine. The most accurate prediction of the tested techniques was SIMPLISMA, which

picture on the left. The pure component of tyrosine and alanine are drawn on the right in red. The

predicted components are superimposed over the pure components. If the prediction were perfect,

no red would be visible.

Table 4. Mean of the mean squared error for each technique applied to both real 1H MAS NMR

datasets.

i
-10
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Technique
Relative Mean
Squared Error

SIMPLISMA-offset2 1.0
NNMF-nndsvd 4.3
NNMF-random 6.0

MCR-NNLS 6.9
NNMF-nndsvdar 7.2

PARAFAC-random 7.6
NNMF-nndsvda 8.3

SIMPLISMA-offset0 8.5
MCR-AR-Gauss 9.1

VCA 9.6
MCR-AR-Ridge-random 9.9
SIMPLISMA-offsetl5 11.7
SIMPLISMA-offset8 11.8
SIMPLISMA-offsetl2 13.1

Incremental PCA 14.0
PCA 14.0

FastICA 14.1

Sparse PCA-cd 14.3

Sparse PCA-lars 14.3

Truncated SVD-arpack 14.3

Truncated SVD-randomized 14.3

PARAFAC-svd 14.3

MCR-AR-Gauss-random 15.6
MILCA-cd 16.9
MILCA-lars 16.9

TGA 19.4
MCR-AR-Ridge 22.0

MCR-ALS-random 22.0

MCR-ALS 22.0
SVD 22.0

MCR-NNLS-random 22.5

SOBI 28.1
JADE 37.9

0 10 20 30 40

1111111

-11

Mean squared errors are normalized relative to the best technique. Mean squared errors are the sum of the best

prediction from each technique.

Several blind source techniques produced very accurate predictions, which are colored blue in

the table and comprise approximately 1/3 of the tested techniques. There is a grouping of techniques

that demonstrate midrange performance and a later grouping of poorly performing techniques.

Despite the relatively good performance of some techniques, there are still some minor

differences across the pure and predicted components, as visible by the red lines in figures 4 and 5.

3.2.2. 27A1 NMR nutation dataset

Determining the best technique and most accurate predicted components can be challenging

when working in largely unknown systems. To demonstrate the realistic challenges and potential

value and limits of using blind source separation on datasets without a known answer, we applied

the best techniques to a solid-state aluminum 27A1 NMR dataset of solid-state lasing rod material

Thulium (Tm3±) doped yttrium aluminum garnet, which presents overlapping paramagnetically
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shifted A106 and A104 peaks. 27A1 is a quadrupolar nuclei (spin I = 5/2) with the magnitude of the

quadrupolar interaction depending on the local bonding environments of the Al (A104, A105, A106

etc). When this material is not paramagnetic, the spectra are easy to interpret, with two clear

resonances relating to an A104 coordination environment and an A106 environment. The addition of

Tm3+ (paramagnetic with 2 unpaired electron spins) to the material shifts peak intensity from its

diamagnetic isotopic chemical shift, resulting in peak broadening and the appearance of additional

peaks. This nutation NMR dataset was originally used to identify the location of paramagnetically

shifted peaks related to the A106 site, but clear identification of shifted A104 peaks was unobtainable.

The dataset contains at least 2 components, one related to the A106 site, and the other to the A104 site,

both with multiple peaks and sidebands overlapping in the region studied. Additional components

could originate from differences between the central and satellite quadrupole transitions, or due to

the distribution and local structure of doping lanthanide metal.

27A1 NMR Nutaiton Dataset
0.9% Tm Yttrium Aluminum Garnet

All spectra

A

A2

B1

B2
_.--....,..........________,.

