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Motivation:

16E!Example damage envelopes for UD composite

> Fiber reinforced composite materials have many desirable qualities
including high strength-to-weight ratios, low manufacturing costs, and
corrosion resistance

o Composite damage may involve various mechanisms including fiber
fracture, fiber buckling, matrix cracking, matrix crushing, debonding of
fibers and matrix, and delamination 2
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> Numerous models with varying levels of complexity have been proposed to ) T i ey 0 o
define damage envelopes for composite materials

o In order to predict and mitigate damage, it is advantageous to explore how  Analytic damage envelopes for woven composite
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material parameters influence the development of stress components and ingluding material property uncertainty
damage metrics. o A e

Project goals:

o Perform sensitivity analyses of damage criteria on elastic and strength
properties of woven carbon fiber reinforced polymer for a residual
stress scenario induced from isothermal cooling

> Determine the most critical parameters for each damage criterion
o ldentify key differences and similarities among the damage criteria
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3 | Problem set up: isothermal cooling of composite cylinder

%eome)try: open aluminum cylinder with 3 outer layers of carbon fiber reinforced polymer
FRP

o overall: 127 mm length by approx. 100mm inner diameter
> Ply thickness = 0.5mm (1.5mm total)
o Aluminum thickness =1.5mm

Mesh: 41,984 8-noded hex elements with uniform gradient formulation
Boundary conditions: isothermal coolina 120°C to -50°C (A170°C)
_Aluminum material properties |

Aluminum material properties

Aluminum E(GPa) | Nu(-) [ CTE (ppm/°C) |

68.9 0.33 23.4

CFRP [ Glassy [ Rubbery |
CTE11 (ppm/  C) 3.399 0.948

y (ho

o Elastic model

Carbon fiber reinforced polymel

3.359 1.358

o Elastic orthotropic model 71.99 283.3
- Damage criteria Ply 3
> Absolute max principal stress - common, simple one term metric Ply 2
o Tsai-Wu metric - single equation of fully interactive terms including all stress components Ply 1
> Mat162 metric - maximum value of a set of mechanism-based damage criteria Aluminum

Sensitivity analyses

> Incremental Latin hypercube sampling (LHS) — identify most correlated parameters for down-
select

> Variance-based decomposition Sobol analysis — determine main and total effects indices

op)
x (radial)

Z (axial)



4 ‘ Problem set up: damage metrics
Mat162 criteria

(Tsai & Wu, 1971 ; Xiao, et al., 2007; Haque, 2017; LSDYNA manual )

Tsai-Wu criterion

o

1

(e]

General expression

Fio; + Fyo0;=11,j=1,..,6

Woven composites
> Assume orthotropic symmetry conditions

o Assume no normal-shear and shear-shear
coupling

o Coefficients may be written in terms of 12

__ material strength parameterslget_errmined by
=
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1 SirSic 22 SarSac S31S3¢
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Fyqa = e Fss = 7 Fee = 57,
252—[1 — Spiax12(Fy + F2) = Skiax12(Fi1 + Fzz)}
biax12
252—[1 — Spiax13(Fi + F3) = Shigx13(Fi1 + Fi3)}
biax13
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Maximum value of a set of
mechanism-based damage criteria

Tensile/shear fiber mode

2
. a3 V2
f1 ({511}) + (Si) =1 Macaulay bracket
1T 1F§
0 <0
£2 ({Jzz})z + (;z:-: )2 -1 (x) = {x x=0
52']"‘ 2F5

Compressive fiber mode

—{oy1)- + {o33)_ : Inverse Macaulay bracket
f3 ( 5 ) =1 o
AR F
£4 (_{022)-5: ‘h‘hﬂ-) —1
Crush (matrix) mode
f5 ('1?'“33:?'—)Z -
( S3c _1
In-plane shear matrix mode
f6 (32) =1
5‘12
Delamination mode

2
7 (033) a3\ o3\ _
s {( Sar ) * (523 + Ssn) + (513 + Ssn) =1

Ssp = —{o33)-tan(yp)

