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Finding models for multi-scale, multi-physics systems2

 Given experimental/high 
fidelity simulation data from a 
system,

 Find a mathematical model 
that describes the system

 Experiments/simulations 
generate noisy, biased, 
sparse data



Model power tradeoff3

Black-box ML ?

Prone to overfitting                         Strong assumptions

Parameter 
estimation



Case study: inductive bias in image classification

 Translation, scaling, and rotation shouldn’t affect an image’s class
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 1 Lawrence et al. IEEE Transactions on Neural Networks, 1997

 Data augmentation: train with transformed versions of training data
◦ How thoroughly should transformations be sampled?
◦ Increased cost of training

 Choose model form to have desired invariance/equivariance
◦ E.g. ConvNets for approximate translational invariance1



Other examples of inductive bias

 Rotation invariant model for galaxy classification
◦ Dieleman et al. Monthly Notices of the Royal Astronomical Society, 

2015

 Warp invariant model
◦ Wong et al. DICTA, 2016

 Permutation invariant model
◦ Meltzer et al. arXiv:1905.03046  

 Rotation and translation equivariant model for 3d point cloud data
◦ Thomas et al. arXiv:1802.08219 
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Extracting coarse grain models

 Find coarse grained dynamics, e.g. evolution of particle density for,

 It may be reasonable to assume,
◦ Conservation
◦ Translational equivariance
◦ Rotational equivariance
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Problem statement7

 Assume system is described by 1st order in time, autonomous PDE,

 Discretize in time,

 Given observations,         , find,

 More generally,



Operator regression8

Fitting operators Fitting functions 



Modal operator regression for physics (MOR-Physics)9

 For, 

 Choose,

                   Where     and     are neural networks

 Optimization problem becomes, 

 Other modal approaches
◦ Wu and Xiu, JCP, 2020
◦ Li et al. arXiv:2010.08895



MOR-Physics: motivation10

For smooth functions in a periodic domain,

Parameterization 
contains,

• Laplacian

Physical space Fourier space

    
• Advection



MOR-Physics: introducing inductive biases

 Translational equivariance:

       apply      point-wise, 

 Reflective symmetry: if      solves the PDE, so does 

      let

 Isotropy: 

      let

 Global conservation:

      let        

11



Validation: spatial operator regression in 1D

 Given,                        , find,

      where

      assuming translational 
equivariance

      generated from low pass filtered 
white noise
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Validation: spatial operator regression in 2D14

 Given,                         , find,

      where

      assuming translational 
equivariance

      and compare effect of isotropy

      generated from low pass filtered 
white noise



Coarse graining stochastic differential equations (SDEs)15

SDE for particle trajectory PDE for particle density

 1. Compute evolution of binned density from SDE trajectories

 2. Fit PDE for evolution of binned density

 3. Compare to analytical result



SDEs: Conservation and reflective symmetry inductive 
biases improves generalization
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 Density of Brownian data follows heat equation, 



SDEs: Isotropy inductive bias improves generalization17

 Density of Levy flight data follows fractional heat equation1, 

 1Lischke et al., arXiv:1801.09767



SDEs: Isotropy inductive bias improves generalization18

 Density of Levy flight data follows fractional heat equation1, 

 1Lischke et al., arXiv:1801.09767



Isotropy inductive bias counteracts biased data19

 Vary anisotropy bias in data by setting 
initial condition,

 Compare effect of isotropy inductive 
bias for various 



Application: coarse graining colloidal Poiseuille flow

 Perform molecular dynamics simulations with 
varying concentration (c), colloid particle size (d)

◦ Get time evolution of 1d profiles of

 Fit continuum model assuming conservation of 
mass,

      where S and C are the sine and cosine 
transform

 Find time evolution for new c, d
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Application: coarse graining colloidal Poiseuille flow22



Future work

 Limited to simple geometries and PDEs with smooth solutions
◦ Alternative basis

◦ Generalized moving least squares: Trask et al., NeurIPS, 2019

 Bayesian version

 Noisy data for more general problems
◦ Error-in-variables models

 Applications

 Comparisons to other operator regression methods
◦ Wu and Xiu, JCP, 2020
◦ Li et al. arXiv:2010.08895
◦ Graph Neural operator: Li et al., NeurIPS, 2020
◦ DeepONets: arXiv:1910.03193 
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Conclusion

 ML with physics informed inductive biases
◦ More powerful than parameter estimation
◦ Better generalization and extrapolation than black-box ML

 Paper and code:
◦ Patel et al. CMAME, 2021 (arXiv:2009.11992)
◦ https://github.com/rgp62/MOR-Physics
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Black-box ML ML with 
inductive bias

Prone to overfitting                         Strong assumptions

Parameter 
estimation


