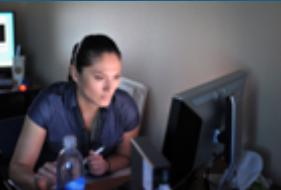
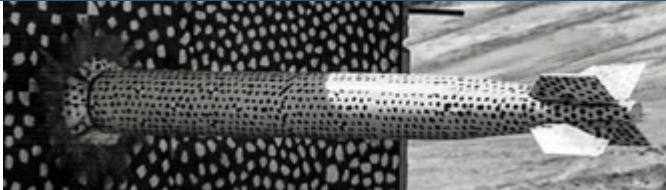


Sandia
National
Laboratories

SAND2020-13253C

Learning continuum-scale models from micro-scale dynamics via Operator Regression



14th World Congress in Computational Mechanics

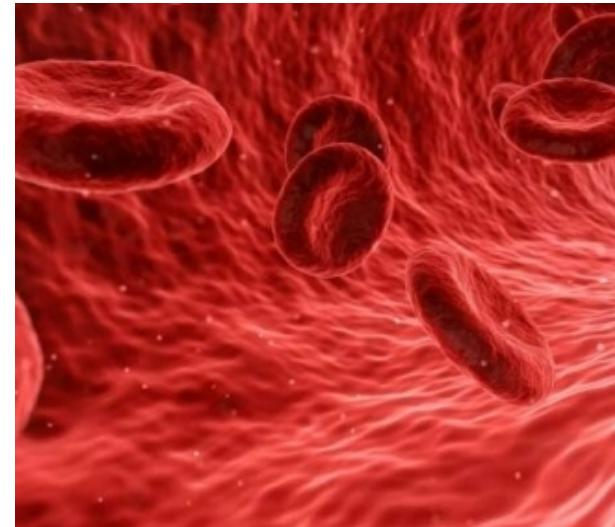
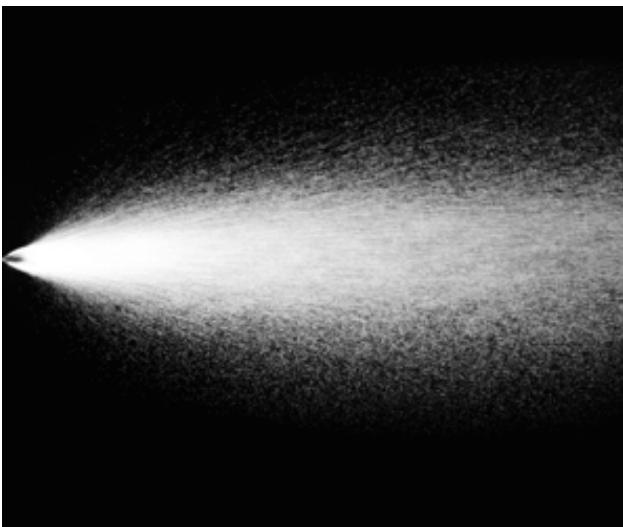
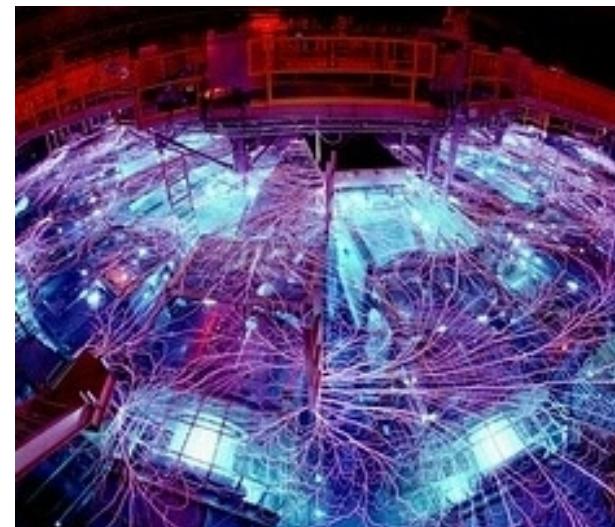
Ravi G. Patel, Nathaniel Trask, Mitchell Wood, Eric C. Cyr

Center for Computing Research

Sandia National Laboratories, Albuquerque, NM, USA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Finding models for multi-scale, multi-physics systems



Given experimental/high fidelity simulation data from a system,

Find a mathematical model that describes the system

Experiments/simulations generate **noisy, biased, sparse** data

3 Model power tradeoff

$$\textcolor{red}{F}(u, \dot{u}, x, t) = 0$$

$$\partial_t u + u \cdot \nabla u = -\nabla p + \textcolor{red}{v} \nabla^2 u$$

Black-box ML

?

Parameter
estimation

Prone to overfitting

Strong assumptions

Case study: inductive bias in image classification

Translation, scaling, and rotation shouldn't affect an image's class

$$\mathcal{M}[\text{3}] = \mathcal{M}[\text{3}] = \mathcal{M}[\text{3}] = \mathcal{M}[\text{3}]$$