.._______y-----, 
B3

Predicted Components

Bulk Bulk
Simulation Simulation

A10, AlOs

100 50 0 -50 100 50 0 -50 100 50 0 -50

Figure 6. The 27A1 NMR nutation spectra from [29], and predicted components. All 10 spectra are
depicted on the left side. Examples of predicted components are depicted on the right side, as well as
a simulation of the bulk sample (resulting from the majority of Al cations, which are structurally

distant to the paramagnetic dopants but still show some paramagnetic broadening and shift). The
letters refer to Table 5, and indicate which techniques produce components that qualitatively resemble
these examples.

Table 5. A summary of common components predicted from the 27A1 NMR nutation dataset

Technique

1 predicted

component

2 predicted

components

3 predicted

components

FastICA A A, B2 A, B2, D

JADE A A, A A, A2, B1

MCR-AR-Ridge-random A-t A-t, B2-t A-t, B1-t, noise

MCR-NNLS-random A-t A-t, A-t A-t, A-t, B1-t

NNMF-nndsvd A A, B1 A, B1, B,1

NNMF-nndsvda A artifacts A2, B1-t, B1-t

NNMF-nndsvdar A A, B1 A1, B1, B1

NNMF-random A A, B1 A2, B1, B2

PARAFAC-random A A, A-B mixed A, A2, A2

SIMPLISMA-offset0 A A, B3 A, B2, E
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SIMPLISMA-offsetl2 A A, A2 A, B1, C

SIMPLISMA-offsetl5 A2 A, A A, A2, D

SIMPLISMA-offset2 A A, B3 A2, A2, E

SIMPLISMA-offset8 A A, A A2, A2, E

TGA A A, B2 A, B2, D

VCA A B2, B2 A2, B2, C

Refer to Figure 6 for a depiction of the predicted components. "-t" indicates truncated baselines or peaks of
components. "noise indicates a component with no discernable peaks or features. "artifacts" indicates a

component with large single-pixel spike-like artifacts.

The top two predicted components, A and B, are related to the A106 site and the A104 site

respectively. The A peak and A2 peak are substantially similar with the exception of the small peak

(marked with a $ in Figure 6). The agreement of these two features and the prevalence of an A-like

features from each method gives strong evidence that the many peaks in A originate from the same

component. The disagreement between the two components indicates that the inclusion of the $ peak

as an A106 feature is uncertain. If the origin of the $ peak was chemically important, a similar study

to this one at a different spinning speed, higher magnetic field, different sample temperature, or by

incorporating a wider spectrum window would likely confirm which pure component (A or A2) is

most accurate. The identification of the B component highlights the usefulness of blind source

separation. The input data (the experimental 27A1 NMR Nutation Dataset in Figure 6) was

intentionally collected to minimize the A104 feature, and is difficult, near impossible, to visually

identify in the dataset. Furthermore, the left-most peak appears to be a combination of two peaks

with identical peak width (marked in figure 6 with a filled and hollow diamond, OM, one of which

can be easily produced by broadening the A104 at its expected location, and a neighboring peak which

could be explained by a small paramagnetic shift. The similar location of the $ peak in component A,

and the expected A104 peak (0) adds to the uncertainty. A common inaccuracy in blind source

separation is the mixing of pure components, an example of which is visible in the B3 and marked

with a •. The C D and E components hint at the possibility of additional paramagnetic shifts that

were unidentified in the original study. C, D and E also indicate the limits of blind source separation.

With the given dataset size, quality of the spectra, and the inconsistency of the C, D and E predictions,

the accuracy of these later components should be view with skepticism. The C, D and E predictions

do suggest possible peaks that could be investigated and confirmed or ruled out using additional

data, interpretation, and chemical constraints.

When attempting to interpret a large number of predicted components (96 total: 16 methods and

1, 2 and 3 components), we found it useful to first group the predictions into visually similar groups.

Naming the components and creating the table and figure while interpreting the results was useful

in interpreting and understanding the results. If we were studying the material and spectra above,

the next steps would be to use traditional peak modeling and fitting constrained by reasonable

quadrupolar parameters, incorporating both the blind source separation results and the original

spectra to produce a model. Resonances visible in some of the predicted components, such as B, C

and D, could likely be ruled out or assigned chemical meaning by collecting an additional dataset at

a higher magnetic field, different radio frequency nutation field, or at a different spinning speed.

