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Abstract—While transmission switching is known to reduce
generation costs, the difficulty of solving even dc optimal trans-
mission switching (DCOTS) has prevented optimal transmission
switching from becoming commonplace in real-time power sys-
tems operation. In this paper, we present a k nearest neighbor
(KNN) heuristic for DCOTS which relies on the insight that, for
routine operations on a fixed network, the DCOTS solutions for
similar load profiles and generation cost profiles will likely open
similar sets of lines. Our heuristic assumes that we have DCOTS
solutions for many historical instances. Given a new instance, we
find a set of “close” instances from the past and return the best of
their solutions for the new instance. We present a case study on
the IEEE 118 bus system, the 1354 bus PEGASE system, and the
2869 bus PEGASE system. We compare the proposed heuristic
to DCOTS heuristics from the literature, to Gurobi’s heuristics,
and to the result from a simple greedy local search algorithm. In
most cases, we find better quality solutions in less computational
time.

I. NOMENCLATURE

Sets
L Transmission lines
g Generators
B Buses

Gy Set of generators at bus b
Liom  Set of transmission lines leaving bus b
LY Set of transmission lines entering bus b

Parameters
Blf“’m Origin bus of transmission line [

B}°  Destination bus of transmission line

S Susceptance of transmission line [

F, Thermal limit for transmission line [

P,  Upper limit of generator g dispatch level
P, Lower limit of generator g dispatch level

D,  Demand at bus b

C,  Per-unit generation cost of generator g

M Infeasibility cost

K Maximum number of lines that can be opened

Variables

fi Power flow through transmission line [

Dy Generator dispatch level for generator g
Up Load shed at bus b

UVp Over-generation at bus b

0y Phase angle for bus b

Y Indicator of whether or not line [ is closed

II. INTRODUCTION

Transmission switching is an inexpensive way to reduce
generation costs in a congested system. Ideally, we want to
always dispatch the cheapest generators first, but line limits
can make this dispatch impossible. This results in a so-called

out-of-merit-order dispatch. Due to Braess’ Paradox, by not
allowing flow through certain lines, we can reduce network
congestion and approach the desired merit-order dispatch [1].
The authors of [2] show that an optimal network topology
for one load profile is not necessarily optimal for another,
presenting a need for real-time switching as load fluctuates.

Transmission switching in real-time poses a challenge since
the dispatch problem is solved every 5 minutes for many
independent system operators (ISOs). This means that the
dispatch problem itself should be solved in less than 5 minutes
to allow time in the remainder of the 5-minute interval for
feasibility checks and other post-processing. DCOTS is NP-
hard, and also cannot be approximated within a constant factor
(31, [4].

Several different formulations for DCOTS have been pro-
posed, but they either scale poorly or require a limited set
of candidate lines for switching, making them heuristics as
well. In [4], the authors propose a cycle-based formulation
for DCOTS and use it to derive valid inequalities used in a
cutting plane solution approach. In [5], the authors propose
a smaller formulation for security-constrained DCOTS based
on the Power Transfer Distribution Factor (PTDF) power flow
equations. This formulation is computationally efficient when
the number of contingencies is small and the set of candidate
lines for switching is limited. With a good method for choosing
a the set of candidate lines, this formulation could be used as
a DCOTS heuristic. Rather than a heuristic, [6] proposes an
approximate model for DCOTS which is guaranteed to yield
feasible solutions with the same generation costs but lower
numbers of switched lines. However, using this approximation
for large networks still entails solving a large mixed integer
program (MIP), which does not yet scale well.