Data augmentation: train with transformed versions of training data

- How thoroughly should transformations be sampled?
- Increased cost of training

Choose model form to have desired invariance/equivariance

- E.g. ConvNets for approximate translational invariance¹

¹ Lawrence et al. *IEEE Transactions on Neural Networks*, 1997

Other examples of inductive bias

Rotation invariant model for galaxy classification

- Dieleman et al. *Monthly Notices of the Royal Astronomical Society*, 2015

Warp invariant model

- Wong et al. *DICTA*, 2016

Permutation invariant model

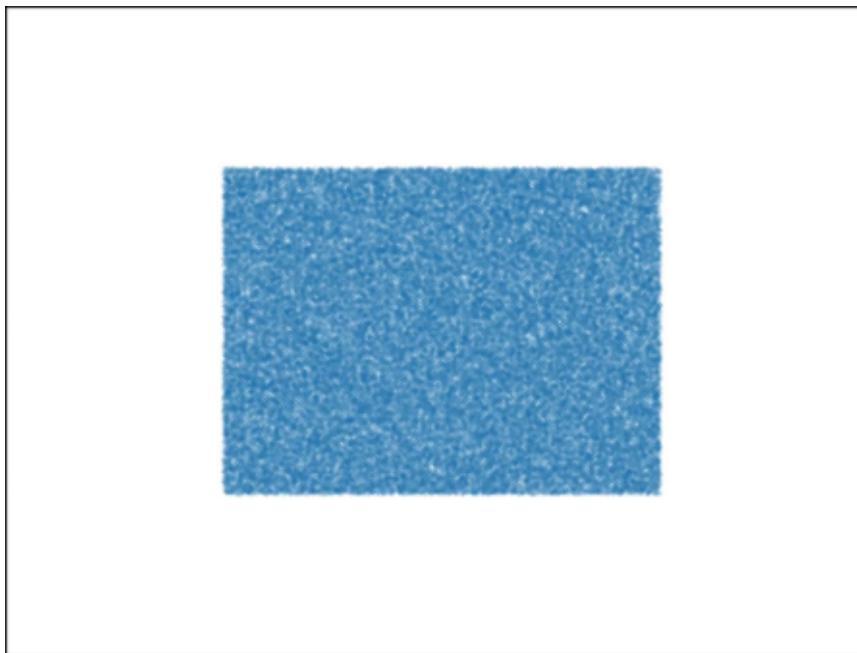
- Meltzer et al. *arXiv:1905.03046*

Rotation and translation equivariant model for 3d point cloud data

- Thomas et al. *arXiv:1802.08219*

Extracting coarse grain models

Find coarse grained dynamics, e.g. evolution of particle density for,



It may be reasonable to assume,

- Conservation
- Translational equivariance
- Rotational equivariance

Problem statement

Assume system is described by 1st order in time, autonomous PDE,

$$\partial_t u = \mathcal{N} u$$

Discretize in time,

$$u^{n+1} = u^n + \Delta t \mathcal{N} u^n = (I + \Delta t \mathcal{N}) u^n$$

Given observations $\{v^n\}$, find,

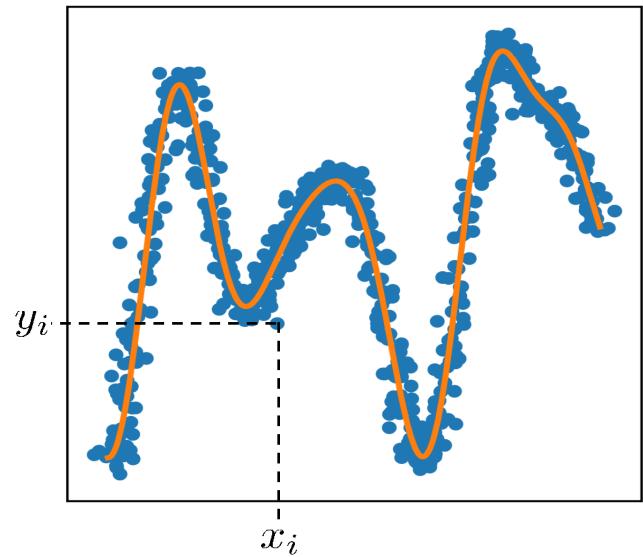
$$\mathcal{N} = \operatorname{argmin}_{\hat{\mathcal{N}}} \sum_n \left\| v^{n+1} - (I + \Delta t \hat{\mathcal{N}}) v^n \right\|$$

More generally,

$$\mathcal{N} = \operatorname{argmin}_{\hat{\mathcal{N}}} \sum_n \left\| v^{n+p} - (I + \Delta t \hat{\mathcal{N}})^p v^n \right\|$$

