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ABSTRACT

We present GALINI, an open source solver for nonconvex mixed-integer
quadratically-constrained quadratic programs formulated with the Python algebraic
modeling library Pyomo. GALINI uses Pyomo to represent optimization problems
and leverages the existing library ecosystem to implement different parts of the
solver. GALINI includes a generic branch & bound algorithm that can be use de-
velop new solvers. The GALINI branch & cut algorithm can be extended at runtime
with new: (i) cutting planes, (ii) branching strategies, (iii) node selection strategies,
(iv) primal heuristics, and (v) relaxations. We present computational studies to show
GALINI performs comparably to existing open source solvers.

KEYWORDS
mixed-integer nonlinear optimization; solver software; deterministic global
optimization; cutting planes

1. Introduction

GALINI is a new solver for nonconvex Mixed-Integer Quadratically Constrained
Quadratic Problems (MIQCQP) [18, 23, 33] that is easy to extend. This paper
describes GALINT version 1.0.0. GALINI is available through a permissive license
(Apache 2.0) at https://github.com/cog-imperial/galini and can be installed
using pip install galini. GALINI solves problems in the form:

min acTQo:c + agx
€T

st. Ol <2TQux + e < CV Vie{l,...,M}
x c {RY, 71}

where Qg is the matrix of quadratic objective coefficients, @); the matrix of quadratic
constraint ¢ coefficients, ag the vector of linear objective coefficients, a; the vector
of linear constraint i coefficients, CiL € {R, —oo} the constraint i lower bound, and
CY € {R, +oo} the constraint i upper bound. We assume the N = C'+1 variables x are
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Table 1. Notation used to develop the GALINI solver

Symbol Description

SN {RC 21}

C, I Number of continuous (C) and integer (I) variables

N Total number of variables, N = C + I

M Number of constraints

x € SN A vector of variables

T; The i-th element of x

xZL , :EEJ Lower and upper bound of x;

x Value of the linear relaxation solution

Wy Auxiliary variable representing x;x;

wy Auxiliary variable representing f(x)

Qo,Q;  Matrix of quadratic coefficients in the objective and i-th constraint
ag, a; Vector of linear coefficients in the objective and i-th constraint

CE cY  Lower and upper bound of the i-th constraint
el v Lower and upper bound of an expression f(x)
27, 2 Objective value of the best feasible (V) and best possible () solutions

bounded (z; € [zF,2V],2F # —o00, 2V # +00). If the user model contains unbounded
variables, GALINI will try to deduce variable bounds but, if GALINI cannot deduce
variable bounds, then GALINI may not converge. The base GALINT distribution does
not artificially impose bounds on unbounded variables, so there is no guarantee of
algorithm convergence if there are missing variable bounds. If a user-installed plug-
in artificially imposes variable bounds, GALINI may converge to a solution that is
feasible but not globally optimal.

We assume that all optimization problems minimize the objective function. GALINI
handles maximization problems internally by disabling the original objective function
f(x) and adding a new objective function — f (). The user only experiences interaction
with the original objective, but GALINI works with the modified objective function.

Applications of MIQCQP include: pooling problems [6, 7, 13, 70, 72] and crude oil
scheduling [26, 55, 57, 58] in petrochemicals, heat exchange networks in energy effi-
ciency, [38, 66, 67, 78], water distribution networks in environmental engineering [35,
36, 42, 51], and other engineering challenges [18, 23, 33, 44, 45|. Existing software ad-
dressing MIQCQP includes: aBB [5], «ECP [94], Alpine [75, 76], ANTIGONE [71, 73],
AOA [50], BARON [86], Bonmin [21], Couenne [16, 62], CPLEX [20], DICOPT [92],
EAGO [95], FiIMINT [2], Gurobi, Juniper [53], Knitro [25], LaGO [79], LINDOGlobal
[43, 60], MAINGO [22, 77], MILANO [19], MINLPbb [37], MINOTAUR [65], Mosek,
Muriqui [69], NOMAD [54], Octeract, Pajarito.jl [29] Pavito [29], SBB GAMS, SCIP
[3, 90] and SHOT [64]. Figure 1 illustrates a timeline of solver releases.

GALINT targets two types of users:

e Developers invent new algorithms or improve existing algorithms to solve
MIQCQP. Developers may be (i) algorithm developers who create specific solver
components, e.g. a new class of cutting planes, and (ii) solver developers who
engineer new solvers by combining different components together.

e End Users solve MIQCQP application instances.
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Figure 1. Timeline of Mixed-Integer Non Linear Problems (MINLP) solvers and when they were first released.
Solvers that appear in bold can solve nonconvex problems to global optimality.

All of the Figure 1 solvers target end users. SCIP and MINOTAUR additionally target
developers: SCIP provides a plug-in architecture and MINOTAUR provides a toolkit
to build new solvers. Unlike SCIP and MINOTAUR, GALINI is distributed as a stan-
dalone package that can be extended by loading new plug-ins at runtime. Solver de-
velopers can use GALINI as a solver toolkit similar to MINOTAUR, while algorithm
developers can extend GALINI dynamically without modifying the underlying solver.
The advantage of this approach is that end users can experiment with plug-ins devel-
oped by different developers and only need to install GALINT once.
GALINI can be used in two modes:

e The galini Python Package provides classes and functions for developing
optimization algorithms. It can also run GALINI as part of more complex scripts.

e The galini Command Line Tool solves optimization problems (defined as
Python or OSiL files) using GALINI. A configuration file may specify non-default
values for different GALINT options.