The difficulty of the MIP formulation of the problem has
so far prohibited exactly optimizing the topology on large
networks within the time limit imposed by real-time. However,
numerous heuristics have been proposed. The authors of [7]
use four different metrics based on sensitivity analysis of dc
optimal power flow (DCOPF) in order to estimate the cost
benefit of switching each line of the network. They then use
these estimates to prioritize the lines, and iterate through this
priority list, switching off lines which do in fact result in cost
savings. Similarly, [8] uses one of the same sensitivity criteria
to choose a subset of high priority lines. They then run a
greedy algorithm over just this set of lines, switching off the
line resulting in the most cost savings until there are no more
cost-saving lines or until they reach a maximum cardinality of
switched lines. The sensitivity-based heuristics are effective,
but, as the number of lines in the network increases, they may
not scale well since they rely on iterating through lists of lines
in order to make the switching decisions.
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Others have proposed using sensitivity information or his-
torical data to limit the set of switchable lines so as to reduce
the number of binaries in the DCOTS problem. The authors
of [9] use sensitivity information to limit this set. In an effort
to understand the economic impacts of switching via a case
study on a congested network, [10] suggests a couple of
heuristics for DCOTS. One involves a variation of the greedy
algorithm used in [8], but uses a partitioning technique to
explore multiple disjoint sets of feasible solutions in parallel.
Another uses data from past instances to select a limited set of
switchable lines which are all lines which were cost-beneficial
to switch off in the past. They then solve the DCOTS problem
allowing only these lines to be opened.

The idea of using data from past solves has recently begun
to take hold in the form of learning-based heuristics. Since the
dispatch problem is solved so frequently, and under normal
conditions, demands and generation costs do not vary beyond
around 10% and 5% respectively [11], a likely avenue for
scalable DCOTS heuristics is to harness off-line computational
power to develop a heuristic based on the solutions to historical
instances of the problem.

There has been recent interest in applying machine learning
methods to power systems problems. In [11], the authors
present three learning-based methods which use historical data
to solve the security constrained unit commitment problem.
The authors of [12] apply k nearest neighbors, an artificial
neural network, and decision tree regression to learn sets
of high-priority lines to consider for switching. They then
use a greedy algorithm based on [8] which uses this line
prioritization to generate a topology. In addition, they use
machine learning methods to train an algorithm selection
oracle which, given an instance, chooses which among these
algorithms to run.

We propose a k nearest neighbors approach different than
that of [12]. We apply the method for learning initial feasible
solutions from [11] to DCOTS: Rather than training an oracle
to map parameter vectors to sets of high priority lines as in
[12], we instead use k nearest neighbors to learn topologies
directly from the instance data. More specifically, we assume
that we have a large collection of solved instances of DCOTS.
Given a new instance, our heuristic selects the nearest k
instances in parameter space out of this solved collection.
We then test the quality of each of the toplogies of the k
near instances and return the lowest-cost topology as our
switching solution. We show through our case studies on the
IEEE 118 bus network and the PEGASE 1354 and 2869 bus
networks that, even for larger networks, the number of solved
training instances needed is moderate. A collection of 300
training instances yields solutions which are usually within
2% of the best known solution and, in most cases, are within
1% of the best known solution. Interestingly, we find that
the KNN heuristic tends to outperform heuristics from the
literature particularly when the system is more congested.
Another advantage of the method is that it scales well for
larger networks. We never iterate through lists of lines. Instead,
the effect of the size of the network is on training time,
which is done offline, and on the computation time for the
linear program (LP) solves which check the cost of the near
topologies. However, this effect is minimal since there are only
k such solves.

In the remainder of the paper, we give the DCOTS model in
Section III, an overview of our heuristic approach in Section
IV, details on the networks used in our case study in Section
V, computational results benchmarking our heuristic against
others from the literature in Section VI, and we conclude in
Section VIIL.

III. DCOTS MODEL
We use the following single-period formulation for DCOTS:
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This is the model used in [2] with the addition of load
shed and over-generation so that the model is feasible for all
possible topologies y. Generation costs are minimized in the
first term of (1), and the second term penalizes infeasibility
in the balance constraint. We set M to be 105, several
orders of magnitude higher than the maximum generation cost.
Equations (2) and (3) are the McCormick relaxation of Ohm’s
law. The nodal balance constraint with slacks included on the
right-hand side is given in (4). Equation (5) sets the line flow
to 0 when the line is opened and enforces transmission limits
when the line is closed. In (6) and (7), we bound the phase
angle differences when the line is closed. This is to help the
accuracy of the dc approximation. We enforce a maximum
cardinality of lines which can be opened in constraint (8).
In practice, we expect the value of K to be 5 or 10. This
is because switching large numbers of lines at once, even in
large networks, makes finding an AC feasible dispatch difficult
[13]. In addition, most of the cost savings from switching
can be attained by switching a small number of lines [4].
Equations (9)-(12) enforce variable bounds. Note that when the
transmission switching binaries y; are fixed, this formulation
is the B-6 formulation for DCOPF, a linear program.

