This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2021- 1531J

Decomposing Optimization-Based Bounds Tightening
Problems Via Graph Partitioning

Michael Bynum!, Anya Castillo?, Bernard Knueven?, Carl Laird!, John
Siirola!, and Jean-Paul Watson*

! Discrete Math & Optimization, Sandia National Laboratories,
Albuquerque, NM 87185, Email: mlbynum@sandia.gov, cdlaird@sandia.gov,
jdsiiro@sandia.gov
2 Data Science & Applications, Sandia National Laboratories, Albuquerque,
NM 87185, Email: anya.castillo@gmail.com
3 Computational Science Center, National Renewable Energy Laboratory,
Golden, CO 80401, Email: Bernard.Knueven@nrel.gov
4 Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, Livermore, CA 94550 , Email: jeanpaulwatson@IInl.gov

Abstract

Bounds tightening or domain reduction is a critical refinement technique used in
global optimization algorithms for nonlinear and mixed-integer nonlinear programming
problems. Bounds tightening can strengthen convex relaxations and reduce the size of
branch and bounds trees. An effective but computationally intensive bounds tightening
technique is optimization-based bounds tightening (OBBT). In OBBT, each variable
is typically minimized and maximized subject to a convex relaxation of the original
problem in order to obtain tighter variable bounds. In this paper, we present two
variants of a scalable bounds tightening algorithm that decomposes the majority of
the bounds tightening problems into much smaller problems via graph partitioning.
Numerical results on a set of optimal power flow test problems and problems from
MINLPLib demonstrate that our proposed algorithms can be nearly as effective as
traditional OBBT in terms of domain reduction. Furthermore, the algorithms are
significantly more computationally efficient and scale much better with problem size.
For large problems, our decomposition algorithm can be over an order of magnitude
faster than traditional OBBT and nearly as effective.

1 Introduction

Mixed-integer nonlinear programming (MINLP) addresses a wide range of important op-
timization problems [31]. Most deterministic global optimization algorithms for solving
MINLPs utilize either branch-and-bound (B&B) or multitree methods (e.g., outer-approximation)
[5, 13, 24]. MINLP B&B algorithms use the solution of convex relaxations (usually linear
relaxations) of the original problem to obtain objective lower bounds and local nonlinear

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

programming (NLP) solutions to obtain objective upper bounds; we generally assume a
minimization objective. The objective bounds are progressively refined with spatial branch-
ing [31]. In contrast, multitree methods typically solve mixed-integer linear programming
(MILP) relaxations globally to obtain objective lower bounds, pushing the branching re-
quirements to an efficient MILP solver [26]. The MILP relaxation can be refined with
piecewise outer-approximation techniques (e.g., see [15]).

Both B&B and multitree algorithms require convex relaxations of the original MINLP.
Convex relaxations are typically generated either with factorable programming (e.g., in
BARON and ANTIGONE [29, 33]), using generalized McCormick envelopes (e.g., in MAINGO
and EAGO [34, 38]), with the « BB approach (e.g., see [2]), or with edge-concave relaxations
(e.g., see [19]). The factorable programming approach introduces auxiliary variables in or-
der to decompose constraints into terms that can be systematically relaxed. The following
example illustrates this approach.

Example 1.1. Consider the constraint z=In(wyws). The factorable programming approach
would split this into two constraints:

z = In(ws) (1)

W3 = W1W2 (2)
These two constraints could then be relaxed independently.

Generalized McCormick envelopes avoid the introduction of auxiliary variables by prop-
agating rules [28, 36] through expression trees. For some problems, such as global opti-
mization over neural networks, this can lead to drastic reductions in problem size, and
corresponding improvements in computational performance [34]. The «BB approach gen-
erates convex relaxations by adding quadratic terms to functions until it can be proven that
the augmented function is a convex underestimator of the original function. For example,
Adjiman et al. [1] provide a lower bound on the minimum eigenvalue of the Interval Hes-
sian. If the minimum eigenvalue of the Interval Hessian is larger than 0, then the function
is guaranteed to be convex. Finally, for some problem classes, custom relaxations have been
developed to exploit knowledge of the system being optimized [22].

Regardless of the method used to generate a convex relaxation, the tightness of the result-
ing convex relaxation depends heavily on variable bounds. Furthermore, the performance of
global optimization solvers depends heavily on the tightness of the convex relaxation used
to generate lower bounds. Tighter relaxations can be generated through bounds tightening
(BT). Also referred to as domain reduction, BT involves determining valid variable bounds
which are tighter than current variable bounds. BT can strengthen convex relaxations for
the lower bounding problems, reduce the number of nodes visited in B&B trees, and reduce
the required number of binary variables needed in MILP relaxations for multitree methods.
For example, turning off domain reduction techniques in BARON, which is an MINLP B&B
solver [35], results in a 47% increase in computational time and an 802% increase in number
of nodes explored for problems in MINLPLib [6, 31]. Examples 1.2 and 1.3 illustrate how
tightening variable bounds can tighten convex relaxations of nonconvex constraints.

Example 1.2. Consider a convex relaxation of z=w?:

2 > 2ww — w? (3)

z > 2uww —w (4)
22

s+ LT (u- (5)
w—-w

where w and w are the lower and upper bounds of w. Figure 1 illustrates the feasible
region of this relaxation for different bounds on w. The solid line represents the feasible
region of the original constraint, and the shaded region is the feasible region of the convex
relaxation. The figure on the right has tighter bounds on w, so the feasible region of the
convex relaxation on the right is much smaller (i.e., the relaxation is tighter).

4 : . 4 : :
\ | — z=w? | | P z=w?
39N e relaxation ! 3 i P relaxation
2 N T w bounds | 2N I w bounds
_— i : ____________ N1 i i
0 | | 0 i
] i =1
5 P i -2 :
—2 -1 0 1 2 -2

Figure 1: Linear relaxations of z = w? with different bounds on w.

Example 1.3. Consider the constraint z > wjws with w; < w; <w; and wy < wy < Wa.
The convex hull of this constraint is given by the McCormick envelopes for bilinear terms:
Z 2 Wi w2 + WiWy — W Wy (6)

z Z Elwg + wlﬁg — E1E2 (7)

The constraint violation, €, obtained by using the relaxation is bounded by
€ < min{wywy — W Wz — W1Wy + W) Wy, W1 W2 — W1 Wz — W1W + W1 W2 } 9)

This bound is maximized when w; = 3(w; + ;) and wy = 1 (w, +W,), and the maximum
constraint violation is given by [2]:

e = 3 (1 —) (T2 — wy) (10)

Figure 2 shows how the maximum constraint violation, €n.x changes with (w; — w;) and
(Wa—w,). Equation (10) and Figure 2 illustrate the effect of variable bounds on the tightness
of the convex relaxation for z > wyws. The maximum constraint violation decreases quickly
as the bound ranges, (w7 — w;) and (We — w,), decrease.

Do
ot

20

15

10

ot

Maximum Constraint Violation

Figure 2: The effect of variable bounds on the maximum constraint violation that can be

obtained when using McCormick envelopes to relax z > wiws.