Absolute max principal
stress criterion

> For these cases:
minimum principle
stresses are
compressive, and have
greatest magnitudes
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5 ‘ Problem set up: sensitivity variables

Uniform uncertain CFRP material input parameters

parameters parameters

63.86 61.46 66.26 769 732 806
62.74 60.34 65.14 816 747 885
8.585 8.285 8.885 823 797 849
0.0480 0.0415 0.0545 816 747 885
0.4080 0.4015 0.4145 56.2 43.2 69.2
0.4075 0.401 0.414 56.2 43.2 69.2
3.43 3.33 3.53 48.4 47.56 49.24
3.265 3.165 3.365 32.4 25 39.8
3.25 3.15 3.35 32.4 25 39.8
| Tsai-Wu parameters [nominal [ min [ max m“m o e ] Y
600 510 690 barameters 0 =
55 46.75 63.25 385 327.25 442.75 2 .
55 46.75 63.25 412 350.2 473.8
. . 45° / y
Ply stack sequences explored: (inner ply/middle ply/outer ply) / //
> QOrientations indicate warp fibers direction relative to global hoop direction (y-dir) 1 2 5
> (0°/90°/0°) : inner and outer plies have warp fiber oriented in the ?Iobal hoop direction (weft 2 y
fibers in axial direction), middle ply has warp fiber oriented in global axial direction (weft fibers  9(Q° l l
in hoop direction) /

> (45°/-45°/45°)
> (90°/0°/90°)

Warp fibers (1-dir)



6 ‘ Preliminary problem bounding: orientation effects

Single orientation

o with and without (black) material
property uncertainty

o Min pr stress: ~0.18-0.27 (-)
> Norm by f1c=f2c=816mpa:

o Tsaiwu: ~0.13-0.475 (-)

o Mat162: ~0.17 — 0.47 (-)
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Three orientations ranges of
metrics without material
property uncertainty

o Min pr stress: ~0.18-0.33 (-)
o Tsai-wu: 0.13-0.48
> Mat162: 0.13-0.48

*» Tsai-Wu and mat162 plots show similar behavior
o Avoid orientations of 20°-70° (110°-160°)

o lowest damage metrics near 0°, 90°, 180°

“*Abs. min principal stress metric indicated opposite
behavior
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> Bold variables chosen for variance-based decomposition

o The Tsai-Wu metric shows a significantly higher range than the mat162 and min pr.
stress metrics

> The mat 162 and min. principal stress metric show a similar high-end range of approx.
0.28 when min pr. stress is normalized by f1c=f2c=816MPa

(0°/90°/0°) correlation statistics

Correlations for 1000 Latin hypercube samples (LHS)

min pr. stress
partial rank simple rank

1.01E-01
-6.48E-03
5.27E-02
-3.47E-03
-1.41E-02
1.06E-02
1.78E-02
-1.77E-02

matl62 metric Tsai-Wu metric

variable partial rank simple rank [variable partial rank simple rank
ell 5.25E-01 6.78E-02]ell 1.54E-01 4.52E-02
e22 4.97E-01 5.06E-02|e22 1.31E-01 2.95E-02 3.30E-01
e33 -1.15E-02 2.15E-03|e33 7.30E-02 -1.55E-03 -1.14E-03
vl2 1.75E-01 1.46E-02(v12 3.05E-02 6.93E-03 1.35E-01
vl3 -8.37E-03 1.02E-02(v13 5.20E-03 4.42E-03 -1.01E-02
v23 -5.19E-02 -2.45E-02|v23 -7.22E-03 -5.63E-03 -4.43E-03
gl2 -1.72E-03 -1.43E-02|g12 2.30E-02 -1.09E-02 2.96E-02
gl13 -1.56E-02 -2.81E-03|g13 1.09E-02 2.41E-02 3.31E-02
g23 5.18E-02 1.09E-02(g23 2.53E-02 1.46E-02 -5.66E-02
fit 9.20E-03 2.73E-03|f1t 2.21E-01 5.24E-02
flc -1.22E-02 1.39E-02|flc -3.99E-01 -9.26E-02
f2t -4.27E-02 -1.22E-02|f2t 4.52E-02 2.86E-02
f2c 2.31E-02 -6.23E-03|f2c -3.39E-01 -7.22E-02
f3t -3.45E-01  -3.39E-02|f3t |  -9.67E-01 -8.63E-01
f3c -2.50E-02 -1.15E-02]f3c 3.00E-01 4.77E-02
s12 5.21E-02 1.20E-02(s12 6.21E-03 1.43E-03
s13 -2.49E-01 -2.30E-02|s13 -6.91E-02 -2.10E-02
523 | -9.97E-01  -9.93E-01|s23 -6.99E-01 -2.33E-01
safs -6.09E-02 -2.11E-03|biax12 -2.53E-01 -6.48E-02
sbfs -3.75E-02 -3.65E-03|biax13 7.85E-01 2.79E-01