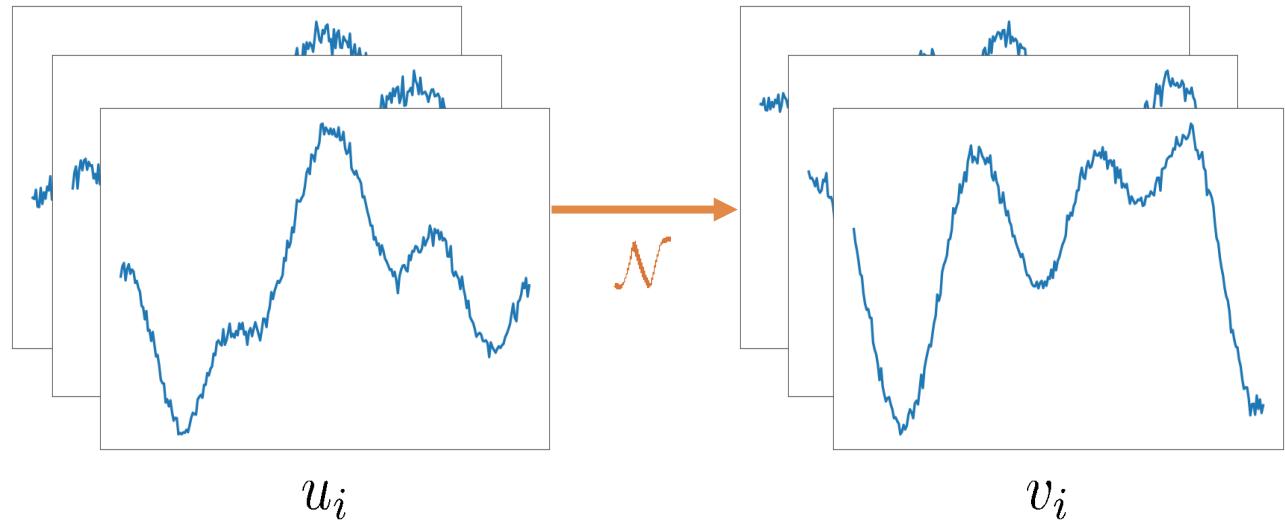
8 Operator regression

Fitting functions



$$\hat{f} = \operatorname{argmin}_f \sum_i \|y_i - f(x_i)\|$$

Fitting operators



$$\hat{\mathcal{N}} = \operatorname{argmin}_{\mathcal{N}} \sum_i \|v_i - \mathcal{N}[u_i]\|$$

9 Modal operator regression for physics (MOR-Physics)

For,

$$u^{n+1} = (I + \Delta t \mathcal{N})u^n$$

Choose,

$$\mathcal{N}u = \mathcal{F}^{-1}g(\kappa; \xi_g)\mathcal{F}h(u; \xi_h)$$

Where g and h are neural networks

Optimization problem becomes,

$$\operatorname{argmin}_{\hat{\xi}_g, \hat{\xi}_h} \sum_n \left\| v^{n+p} - (I + \Delta t \hat{\mathcal{N}})^p v^n \right\|$$

Other modal approaches

- Wu and Xiu, *JCP*, 2020
- Li et al. *arXiv:2010.08895*

MOR-Physics: motivation

For smooth functions in a periodic domain,

Physical space

$$f(x) = \sum_{\kappa} = \tilde{f}_{\kappa} e^{j\kappa x}$$

$$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}^{-1}} \end{array}$$

Fourier space

$$\begin{aligned} f_{\kappa} &= \int f(x) e^{-j\kappa x} dx \\ (j\kappa)^{\gamma} \tilde{f}_{\kappa} \end{aligned}$$

Parameterization
contains,

- Laplacian

$$\partial_x^2 u \longrightarrow \mathcal{F}^{-1} [(-\kappa^2) \mathcal{F}[u]]$$

- Advection

$$\partial_x u^2 \longrightarrow \mathcal{F}^{-1} [(j\kappa) \mathcal{F}[u^2]]$$

MOR-Physics: introducing inductive biases

Translational equivariance:

$$\text{apply } h \text{ point-wise } (h \circ u)(x) = h(u(x))$$

Reflective symmetry: If u solves the PDE, so does

$$\text{let } h(u) = \text{sign}(u)\tilde{h}(|u|)$$

Isotropy:

$$\text{let } g(\kappa) = \tilde{g}(\|\kappa\|_2^2)$$

Global conservation:

$$\text{let } g(\kappa) = \tilde{g}(\kappa)(1 - \delta_{\kappa,0})$$

Validation: spatial operator regression in 1D

Given, $\{u_i, v_i = \partial_x u_i^2\}$, find,

$$\operatorname{argmin}_{\mathcal{N}} \sum_i \|\mathcal{N}u_i - v_i\|^2$$

$$\text{where } \mathcal{N} = \mathcal{F}^{-1} g(\kappa) \mathcal{F} h(u)$$

assuming translational equivariance

u_i generated from low pass filtered white noise

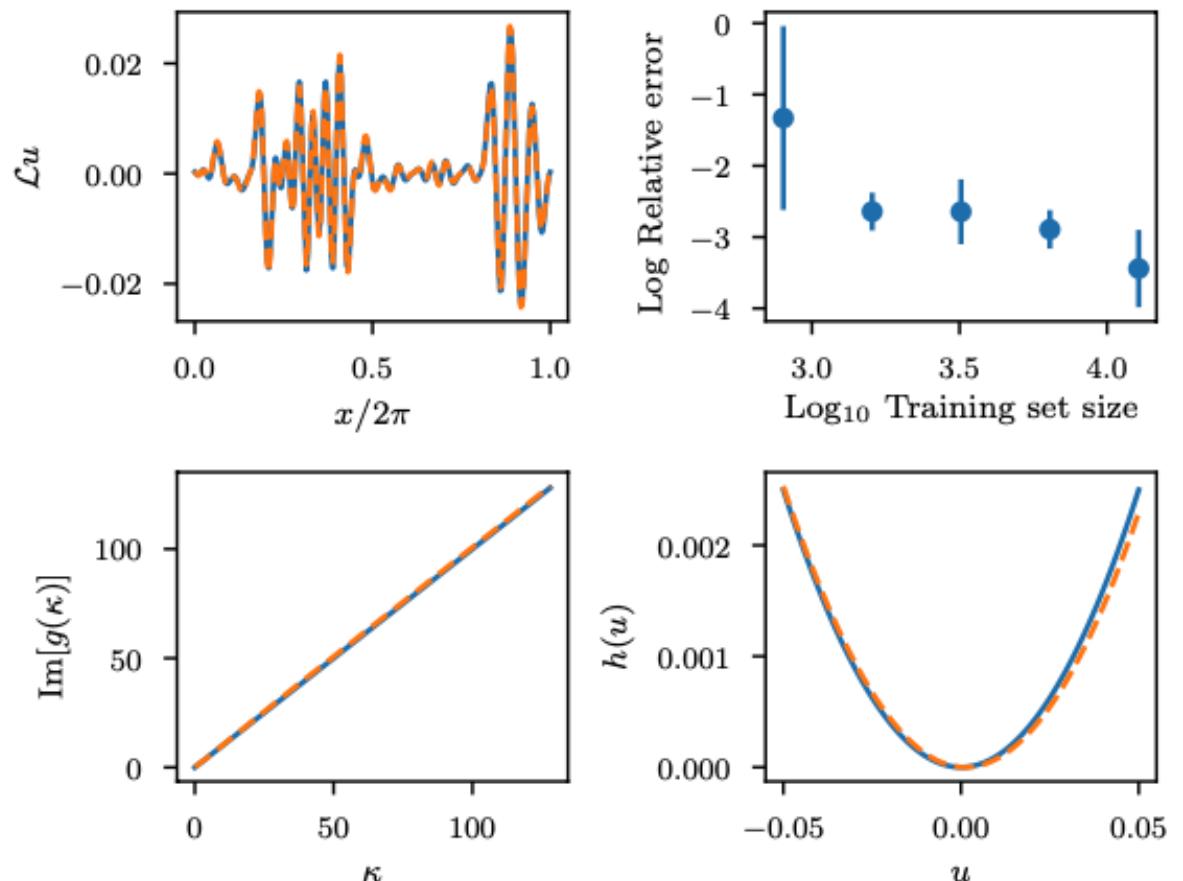


Figure 2: Application of the Burgers operator, $\partial_x u^2$, (—) and regressed operator (---) to a function (top left). $\operatorname{Im}[g(\kappa)]$ (bottom left) and $h(u)$ (bottom right) for both operators. Relative error, $\|\mathcal{L}u - \partial_x u^2\| / \|\partial_x u^2\|$ vs. training set size (top right).

Validation: spatial operator regression in 2D

Given, $\{u_i, v_i = \Delta u_i\}$, find,

$$\operatorname{argmin}_{\mathcal{N}} \sum_i \|\mathcal{N}u_i - v_i\|^2$$

where $\mathcal{N} = \mathcal{F}^{-1}g(\kappa)\mathcal{F}h(u)$

assuming translational equivariance

and compare effect of isotropy

u_i
generated from low pass filtered white noise

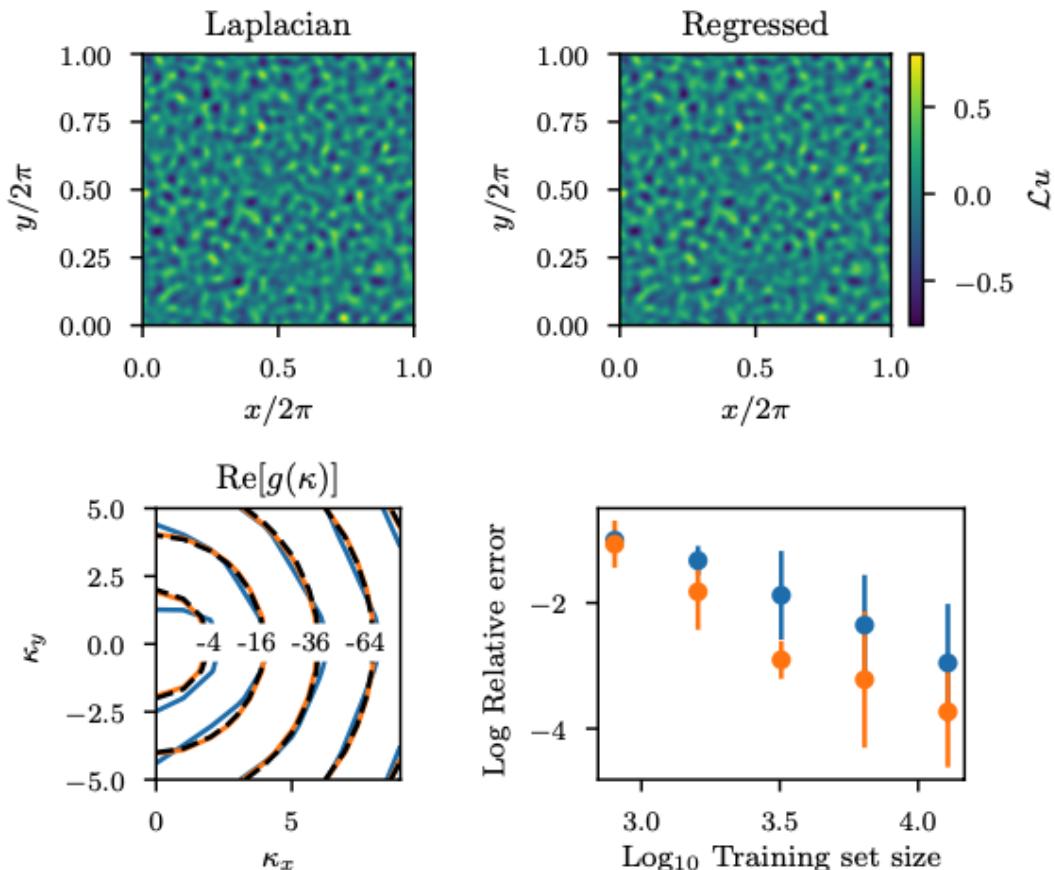
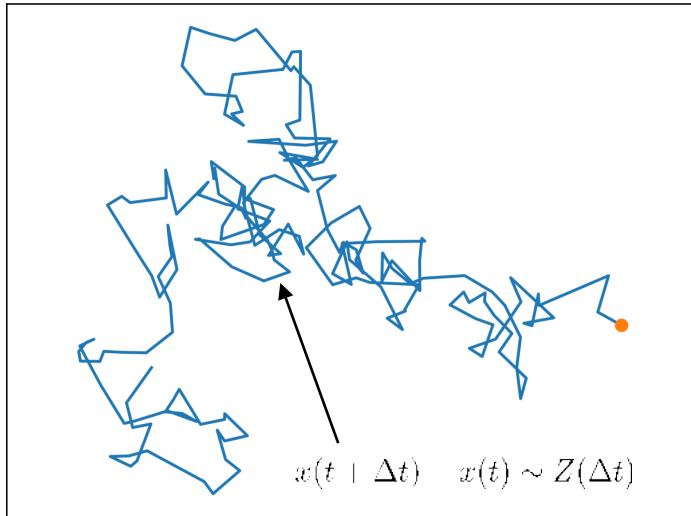
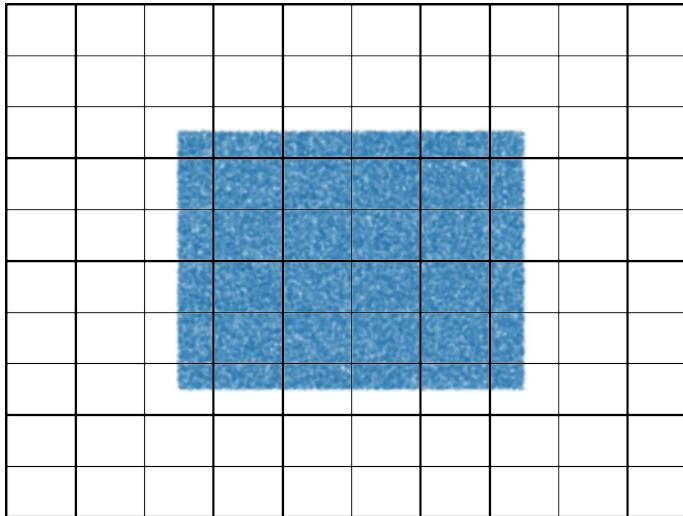