Many BT techniques for MINLP’s exist. Consider the following MINLP:

min f(x)

s.t.

he(z,y) <0 Vee C
Ty <1y Ty Yo eV,
¥y, € {0,1} Yv e Vy

(11d)

where C is the set of constraints, V, is the set of continuous variables, and V), is the set of
binary variables. For simplicity, we assume f(z) is convex. Let the following be the convex

relaxation of Problem (11):

min f(x)

s.t.

ge(z,y) <0 VeeC
Ty S Ty S Ty Yo e Ve
0<y, <1 Yv €V,

(12a)

(12b)
(12¢)
(12d)

where C is the set of constraints comprising convex underestimators of the original con-
straints, h. Here, each constraint, g., is convex. In other words, {(x,y) : g.(z,y) <0 Ve €

C} 2 {(z,y) : he(z,y) <0Vc e C} and is a convex set.

An effective but computationally expensive approach to bounds tightening is optimization-
based bounds tightening (OBBT) [31]. OBBT typically involves solving two convex opti-

mization problems for each variable (or a subset of the variables):

min / max x; (13a)
s.t.

(12b), (12c), (12d) (13b)
fe) <U (130)

Here, U, is the best-known feasible solution to Problem (11). If the optimal objective of
the minimization problem is larger than the current lower bound, z;, for the corresponding
variable, then the lower bound can be updated. A similar argument holds for the upper
bound and the maximization problem.

A very efficient approach to BT is feasibility-based bounds tightening (FBBT) and its
extensions [4, 31]. FBBT can be performed by forming a directed acyclic graph (DAG) from
the constraints of Problem (11) and using interval arithmetic to propagate bounds through
the graph [30]. FBBT is usually less effective than OBBT because only one constraint is
considered at a time [31]. Belotti et al. [4] present a linear program (LP) which converges
to the fixed-point of the FBBT algorithm given the DAG is formed from a linear relaxation
of Problem (11); as a result, a single LP solution enables bounds updates for all variables
of Problem (11).

Ryoo and Sahinidis [32] utilize the Lagrange multipliers from the solution of Problem
(12) to tighten bounds. Let L and U be the optimal objective value of Problem (12) and
a valid upper bound for Problem (11), respectively. If a variable z; is at its upper bound,
T;, with an optimal multiplier value A* > 0 at the solution of Problem (12), then the lower
bound may be updated as follows

o U-1L
&_xl)*

(14)

A similar argument holds if the variable is at its lower bound at the solution of Problem (12)
[32]. This approach is also very efficient because it only requires the solution of Problem
(12), which is typically solved at every node of the B&B tree. For a more thorough review
of BT methods, see [31].

Although OBBT is computationally expesensive, it can be very effective for some prob-
lems. For example, OBBT has been shown to be very effective for refinement of optimal
power flow (OPF) problems. Coffrin et al. [12] demonstrate that OBBT is very effective on
polar relaxations of the optimal power flow problem. Relaxations of the rectangular form,
tightened with OBBT, can also be quite effective if reference bus constraints are incorpo-
rated [8]. In fact, Bynum et al. [7] demonstrate that the effectiveness of OBBT at a given
iteration is directly related to the topological distance of the corresponding variable from
the reference bus. Multiple global optimization algorithms have been written for the OPF
problem which rely heavily on OBBT [23, 25, 27].

Despite the effectiveness of OBBT for domain reduction, the approach is very compu-
tationally expensive, especially for large problems. A great deal of research has been done
recently to mitigate the high computational cost, both for general MINLP’s and for spe-
cific applications. Gleixner et al. [14] presented three improvements to OBBT. First, they
presented an aggressive filtering approach which identifies variables for which it can be guar-
anteed that the bounds cannot be improved by solving an OBBT problem. This improves
computational efficiency by reducing the number of OBBT problems solved while producing
the same improvement in variable bounds. Second, the they compared different methods

for ordering the variables for which OBBT problems are solved. They found that a greedy
ordering algorithm best utilizes simplex warmstarts, reducing the total number of simplex
iterations spent in OBBT problems. Finally, they presented Lagrangian Variable Bounds,
which are expressions generated from the dual information obtained from the solution of
each OBBT problem. These expressions provided a mechanism to compute tightened vari-
able bounds for one variable subsequent to tightening the bounds of other variables. They
solved OBBT problems with the relaxation at the root node of the B&B tree. Then, when
spatial branching occurred on one variable, the Lagrangian Variable Bounds could be used
to efficiently update the bounds of other variables.

Custom approaches to BT have also been developed for specific applications. There
has been a great deal of research on BT techniques for optimal power flow problems. For
example, Chen et al. [11] present closed-form bounds tightening methods by writing the
first order necessary conditions for minimizing or maximizing a variable subject to a small
subset of constraints. Kocuk et al. [22] use an efficient form of OBBT for the OPF problem
where, for each variable, a small optimization problem is solved by only considering a small
portion of the electric grid and the corresponding constraints. In other words, a valid
form of problem (13) is solved for each variable, but only a carefully selected subset of the
constraints are included. There is a tradeoff between the strength of the bounds obtained
and the computational effort required because, as the size of the network considered is
reduced, information on feasibility of the remainder of the network is lost.

Despite recent advancements, OBBT generally remains computationally expensive. Fig-
ure 3 shows the time required to perform a single iteration of OBBT for problems from
MINLPLib and the Power Grid Lib - Optimal Power Flow library as a function of prob-
lem size. Note that the figures were generated with an implementation that utilizes the
aggressive filtering approach described in [14]. As the figures show, the computational effort

MINLPLib ACOPF

20000 i

3000 °
15000

2000 . . .
10000 :

1000 o

0

Time for one iteration of OBBT (s)
[]
Time for one iteration of OBBT (s)

2000 4000 6000 8000
Number of Nonlinear Operations

5000

0

2000

4000

6000

8000

Number of Nonlinear Operations

Figure 3: Wallclock time required for a single iteration of OBBT as a function of the number
of nonlinear operations in the problem. The figure on the left shows results for a subset
of test problems from MINLP-LIB (http://www.minlplib.org). The figure on the right
shows results for a subset of test problems from the Power-Grid-Lib Optimal Power Flow
repository (https://github.com/power-grid-1lib/pglib-opf) [3].

can grow very quickly with problem size. In this paper, we propose a decomposed bounds
tightening (DBT) algorithm based on graph partitioning, generalizing and extending the
BT ideas for OPF presented by Kocuk et al. [22]. The main idea is to solve a few large

http://www.minlplib.org
https://github.com/power-grid-lib/pglib-opf

OBBT problems to tighten the bounds on a set of linking variables introduced during the
graph partitioning stage and many small OBBT problems to tighten the nonlinear variables
(whose bounds impact the tightness of the relaxation). As discussed in more detail below,
by solving a few large bounds tightening problems, we retain feasibility information from
the constraints not considered when solving the small bounds tightening problems. We
demonstrate the effectiveness of the algorithm on OPF test cases, and test problems from
MINLPLib.

The remainder of this paper is outlined as follows. In the following section we present our
proposed DBT algorithm in detail. We then describe the test problems in detail. Finally,
we present numerical results and summarize the paper.