IV. HEURISTIC APPROACHES
A. KNN Heuristic

Our proposed heuristic relies on the assumption that the
DCOTS problem has likely been solved on the same network



many times. We assume the variable data are the load profiles
and the generation costs. All other parameters are known, and
are constant on a given network. We can therefore characterize
an instance of DCOTS as the vector of generation costs
appended to the vector of demands. If ¢ is such a vector, we
will denote an instance of DCOTS as I(g). Suppose we have
a collection of solved DCOTS instances Q, each with an e-
optimal transmission switching solution. Given a new instance
I(q), we propose a heuristic based on k nearest neighbors
to find a transmission switching solution: Among the set of
solved instances, we find the nearest £ instances as measured
by their parameter vectors’ distance from ¢ using a p-norm for
some p. We then test the transmission switching solutions from
each of these & closest instances. We return the transmission
switching solution which has the best objective value. The
algorithm is presented formally in Algorithm 1.

Algorithm 1: KNN for Transmission Switching

Input: Set of solved instances
Q={I(¢"),1(¢?),...,1(g")} with e-optimal
transmission switching solutions
{y'9%,...,4"},p>1,k€ZT, and an
unsolved instance I(g"*!)

Output: Heuristic solution y"*! for instance I(g"*!)

T+ 0

let ¢ = i

for I(¢*) € Q do

let ¢' = g’
let d; = || — |
if |T'| < k then
T« TU{I(¢)}
end
else
for I(¢’) € T do
if d; < dj then
T« (T\{I(¢")}) U{I(¢")}
end

14 end

15 end

16 end

17 LB + o0

18 for I(¢) € T do

19 Fix the transmission switching solution y/ in
I(g™*1) and solve.

20 Let the optimal value be v;

21 if v; < LB then

n+1

D-T- RN B A I NV I S

e e =)
W N =D

22 LB < v;
23 Yyt gl
24 end

25 end

Note that the solution will respect the cardinality constraint
since all the solutions to the training instances do. However,
the solution is not guaranteed to be feasible, which is why
we have included slacks on the nodal balance constraint in
the DCOTS formulation. Since we are already using the dc
approximation for power flow, the solution would already have
to be corrected for feasibility in practice, so we allow these

small violations. In addition, we found that, in practice, when
we chose k = 10, we never encountered an infeasible solution.

The scalability of this algorithm relies mainly on the value
of k, and the number of training instances in Q. Thus, though
the size of the network can dramatically increase the training
time, the only effect it has on the algorithm is its influence on
the computational time for the & DCOPF solves in the loop
beginning at line 18 of Algorithm 1. The time taken in the
loop beginning at line 3 depends on |Q|. In our experiments,
we found that |Q| = 300 was sufficient. We tested Algorithm
1 with both Euclidean and ¢.,-norms.

B. Greedy Local Search

We compare the above heuristic to the four heuristics from
[7], to a greedy local search algorithm, presented as the
line enumeration algorithm in [12], and to Gurobi’s primal
heuristics. For completeness, we describe the greedy algorithm
here. We first calculate the cost, fixing all lines closed. Then,
for each line, we fix only that line open and calculate the
cost. If none of the lines improve the cost when opened,
we are done. Else, we fix open the line that improves the
cost the most. We repeat this process on the remaining set
of lines that could be opened, terminating either when we
see no improvement from any of the lines or when we have
opened as many lines as the cardinality constraint will allow.
The algorithm is given formally in Algorithm 2. Note that this

Algorithm 2: Greedy Local Search

Input: DCOTS instance I(q)
Output: Heuristic solution y for instance I(q)
15« L
2 K+ 0
3 while x < K do
4 LB < o0
5 for [ € S do

6 In I(q), fix y; = 0 and y; = 1 for all
ke S\{l}

7 Solve I(q) and let v be the optimal value

8 if v < LB then

9 LB <

10 m <[

11 end

12 end

13 Fix y,, =0
14 S S\ {m}
15 end

algorithm scales very poorly since it requires solving nearly
K - |L| linear programs. Also note that, in a very congested
system, where the solution with all lines closed is not feasible,
this algorithm also does not guarantee a feasible solution, and
the heuristics from [7] do not either.