Figure 3: Application of Laplacian to a function, $\nabla^2 u$, (top left) and application of the regressed operator with isotropy assumption to the same function, $\mathcal{L}u$, (top right). Real part of the symbol of the Laplacian (----), regressed operator without isotropy assumption (—), and regressed operator with isotropy assumption (—) (bottom left). Relative error, $\|\mathcal{L}u - \nabla^2 u\|/\|\nabla^2 u\|$ vs. training set size (bottom right).

Coarse graining stochastic differential equations (SDEs)



SDE for particle trajectory → PDE for particle density

1. Compute evolution of binned density from SDE trajectories
2. Fit PDE for evolution of binned density
3. Compare to analytical result

SDEs: Conservation and reflective symmetry inductive biases improves generalization

Density of Brownian data follows heat equation $x(t+\Delta t) - x(t) \sim N(0, 2\Delta t) \rightarrow \partial_t u = \Delta u$

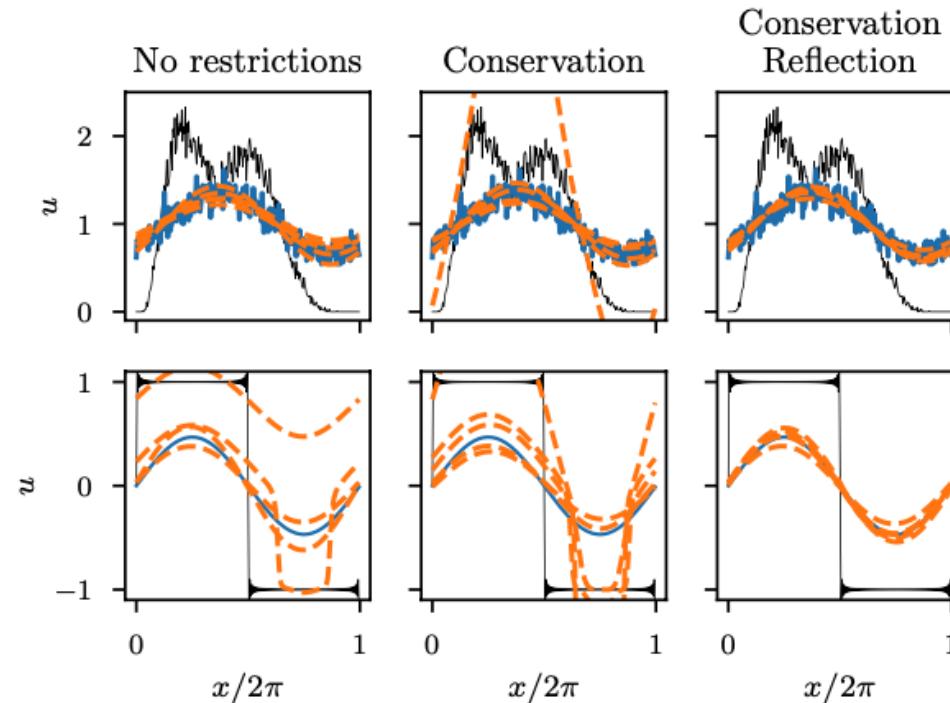


Figure 4: Evolution of the Brownian motion training data (top row) and the heat equation validation example (bottom row) from $t = 0$ (—) to $t = 1$ (—) compared to evolution of 5 realizations of the learned equation (—). Each column depicts the final learned solution with different physical assumptions yielding improved training and validation accuracy.