2 Decomposed Bounds Tightening

In this section, we present our decomposed bounds tightening (DBT) algorithm. The basis
of the algorithm is that small optimization problems can be solved efficiently. One way
to solve small BT problems is to solve the OBBT problems (13) but with most of the
constraints discarded. Although this does improve computational performance, it produces
weaker bounds because the feasible region has been enlarged. The DBT algorithm attempts
to retain information from the removed constraints by first solving OBBT problems with
the full set of constraints but only for a small subset of the variables. This idea will be
explained further after a few definitions and a more formal description of the algorithm.
For clarity, we rewrite Problem (11) as follows:

min f(z) (15a)
s.t.

al x < b; vi e ct (15b)
pihi(z) < gl x Vi e CNE (15¢)
T ST STy VieV (15d)
z; €{0,1} Vi e VB (15€)

where f(z) is convex, C* is the set of linear constraint indices, CV* is the set of nonlinear

constraint indices, V is the set of variable indices, and V' is the set of binary variable
indices (with VB C V). Additionally, a; € RVl i e ¢F, b € RIC"l p e RIC™"I and ¢; € RV
Vi € CNE are parameters, and z € RVl and 7 € R!VI are the lower and upper bounds of the
variables, respectively. The nonlinear functions, h(z), are one of the following univariate or
bivariate functions:

® T;T;
e In(z;)
o exp(z:)

e z¢; cis a positive even integer

C.
i 2i >0

e cos(z;); —Z <

NJE]
|3
IA
8
IA

NI

e sin(z;); —

INE
INA
&
INA
]
INA

NIE}

e arctan(x;)

The algorithm described below is implemented using Coramin (https://github.com/coramin/
coramin), which supports relaxations of the above univariate and bivariate functions. Note
that many MINLP’s can be transformed into the form of Problem (15) through factorable
programming and preprocessing transformations [29].

Let Co = C* UCNE be the full set of constraints, and let Vo = V be the full set of
variables. Let Go = (Vy,Co, &) be a bipartite graph where Vy is the set of vertices in one
part and Cy is the set of vertices in the second part. Each edge in the set of edges, &,
connects verex v € Vy to vertex ¢ € Cy if and only if variable z, appears in the constraint
indexed by ¢ with a nonzero coefficient or is a term in h.(z).

The algorithm begins by partitioning G into two sub-graphs, é\l = (I/JI, (:’\1, 5/'\1) and (/;'\2 =
(1/);,(?2,52), using a balanced partitioning algorithm. A balanced partitioning algorithm
seeks to minimize the number of edges that need to be removed in order to partition a graph
into two graphs w1th a roughly equal number of vertices. In other words, Vo = V1 U Vs,
Co —C1UC2, & UE C &o, Viny, = 0, NGy = 0, Ené = 0, VUG # (0, and V> UCs # 0.
This procedure is illustrated in the first two columns of Figure 4.

)

o)
w

D
w

GO Gl Gl

&
o

OO
©OO®E
)

®
©

()
)
D
)
o)
wl
D
i

)
o

OOOOH®
OO®EE
OOOH®
OO
016
®®
60,

©®
@G
olo

Figure 4: Partitioning procedure

https://github.com/coramin/coramin
https://github.com/coramin/coramin

Algorithm 1 Graph Partitioning

1: function PARTITION(G = (V,C, 8))
2: Partltlon G into two graphs, Go = (VG,CME) and Gy = (Vb,CAzhc‘?b) such that V; UCy # 0
and Vg U Cz #* (Z)

3 (5 U&)

4 VR—{U (v,¢) € ER v € V}

5: a_v u(VENY,)

6: =V U (Vi nV,)

7 Ca—g\ -

8: Ea=EU{(v,¢):v e VENW), (v,¢) € ER}
9: Cbza,

10: & =& U{(v,c):ve (VENW), (v,c) € ER}
11: Ga = (Va,Ca, &)

12: Gy = (Vb,Cb,é‘b)

13: end function

The graphs G1 and G2 are not well defined in the sense that some constraints in the
graphs utilize variables that are not in the same graph. In the example in Figure 4, G1
contains constraint ¢4 which depends on variable x5 even though x5 is not in G1 Therefore,
we define new graphs, G; and Gg, with some vertices duplicated in both graphs. Let
50 =& — (51 U 52) be the set of edges removed in order to partition the graph Gq. Let
Vi ={v:(v,e) € 50 U € VO} be the set of variable 1nd1ces in Vo associated with removed

edges. Let V| = V1 uWin Vg). Similarly, let Vy = V2 uwin Vl). Additionally, C; = Cl,
& = 51U{(’U,C) NS (Vé{mVQ), ('U,C) € gé%}, Co=Cy and & = SQU{(U,C) v E (Vé?'ﬁvl),
(v,¢) € EFY. Finally, G1 = (V1,C1,&1) and G = (V2,Ca, E;). This procedure is illustrated
in the third column of Figure 4 and formalized in Algorithm 1.
We define the feasible region associated with bipartite graph G, F(G;), as
FG)={z:a]lz<b VZECL
pihi(z) < ¢Fx Vi GCJNL,
x; <x; <7 Vi eV,
z; € {0,1} Vie V). (16)
Note that F(Go) C F(G1) and F(Go) C F(G2). Additionally, F(Go) = F(G1) N F(Ga).
We also define the following convex relaxation.
F(Gj)={z:alx<b; Vie C]L,
pihi(z) < qiTo: Vi € CJNL7
where h;(x) is a convex relaxation of h;(x). Note that F(Gy) C F(Gy) C F(G;) and

F(Go) C F(Gs) C F(Ga).
The DBT algorithm performs OBBT on the shared variables in V& with the full set of

constraints, Cy. In other words, problems of the form

min / max x; (18a)
S.t.

z € F(Go) (18b)
fz)<U (18¢c)

are solved for all i € VI, allowing the variable bounds, z and Z, to be updated. OBBT
problems are then solved with the smaller sets of constraints, C; and Cs, and the updated
variable bounds. Let VJN L be the nonlinear variables, or the set of variables which appear in
the nonlinear functions, h;, such that i € CJN L Additionally, let VJN ¢ = VJN Lu VJB. Then,
OBBT problems of the form

min / max ; (19a)
s.t.

are solved for all i € VN and problems of the form

min / max x; (20a)
S.t.
z € F(G2) (20b)

are solved for all i € VY. The optimality cut (Equation (18c)) is not included in Problem
(19) or in Problem (20) because it is possible that some of the variables in the objective do
not appear in any of the constraints in each of these problems. Depending on the variable
bounds, including the optimality cut could still be beneficial, but it is more likely to increase
the problem size without any benefit.

The DBT algorithm should be significantly faster than OBBT if [V{¥| < |V¢| and if the
sizes of Problems (19) and (20) are significantly smaller than the size of Problem (18), which
occurs if the partitions G; and Gy are balanced (i.e., |[V; UCy| =~ |V2 UCs| and |&;] =~ |&2]).
However, depending on |V Y| and |[VN¢|, Problems (19) and (20) may still be prohibitively
expensive. If that is the case, graphs G; and G5 can be further partitioned. In fact, the
procedure described above can be performed recursively, producing a binary tree of graphs
and their associated OBBT problems as illustrated in the last two columns of Figure 4.

The binary tree of graphs produced by recursive partitioning is illustrated in Figure
5. At leaf nodes of this tree (nodes without any children), nonlinear and binary variables
are tightened. At non-leaf nodes of the tree, only coupling variables introduced by the
partitioning procedure are tightened. Additionally, at each node except the root node (Gy),
the bounds on the coupling variables obtained from parent nodes are utilized, which provide
feasibility information from the constraints left out when performing bounds tightening at
that node.