GALINI plug-ins can be developed without modifying GALINI source code and
can be distributed independently from GALINI. Users can decide which plug-ins to
install. Users can also decide which plug-ins to activate by updating the configuration
file passed to the GALINI command line tool. As Section 5.1 describes, plug-ins are
registered on the user machine using a system-wide registry of Python classes, also
known as entry points. The Section 5 branch & cut algorithm provides several extension
points: cutting planes, primal heuristic, node selection strategy, branching strategy,
and initial feasible solution search strategy.

2. GALINI Foundation

2.1. Ecosystem of Python libraries

GALINI builds on top of existing mixed-integer nonlinear optimization (MINLP) pack-
ages for Python, as shown in Figure 2.

e The Pyomo [46, 47] modeling library represents the optimization problem. Py-
omo also interfaces GALINI to the mixed-integer linear optimization (MIP) and
nonlinear optimization (NLP) solvers in a solver-independent way.
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Figure 2. GALINI sits on top of a solid ecosystem of Python libraries. GALINI uses Pyomo to represent
optimization problems, SUSPECT to find convexity information and perform bounds tightening, and Coramin
for bounds tightening and building relaxations. Linear and nonlinear problems are solved using the Pyomo
interface to existing MIP and NLP solvers. Solver developers can build algorithms on top of GALINI.

e Coramin [30] performs Optimization Based Bounds Tightening and computes
rigorous relaxations of the Pyomo model.

e SUSPECT 28] performs Feasibility Based Bounds Tightening (FBBT) and
computes convexity and monotonicity information.

e GALINTI is agnostic to MIP and NLP sub-solvers because of its integration with
Pyomo. For developers interested in a persistent NLP interface, our new Pyomo
solver pypopt! uses the Ipopt [93] C++ interface to access Ipopt directly.

2.2. Coramin € SUSPECT: Variable Bound Inference € Tightening

GALINTI uses Coramin for optimality-based bounds tightening (OBBT) [16]. OBBT is
expensive, so GALINI only uses it at the root node of the branch & bound tree.

GALINT uses the less expensive feasibility-based bounds tightening (FBBT) to reduce
variable bounds at the beginning of each node [16, 28, 40]. GALINT uses SUSPECT for
FBBT [28]. We're using SUSPECT 2.1.1 to infer variable bounds on quadratic terms
like q;x? + a;z; [31, 91, 89]. Because of computational expense, GALINI skips the
FBBT step on expressions with a large number of terms (fbbt_max_quadratic_size,
default = 100; fbbt_max_expr_arguments, default = 100).

If GALINI cannot infer a variable’s bounds, it maintains the bounds at infinity.
These infinite bounds are passed to third party solvers. The base GALINI code does
not impose artificial variable bounds, but user-installed plug-ins requiring bounded
variables may decide to use the user configurable constant infinity (see Section 3.1).

2.3. SUSPECT: Special Structure Detection

After FBBT at each node, GALINI detects convexity and monotonicity using SUS-
PECT. The resulting special structure information is accessible to all parts of the
Section 5 branch & cut algorithm. The convexity information is used, e.g. when com-
puting the convex relaxation. Time spent computing special structure is negligible
compared to FBBT, so GALINI recomputes special structure at every node without

Thttps://github.com/cog-imperial /pypopt



any code optimization.

2.4. Coramin: Convex Relaxations

GALINI uses Coramin? to include classes and functions that develop linear relaxations
from Pyomo models. Coramin is a Python package built on Pyomo which contains
functions and classes for developing global optimization algorithms. Coramin supports
the development of both branch & bound and multitree algorithms [18, 61]. Coramin
provides classes that form the building blocks for developing convex relaxations of
nonconvex Pyomo models. The goal of these classes is threefold:

(1) aid in the refinement of convex relaxations as algorithms proceed,

(2) provide a mechanism for developing custom relaxations for specific applications,

(3) provide building blocks for relaxing general Pyomo models through factorable
programming, i.e. the auxiliary variable method.

Coramin has classes for relaxations (overestimators and underestimators) of uni-
variate, convex or concave functions, e.g. natural logarithm, bilinear terms, and some
trigonometric functions. Although most, more complex, constraints can be relaxed us-
ing these building blocks through reformulation and factorable programming, Coramin
also has a class for generating aBB-based relaxations [5]. Finally, Coramin contains a
class for underestimators of convex, multivariate functions or overestimators of con-
cave, multivariate functions. These classes include methods for refining the relaxations
as variable bounds change, adding outer-approximation cuts for convex or concave
functions, and generating piecewise convex relaxations. These classes inherit from Py-
omo Blocks, allowing seamless integration into Pyomo models. These classes also have
explicit support for Pyomo’s persistent solver interfaces, providing an efficient mech-
anism for resolving models as relaxations are updated. Appendix A shows how these
Coramin classes can be used to build and refine convex relaxations.