biax23 6.13E-01 1.64E-01
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Scatter plots of three damage metrics with two most correlated

variables for (0°/90°/0°) ply layup



s 1 (0°/90°/0°) Variance-based decomposition Sobol sensitivity
indices
»Main effects index: contribution of each individual variable alone to the variance in the model quantity of
interest (QOI)

» Total effects index: contribution of each individual variable in combination with all other variables to the

A k14 3 S = E il
323 [Pa]

O t3tqral

variance ma'énﬁ Mﬂﬂ)cl Tsai-Wu min pr. stress

variable main effects total effects [main effects total effects [ main effects total effects
ell 0.003 0.003 0 o.0o1f 0883 00952
e?22 0 0.002 0 0 0.02 0.071
vl2 0 0 0 0 0.002 0.001
fit 0 0.002
flc 0.008 0.011
f2c - 0.006 0.004
3t 0.003 0.001 [ 0776 0:83|
f3c - - 0.005 0.005
sl13 0.002 0.002 0.026 0.042
biax12 0.114 0.112
biax13 0.039 0.025
biax23 0.024 0.026
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“*Variance in S23 alone is responsible for
99% of variance in the mat162 metric

“*Variance in f3t alone is responsible for
78% of variance in the Tsai-Wu metric
o Variance in f3t in combination with other

variables accounts for 83% of variance in
the Tsai-Wu metric

**Variance in e11 alone is responsible for
88% of variance in the abs. minimum
principal stress metric
o Variance in e11 in combination with other
variables accounts for 95% of variance in

the abs. minimum principal stress
metric



o | (45°/-45°/45°) correlation statistics
Correlations for 1000 LHS

> Bold variables chosen for variance-based decomposition

o The Tsai-Wu metric shows a slightly higher range than the mat162 metric

> The min. principal stress metric shows a much smaller range of 0.17-0.19

when normalized by f1c=f2c=816MPa
matl62 metric Tsai-Wu metric min pr. stress
variable partial rank 'simple rank |variable partial rank simple rank |partial rank simple rank
ell 7.22E-01  1.24E-01|ell 5.656-01  145E-01| 8.45E-01  7.83E-01
e22 7.41E-01  1.44E-01|e22 6.34E-01  1.74E-01| 5.39E-01  3.19E-01
e33 -2.61E-02  -4.05E-04|e33 2.62E-02  4.07E-03| -1.93E-02 -1.55E-02
v12 3.80E-01  5.86E-02|v12 2.85E-01  6.66E-02| 3.64E-01  2.08E-01
vi3 7.11E-03  4.73E-03|v13 -4.60E-02  -9.69E-03| -1.66E-02  -1.11E-02
v23 6.22E-03  8.92E-03|v23 -3.11E-02  -6.59E-03| -2.33E-02  -2.16E-02
g12 |  9.84E-01  7.84E-01|g12 ["950E-01 632601| 2.20E-02 1.48E-02
g13 445E-02  1.03E-02|g13 1.35E-01  4.90E-02 -1.51E-03  7.90E-03
g23 4.89E-02  1.11E-02|g23 1.01E-01  2.55E-02 -4.05E-02  -2.03E-02
f1t 2.35E-02  -1.12E-02|f1t 2.57E-01  4.96E-02
fic -2.01E-02  -1.67E-02|fic -3.84E-01 -9.87E-02
f2t -1.16E-02  2.54E-03|f2t 1.79E-01  4.05E-02
f2c 1.01E-02  4.52E-03|f2c -3.86E-01  -6.49E-02
f3t -4.70E-02  -1.71E-03|f3t -8.30E-01 -3.07E-01
f3c -3.02E-03  1.01E-02|f3c 4.32E-01  9.88E-02
512 | -9.70E-01  -5.65E-01s12 -9.11E-01 -4.67E-01
s13 -1.51E-02  -1.29E-04|s13 -7.89E-01 -2.77E-01
s23 -5.42E-02  2.68E-03|s23 -7.86E-01  -2.54E-01
safs -1.83E-03  1.45E-02|biax12 -1.17E-01  -2.58E-02
sbfs -1.75E-02  -6.78E-03|biax13 3.39E-01  7.39E-02
biax23 3.05E-01  5.00E-02
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Scatter plots of three damage metrics with two most correlated
variables for (45°/-45°/45°) ply layup