3.3. Computational performance of our testing framework

Using the functions modified from ssNake [27], generating and saving 32,000 unique pure

components took less than 5 core hours @ 3.7 GHz, considerably faster than other NMR peak

modeling techniques we have used in the past. Generating mixture datasets from pure components

took -2 core minutes @ 3.7 GHz for -400 mixture spectra. Testing the blind source separation

techniques on our X datasets, containing a total of Y spectra took -6000 core hours @ 3.7 GHz (3 weeks

X 7 days X 24 hr X 12 cores). Creating the optimized matched ensembles of pure to predicted

components took -1000 core hours @ 3.7 GHz, the majority of the time spent on the mixtures with 7,

8, 9 and 10 pure components.
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4. Discussion

4.1. General performance

The mean of the mean squared error of all the blind source techniques explored are within 1

order of magnitude of each other and indicates that the most accurate technique is FastICA. However,

the relatively similar mean squared errors stresses that including other performance metrics (e.g.,

minimum and variance of mean squared error) when selecting the best technique is important.

SIMPLISMA has the capacity to produce remarkably exact pure components, as evident in Figure 2

and demonstrated in Figure 5. NNMF also stands out as a good technique in this regard. MILCA, a

technique that otherwise does not seem particularly noteworthy, also produced accurate predicted

components. As noise level increases, FastICA, SIMPLISMA, and NNMF again show the best

performance. Under conditions of overprediction, where too many components were used during

prediction, about half of the techniques (VCA, MCR-NNLS, PCA, Incremental PCA, Sparse PCA,

TGA, PARAFAC, JADE, and NNMF) show stable performance. Caution should be used when

employing the other techniques in systems where the number of pure components cannot be

independently determined. On our small real data test set, SIMPLISMA, NNMF, MCR and

PARAFAC performed well. Overall, our characterization of performance supports FastICA,

SIMPLISMA, and NNMF as top-performing blind source prediction techniques.

Including the MCR-AR-Gauss method set an intriguing point of comparison. The method

creates a single Gaussian peak per component, but within these constraints, it does a good job of

minimizing the total error. When included peaks are not Gaussian (i.e. 2nd order quadrupolar line

shape), resulting predictions can be comically wrong (a Gaussian peak fit to a quadrupolar peak) but

the resulting errors are often competitive to the other blind source separation techniques. This seems

to imply that techniques with similar or higher mean squared errors are performing poorly.

Assessing technique performance on the inversion and nutation dataset supports a similar

ranking scheme to the synthetic dataset. The nutation dataset revealed superior algorithm

performance. This can be explained by the larger variation between the intensity of the different

components, a product of the dataset's construction. This serves as a good reminder that the larger

the variation between the individual components, the higher the likelihood of being able to identify

individual components.

Common errors encountered in predicted components include mixed pure components and

splitting of components. Mixed pure components consist of two or more pure components

represented in a predicted component, often with opposite sign. An example of this effect is visible

in Figure 4, where the large peak of alanine results in a small reduction of tyrosine's intensity. Split

components occur when the combination of multiple predicted components is needed to produce a

single pure component. This error seemed less common in the synthetic dataset than we anticipated,

but was most frequently encountered when overpredicting components with the lower-ranked

techniques of Table 2.

These techniques, although tested on data representative of NMR results, should be expected to

transfer well to other spectroscopy datasets containing negative components, and we suspect that

much of this is relevant to exclusively positive spectra. Our synthetic datasets containing

quadrupolar peaks should be directly transferable to error analysis Gaussian peaks datasets, with the

exception of the MCR-AR-Gauss methods, that we expect to demonstrate improved performance.