3. GALINI Initialization & Pre-processing

3.1. The Solver Object

Since GALINI can be used in larger scripts, GALINI does not use global variables to
track the solver configuration. The GALINI package defines a Galini class with:

e A Current Configuration obtained by modifying the default configuration
with any end user’s configuration, e.g. any parameter changes from the default.
A Telemetry object to log information about the solving process, e.g. the time
spent solving relaxations.

A Logger passes textual information to the user.

The Time Limit remaining.

The mathematical constants Math Context used in the solving process.
Developers can activate the Paranoid Mode Flag for extra checks in GALINI.
This flag is turned off by default since it impacts performance.

The math context, which tracks constants that can be optionally changed by users,
is a property of the current Galini object instance and is passed as an argument to

2https://github.com/Coramin/Coramin



all numerical functions inside GALINI. The math context has the following constants:

e epsilon: a small quantity, defaults to 10~

e infinity: a large quantity, numbers greater than this constant are considered
00, defaults to 1020,

e constraint_violation_tol: absolute tolerance used to consider a constraint
violated.

We define as the relative difference d(a,b) between two numbers a and b:

|a — b|/ max{|al,|b|} ifa#0,b#0
d(a,b) = o0 if |a| = oo or |b] = o0 (1)
la —b|/e otherwise,

where € is the epsilon from the math context and 0 is defined as being within epsilon
from the math context.

3.2. GALINI Problem Representation

GALINT uses Pyomo [46, 47] expression types to represent operations. By default,
Pyomo represents models with a separate expression tree for each constraint and ob-
jective. GALINI provides a function to modify the Pyomo model so that common
sub-expressions are grouped together [28, 89, 91] to form a directed acyclic graph.

GALINT extends the Pyomo expression types to include a QuadraticExpression
type. The quadratic expression implementation is transparent to Pyomo; code that
does not know how to handle it will treat it as a SumExpression of bilinear terms.
In pre-processing, GALINI detects sums of bilinear terms and converts them to
QuadraticExpression. The quadratic expression type provides convenient methods
to get the bilinear terms and provides sparse representation in coordinate format.

4. Branch & Bound

GALINI implements generic BranchAndBoundAlgorithm that solver developers ex-
tend to implement concrete algorithms. Specifically, solver developers should subclass
this abstract class BranchAndBoundAlgorithm for their own implementations. For ex-
ample, the branch & cut algorithm described in Section 5 uses the branch & bound
classes described in this section to implement branch & cut. The classes and interfaces
BranchAndBoundAlgorithm uses are:

e Tree: the list of branch & bound nodes, together with information such as the
global best feasible solution and best possible objective.

e Node: contains node-specific NodeStorage and the node local feasible solution
(primal solution) and best possible objective (lower objective bound), if any.

e NodeStorage: contains algorithm-specific data, e.g. the Section 5 branch & cut
algorithm uses this storage to keep a pointer to the original user model, its linear
relaxation, and a list of cuts generated at a node [71, 74].

e BranchingStrategy: decides on which variable and at which point to branch.

e NodeSelectionStrategy: decides which node to visit next.



4.1. Lower-level classes of BranchAndBoundAlgorithm

Tree is the main class responsible for keeping track of the state of the branch &
bound algorithm. The tree is initialized by specifying the root node storage, branching
strategy, and node selection strategy.

The BranchingStrategy interface only requires implementing the branch(node,
tree) method. This method takes as input the current node and the branch & bound
tree, and returns one (or more) BranchingPoint. A branching point contains a variable
and a list of points where that variable will be branched. This implementation, which
allows simultaneously branching on multiple variables and at multiple points, helps
developers investigate wide (non binary) branching strategies [15, 56]. As of version
1.0.0, GALINTI supports branching on variables only.

The NodeSelectionStrategy interface has three methods:

e insert node(node): add a node to the list of nodes to visit,
e has nodes(): return true if the selection strategy has more nodes to be visited,
e next node(): return the next node to visit and remove it from the list to visit.

4.2. BranchAndBoundAlgorithm

Solver developers should extend the abstract BranchAndBoundAlgorithm class and
implement the following abstract methods:

e find initial solution(model, tree, node): called at the beginning of the
algorithm to try to find a feasible solution before visiting the root node.

e branching strategy: this property returns an instance of a class that imple-
ments the BranchingStrategy.

e node_selection_strategy: this property contains the node selection strategy.

e extra_config: this static property should return the algorithm-specific configu-
ration options.

e init node_storage(model): called to create and initialize the NodeStorage
used at the root node.

e solve problem at node(tree, node): called at each branch & bound node (ex-
cept at the root node), should return a primal feasible solution and the best
possible objective (objective lower bound) for the node, if any.

e solve problem at _root(tree, node): similar to solve_problem_at _node, but
called only at the root. Developers can use it for algorithm-specific initialization.

Listing 1 contains the definition of the BranchAndBoundAlgorithm class together
with a simplified version of the branch & bound algorithm to show how the seven
abstract methods that solver developers need to implement are used by the algorithm.

BranchAndBoundAlgorithm starts by creating the root node and setting the tree
state to have a lower objective bound of negative infinity and an upper objective
bound of positive infinity. The tree also initiates a solution pool of the best feasible
solutions found (bab.solution pool_size, default = 5). Finally, it adds the root node
to the tree. When a node is added to the tree, it is also added to the list of open nodes
and passed to the insert_node method of the node selection strategy.