C. Sensitivity-Based Heuristics

We also compare to the four sensitivity-criteria-based
heuristics from [7]. For brevity, we do not describe the
algorithms in detail here, but note that each of these heuristics
uses sensitivity information from the DCOPF problem in order



TABLE I
TEST INSTANCE SIZES

Test Case Number of Number of Number of
Buses Generators Lines
Blumsack118 118 19 186
PEGASEI1354 1,354 260 1,991
PEGASE2869 2,869 510 4,582

TABLE II

AVERAGE RELATIVE GAP OF THE SOLUTION WITH NO LINES SWITCHED
OPEN COMPARED TO THE BEST KNOWN SOLUTION.

Test Case Cardinality 5 Cardinality 10 No Cardinality

Constraint
Blumsack118 29.44% 31.88% 32.55%
PEGASE1354 1.11% 1.06% 1.05%
PEGASE2869 0.54% 0.35% 0.35%

to calculate criteria to indicate lines which are likely to be cost-
beneficial to open. Each heuristic uses a different such criterion
to order the lines for consideration in a greedy algorithm. That
is, we follow the procedure from Algorithm 2, but the set .S is
ordered based on the criterion. The four criteria are the Line
Profits criterion, the Price Difference criterion, the Total Cost
criterion, and the PTDF-Weighted Cost criterion.

D. Gurobi Heuristics

Last, we compare to Gurobi’s performance when we run it
with the Heuristics parameter set to 1, meaning that it spends
all its time on primal heuristics. We also warm start these
runs with the solution where all lines are closed, which is an
obvious feasible solution in all but very congested cases.

V. TEST CASES

We test the heuristic on the 118 bus test system as modified
in [14], and on the 1354 and 2869 bus PEGASE systems
[15]. The PEGASE systems were downloaded from v19.05
of the IEEE PES Power Grid Library [16]. Details of these
instances are shown in Table I. For each of these systems, we
generate 300 instances following the methodology from [11].
For completeness, we describe the process here: Suppose that
d® is the original vector of demands and " is the original
vector of generation costs. For ¢ € {1,2,...,300}, for each
bus b € B, draw ﬁé from a uniform distribution on the interval
[0.9,1.1]. Then let di = BidY. This process results in 300
demand profiles d',d?,...,d3"°. We generate the generation
costs in exactly the same way except that we only allow 5%
variation around the nominal generation cost, so we draw from
a uniform distribution on [0.95, 1.05].

We solve all 300 of the instances to 1%-optimality or to a
time limit of 0.5 hour, whichever comes first. We randomly
select 30 instances of these 300 as test instances and leave the
other 270 for training. In Table II, we show the average relative
gap of the solution where no lines are opened for the 30 test
instances on each of our test systems. In Figure 1 we show the
percentage of lines which have flow equal to the transmission
limit, which is another indication of the congestion of the
system. The 118 bus test case, though smallest, is the most
congested, and hence benefits the most from switching. In
particular, it continues to save on costs when it can open more
than 10 lines, whereas both the PEGASE test cases usually

Percentage of Lines at Bounds in Absence of Switching

Percentage of Lines

=

18 1354 2869
Test System

Fig. 1. Percentage of lines in each test system which have flow equal to the
transmission limits when switching is not allowed

switch between 5 and 10 lines regardless of the cardinality
constraint, and, in addition, they have a much smaller cost
savings when switching is an option. However, note that, even
in the 118 bus case, most of the cost savings can be attained
by switching only 5 lines.