SDEs: Isotropy inductive bias improves generalization

Density of Levy flight data follows fractional heat equation¹,

$$x(t + \Delta t) - x(t) \sim L(\alpha, 0, \Delta t^{1/\alpha}, 0) \rightarrow \partial_t u = \Delta^{\alpha/2} u$$

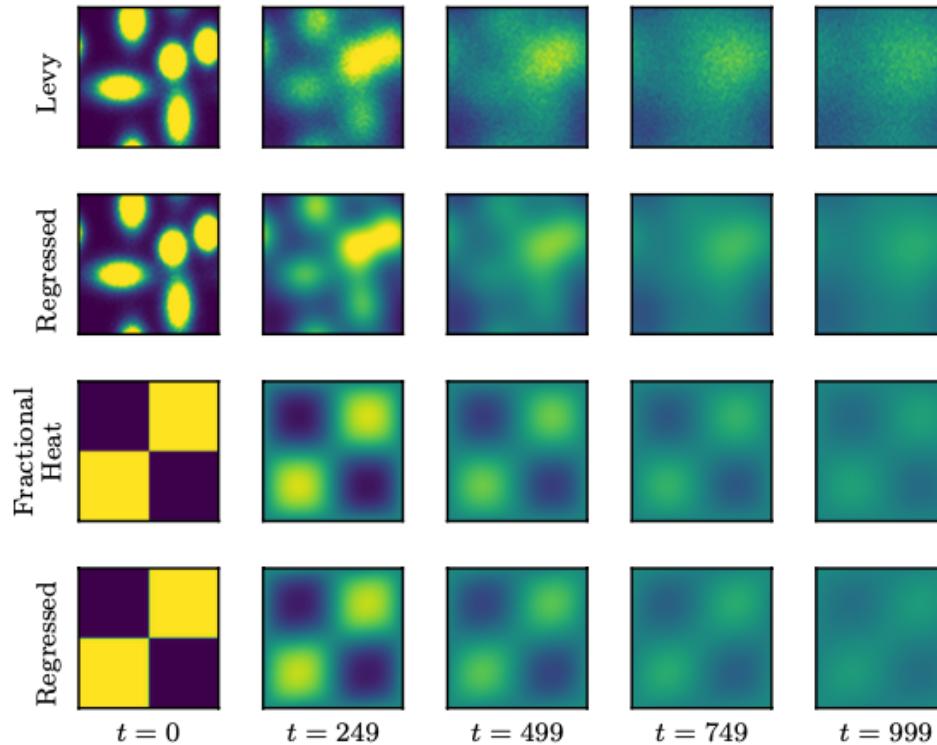


Figure 7: Histograms showing evolution of Levy flight (first row). Evolution of learned operator using histogram of Brownian motion at $t = 0$ as the initial condition (second row). Evolution of the fractional heat equation with square wave initial condition (third row). Evolution of learned operator on square wave initial condition (fourth row)

SDEs: Isotropy inductive bias improves generalization

Density of Levy flight data follows fractional heat equation¹,

$$x(t + \Delta t) - x(t) \sim L(\alpha, 0, \Delta t^{1/\alpha}, 0) \rightarrow \partial_t u = \Delta^{\alpha/2} u$$

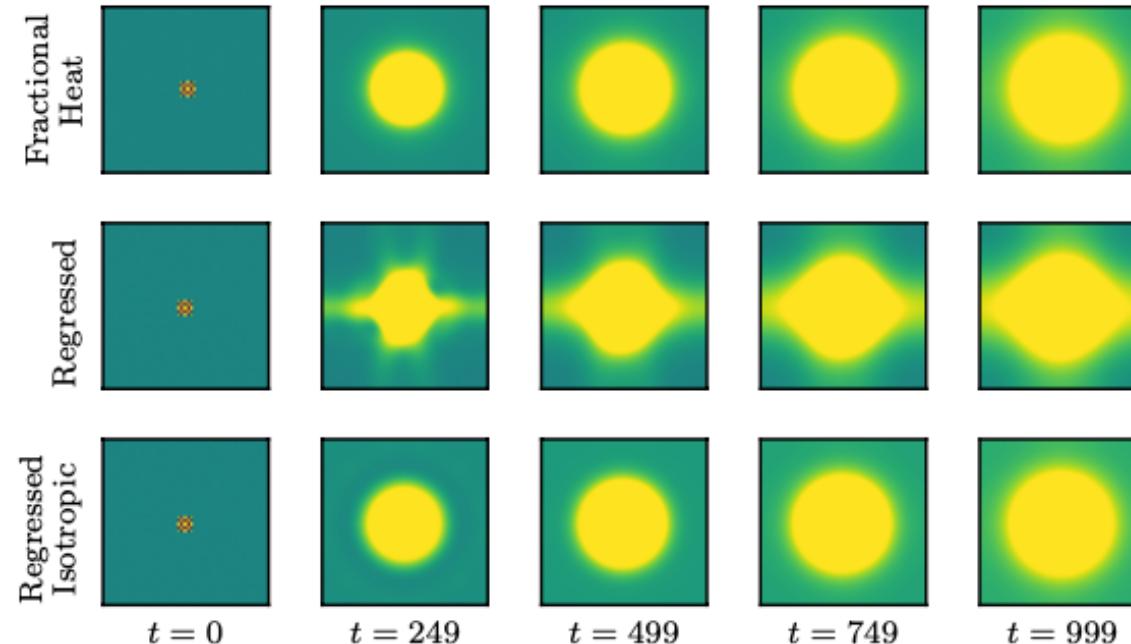
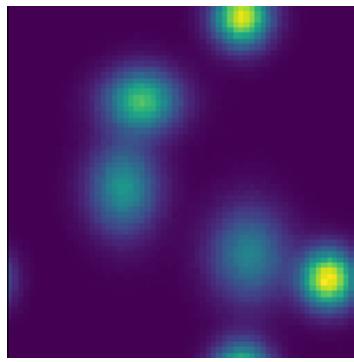


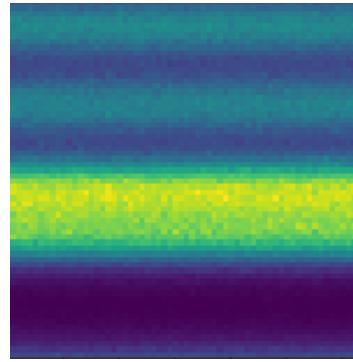
Figure 8: Evolution of the fractional heat equation with Dirac delta initial condition (*first row*). Evolution of the learned equation without isotropy assumption with Dirac delta initial condition (*second row*). Evolution of the learned equation with isotropy assumption with Dirac delta initial condition (*third row*).