4.1.1. Performance relative to dataset normalization

The influence of normalization type, displayed in Table 1, can be useful in determining a choice

of normalization. A large difference in the mean squared error between normalization types implies

that the choice of normalization is important, whereas a small difference implies that this selection is

unimportant. Several techniques, such as TGA, JADE, MILCA, Incremental PCA, Sparse PCA, and

SVD, are not influenced by external normalization as they incorporate normalization within the

algorithm. Our datasets are also constructed such that most spectra have related and somewhat

similar intensity as is likely experienced when working with real datasets. We grouped techniques
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that were influenced by normalization into three categories, moderately influenced, minimally

influenced, and negligibly influenced.

In general, our synthetic results seem to indicate that no normalization should be applied to the

input data. SIMPLISMA is moderately influenced by normalization, and the best performance

originates from the dataset without normalization. MCR is moderately to minimally influenced by

normalization. However, the selection of normalization varies. When using ridge regression (MCR-

AR-Ridge), a peak area normalization results in the lowest mean squared error and alternating least

squares (MCR-ALS) prefers no normalization. MCR-AR-Gauss and MCR-NNLS methods do not

have a consistent choice and are split between no normalization and normalization on by peak

maximum. FastICA, PARAFAC-random, NNMF, VCA, and SOBI are minimally influenced by

normalization type. PCA and NNMF-nndsvdar, NNMF-nndsvd, truncated SVD methods, and

PARAFAC-svd are so minimally influenced by normalization, that the choice of normalization is

unimportant. This finding is an expected outcome from the mathematical construction of PCA or the

incorporation of SVD initialization. We were expecting drastic differences in terms of normalization

from our personal experience in applying blind source separation techniques; however, on average,

our study does not support this. These values may be useful in future studies as an initial hypothesis

for determining the statistical significance of normalization results.

4.1.2. Overprediction of components

The correct number of components to predict can be challenging to determine in fully unknown

systems. Table 2 gives some indication as to the risk and algorithm response when incorrectly

choosing the number of components. It is desirable that when predicting excess (unreal) components,

the previously predicted real components will not be degraded or changed. The majority of the

techniques perform considerably well at maintaining accurate predictions when predicting excess

components. It is important to remember that our approach for appraising the accuracy of a technique

will discard predicted components which result in poor matches when there are excess predictions.

Meaningful implementation of table Ts results in unknown systems requires that the human user

can identify and discard excess components when using these techniques.

As the number of components predicted increases beyond the real number of components, VCA,

MCR-NNLS, PCA, Incremental PCA, Sparse PCA, TGA do not degrade the accuracy of previously

predicted components. Overprediction with these techniques does not have any additional

drawbacks besides having excess components. Spectroscopists familiar with their systems can often

identify excess components that are unrealistic and discard them from their analysis. The overall

quality of predicted components is minimally degraded when overpredicting with PARAFAC, JADE,

NNMF. MCR-AR-Ridge, MCR-AR-Gauss, MCR-ALS, and Truncated SVD show some disadvantage

when overpredicting, and SOBI, MCR approaches using random initialization conditions, MILCA,

and SVD result in poorer quality fits when predicting too many components. The top two techniques

in terms of accuracy, FastICA and SIMPLISMA, perform poorly when overpredicting additional

components.

In our experience, when working with real datasets, predicting additional components can often

be useful, as "rear components are often unintentionally preset in the datasets. Examples of

unintentional components include components that correct for inaccuracies in phasing or

background signal, which reproducibly originate from the spectrometer. When using FastICA,

SIMPLISMA, SOBI, MILCA, SVD, or MCR, practitioners should be wary about overpredicting

components. The alanine-phenylalanine dataset presents an example of advantageous

overprediction. Minor differences in baseline correction at the edges of the spectral window (and not

pictured in Figure 4) were fit with excess predicted components, and the pure components were

predicted most accurately. These two excess components are flat in the chemically relevant region of

the spectra and would be easy for a human user to exclude from further analysis.