VI. COMPUTATIONAL RESULTS

We report results with £ = 10 and using both the ¢5-norm
and the ¢,-norm to measure the distance from the training
instances. We give our heuristic and the Gurobi heuristics
a time limit of 5 minutes. We give the four heuristics from
[7] a time limit of 10 minutes to forgive inefficiencies in our
implementation. For all the heuristics, we test for cardinality
limits of 5 and 10, and also with no cardinality constraint. For
the 118 bus test case, we also compare to the greedy local
search algorithm, but we find it to be the worst-performing
heuristic in this case and intractable for larger test instances.

Our model and all our heuristics are implemented in Pyomo
[17], [18], relying on Gurobi as the solver [19]. We solve on
a server with 96 Intel Xeon 2.30GHz processors and 529GB
RAM.

Our results for the 30 test instances are shown in the
boxplots in Figures 2, 3, and 4. In all plots, the middle line
is the median value of the statistic shown, the bottom and top
of the box are the 1st and 3rd quartiles respectively, and the
“whiskers” extend to the largest (in absolute value) value from
the box which is no further than 1.5 times the interquartile
range. Outliers beyond that range are shown as individual
points.

The plots in the left-hand column of each figure show the
distributions of solution quality for each of the heuristics,
where we measure solution quality as the relative gap of the
objective from the best-known solution for the test instance.
That is, the gap is given by Zj, where z is the cost of the
heuristic solution and Z is the cost of the best known solution
for the instance. Note that, since we only solved the training
instances to 1%-optimality and we stopped at a time limit, it is
possible to find a new best-known solution via any of the tested
heuristics. Thus, our best-known solution is not necessarily the
solution we calculated during training: It is the best known
solution across training and all of the presented heuristics.




Gap with Best Known Solution for 118 Bus Test Case, Cardinality 5
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Fig. 2. Solution quality and computational time results for the 118 bus test case for the three different cardinality options.

The right-hand column of plots shows the distributions of
computational times for each of the heuristics. Note that, for
the Total Cost and PTDF-Weighted Cost heuristics, we do
not include the time needed to calculate the Load Outage
Distribution Factor (LODF) matrix since that only needs to
be done once for a network and so can be treated as data.

A. Computational Time

In all of our test cases and for all the variations in the
cardinality constraint, the KNN heuristic has one of the least
computational times. Even on the 2869 bus case, it runs for
a minute on average. This is because the time is completely

independent of the cardinality of the set of opened lines and is
also relatively agnostic to the size of the network. Regardless
of these, the time to calculate the solution from the KNN
heuristic is the time to find the £ closest instances from among
the 270 training instances, and the time to solve the Kk DCOPF
problems fixing the solutions from these k instances. Thus,
the time only scales up slowly as the network sizes increase,
increasing the DCOPF solve times slightly. In contrast, for
the sensitivity-based heuristics and for the greedy local search
algorithm, the time scales up with increased cardinality and
with the number of lines in the system. The Gurobi heuristics
also do not appear to scale well for increases in the cardinality
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constraint right-hand side and for increased network size.

In the 118 bus case, the sensitivity-based heuristics have
comparable computational times in the cardinality 5 vari-
ant. However, in all other cases, both the sensitivity-based
heuristics and Gurobi run for at least a minute longer than
the KNN heuristic, and Gurobi often reaches the 5 minute
time limit. In the 1354 and 2869 bus cases, the computation
times for the Line Profits and Price Difference heuristics are
comparable in the cardinality 5 case, but both Gurobi and
the sensitivity-based heuristics reach their time limits for less-
restrictive cardinalities.

Computational Time for 1354 Bus Test Case, Cardinality 5
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Solution quality and computational time results for the 1354 bus test case for the three different cardinality options.

B. Solution Quality

In the 118 bus test case for all cardinalities, Gurobi’s
heuristics are competitive with the KNN heuristic in terms of
solution quality. However, this is at the cost of computational
time: The KNN heuristic runs on the order of seconds whereas
Gurobi runs for at least a minute. For the 1354 bus case also,
the KNN heuristic yields higher quality solutions, and it does
so in less time in all but the cardinality 5 case.