The algorithm first visits the root with the solve_problem at root(tree,
node) method. For all other nodes, BranchAndBoundAlgorithm calls
solve_problem_at_node(tree, node). The concrete implementations of both
of these methods must return a NodeSolution, a class with two properties:



e lower_bound_solution: This object represents the solution of the lower bound-
ing problem, e.g. a MIP or LP relaxation. This solution object must contain
the solver status, e.g. optimal, infeasible, unbounded, and the solution objec-
tive value. In the concrete branch & cut implementation presented in Section 5,
GALINI uses the MIP dual value as the solution of the lower bounding problem.

e upper_bound_solution: This object represents a feasible solution to the origi-
nal optimization problem. This solution object must contain the solver status,
objective value, and solution point (as a dictionary that maps Pyomo variables
to their solution value).

After visiting the node, the branch & bound algorithm updates the tree lower
and upper bound, checks for convergence and, if it did not converge, branches us-
ing branching_strategy. Branching creates new children nodes and adds them to the
branch and bound tree. The algorithm then enters the branch and bound loop until
one of the termination conditions are met:

e Timeout: the solver run time is greater than the user-specified time limit.

¢ Maximum Number of Nodes Visited: the algorithm has visited more than
the maximum number of user-specified nodes (node_limit, default = 108).

e Convergence: the relative difference, i.e. the relative gap, between the tree best
possible solution and the tree best feasible solution is within the user-specified
convergence tolerance (relative gap, default = 107%), or the absolute differ-
ence between the two is within another user-specified tolerance (absolute_gap,
default = 1079).

The node_selection_strategy choses the next node to visit in the branch & bound
algorithm. The branch & bound Tree tracks the global state of the branch & bound
algorithm and has the following properties:

root: a reference to the root node,

solution_pool: a priority queue of the best feasible solutions,

open_nodes: a collection of the tree’s nodes that have not been visited yet,
fathomed nodes: a collection of the tree’s nodes that have been fathomed. Nodes
are fathomed when: (i) the node relaxation is infeasible, (ii) the node lower
objective bound is greater than the best known feasible solution, or (iii) the node
best possible solution (lower bound) is within the relative or absolute tolerance
of the tree global best feasible solution.

e state: the state of the tree contains the global best possible objective value and
the best feasible objective value, together with the number of nodes visited.

After visiting each node, BranchAndBoundAlgorithm updates the tree global best
possible objective value and best feasible objective value. The new best feasible ob-
jective value is the smallest of the existing best feasible objective values and the node
solution feasible solution objective value. The algorithm also uses the NodeSolution
feasible solution to update the solution pool. Then, the current node is removed from
the list of open nodes, and the tree global best possible solution is updated to the
best possible solution of all open nodes. An unvisited node best possible solution is its
parent’s best possible solution. GALINI 1.0.0 outputs the values of all the counters to
the rich logging system. Section 6 describes the rich logging system in more detail.

class BranchAndBoundAlgorithm:
@staticmethod
def extra_config ():



7”” Returns algorithm—specific configuration options”””

def find_.initial_solution (self, model, tree, node):
??”Returns a feasible solution to model if any”””

Qproperty
def branching_strategy (self):
?7”Returns an instance of the algorithm branching strategy”””
Q@property
def node_selection_strategy (self):
7”” Returns an instance of the algorithm mnode selection strategy”””
def init_node_storage(self, model):
7”” Returns the root node storage”””
def solve_problem_at_node(self, tree, node):
7”” Returns a node solution with the best possible objective

and a feasible solution”””

def solve_problem_at_root(self, tree, node):
7”” Returns a node solution with the best possible objective

and a feasible solution”””

def solve(self, model):

node_storage = sef.init_node_storage (model)
tree = Tree(node_storage)
node = tree.root

self.find_initial_solution (model, tree, node)
self.solve_problem_at_root (tree, node)
while not self.has_converged(tree):
node_children = self.branching_strategy .branch(node)
for child in node_children:
self . node_selection_strategy .insert_node(child)
node = self.node_selection_strategy .next_node ()
self .solve_problem_at_node (tree, node)

Listing 1 Definition of the BranchAndBoundAlgorithm class with a simplified version of the algorithm. High-
lighted in red, the method that solver developers extend to implement their new algorithms. The algorithm
starts by initializing the algorithm-specific node storage, then it tries to find an initial feasible solution. The
branch & bound algorithm proper starts by solving the root node problem, then it enters the loop. At each
iteration of the loop, the algorithm branches on the previous iteration node and adds them to the queue of
nodes to visit, then it picks the next node to visit and solves the problem at that node. This loop is repeated
until one of the termination conditions is met.