0 I (45°/-45°/45°) Variance-based decomposition Sobol sensitivity

indices
matl162 metric Tsai-Wu min pr. stress

variable main effects total effects| main effects total effects|main effects total effects
ell 0.021 0.024 0.02 0.026 0725  0.905|
e22 0.038 0.031 0.039 0.029 0.129 0.315
vl2 0.003 0.003 0.001 0.004 0.04 0.041
gl2 0.583 0.571 0.403 0.391 0 0
fic 0.019 0.014
f2c 0.016 0.017
f3t 0.129 0.138
f3c 0.01 0.01
s12 0.32 0.322 0.217 0.219
s13 0.085 0.087
s23 0.077 0.103
biax13 0.001 0.014
biax23 0.005 0.013
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“*Variance in g12 including interactions with
other variables is responsible for 57% of
variance in the mat162 metric

\/

**Variance in g12 including interactions with

other variables is responsible for 39% of
variance in the Tsai-Wu metric

\/

+Variance in e11 including interactions with

other variables is responsible for 91% of

variance in the abs. minimum principal

stress metric

» Significant coupling for e11 and e22
indicated by increase in total effects indices
(91% and 32%) over main effects indices
(73% and 12.9%) for the abs. min principal
stress metric
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1 1 (90°/0°/90°) correlation statistics

Correlations for 1000 Latin hypercube samples (LHS)
> Bold variables chosen for variance-based decomposition

o The Tsai-Wu metric shows a significantly higher range than the mat162 and min pr.
stress metrics

> The mat 162 and min. principal stress metric show a similar high-end range of approx.
0.28 when min pr. stress is normalized by f1c=f2c=816MPa

matl62 metric Tsai-Wu metric min pr. stress

variable partial rank simple rank |variable partial rank simple rank |partial rank simple rank
ell 4.38E-01 5.53E-02|ell 8.03E-02 3.34E-02 6.66E-01 5.54E-01
e22 5.48E-01 6.85E-02]e22 1.26E-01 2.94E-02 6.65E-01 5.52E-01
e33 3.90E-03 6.29E-03|e33 4.82E-02 -7.53E-03 -3.40E-02 -2.55E-02
v12 1.32E-01 1.20E-02|v12 2.94E-02 6.78E-03 7.15E-02 5.90E-02
vl3 4.33E-02 -4.94E-04|v13 2.29E-02 1.06E-02 -7.08E-03 -6.47E-03
v23 -4.38E-02 -1.68E-02|v23 -3.18E-02 -7.33E-03 -2.53E-02 -2.38E-02
gl2 -7.94E-03 -9.41E-03|g12 -2.42E-02 -2.23E-02 9.75E-03 9.35E-03
gl3 7.28E-02 1.98E-02(g13 6.45E-03 1.79E-02 -1.52E-02 -3.35E-03
g23 -5.29E-03 -9.72E-03|g23 3.74E-02 1.58E-02 -3.95E-02 -2.24E-02
fit 1.58E-02 7.75E-03[f1t 1.72E-01 4.15E-02
flc -8.37E-02 -1.85E-02|f1c -2.09E-01 -4.13E-02
f2t -8.88E-03 -9.98E-03|f2t 1.05E-01 4.26E-02
f2c -3.02E-02 2.83E-03|f2c -5.12E-01 -1.29E-01
f3t -3.20E-01  -1.34E-02|f3t | -9.66E-01  -8.59E-01
f3c 4.13E-02 7.12E-03[f3c 2.70E-01 3.60E-02
s12 6.28E-02 7.97E-03|s12 4.22E-03 -2.17E-03
513 | -9.97E-01  -9.94E-01{s13 -6.88E-01  -2.19E-01
s23 -2.30E-01 -2.12E-02|s23 -9.61E-02 -3.03E-02
safs 9.03E-03 1.72E-02|biax12 -2.41E-01 -5.80E-02
sbfs 1.92E-02 1.07E-02|biax13 5.76E-01 1.51E-01