If partitioning is performed recursively, a stopping criteria must be defined. We utilize
three stopping criteria. First, we do not partition a graph, G = (V,C, £), if the the number
of nonzeros in the Jacobian of the constraints, £, is below a threshold, E. Second, we limit
the number of stages of partitioning to S, or equivalently the depth of the partitioning tree.
Finally, it is possible that so many edges need removed in order to partition the graph that

10

Gy
Gy G

@& @ & 6

Figure 5: Tree of problem graphs produced by recursive partitioning

|[VE| is large and decomposition is not beneficial. Suppose graph G = (V,C, £) is partitioned
into graphs G, = (V4,Ca,&q) and Gy = (W, Cp, Ep). We define the following Partitioning
Ratio, PR,

VNeE|

PE = 21
VRIET+ VOl + VACTIE] 1)

The numerator is a measure of the computational effort required to perform OBBT if graph
G is not partitioned. The first term, |[VNC|, is the number of variables for which OBBT
problems need to be solved. The second term, |£], is the number of nonzeros in the Jacobian
of the constraints and is a measure of the problem size. Similarly, the denominator is a
measure of the the computational effort required if partitioning is performed. The larger
the value of P, the more valuable partitioning is. On the other hand, if P® < 1, then no
benefit would be expected from decomposition.

It is worth noting that, if a bipartite graph, G = (V,C,&) is partitioned into graphs
Gy = (V,4,Co, &) and Gy, = (Vp, Cp, &) using Algorithm 1, and if the resulting graphs are
roughly balanced (i.e., [VNY| ~ [VNC] or |€,| ~ |&]), then the maximum Partition Ratio,
PE defined by Equation (21) is 2. It is possible to obtain partitioning ratios higher than
2 if the majority of the edges are placed in one graph and the majority of the nonconvex
variables are placed in the other graph. For example, if a partition can be obtained such
that }5%2} ~ 0, ||££“|| ~ 1, le}]izl ~ 1, ‘lég)l‘ ~ 0, then the partitioning ratio can be quite
large. Our implementation utilizes a balanced partitioning ratio, so we typically obtain
partitioning ratios less than 2. Partitioning schemes that achieve higher partitioning ratios
may be beneficial, but the impact on the resulting variable bounds is unclear and should be
explored (including methods with n-ary partitions rather than binary partitions).

We can now formalize the Decomposed Bounds Tightening (DBT) algorithm in Algo-
rithm 2. Here, S is the maximum number of stages, E is the minimum number of edges to
perform partitioning, P¥ is the minimum Partition Ratio required to accept a partition, N
is the maximum number of bounds tightening iterations, s is the stage of the binary tree, T
is the set of graphs in stage s, L is the set of leaves (or graphs that are not partitioned), and
n is the bounds tightening iteration. Lines 3 — 19 perform graph partitioning, and lines 22
— 48 perform bounds tightening. In the example in Figure 5, graph Gy is in stage 0, graphs
G1 and Gs are in stage 1, and graphs G3, G4, G5, and Gg are in stage 2.

The while condition on line 3 checks to see if there are any graphs in stage s. If so,
then the problem size of each graph in stage s is checked on line 6. If the graph is large
and we have not exceeded the maximum number of stages, then the graph is partitioned
using Algorithm 1. The Partitioning Ratio is then computed on line 8, and the partition

11

is accepted if the Partitioning Ratio is larger than the minimum Partitioning Ratio. If the
Partitioning Ratio is not large enough, the graph is not large enough, or the maximum
number of stages has been exceeded, then the graph is added to the set of leaf graphs.

Bounds tightening is performed on lines 22 — 48 for N iterations. For each stage and
each graph in each stage, we check if the graph is in the set of leaf graphs on line 26. If
so, bounds tightening is performed on all of the nonlinear and binary variables associated
with the graph and only subject to the subset of constraints associated with the graph.
If the graph is not in the set of leaf graphs, then bounds tightening is performed on all
of the variables associated with edges that were removed in order to partition the graph.
These are the “coupling” variables. By tightening these “coupling” variables (hopefully
few in number), we retain some feasibility information from the constraints left out when
performing bounds tightening with subsequent child graphs.

We can also define an Overall Partitioning Ratio, PO, as

VCl1&|
oo Yier g c(VEIED + Xie (IVNCIIE])

which is a measure of the overall effectiveness of a given recursive partitioning.

POF =

2.1 Tightening Leaves Only

An obvious alternative algorithm to the DBT algorithm can be developed by only tightening
the variables in the set VN and excluding the coupling variables. The result is that bounds
tightening problems are only solved with the small problems defined by the leaf graphs. We
denote this algorithm the Leaves algorithm and formalize it in Algorithm 3. Note that the
Leaves algorithm is a generalization of the bounds tightening procedure developed by Kocuk
et al. [22] for optimal power flow problems.

The motivation for still requiring a minimum Partitioning Ratio, P%, is that a large
number of removed edges in the graph partitioning is an indication of a high degree of
coupling which implies that the relaxations used in the bounds tightening problems will be
very weak, producing poor bounds.

12

Algorithm 2 DBT

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

function DBT(Gy, S, E, P%, N, U)
s+ 0,70« {Go}, L+~ @
while 7; # @ do
Teq1 =9
for G; = (Vi,Ci,gi) € 7Ts do
if |€;| > E and s < S then

Partition G; into graphs G, and G} using Algorithm 1
Compute P? from Equation (21)
if P* > P" then
Tor1 = Ts41 U{Ga, G}
else
L=LU{G;}
end if

else

L=LU{G:}

end if
end for
s=s5+1
end while

S=s
n=20

while n < N do

s=0

while s < S do
for G; = (Vz,Cz,gz) € 7Ts do

if G; € £ then
if Gl = Go then
z; =minz; s.t. x € {z: 2 € F(Gy), f(z) SUIVj € e
T; =maxz; st x € {z:z € F(G), flz) <UYVj e VNC
else
z; = minz; s.t. x € F(G) Vj € yhe
T, = maxx; s.t. x € F(Gy) Vj € VN
end if
else
if G; = Go then
z; =minz; st. x € {z: 2 € F(Gy), f(z) U Vj € Vi
Z; = maxz; s.t. 2 € {x:x € F(G:), f(x) U} Vj e VF
else
z; =minz; st. x € F(G;) Vj € VI
Z; = maxz; s.t. © € F(G;) Vi € VF
end if
end if

end for
s=s+1
end while
Update the convex relaxations, h(z), based on new variable bounds
n=n+1
end while
49: end function

13

Algorithm 3 Leaves

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

function DBT(Gy, S, E, P®, N, U)

s+ 0, To+ {Go}, L+ @
while 7; # @ do
Teq1 =9
for G; = (Vz,CL,&) € 7Ts do
if |&| > E and s < S then
Partition G; into graphs G, and G} using Algorithm 1
Compute P® from Equation (21)
if P® > P" then
Tor1 = Toy1 U{Ga, Go}
else
L=LU{G:}
end if
else
L=LU{G;}
end if
end for
s=s+1
end while
S=s
n=20
while n < N do
s=0
while s < S do
for G; = (V;,Ci, &) € Ts do
if G; € £ then
if G; = Gy then
z; =minz; s.t. x € {z: 2 € F(Gi), f(z) U Vj € yNe
Z; = maxz; s.t. x € {x:x € F(G), f(z) <U}Vj e VNC
else
z; = minz; s.t. z € F(Gi) Vj € yNe
Z; = maxx; s.t. x € F(G;) Vj € VN
end if
end if
end for
s=s+1
end while
Update the convex relaxations, h(z), based on new variable bounds
n=n+1
end while