In the 2869 bus case only, the Line Profits, Price Differ-
ence, and PTDF-Weighted Cost heuristics from [7] sometimes
slightly outperform the KNN heuristic in terms of solution
quality, despite the fact that they are terminated early by the
time limit for the cardinality 10 case and the case without
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Fig. 4. Solution quality and computational time results for the 2869 bus test case for the three different cardinality options.

a cardinality constraint. However, these heuristics achieve on
average a 0.06% improvement in solution quality as compared
to the KNN heuristic. Because the 2869 case is not congested,
the potential for cost savings from transmission switching is
limited, so this difference in solution quality only translates to
an average improvement of about $1,100 in cost. In contrast,
in the more-congested 1354 bus case, the KNN heuristic
achieves on average a 0.31% improvement over the Line
Profits heuristic, which translates to an average improvement
of $3,700.

In general, we see that the solution quality from the KNN
heuristic is fairly constant across different sized networks and
different cardinality constraints, usually achieving a relative
gap between 0.1% and 1.0%. However, it seems that the

performance of the sensitivity-based heuristics is negatively
impacted by highly congested cases, and so, in these cases
especially, the KNN heuristic finds better solutions.

C. Parameter Tuning

The difference between the Euclidean and {..-norms is
minimal in most of the experiments. Unsurprisingly, the two
are essentially indistinguishable in terms of computational
time. Overall, the /,.,-norm version of the heuristic has a
more variable performance and usually is slightly worse on
average. It also tends to have more extreme outliers, occa-
sionally performing much worse than the Euclidean norm on
a test instance. It therefore seems that the Euclidean norm



TABLE III
10-FOLD CROSS VALIDATION RESULTS: AVERAGE RELATIVE GAP OF THE
KNN HEURISTIC SOLUTION COMPARED TO THE BEST KNOWN SOLUTION.

Test Case Cardinality 5 Cardinality 10 No Cardinality

Constraint
Blumsack118 0.10% 0.24% 0.66%
PEGASE1354 0.00% 0.00% 0.00%
PEGASE2869 0.01% 0.01% 0.01%

is preferable, as it has both a more consistent and slightly
improved performance on the test instances.

As mentioned in Section IV-A, it is possible that the KNN
heuristic returns a topology which requires load shed or over-
generation. Since using the dc power flow approximation
already means that post-processing is required to ensure true
feasibility, we allow this to happen. However, we found that,
in practice, our heuristic never returned a solution which had a
positive value for load shed or over-generation. Assuming the
infeasibility cost M is large enough, this could only happen
if all k topologies we test are infeasible, so with k set to 10
we did not encounter this situation.

Though the results presented here all have 270 training
instances and 10 as the value of %k, we also experimented with
the KNN heuristic’s sensitivity to these parameters. Even for
the large networks, 270 training instances appears sufficient:
There was very little benefit in increasing to 500, though
reducing to 100 did hurt the heuristic’s performance. We also
experimented with setting k to 3 and 5. Both of these perform
well, though for smaller k¥ we saw small amounts of load
shed for the version of the 118 bus case without a cardinality
constraint. Overall, since the computation time is manageable
when £ is 10 and the quality and feasibility are improved, the
larger value seems preferable.

D. 10-fold Cross Validation

We ran 10-fold cross validation on each of the test cases for
each of the cardinalities with £ = 10 and using the Euclidean
norm. Results are shown in Table III. On average, across all
of the test systems and cardinalities, the heuristic returns a
result well within 1% of the best-known solution, with even
better performance on the less-congested cases. In addition, the
heuristic is consistent: The variance of the gaps in the cross
validation did not exceed 0.005% for any of the test cases or
cardinalities.

VII. CONCLUSION

We presented a KNN-based heuristic for DCOTS. We
showed through a case study on three test instances that,
especially for congested systems, this heuristic yields solu-
tions competitive with heuristics from the literature, and in
less computational time. In particular, the heuristic scales up
well with the size of the network since it has only a weak
dependence on the number of lines in the system.

Since transmission switching is a tool to reduce generation
costs given real-time fluctuation in demand, it is a problem
which should be solved quickly, but one for which data from
past solves is plentiful. This makes it an ideal problem for
machine learning techniques. In the future this same heuristic
could be applied to AC optimal transmission switching. In
addition, it could be used to find good warm starts for planning
problems or day-ahead operational problems in power systems.
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