4.1.3. Experimental Results
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The experimental results seem to agree with our synthetic benchmarks. Figures 4 and 5 indicate

how accurate and potentially useful blind source separation can be, and show great performance for

using the approach on NMR datasets with negative intensity. The close match on the central peaks

as well as the spinning sidebands illustrate the effectiveness of blind source techniques at separating

large and small related components.

The ranking produced on the two experimental datasets is similar to the ranking produced on

the synthetic dataset. JADE and TGA are an exception to the similar performance, as they perform

poorly and drop significantly in ranking. The synthetic dataset ranking is based on the averaging

values, and as indicated in Figure 2, bad results from even the best techniques are expected some of

the time. A fundamental challenge when using blind source separation techniques is determining if

a good approach is producing unreasonable results.

The results in Table 4 may have implications for blind source separation practitioners. On only

two very similar datasets, the techniques' performance varied widely. Great accuracy was produced

in some cases with dismal performance in others. The variety of results seems to indicate that for a

given dataset, it is likely that some technique will outperform the others. This implies that the

traditional chemometric approach of using the results from only one or two algorithms misses the

opportunity to identify much more accurate predictions. Broader consideration of the results from

an ensemble of techniques for each dataset has the potential of connecting users with useful insight.

With the 27A1 NMR nutation dataset, we used multiple blind source separation techniques to

begin to build an interpretation of the data. This approach produces many predicted components for

the user to interpret but does provide information that is unrealistic to decern directly from the

dataset. Incorporating other chemical insight, such as physical constraints from the chemical system,

as well as other modeling techniques and NMR peak fitting, could likely help identify which of the

predicted components are most reasonable.

4.2. Recommended techniques for matrix initialization

Initializing a starting matrix, especially when the number of components is not known, VCA

appears to be an ideal choice. If the number of components is known exactly, FastICA and

SIMPLISMA are better alternatives, and when the real number of components is not known, TGA or

JADE appear to be acceptable alternatives to VCA. Typically, if a blind source separation practitioner

is initializing a matrix, the number of components is likely not known. VCA, TGA, and JADE have

comparable accuracy on the synthetic dataset, run times within the same order of magnitude on

datasets our size, and maintain the accuracy of predicted components when overpredicting.

In other fields, the standard choice for matrix initialization is SVD (as we use in this study for

initializing several techniques), but our work seems to indicate that this is not an advantageous choice

for NMR-like data. There is some precedent for alternative initialization techniques for NMR spectra;

Cherni et al. use the work of Toumi et al. to motivate the choice of JADE for initializing the starting

matrix [18,20]. Although we also recommend JADE, an interesting drawback of JADE is its reliance

on a SVD initialization, which for large datasets, can result in considerably slow performance. A

directed study on matrix initialization for NMR datasets would be useful to confirm the VCA

recommendation our data seems to support.

4.3. Recommendations for collecting datasets

While inspecting the synthetic and real datasets, we noticed that spectra near the inflection from

negative to positive signal intensity often contained the largest degree of variance between

components. Larger variance between components is typically advantageous for blind source

separation techniques. This implies that the data near the inflection point is valuable for the

separation, and when collecting data, additional or higher quality data close to the inversion point

may be useful for increasing the accuracy of the predicted components.

4.4. Drawbacks of the present study
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In our effort to understand the influence of noise on the techniques, we included synthetic

datasets without any noise. Although most techniques applied to the no-noise spectra present a trend

that agrees with increasing noise, MCR and SVD appear to have a particular challenge when working

with no-noise datasets and the no-noise datasets somewhat unfairly skew their overall performance.

Since no-noise datasets are unrealistic in the real-world settings, we recommend no-noise datasets be

avoided in future work benchmarking techniques for application to spectroscopic data.

Additionally, we used only Gaussian noise, which does not reflect the full range of complications

experienced in real-life experimental applications. Real applications do frequently include substantial

Gaussian noise, but also many other issues such as baseline correction artifacts, phasing, acoustic

probe ringing, digital filtering anomalies, and background signals. Future studies with an expanded

amount of noise and additional types of noise would be useful.