5. Extensible Branch & Cut Algorithm

This section gives an high-level description of the GALINI branch & cut algorithm.
The GALINI branch & cut algorithm implements the seven abstract methods from
the beginning of Section 4. The branch & cut algorithm itself is extensible. Section 5.1
describes the implementation of GALINI extensibility. The GALINI branch & cut
algorithm provides the following extension points:

e Initial Feasible Solution Search: this extension point is called at the begin-
ning of the algorithm to find a feasible solution,

e Cutting Planes: mix & match different cutting planes classes,

e Primal Heuristic: finds a feasible solution. Called immediately after solving
the relaxation,

e Node Selection Strategy: the branch & bound node selection strategy de-



linear_model = build_relaxation(model)
before_start_callback(model, linear_model) (1)
if not root:
add_violated_cuts_from_parent(linear_model)()
solution = -inf
while not converged?:(3)
solver.solve(linear_model)
cuts = generate_cuts(model, linear_model) (@)
linear_model.add_cuts(cuts) (5)
after_end_callback(model, linear_model) (1)

2 cut pool 5 cut pool
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Figure 3. Overview of the GALINI cut loop at each node. 1) The callbacks are called at the beginning
and end of each node visit, this callbacks can be used by cuts generators to build and cleanup internal data
structures. 2) Check cuts that where inherited to see which ones are violated and add them to the problem.
3) Stop generating cuts when all cuts generators have converged or if the maximum number of iterations is
reached. 4) The cut manager call each cut generator to generate new cuts, returning all generated cuts to the
algorithm. 5) The returned cuts are added to the cut pool and the linear relaxation of the problem.
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scribed in Section 4. This section describes the default implementation,

e Branching Strategy: the branch & bound node branching strategy described
in Section 4. This section describes the default implementation,

o Relaxation: relaxes the original MINLP user model into a MIP model.

Unlike the extension points described in the branch & bound algorithm, these exten-
sion points are dynamic and can be extended without changing GALINT itself. Users
can decide which code to run by updating the configuration file passed to the GALINI
command line tool. Figure 3 shows a simplified version of the cut loop executed at
each branch & bound node.

5.1. FExtensibility

Extensibility is achieved through Python entry points, a mechanism for registering
classes to a central registry handled by the user’s Python installation. GALINI looks
for classes registered at specific entry point keys, e.g. galini.cuts_generators, and
loads them at runtime. Algorithm developers can develop their extensions in a project
separate from the GALINI codebase. Advantages of this model are:

e Simplifies developing a new extension. Developers only need to understand the
interfaces provided by GALINI and the GALINI problem representation.

e Extensions can be distributed independently of GALINI.

e Since the interfaces are stable, less work is required to maintain the extensions.

Appendix B describes in detail the interfaces that algorithm developers need to
implement to build extensions for the branch & cut algorithm.

5.2. Branch & Cut Algorithm

The algorithm starts by finding an initial feasible solution. To find a feasible solution,
GALINI starts by performing FBBT and then solves the NLP restriction obtained by
randomly fixing integer variables. GALINI will use any user-provided starting point.
If this initial primal heuristic returns a feasible solution, this solution is stored in the
branch & bound tree at the root node. If the problem is detected as convex and the
problem does not contain any integer variable, then the algorithm has converged and
GALINI will return the solution to the user.

After this step, the branch & bound algorithm solves the problem at the root node
by calling the solve_problem_at_root(tree, node) implemented by the branch &
cut algorithm. When solving at the root node, the branch & cut algorithm starts by
performing OBBT on the variables that participate in nonlinear terms. If GALINT has
a feasible solution, the branch & cut algorithm uses the objective value as an upper
bound on the objective in the OBBT problem.

Solving a branch & bound node requires to first update the problem relaxation
to use the node’s variables bounds and then perform FBBT to tighten the bounds.
After this, the branch & cut algorithm relaxes the integrality constraints on integer
variables to obtain a Linear Program (LP). GALINI solves the LP using a linear solver
(mip_solver.name, default Cplex) and then enters a loop to add violated cuts from
the node ancestors until there are no more violated cuts. GALINI then enters a cut
loop to generate new cuts. The cut loop stops after a maximum number of iterations
(cuts.maxiter, default 20) or if two consecutive cut rounds have an objective within
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a configurable relative tolerance (cuts.cut_tolerance, default 1075). After the cut
loop, GALINI reintroduces the integrality constraints on integer variables and solves
the MIP. The MIP best possible solution (its lower or dual bound) is used as the node
lower bound. Finally, GALINI invokes the primal heuristic to find a feasible solution
to the original problem. After solving each node, GALINI checks whether the solution
converged or not using the check described in Section 4. After solving the root node,
and if the solver has not converged already, GALINI enters the branch & bound loop
described in Section 4.

GALINT uses the same convergence tolerance for the global branch & bound algo-
rithm, the LP in the cut loop, the MIP lower bounding problem, and the NLP upper
bounding problem.

By default, the branch & cut algorithm branches on the variable with the highest
nonlinear infeasibility Q;(x) [5, 16]:

O (&) = U:(x) + max U;(&) + pg min U;(x 2
)= 32 V(@) 2 s U6) + 10 iy U0 2

where E(Z) = {:Uj S Hwi]’ = .Tiﬂfj} and Uj i‘) = ‘71)” - JA,‘lJA,‘]V(l + 1/1?312 +CACJ2)
GALINT uses weights p; = 1.0, o = 0.0 and p3 = 0.0. GALINI branches at a convex
combination of the variable midpoint 27" = ! + (2¥ — 1) /2 and the solution at the
MIP relaxation &; Az]" + (1 — X)Z;, with A = 0.25. If a variable is unbounded, GALINI
branches at the solution point.