41: end function

14

Algorithm 4 FS (Full-Space OBBT)

1: function FS(Go, N, U)

2: n=0

3 while n < N do

4: z; = minz; s.t. z€{x:x € F(Go), f(z) <U}Vje Ve

5: Z; = maxz; s.b. ¢ € {x: 2 € F(Go), f(x) U} Vj e V¢

6 Update the convex relaxations, h(z), based on new variable bounds
7 n=n+1

8 end while

9: end function

3 Implementation Details

In the following section, we compare both the DBT and Leaves algorithms (Algorithm 2
and Algorithm 3, respectively) to the standard, full-space (FS) algorithm. For completeness,
the F'S algorithm is presented in Algorithm 4. All three algorithms have been implemented
in Coramin (https://github.com/coramin/coramin). Coramin is an open-source Python
package built on Pyomo [17, 18] that contains tools for developing global optimization algo-
rithms. Coramin contains relaxations for constraints containing bilinear, univariate convex,
univariate concave, cosine, sine, and arctangent terms along with classes for managing and
refining these relaxations. These classes inherit from Pyomo Blocks for seamless integra-
tion with Pyomo models. Coramin also contains functions for generating convex relaxations
of general Pyomo models using factorable programming. Additionally, Coramin contains
domain reduction tools, including a parallel implementation of OBBT and the aggressive
filtering technique for OBBT developed by Gleixner et al. [14]. Coramin makes direct use
of Pyomo’s persistent solver interfaces to efficiently handle model updates such as changing
the objective for OBBT and updating convex relaxations.

We implemented the DBT algorithm described in the previous section within Coramin
along with examples of its use. Custom Pyomo Blocks were developed in order to manage
the hierarchy imposed by graph partitioning. Because Pyomo Blocks can be solved inde-
pendently, the model can be constructed once according to the structure imposed during
the first part of Algorithm 2. The leaf Blocks (the models defined by the leaf graphs) can
be combined on parent Blocks to describe the larger models.

Our implementation begins by creating a Pyomo model for the problem of interest. For
the ACOPF test cases, we utilize Egret (https://github.com/grid-parity-exchange/
egret) to parse the Matpower files from the Power Grid Lib - Optimal Power Flow (PGLib-
OPF) repository (https://github.com/power-grid-1ib/pglib-opf) [3]. For the prob-
lems from MINLPLib (http://www.minlplib.org), we use Suspect [9] to parse OSIL files
and create the corresponding Pyomo models. Next, FBBT is used with the nonlinear model
to tighten variable bounds. Then, we check to see if the objective uses a single variable,
ObjVar. If the variable ObjVar is only used in a single constraint,

f(z) = ObjVar, (23)

then we remove ObjVar from the problem and replace the objective with f(x). The reason
for this is that, for many problems, including the objective as a constraint as shown in Equa-
tion (23) causes the bipartite graph to be far more dense, causing our partitioning method

15

https://github.com/coramin/coramin
https://github.com/grid-parity-exchange/egret
https://github.com/grid-parity-exchange/egret
https://github.com/power-grid-lib/pglib-opf
http://www.minlplib.org

to result in partitions with low Partitioning Ratios. Next, the problem is converted to the
form of Problem (15) using the factorable programming implementation from Coramin.

At this point, a bipartite graph is formed from the problem’s constraints, and Metis [21]
is used to perform graph partitioning as described in the first part of Algorithm 2. We use
a minimum Partition Ratio, P®, of 1.5. We set the maximum number of stages, S, to

S = logyo(|€ol) (24)

and the minimum number of edges, E, to 1,000. Note that Metis is extremely fast, and only a
negligible fraction of time is spent performing graph partitioning. Our implementation calls
Metis 10 times for each graph with different seeds and selects the best partition. Finally,
each nonconvex function, h;(x) is relaxed using Coramin.

We solve all bounds tightening problems with Gurobi [16]. Because some of the problems
from MINLPLib were poorly conditioned, we disabled Gurobi’s presolve. Note that this is
not required for most problems. We set the Thread count to 1 and used dual-simplex for
problems from MINLPLib and the barrier method for the problems from the PGLib-OPF
repository. We set the optimality tolerance to 10~° for the dual-simplex method and the
barrier convergence tolerance to 10~ for the barrier method. We also disabled crossover for
the barrier method. These settings reduced round-off error in the variable bounds introduced
by OBBT. The barrier method was utilized for the PGLib-OPF repository because it was
reliable for those problems and significantly faster than the simplex methods. The dual-
simplex method was utilized for the problems from MINLPLib because the barrier method
occasionally ran into numerical trouble. A more sophisticated implementation could try
both barrier and simplex for the first iteration and use the better method in subsequent
passes.

Additional measures were taken to avoid further ill-conditioning as the BT algorithms
progressed. First, if a variable’s bounds are initially infinite, tightened bounds are only
accepted if the abolute value of the tightened bound is less than 107. Otherwise, the bounds
are unchanged (infinite). Second, variables are not tightened if the variable’s upper and lower
bounds are within 10~* of each other. Furthermore, tightened bounds are relaxed slightly
to account for solver tolerances. Let x; be the current lower bound for x;, and let z; be the
lower bound computed from one of the OBBT problems such as Problem (18). We set the
new lower bound according to x; = max(z;, #; — 1073). Similarly, Z; = min (77, 7; + 1073).
Additionally, constraints generated from relaxing nonlinear constraints were removed from
the problem if they introduced large matrix coefficients into the problem. This occurs, for
example, when relaxing constraints involving exponential terms. Consider a relaxation of
y > exp(z) with —100 < x < 100. Outer Approximation cuts at the bounds of x result in
very poorly conditioned constraints. Excluding these poorly conditioned constraints only
further relaxes the problem.

For the bounds tightening portion of all three algorithms, we utilize the aggressive fil-
tering algorithm developed by Gleixner et al. [14]. We also utilize Pyomo’s persistent solver
interface to Gurobi for efficiently changing the objective and resolving.

Before each iteration of bounds tightening, we solve the following MILP relaxation to

16

obtain a candidate integer solution.

min f(z) (25a)
S.t.

alz < b vi e ct (25b)
pih;(2) < q¢l'x viecNE (25¢)
z; <2 <T; Viey (25d)
z; € {0,1} Vi e VB (25¢)

The binary variables are then fixed to this candidate integer solution, and a continuous NLP
is solved with TIPOPT [37] to obtain an upper bound, U B, for use in the bounds tightening
algorithms. We place a 10-minute time limit on the solution of each lower bounding prob-
lem and each upper bounding problem. We limit the bounds tightening algorithms to 10
iterations and 1 hour, excluding time for the lower and upper bounding problems. For some
of the larger test problems, even a single iteration of the F'S approach does not complete
within an hour. In order to get data for at least one iteration, we extend the time limit for
the first iteration to 7 hours.