Our experimental NMR test datasets contain only 2 (or likely 2) pure components. Although this

enables a simple demonstration of blind source separation to negative intensity NMR spectra, it is

somewhat removed from applications where blind source separation is needed: datasets with a large

number of components that are challenging to address using more traditional spectroscopic and

analysis techniques.

4.5. Algorithm run times

Although we reported a rough run time speed for each blind source separation technique,

runtime is a nuanced characteristic. First and foremost, due to the relatively small volume of NMR

data (often dictated by spectrometer time and the expense of samples), only in exceptional cases

should the run time of the algorithms be an important practical consideration. Slower techniques are

still sufficiently fast when dealing with a single experimental dataset. However, slow run time

techniques do limit the ability of a scientist to check and optimize hyperparameters (such as the

number of components or choice of spectra normalization), and limit rapid, hands-on, iterative

testing which can be useful in helping the user understand the dataset and algorithm. The run time

of matrix decomposition algorithms may not be transferable to other matrices, as discussed in Halko

et al., as the properties of a matrix can vary greatly, and some matrix decomposition techniques are

strongly influenced by the starting matrix [16].

Slow algorithms are limiting for benchmark studies. Several blind source separation techniques

which we intended to report on became prohibitively expensive in terms of CPU time to benchmark

on the large number of test spectra we used. This includes an alternative robust PCA approach,

RADICAL (Robust, Accurate, Direct ICA aLgorithm), and Kernel PCA. Some of the algorithms we

used would have been unrealistic for our project if the spectra contained additional points. In a few

exploratory test cases, we tested larger synthetic spectra (c.a. 160,000 points instead of 10,000 or 1024),

and did not notice a significant decline in algorithm accuracy, although the runtimes were

substantially longer. Further work addressing the performance of windowed (cropped) spectra vs.

large sweep widths would likely be useful for blind source separation practitioners. Other techniques

that we were interested in benchmarking became prohibitively expensive in terms of the coding time

needed to implement them. In a few cases, reproducibility of recently published algorithms for which

source code was not provided was complicated by sparse methodical descriptions, unresponsiveness

when contacted, or lost research materials.

4.6. Our benchmarking framework

The method we used for matching predicted components to pure components has several

drawbacks. The combinatoric matching approach works well for a small number of components (1-

6 or so), but as the number of components increases, the combinations that need to be considered

grows exponentially. In its unmodified form, benchmarking datasets with more than 15 pure

components become computationally unfeasible, and benchmarking datasets with more than 6 pure

components can take considerable time (-2 or more hours). Determining goodness of fit using the

lack-of-fit sum of squares seems to provide meaningful insight. However, it could discredit a possible

match in a few realistic settings. For instance, a nearly perfect predicted component with a few
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extreme-valued points resulted in a large squared error to a pure component despite an otherwise

close match. While not present in our dataset, datasets with extreme artifacts or large amounts of

noise could produce these. More importantly, a human can easily identify these few points as

erroneous, something our method could not do.

While our matched ensemble approach is unable to perform well under the above circumstances,

it maintains some advantage over human appraisal. Our method for benchmarking techniques is

entirely blind to predicted components containing contributions from two or more pure components.

If predicted components contain aspects of two pure components, one of these pure components is

lost entirely, and its contributions are counted as error. In reality, an observant scientist could infer

extra meaning from such a predicted component, where negative (subtractive) features associated

with a positive feature implies an inverse correlation, and two positive features imply correlation. In

our experience, this additional insight can be valuable in real settings, and this extra information can

be incorporated into a final model. When considering settings which have predicted too few, or too

many components, our matched ensemble approach is unable to meaningfully incorporate this

information as it discards extra unused predicted components, and does not account for errors

resulting from too few components. In contrast to these disadvantages, our matched ensemble

approach is very accurate at determining the best ensemble match, and is not confused or deluded

by predicted components that appear to be significant but are the products of noise or overlaps

(which can create realistic looking peaks that have no meaning).