biax23 8.06E-01 3.02E-01
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Scatter plots of three damage metrics with two most correlated

variables for (90°/0°/90°) ply layup




12 ‘ (90°/0°/90°) Variance-based decomposition Sobol sensitivity
indices

matl62 metric Tsai-Wu min pr. stress
variable main effects total effects [main effects total effects |main effects total effects
ell 0.003 0.002 0 0 0.344 0.603
e22 0.002 0.004 0.002 0.002 0.381 0.629
vl2 0.001 0 0 0 0.001 0.002
f2c - - 0.016 0.013
f3t 0.001 0.001
s13 0.041 0.044
s23 0 0.002 -
biax13 0.021 0.023
biax23 0.109 0.114
tt Y " 05 .:‘-,:‘. ’—;__, :;-..:n.'é\.‘..:.. .,?““‘* - J'
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“*Variance in s13 including interactions with
other variables is responsible for 98% of
variance in the mat162 metric

**Variance in f3t inclpdin? interactions with other
variables is responsible for 82% of variance in
the Tsai-Wu metric

“*Variance in e22 including interactions with
other variables is responsible for 63% of
var![ance in the abs. minimum principal stress
metric

“*Variance in e11 including interactions with
other variables is responsible for 60% of
var![a_nce in the abs. minimum principal stress
metric

“»Significant coupling for e11 and e22
indicated by increase In total effects indices
(60% and 63%) over main effects indices (34%
and 38%) for the abs. min principal stress metric



13 ‘ Summary: isothermal cooling induced residual stress
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Fields of mat162 and Tsai-Wu metric values for

Most critical parameters: important to have rigorous experimental data
> e11, e22, g12 (elastic properties); f3t, s13, s23 (strength properties)

tsai_wu_id

The Tsai-Wu metric consistently showed a larger spread and peak
damage rréetrlc than the other two metrics for the three ply stack cases
considere

o Tsai-Wu metric is the most conservative option

o Differs from results for single orientation, which showed very similar behavior
with mat162

Peak damage metrics always occurred at/near the edges

o Exlgedpt for min principal stress metric for (45°/-45°/45°), peak in center of
cylinder

Future work:
o Explore other ply sequences, separate metrics by ply

o |nvestigate the use of and comparison with surrogate methods and composite (0°/90° /0°) shows peak near ends of inner ply
homogenization techniques adjacent to aluminum
_ (0°/90°/0°) (45°/-45°/45°) (90°/0°/90°)
Damage Relative std Greatest Sobol Total effects Relative std Greatest Sobol  Total effects  Relative Greatest Sobol  Total effects
metric dev [%] index param [%] dev [%] index param [%] std dev [%] index param [%]
Mat162 26.2 S23 99.5 3.45 G12 57.1 26.1 s13 98.4
Tsai-Wu 61.5 f3t 83.0 3.91 G12 39.1 61.6 f3t 82.2

Min Pr. Stress 1.64 el 95.2 1.19 el 90.5 1.48 e2?2 62.9

mc_rmat 162
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