4 Computational Results

In this section, we present computational results comparing the full-space (F'S), Leaves, and
decomposed (DBT) bounds tightening algorithms (Algorithms 4, 3, and 2, respectively). We
tested each algorithm on both alternating current optimal power flow (ACOPF) problems
from the PGLib-OPF repository and on problems from MINLPLib. The ACOPF problem
is a nonlinear programming problem (NLP) seeking to minimize the operating cost of a
transmission system while satisfying customer power demand. The problem is defined by
a set of buses connected by a set of transmission lines. Each bus may have a generator
and/or load. The constraints describing power flow on the transmission lines are nonlinear
and nonconvex. We utilize the Quadratic Convex (QC) relaxation of the polar form of the
ACOPF problem strengthened with a second-order cone (SOC) constraint [20].

We limited our analysis to test problems with less than 10,000 nonlinear operations and
less than 100,000 nonzeros in the Jacobian of the constraints after converting the problem
to the form of Problem (15). We also excluded problems with nonlinear operations not sup-
ported by Suspect or Coramin, including erf, gammaFn, signpower, min, and abs. Finally,
we excluded problems without objectives, problems with special ordered sets, and problems
with semicontinuous variables. After excluding problems with these restrictions, 1,467 test
problems remained from MINLPLib and 57 test problems remained from the PGLib-OPF
repository. Of these, 684 problems from MINLPLib had less than 1,000 nonzeros in the
Jacobian of the constraints, which is one of the stopping criteria for the partitioning proce-
dure outlined in Section 3. Essentially, these problems were too small for decomposition, so
they were excluded from the analysis. Additionally, 415 of the problems from MINLPLib
resulted in Partitioning Ratios (PR’s) less than 1.5. As a result, these problems were not
partitioned. Of the 57 ACOPF test problems, only 6 had less than 1,000 nonzeros in the
Jacobian. None resulted in PR’s less than 1.5. Numerical errors were encountered on one
test problem from MINLPLib. In the end, we tested the proposed algorithms on 367 prob-
lems from MINLPLib and 51 problems from the PGLib-OPF repository. Recall that we use

17

Metis to perform graph partitioning. Metis is extremely fast, so attempting decomposition
and computing the PR is cheap relative to a global optimization algorithm. Furthermore,
the PR can be computed before any bounds tightening is performed. Therefore, only a small
amount of time is sacrificed if the PR is low and decomposition should not be performed.
On the other hand, if the PR is high, enormous performance gains can be achieved through
decomposition, as our results below demonstrate.

The computational results are summarized Figures 6, 7, 8, 9, and 10. Figures 6 and 7
show the time required to complete one iteration of BT for each of the test cases. The

— ACOPF
ACOPF z - 100
$20000{ o FS % . 5 s
- DBT |3 . 80
L S o Y 0 Y. SO
5 15000 = 10 i ,.." k5
g 2 ' 60 o
¢ 10000 s T v w
o] 'c_n .‘ 40 X
5 o L
5000 . ~ S -
S LY g ‘ 20
£ . £
T oleee ® e 109 0
0 2000 4000 6000 8000 - 10% 102 103 104
Number of Nonlinear Operations FS Single-Iteration Time (s)
IVlINLPLIb g MINLPLib . 100
20000 c S 1§ :
p DBT | & . . 80
[e] =
E 15000 o : 1014- g
2 -2 ol 3 X 0 2
(0] [L 'y ° [T
g 10000 ° ° |C_n % .d? .-... 40 ®
8 o P> S . 2
% 5000 ~ P
£ o8, o 2 - 20
= ° °)
. 0 mgﬂr' .e?... °? 51004. $
0 2000 4000 6000 8000 - 10! 103 0
Number of Nonlinear Operations FS Single-Iteration Time (s)

Figure 6: Comparison of time required for the FS and DBT algorithms. Note that these
figures do not account for the effectiveness at tightening variable bounds - only the com-
putational performance. The top two figures show results for the ACOPF test problems
and the bottom two figures show results for the test problems from MINLPLib. The figures
on the left show the time required for a single iteration of each algorithm as a function of
the number of nonlinear operations in the problem. The figures on the right show the time
required for an iteration of the FS algorithm divided by the time required for an iteration
of the DBT algorithm. The figures on the right are also colored according the the percent
of variables filtered (filtering was used in all algorithms). These figures highlight that the
decomposition approach becomes increasingly important as the problem size and difficulty
increase.

figures on the top of Figure 6 show results for the ACOPF test problems. The figures on

18

MINLPLib

LY
i ° FS
= 30007 DBT o ° .
g .
©
£ 2000/ . . .
[]
2 R
S & ° ° °®
S 1000 oc® e
o e o °
€ ;. ® ...'.‘ e °
i °
. 01 &" ¥ e o

0 2000 4000 6000 8000
Number of Nonlinear Operations

Figure 7: Comparison of the time required for the FS and DBT algorithms for problems
from MINLPLib with the y-axis limited to 5000 seconds.

the bottom show results for the problems from MINLPLib. The figures on the left show the
time required to complete a single iteration of bounds tightening for both the FS and DBT
algorithms as a function of the number of nonlinear operations in the problem. Figure 7
is the same plot as the bottom left figure of Figure 6 except that test problems for which
the F'S approach takes longer than 5,000 seconds are excluded (in order to see the majority
of the plot more clearly). The figures on the right of Figure 6 show, on the y-axis, the
time required for one iteration by the FS algorithm divided by the time required for one
iteration of the DBT algorithm. The x-axis is the time required for a single iteration of the
FS algorithm. All of these figures show that the DBT algorithm scales far more favorably
with problem size than the FS algorithm. Typically, the larger the problem, the longer the
FS algorithm takes, and the more valuable decomposition is. Additionally, the data points
in the figures on the right are colored according the the percent of variables filtered by the
algorithm proposed in [14]. If a variable is filtered, it is proven that the variable’s bounds
cannot be tightened with the current relaxation, so no optimization problem needs to be
solved for that variable. The figure in the bottom right of Figure 6 shows a small group
of test problems for which no performance improvement is achieved. For the majority of
these test problems, all or nearly all of the variables are filtered, and the FS algorithm is
relatively fast because so few OBBT problems need solved.

The results presented above only consider the time required to perform BT and not how
effective the algorithms are at tightening variable bounds. Figures 8, 9, and 10 do account
for the effectiveness. These figures show the percent of test problems which achieve a
given percentage improvement in the average, scaled variable ranges. The scaled range for
a variable is given by

T — T;
T, = —

26
x—io _ &O ()

where 2,;° and 7;° are the variable bounds after feasibility based bounds tightening (FBBT)
has been performed but before any OBBT has been performed. The average, scaled variable

19

100 T 10— ...
= 3 :
° S 80 P
— = :
— — -
Te] Te]
~ ~ 60<
1) 1)
€ £ —
(] (7] .-
) o 401¢
o o !
s S — FS
S 20 ---- DBT S 209 e DBT
EN Leaves X 1 Leaves
0 - - - - v 0 - - - - v
200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (s) to 5% improvement Time (s) to 25% improvement
100 100
= — FS = — FS
@© @©
S804 0 e DBT S804 00 e DBT
[[
—_ —_ —=- Leaves
n n
~ ~ 60_
1)) 1))
€ €
(V] (V]
e 5 40/ \seapETTTTTTT
° °
o o E
‘s 6 20q;
X X :
0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Time (s) to 40% improvement Time (s) to 50% improvement

Figure 8: Performance results for the ACOPF test problems. Each figure shows the percent
of test problems which achieve a given percent improvement in the average, scaled variable
ranges as a function of time. From top left to bottom right, the figures show the percent
of test problems which have achieved 5%, 25%, 40%, and 50% improvement in the average,
scaled variable ranges.

ranges are then given by

>

i€YNC

. 1

Note that the initial value of # before any OBBT has been performed is 1. The percent
improvement in the average, scaled variable ranges is then given by

100 — 1007 (28)
We compute 7 after each iteration of each algorithm and use linear interpolation to find
the time to a given percentage improvement. Figures 8 and 9 show results for the ACOPF
test problems and test problems from MINLPLib, respectively. Figure 10 also shows results
for test problems from MINLPLib, but only for test problems with at least 300 nonlinear
operations. The purpose of Figure 10 is to highlight the advantage of decomposition for
large problems. Note that all of the ACOPF test problems have at least 250 nonlinear
operations and only 3 have less than 300 nonlinear operations.