Isotropy inductive bias counteracts biased data

Vary anisotropy bias in data by setting initial condition,



$$\beta = 0$$



$$\beta = 1$$

Compare effect of isotropy inductive bias for various

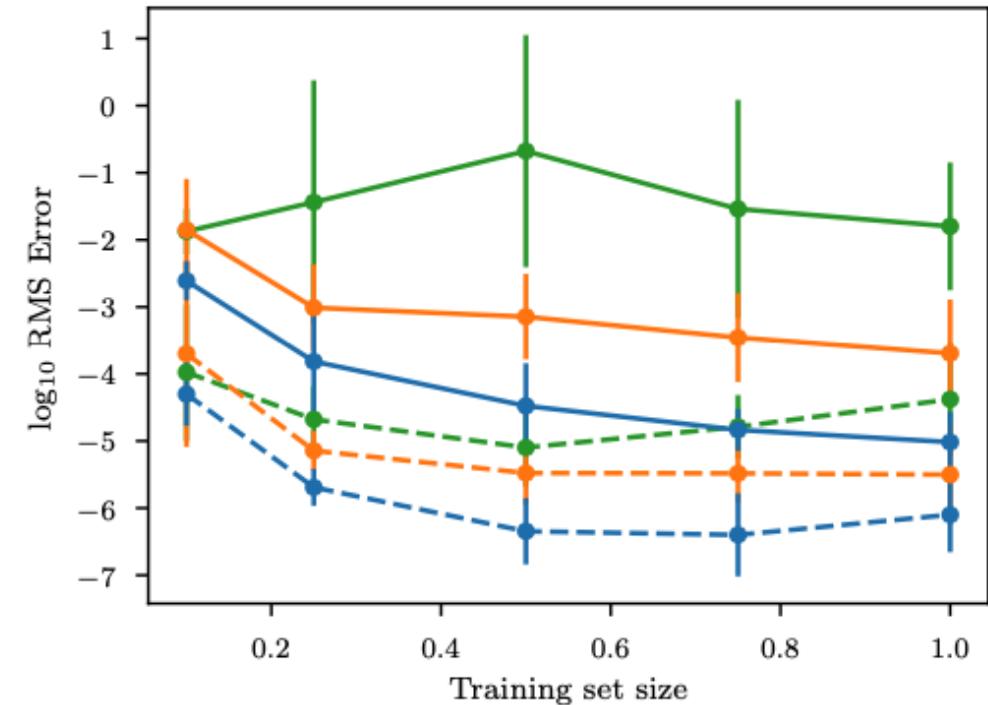
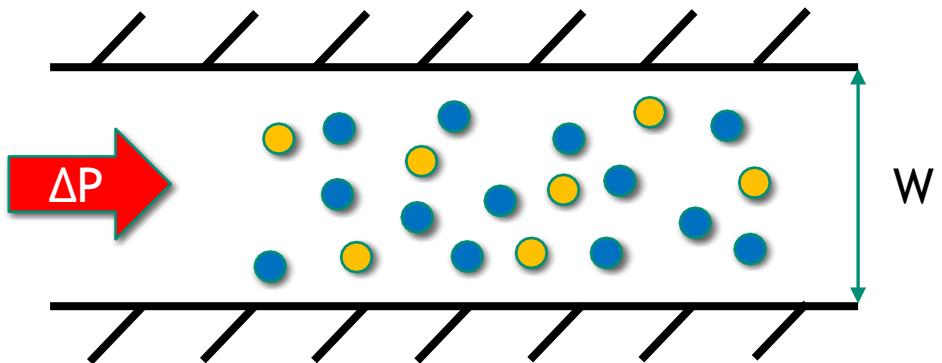
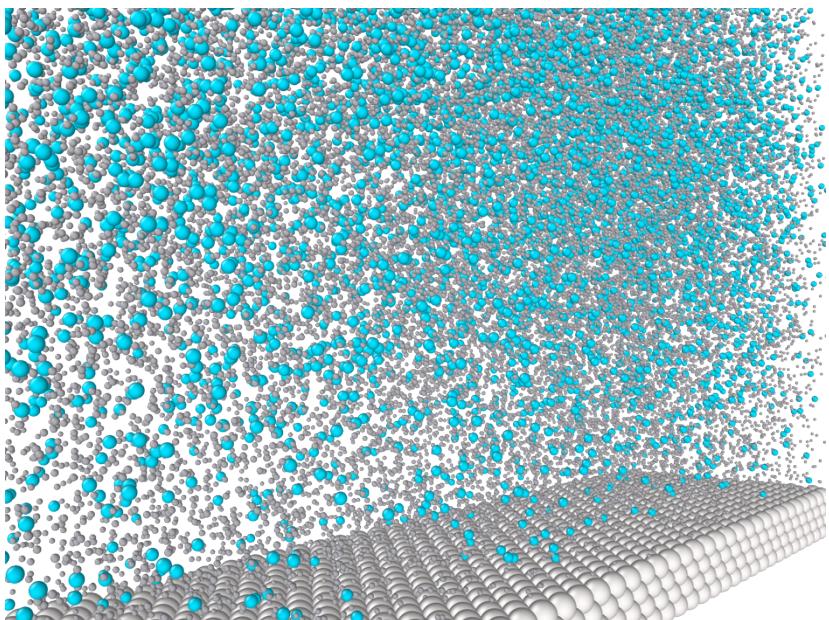