5. Conclusions

FastICA, SIMPLISMA, and NNMF all have several desirable characteristics that support a

recommendation as top choice techniques for blind source separation on NMR spectral datasets

containing negative intensity. We arrived at this recommendation after testing 15 different blind

source separation algorithms, some of which contained an opportunity for additional settings,

resulting in 33 total techniques tested. We benchmarked these techniques on two large datasets of

synthetically generated NMR spectra representing Ti inversion or nutation experiments. The mean

accuracy of the most accurate technique and of the least accurate technique are within one order of

magnitude, implying similar performance on average. The techniques also show wide variation in

accuracy. SIMPLISMA and NNMF have the potential of predicting the most accurate pure

components. Poor performance of FastICA and SIMPLISMA is expected if additional components

beyond the correct number of pure components are employed during prediction.

Because of the variation of techniques on synthetic NMR datasets and the results from our

application of the techniques to experimental NMR data, we recommend incorporating predictions

from multiple blind source separation techniques. Using multiple techniques has the potential of

connecting the user with a more accurate prediction than an approach that considers only a single

technique. Due to the similar appearance and related qualities of NMR data to other spectroscopic

techniques, we anticipate the conclusions in this paper to extend to analysis of data originating from

other spectroscopic methods.

Key recommendations for blind source separation practitioners working with NMR Ti inversion

or nutation data:

• FastICA, SIMPLISMA, and NNMF are top choice techniques.

• A comparison of predicted components from multiple techniques applied to the same dataset

may be useful in identifying the best predicted components.
• Normalizing the input dataset is likely not necessary.

• SVD preforms poorly. To initialize starting matrices, a more accurate alternative to SVD may

result in lower errors. We recommend FastICA or SIMPLISMA when there is a clear

expectation of pure components within a dataset, or VCA for a less accurate but more reliable

approach.
• Collecting data clustered around the positive-negative spectral intensity inversion point may

help increase accuracy.
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Key Terms and Abbreviations

Pure component (The XY data from a single source, it is the signal of a single compound from the

samples of interest)

Predicted component (An algorithm's estimation of the pure component)

Mixture spectra (Sets of X, Y data which contain a contribution from one or more pure components

+ noise)

Dataset (A collection of mixture spectra which are thought to share similar features)

Algorithm (any computational method which receives input data and returns an outcome)

Technique (the application of an algorithm to data, where the user must select options (such as: what

data, algorithm-specific settings, and if the results are valid))

Blind Source

BSS

ICA

JADE

MCR

MILCA

NN

NNMF

PARAFAC

PCA

SIMPLISMA

SOBI

SVD

TGA

VCA

Separation Acronyms:

Blind Source Separation

Independent Component Analysis

Joint Approximate Diagonalization of Eigenmatrices

Multivariate Curve Resolution

Mutual Information Least dependent Component Analysis

Naanaa and Nuzillard method

Non-Negative Matrix Factorization

Parallel Factor Analysis

Principal Component Analysis

SIMPLe-to-use-Interactive Self-modeling Mixture Analysis

Second Order Blind Identification

Singular Value Decomposition

Trimmed Grassmann Average, a PCA variation

Vertex Component Analysis

Sub-technique Acronyms:

ALS

AR

ARPACK

cd

Alternating Least Squares

Alternating Regression

ARnoldi PACKage, a fortran software package

Coordinate Decent method
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lars Least Angle Regression

nndsvd Non-Negative Double Singular Value Decomposition

nndsvda nndsvd with zero values replaced with the average point value of the input dataset

nndsvdar nndsvd with zero values replaced with small random values

NNLS Non-Negative Least Squares

NMR Acronyms:

NMR Nuclear Magnetic Resonance

CP/MAS Cross-Polarization Magic Angle Spinning, an NMR technique

TOCSY-ti TOtal Correlation SpectroscopY
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