20

[0,
o
[0,
o

3 3 —Fs
f_) 401 |<_> 40! e DBT
m m Leaves
D301/ 0301
2 501 3 204k
o) e} ;
e e ;
[a [a
410 +eee- DBT %5 101
X ‘ Leaves X
0 T T T T T 0 T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) to 5% improvement Time (s) to 10% improvement
50 50
’(—E — FS ’(—E — FS
f_) 401 mmmes DBT |<_> 401 e DBT
m Leaves m Leaves
0301 0301
£ £
<201 <201
< veairritrazeesess el 2
& gyl = — - &
%5 101 £ ‘5 101
0~ ; ; ; ; ; 0 ; ; ; ; ;
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) to 20% improvement Time (s) to 40% improvement

Figure 9: Performance results for the MINLPLib test problems. Each figure shows the
percent of test problems which achieve a given percent improvement in the average, scaled
variable ranges as a function of time. From top left to bottom right, the figures show the
percent of test problems which have achieved 5%, 10%, 20%, and 40% improvement in the
average, scaled variable ranges.

The top left figure of Figure 8 shows that, initially, for the ACOPF test problems,
both the DBT and Leaves algorithms perform similarly, and both perform far better than
the FS algorithm. This is also true for the time to 25% improvement in variable ranges.
However, the Leaves algorithm achieves 40% improvement in variable ranges for very few
test problems. This illustrates the value of tightening the coupling variables introduced
from partitioning. Considering the time to 40% improvement in variable ranges, the DBT
algorithm dominates both the Leaves and FS algorithms. Similarly, Figure 10 shows that the
DBT algorithm significantly outperforms both the FS algorithm and the Leaves algorithm
for the test problems from MINLPLib.

21

[0,
o
[0,
o

3 3 — s
© 401 o eeeeeeeeeiieeaeeeeerieeees Saof e DBT
S S Leaves
\N’304 \N’304 R R
220 2 20
Sk S|k
= — FS & ;
s10y e DBT 5 10‘1;
X Leaves X ¥

0 T T T T T 0 T T T T T

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) to 5% improvement Time (s) to 10% improvement
50 50

E — FS E — FS
f_) 401 mmmes DBT |<_> 401 e DBT
S Leaves S Leaves
N304 N304
£ £
<201 <201
Q Q
e - e
a o0 a
“510-‘,. %5 101

0 ; ; ; ; ; 0 el ; ; ; ; ;

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) to 20% improvement Time (s) to 40% improvement

Figure 10: Performance results for the test problems from MINLPLib with at least 300
nonlinear operations. Each figure shows the percent of test problems which achieve a given
percent improvement in the average, scaled variable ranges as a function of time. From top
left to bottom right, the figures show the percent of test problems which have achieved 5%,
10%, 20%, and 40% improvement in the average, scaled variable ranges.

5 Conclusions

We presented two novel decomposition algorithms for performing domain reduction for non-
convex optimization problems. The decomposed bounds tightening (DBT) algorithm de-
composes traditional optimization-based bounds tightening (OBBT) problems by forming
a bipartite graph representation of the variables and constraints in a problem and then
performs graph partitioning. We recursively partition the resulting graphs, forming a bi-
nary tree of graphs, until the leaf graphs are sufficiently small. The DBT algorithm then
solves a few large OBBT problems to tighten the coupling variables introduced by graph
partitioning and many small OBBT problems to tighten the nonlinear and/or integer vari-
ables. The small OBBT problems are solved while only considering a small fraction of the
constraints from the original problem - those contained in the corresponding graph. The
Leaves algorithm is similar, except that the coupling variables are not tightened.

We compared the two proposed decomposition-based bounds tightening algorithms to
traditional, full-space (F'S) OBBT. Our results on a set of optimal power flow test problems
and a set of test problems from MINLPLib demonstrate that the DBT algorithm drastically

22

outperforms the FS approach, especially for large problems. Our results also indicate that
tightening the coupling variables introduced during the graph partitioning phase is critical,
and the DBT algorithm also outperforms the Leaves algorithm. For large problems, the
DBT algorithm can be over an order of magnitude faster than traditional OBBT and nearly
as effective.

The efficacy of the DBT algorithm is encouraging, and it raises several future research
questions. Existing MINLP solvers only use OBBT very selectively due to its high compu-
tational expense [10]. The DBT algorithm may be efficient enough that it can be utilized
more heavily within the branch and bound tree, especially because the algorithm can be
parallelized. The DBT algorithm may also complement other recent advances in domain
reduction. For example, the DBT algorithm could likely complement the Lagrangian Vari-
able Bounds proposed by Gleixner et al. [14]. Additionally, although the DBT algorithm
can be parallelized, load balancing will be far more difficult compared to the standard FS
approach. The best way to implement a parallel DBT algorithm remains an open question.
Finally, because the DBT algorithm is so efficient, effective, and parallelizable, it may open
the door to new global optimization algorithms.

6 Data Availability

The datasets analysed during the current study are available from the Power Grid Lib
- Optimal Power Flow (PGLib-OPF) repository (https://github.com/power-grid-1ib/
pglib-opf) [3] and from MINLPLib (http://www.minlplib.org). The algorithms utilized
in this paper are available in Coramin (https://github.com/coramin/coramin), including
example usage. The scripts used to apply the algorithms to the datasets and generate the
figures presented in this paper are available from the corresponding author on reasonable
request.

7 Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by Na-
tional Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DENA0003525. This research was funded in part
by Sandia National Laboratories’ Laboratory Directed Research and Development (LDRD)
Program. This work was conducted as part of the Institute for the Design of Advanced
Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-Cutting Re-
search, U.S. Department of Energy.

The work performed by B. Knueven was done while he was a staff member at Sandia
National Laboratories.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07TNA27344. This document was
prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal li-
ability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product, process, or service

23

https://github.com/power-grid-lib/pglib-opf
https://github.com/power-grid-lib/pglib-opf
http://www.minlplib.org
https://github.com/coramin/coramin

by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LL.C, and shall not be used for advertising or product endorse-
ment purposes.

Disclaimer: This paper describes objective technical results and analysis. Any subjec-
tive views or opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.

References

[1] Claire S Adjiman, Stefan Dallwig, Christodoulos A Floudas, and Arnold Neumaier. A
global optimization method, abb, for general twice-differentiable constrained nlps—i.
theoretical advances. Computers & Chemical Engineering, 22(9):1137-1158, 1998.