The default node selection strategy used by the branch & cut algorithm chooses the
node with the lowest lower bound [4]. This is done by keeping the list of nodes to visit
in a priority queue that uses the node lower bound for ordering.

5.3. Feasibility-based bounds tightening

GALINI limits the maximum number of FBBT iterations (fbbt_maxiter, default =
10) since FBBT converges only in the limit [17]. GALINI also stops FBBT iterations
when neither bounds propagation nor tightening produce changes, i.e. when the rela-
tive difference (Equation 1) of each lower and upper DAG node bound changes by less
than the math context €. As a code optimization, SUSPECT stores the list of DAG
vertices with changed bounds and propagate, i.e. tighten from equations to variables,
only when the bounds change.

5.4. Relaxations

Because GALINI builds relaxations based on Coramin classes, many model interro-
gation tasks needed to develop plug-ins are drastically simplified. Coramin relaxes
bilinear terms by replacing each bilinear term with an auxiliary variable, i.e. a vari-
able not present in the original problem, and adds the McCormick envelope [52, 68]
of the bilinear term to the relaxation.

The relaxation of the user model is stored, together with the original model, in the
root node NodeStorage. All other nodes store the node variables bounds and provide
a method to update the original model bounds and the relaxation. After updating the
relaxation variable bounds, the branch & cut algorithm recomputes the McCormick
relaxation to use the new bounds.
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GALINTI also registers a function with Coramin to relax quadratic expressions. When
GALINI recognizes that an expression is convex, GALINI dissaggregates the convex
quadratic expression and replaces each separable term with an auxiliary variable.
GALINT still asks Coramin to relax the individual terms of the quadratic expression
with auxiliary variables, but the additional auxiliary variable GALINI introduces can,
for instance, develop outer approximation cutting planes. The disaggregation step
increases the number of variables but it may also tighten the linear relaxation [59,
87]. GALINI starts by building a graph where nodes represent variables, then if the
coefficients ¢;; of variables x;, x; is non zero, it adds an edge between node i and node
j. Then, for each connected component (that is a subgraph for which any two nodes
are connected to each other by paths and which is not connected to any additional
nodes in the subgraph), GALINT checks the convexity of the quadratic expression it
represents. If the expression is convex the expression is added to the list of convex
expressions GALINT replaces with an auxiliary variable. Otherwise, GALINI adds the
expression to the list of expressions it will relax.

Example GALINI dissaggregates the expression f(zg, z1,z2) = ZU(Q)—I-Ql‘o:El + 22413
by replacing the convex expression CL'(Q) + 2z071 + 22 with an auxiliary variable wgy and
the other expression z3 with auxiliary variable wgs. The expression then becomes
f(wp,we2) = wp + wee and GALINI retains the convexity of wg for cutting planes.
Coramin further relaxes the convex quadratic expression wy = :1:(2) + 2x971 + 22 by
replacing each bilinear term with an auxiliary variable, obtaining wg = wgg + 2wg1 +
wy1. Coramin generates the McCormick envelopes for wgg = x%, wo1 = ToT1, Wi = x%
and woy = x%

The linear relaxation replaces the objective function f(x) with an auxiliary variable
wy and adds the constraint

~

f(@) —wp <0

where f (x) is the underestimator of f(x). This is done because some types of
cutting planes, for example outer approximation cuts, require adding cuts relative to
the objective function.

5.5. Cutting Planes

GALINI is a branch & cut solver [9, 10, 11, 12, 73, 83, 84, 86], so cutting planes play
an important role. Several classes and objects manage and create cutting planes.

Section 4 describes node storage, i.e. algorithm-specific storage. At the root node,
the branch & cut algorithm uses node storage to add a cut pool to the branch &
bound tree. This cut pool stores cuts in a shared cut list and identifies each cut
by an increasing index. Local cuts are cuts that are accessible from a node and all
its descendants. The other nodes store the indices of the local cuts together with a
pointer to the parent local node storage. GALINI 1.0.0 implements all cuts as local
cuts. GALINTI provides facilities to iterate over all the cuts accessible at a node. Figure 4
shows how the cut pool storage is implemented.

The cut generator interface requires to implement six methods:

e before_start_at_root(problem, relaxed problem): called before entering
the cut loop at the root node,

13



Node Cuts Cut Pool

0 0 CXA CX+ .. +CX<0
1 1 CXek CXoF ..+ CXS 0
2
3
* * 11 CXot CXF .. +CXs 0
Xo < 0 Xo = 0 12 | cxtox+..+exs0
13 | cxtoxt . +oxs<0
o) o
4 6
5 7
8
51
X;<0 x;20
o) o
9 12
10 13
11

Figure 4. GALINI cuts are stored in a cut pool together with its index. Nodes store a list of the valid cuts
indexes and a pointer to their parent cuts.

e after_end at_root(problem, relaxed problem, solution): called after solv-
ing the MIP at the root node,

e before start_at node(problem, relaxed problem): called before entering
the cut loop at non-root nodes,

e after_end at node(problem, relaxed problem, solution): called after solv-
ing the MIP at non-root nodes,

e has _converged(state): returns a true value if the cut generator won’t generate
any more cuts at this node. For example, our outer approximation cuts return
false for optimization instances without convex quadratic terms.

e generate(problem, relaxed problem, solution, tree, node): return a
list of cuts to be added to relaxed problem. You have access to the previous
iteration solution.