[2] Toannis P Androulakis, Costas D Maranas, and Christodoulos A Floudas. abb: A
global optimization method for general constrained nonconvex problems. Journal of
Global Optimization, 7(4):337-363, 1995.

[3] Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D Christie, Carleton Coffrin,
Christopher DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott
Greene, Renke Huang, et al. The power grid library for benchmarking ac optimal
power flow algorithms. arXiv preprint arXiv:1908.02788, 2019.

[4] Pietro Belotti, Sonia Cafieri, Jon Lee, and Leo Liberti. Feasibility-based bounds tight-
ening via fixed points. In International Conference on Combinatorial Optimization and
Applications, pages 65-76. Springer, 2010.

[5] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and
Ashutosh Mahajan. Mixed-integer nonlinear optimization. Acta Numerica, 22:1-131,
2013.

[6] Michael R Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. Minlplib—a collec-
tion of test models for mixed-integer nonlinear programming. INFORMS Journal on
Computing, 15(1):114-119, 2003.

[7] Michael Bynum, Anya Castillo, Jean-Paul Watson, and Carl D Laird. Strengthened
socp relaxations for acopf with mccormick envelopes and bounds tightening. In Com-
puter Aided Chemical Engineering, volume 44, pages 1555-1560. Elsevier, 2018.

[8] Michael Bynum, Anya Castillo, Jean-Paul Watson, and Carl D Laird. Tightening
mccormick relaxations toward global solution of the acopf problem. IEEE Transactions
on Power Systems, 34(1):814-817, 2018.

[9] Francesco Ceccon, John D Siirola, and Ruth Misener. Suspect: Minlp special structure
detector for pyomo. Optimization Letters, 14(4):801-814, 2020.

[10] Francesco Ceccon, Radu Baltean-Lugojan, Michael Bynum, Chun Li, and Ruth Mis-
ener. Galini: An extensible mixed-integer quadratically-constrained optimization
solver. Optimization Online, 2021. URL http://www.optimization-online.org/
DB_HTML/2021/01/8207 .html.

24

http://www.optimization-online.org/DB_HTML/2021/01/8207.html
http://www.optimization-online.org/DB_HTML/2021/01/8207.html

[11]

[12]

Chen Chen, Alper Atamtiirk, and Shmuel S Oren. Bound tightening for the alternating
current optimal power flow problem. IEEE Transactions on Power Systems, 31(5):
3729-3736, 2015.

Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. Strengthening con-
vex relaxations with bound tightening for power network optimization. In Interna-
tional Conference on Principles and Practice of Constraint Programming, pages 39-57.
Springer, 2015.

Robert J Dakin. A tree-search algorithm for mixed integer programming problems.
The computer journal, 8(3):250-255, 1965.

Ambros M Gleixner, Timo Berthold, Benjamin Miiller, and Stefan Weltge. Three en-
hancements for optimization-based bound tightening. Journal of Global Optimization,
67(4):731-757, 2017.

Chrysanthos E Gounaris, Ruth Misener, and Christodoulos A Floudas. Computational
comparison of piecewise- linear relaxations for pooling problems. Industrial & Engi-
neering Chemistry Research, 48(12):5742-5766, 2009.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http:
//www . gurobi . com.

William E Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo: modeling and
solving mathematical programs in python. Mathematical Programming Computation,
3(3):219-260, 2011.

William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A.
Hackebeil, Bethany L. Nicholson, and John D. Siirola. Pyomo—optimization modeling
in python, volume 67. Springer Science & Business Media, second edition, 2017.

MM Faruque Hasan. An edge-concave underestimator for the global optimization of
twice-differentiable nonconvex problems. Journal of Global Optimization, 71(4):735—
752, 2018.

Hassan Hijazi, Carleton Coffrin, and Pascal Van Hentenryck. Convex quadratic relax-
ations for mixed-integer nonlinear programs in power systems. Mathematical Program-
ming Computation, 9(3):321-367, 2017.

George Karypis and Vipin Kumar. Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices. Retrieved from the University of Minnesota Digital Conservancy,
http://hdl.handle.net/11299/2155846, 1997.

Burak Kocuk, Santanu S Dey, and X Andy Sun. Strong socp relaxations for the optimal
power flow problem. Operations Research, 64(6):1177-1196, 2016.

Burak Kocuk, Santanu S Dey, and X Andy Sun. Matrix minor reformulation and socp-
based spatial branch-and-cut method for the ac optimal power flow problem. Mathe-
matical Programming Computation, 10(4):557-596, 2018.

A H. Land and A.G. Doig. An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society, pages 497-520, 1960.

25

http://www.gurobi.com
http://www.gurobi.com

[25]

[26]

Jianfeng Liu, Michael Bynum, Anya Castillo, Jean-Paul Watson, and Carl D Laird. A
multitree approach for global solution of acopf problems using piecewise outer approx-
imations. Computers €& Chemical Engineering, 114:145-157, 2018.

Jianfeng Liu, Carl D Laird, Joseph K Scott, Jean-Paul Watson, and Anya Castillo.
Global solution strategies for the network-constrained unit commitment problem with
ac transmission constraints. [EEE Transactions on Power Systems, 34(2):1139-1150,
2018.

Mowen Lu, Harsha Nagarajan, Russell Bent, Sandra D Eksioglu, and Scott J Mason.
Tight piecewise convex relaxations for global optimization of optimal power flow. In
2018 Power Systems Computation Conference (PSCC), pages 1-7. IEEE, 2018.

Garth P McCormick. Computability of global solutions to factorable nonconvex pro-
grams: Part i—convex underestimating problems. Mathematical programming, 10(1):
147-175, 1976.

Ruth Misener and Christodoulos A Floudas. Antigone: algorithms for continu-
ous/integer global optimization of nonlinear equations. Journal of Global Optimization,
59(2-3):503-526, 2014.

Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to interval
analysis, volume 110. Siam, 2009.

Yash Puranik and Nikolaos V Sahinidis. Domain reduction techniques for global nlp
and minlp optimization. Constraints, 22(3):338-376, 2017.

Hong S Ryoo and Nikolaos V Sahinidis. Global optimization of nonconvex nlps and
minlps with applications in process design. Computers & Chemical Engineering, 19(5):
551-566, 1995.

Nikolaos V Sahinidis. Baron: A general purpose global optimization software package.
Journal of global optimization, 8(2):201-205, 1996.

Artur M Schweidtmann and Alexander Mitsos. Deterministic global optimization with
artificial neural networks embedded. Journal of Optimization Theory and Applications,
180(3):925-948, 2019.

Mohit Tawarmalani and Nikolaos V Sahinidis. Global optimization of mixed-integer
nonlinear programs: A theoretical and computational study. Mathematical program-
ming, 99(3):563-591, 2004.

Angelos Tsoukalas and Alexander Mitsos. Multivariate mccormick relaxations. Journal
of Global Optimization, 59(2-3):633-662, 2014.

Andreas Wéchter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106(1):25-57, 2006.

ME Wilhelm and MD Stuber. Eago. jl: easy advanced global optimization in julia.
Optimization Methods and Software, pages 1-26, 2020.

26

	Introduction
	Decomposed Bounds Tightening
	Tightening Leaves Only

	Implementation Details
	Computational Results
	Conclusions
	Data Availability
	Acknowledgements