The branch & cut algorithm interacts with the cuts generators using a cut manager.
Users can configure the cut manager to use specific cuts by changing their configuration
file, in this way they can experiment by combining different classes of cuts generators
[82]. When the cut manager is initialized, it starts by loading the cut generators that
the user has enabled in the configuration file. It also initializes each cut generator
telemetry data to collect information about the number of cuts generated and the
total time spent in the cut generator. The cut manager interface implements the same
six methods as a cut generator. The cut manager works by forwarding each method
to the cut generators and combining the results.

Cuts don’t have to be linear (or convex): they can include quadratic expressions that
GALINI will automatically linearize using the relaxation relax_inequality(model,
inequality, relaxation_side, ctx) method before adding it to the linear problem.
This implementation frees the cut developer from keeping track of which auxiliary
variables map to which bilinear expression.

GALINTI includes the following cutting planes:
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e Outer Approximation: add cuts based on the first-order Taylor expansion
[21, 34, 48]. Since GALINT disaggregates the convex expressions into separable
expressions, it may add more than one cut per equation [29].

e Triangle: add cuts based on triangle inequalities [14, 20, 80].

e SDP: use Neural Networks to select the best cutting planes [8, 13, 81, 85].

There are parameters in each of the cutting planes classes. For example, GALINI
generates an outer approximation cut only if the difference between the value of the
convex nonlinear expression, obtained by evaluating the expression at the LP solution
point, and its linearized expression is above a above a user-configurable threshold
(deviation threshold, default = 107°).

GALINI could be extended to include specialized cuts for nonconvex quadratic
problems with separable constraints [32] or for pooling problems [27, 63].

6. Rich Logging & Counters

GALINI is a solver that can be easily extended, for this reason we include several
functions that make debugging every aspect of the solver easier.

GALINT users can enable Paranoid Mode, when this flag is active the solver will
perform extra checks to verify the correctness of every step. If any check fails, GALINI
stops the execution to drop into a Python console inside the function that failed.
Developers can use the console to inspect the state of their function to find the cause
of the bug and even change the state of the running program to quickly test a fix. By
default this flag is turned off since it can slow down the solving process considerably.

GALINI provides logging functions that can be used to not only log string content
to the screen, but also log richer data structures. Example data that can be logged by
GALINTI:

e Tensors: tensors (multi-dimensional vectors and matrices) are written to an
HDF5 file so that they can be stored and viewed at a later moment. This is
extremely useful when debugging numerical issues,

e Branch & Bound Operations: the branch & bound algorithm logs every
operation on the branch & bound tree. The algorithm logs when a new node is
visited or fathomed,

e Variables: variables that change over time (for example the branch & bound
tree best possible and best feasible objectives) can be logged. These variables
can then be plotted to see how their value changes in relation to time or number
of branch & bound nodes visited,

e Time Spans: sections of code can be annotated using the telemetry(name)
context manager to log the cumulative amount of time spent in the section of
code.

With this extra data, we built GALINI dashboard, which is similar to Tensorboard
for Tensorflow [1] and provides insight into the solver. The GALINI dashboard® pro-
vides an interface to visualize: 1) the evolution of the branch & bound best possible
and best feasible objectives, 2) the branch & bound tree, and 3) a timeline of where
the solver spends its time. Figure 5 shows a screen of the GALINI dashboard.

GALINI developers have also access to counters and gauges. Counters are fields
that represent an increasing sequence, for example the number of cuts generated or

Shttps://github.com/cog-imperial/galini-dashboard
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Figure 5. GALINI dashboard screen showing the interactive branch & bound tree. The supplemental material
of this manuscript includes a short video demonstration of the dashboard.

the number of nodes visited. Gauges are fields whose value can both increase and
decrease, for example the number of open nodes. Developers can create counters and
gauges, the branch & bound algorithm automatically logs these values at the end of
each node visit.

7. Computational Results

We test GALINI on a Linux workstation with an Intel i7-6700 3.4 GHz CPU and 16
GB of RAM. We use Python 3.8.5, Cplex 12.8.0.0, Ipop 3.13.2 compiled against HSL
[49] 2014.01.10.

We use GALINI version 1.1.0, Gurobi beta version 9.1 (a prerelease version down-
loaded on 2020-10-08), and the version of ANTIGONE, Baron, Couenne and SCIP
included in GAMS 31.1.

We run the computational experiments on 761 MIQCQP problems from MINLPLib
2 [24, 88] (accessed October 2020) and 453 problems from QPLIB [41]. We augment
the MINLPLib 2 OSiL [39] with the same starting point as the GAMS models.

z

The optimality gap gap = % is set to 107 and the timelimit is 300 seconds.
Problems where the solver overshot the timelimit by over 5% (15 seconds) are not
considered solved.

In the first set of results, we run GALINI with all different combinations of cuts:
triangle, outer approximation, and sdp cuts individually, then by combining all pairs of
cuts, and finally with all three classes of cuts activated. Figure 8 shows the performance
profile of different GALINI cuts configurations on the MINLPLib 2 dataset. We can
see that activating all cuts generators is the best choice for perforamnce since it has
no performance impact.

In the second set of results, we compare GALINI with both commercial and open
source solvers. Figure 9 contains the performance profile, we can see that GALINI
spends more time solving problems but the optimality gap after 5 minutes is compa-
rable to other, more mature solvers. This is the result we expected since GALINT is
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Figure 6. Performance profile of different GALINI cuts combinations on 761 instances form MINLPLib2.
The figure on the left compares CPU time, the figure on the right the remaining gap after 300 seconds.

built to be easy to extend and does not focus on performance.

8. Conclusion

This manuscript introduces GALINI, an extensible MIQCQP solver written in Python.
We show how GALINI can be used by solver developers to build new solvers and how
algorithm developers can extend GALINI at runtime to change parts of the branch &
cut algorithm. Our computational results show that the branch & cut algorithm perfor-
mance is comparable to other open source solvers and for this reason we think GALINI
is a great starting point for algorithm developers. GALINI could be extended to in-
clude specialized cuts for nonconvex quadratic problems with separable constraints
[32] or for pooling problems [27, 63].
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Appendix A. Coramin: Convex Relaxation Example

The following example demonstrates how Coramin can build and refine a convex re-
laxation of

min 22 4 32 (Ala)
sty = (z—1)> (Alb)
y > exp(x) (Alc)

import pyomo.environ as pe
import coramin

= pe.ConcreteModel ()

x = pe.Var(bounds=(-2,2))

y = pe.Var()

x-minus_-1 = pe.Var(bounds=(-3, 1))

objective = pe.Objective (expr=m.x**2 + m.y=**2)
x-minus_-1_con = pe.Constraint (expr=m.x_minus.1 = m.x — 1)

JEIEIEIEIE

build the relazation for y = xz_minus_1%xx2
¢l = coramin.relaxations.PWXSquaredRelaxation ()
cl.build (x=m.x_minus_-1, aux_var=m.y)

JERN

build the relazation for y >= exp(z)
c2 = coramin.relaxations.PWUnivariateRelaxation ()
c2.build (x=m.x,
aux_var=m.y,
shape=coramin. utils . FunctionShape .CONVEX,
f_x_expr=pe.exp(m.x),
relaxation_side=coramin. utils.RelaxationSide .UNDER)

5B W

# solve the relaxzation

opt = pe.SolverFactory(’gurobi_persistent’)
opt.set_instance (m)

res = opt.solve ()
pe.assert_optimal_termination (res)

print (m.y.value) # 0.3987

# iterate over relazations and

# 1. tell the relaxation to update the solver with any changes

# 2. add outer approximation cuts

for relaxation in coramin.relaxations.relaxation_data_objects (m):
relaxation.add_persistent_solver (opt)
relaxation.add_cut ()

opt.solve ()

print (m.y.value) # 0.9981

# rebuild relazration with updated bounds on x
m.x.setub (0.01)
for relaxation in coramin.relaxations.relaxation_data_objects (m):
if m.x in relaxation.get_rhs_vars ():
relaxation.rebuild ()
opt.solve ()
print (m.y.value) # 0.9990

GALINI is a quadratic optimization solver, so one of the most important Coramin
relaxations is the McCormick convex hull. The McCormick relaxation replaces bilinear
terms with auxiliary variables and adds the relevant McCormick envelopes to the
problem. Coramin replaces the bilinear term x;x; with auxiliary variable w;; and the
following constraints:
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;> akr o JL zF ]L (A2)
;> x]—l—ngj ,Ugj (A3)
; < a:U:U] + xw L — 2V JL (A4)
wi; < xlw;+ xzacy abr 5] (A5)

where z; € [z}, 2V] and z; € [x ]L , 5]] Coramin handles the case of a variable not
having a lower or upper bound by not generating the constraints that would always
be satisfied. The auxiliary variable bounds are computed using interval arithmetic,
Coramin handles the case in which x; and z; coincide (wy; = «; ) and use the correct
bounds on w;; and only add Equations (A2) to (A4). The auxﬂlary variable will also
contain a reference to the bilinear term it’s going to replace. When an auxiliary variable
is created, it is also added to a special hash map in the context object that maps each
bilinear term (as index of variables, with the smallest index first) to the auxiliary
variable. This is important to not duplicate auxiliary variables. This map of auxiliary
variables is shared between the different underestimators.

Appendix B. Branch & Cut Extensions Interfaces

The InitialPrimalSearchStrategy requires algorithm developers to implement the
following method:

(1) solve(model, tree, node): find a feasible solution for the model if any, or
None if not possible.

The PrimalHeuristic interface:

(1) solve(model, linear model, mip_solution, tree, node): find a feasible
solution for the model if any, or None if not possible. Unlike the method in
InitialPrimalSearchStrategy, this method has access to the linear relaxation
of the model and its solution from the cut loop.

The Relaxation interface:

(1) relax(model, ctx): this method is called once at the root node to create the
linear relaxation of the model, the parameter ctx is an opaque data structure
that Coramin uses to keep track of relaxations data. This data is used, for exam-
ple, to always replace the same bilinear terms with the same auxiliary variables,

(2) relax_inequality(model, inequality, relaxation_side, ctx): this
method should relax the nonlinear inequality into a linear one. This method is
called by the algorithm when a cut generator returns a nonlinear cut.
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