Figure 10: Test error vs. size of training set for anisotropic model trained on data with degree of anisotropy, $\beta = 0.0$ (solid blue line with circles), $\beta = 0.1$ (solid orange line with circles), and $\beta = 1.0$ (solid green line with circles); and for isotropic model trained on data with $\beta = 0.0$ (dashed blue line with circles), $\beta = 0.1$ (dashed orange line with circles), and $\beta = 1.0$ (dashed green line with circles). (statistically isotropic: $\beta = 0$; statistically 1D : $\beta = 1$)

Application: coarse graining colloidal Poiseuille flow



Perform molecular dynamics simulations with varying concentration (c), colloid particle size (d)

- Get time evolution of 1d profiles of

$$\mathbf{u} = (\mathbf{u}_N, \mathbf{u}_D) = ([\rho^L, \rho^S], [p^L, p^S], \dots)$$

Fit continuum model assuming conservation of mass

$$\partial_t u_N^i = \sum_k \mathcal{C}^{-1} g_k^i(\kappa, c, d) \mathcal{C} h_k^i(\mathbf{u}, c, d)$$

$$\partial_t u_D^i = \sum_k \mathcal{S}^{-1} g_k^i(\kappa, c, d) \mathcal{S} h_k^i(\mathbf{u}, c, d)$$

where \mathcal{S} and \mathcal{C} are the sine and cosine transform

Find time evolution for new c, d

Application: coarse graining colloidal Poiseuille flow

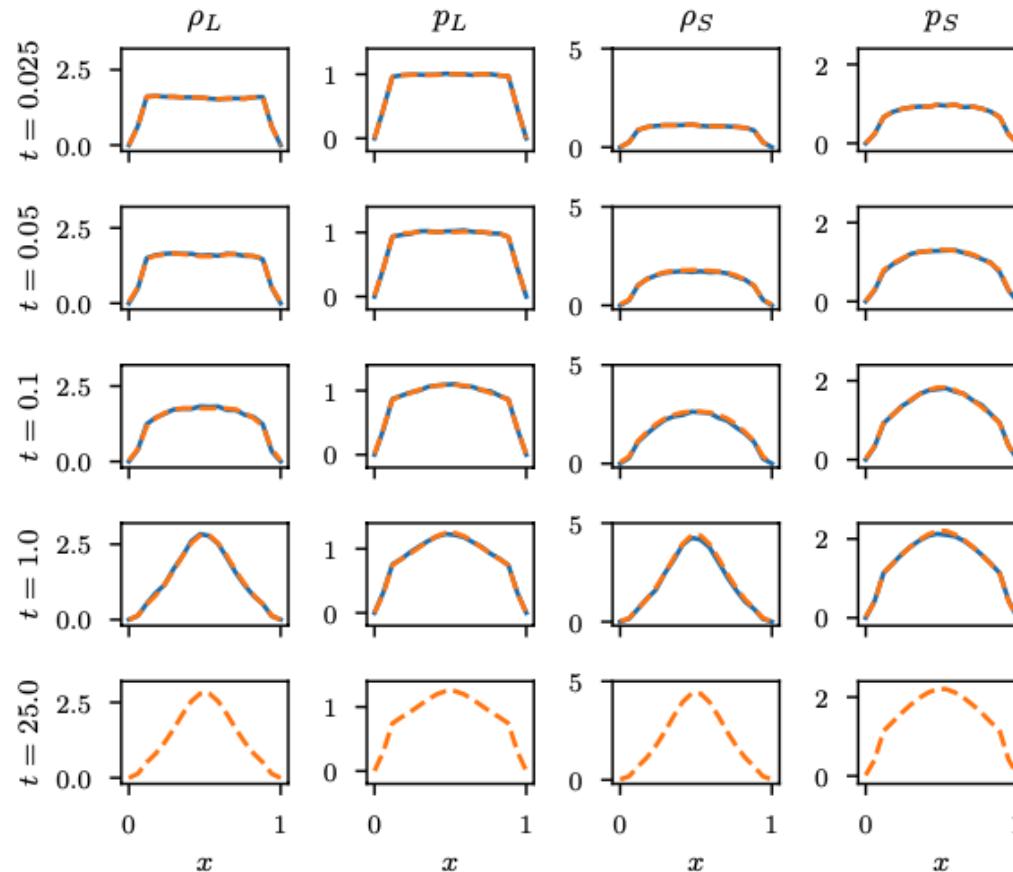


Figure 15: Colloidal system with $(c, d) = (0.15, 2.5)$. Evolution of LAMMPS simulation (—) and regressed 4 equation model (---). Small particle density (first column), small particle momentum (second column), large particle density (third column), and large particle momentum (fourth column) is shown for increasing time (rows).

Future work

Limited to simple geometries and PDEs with smooth solutions

- Alternative basis
 - Generalized moving least squares: Trask et al., *NeurIPS*, 2019

Bayesian version

Noisy data for more general problems

- Error-in-variables models

Applications

Comparisons to other operator regression methods

- Wu and Xiu, *JCP*, 2020
- Li et al. *arXiv:2010.08895*
- Graph Neural operator: Li et al., *NeurIPS*, 2020
- DeepONets: *arXiv:1910.03193*

Acknowledgements

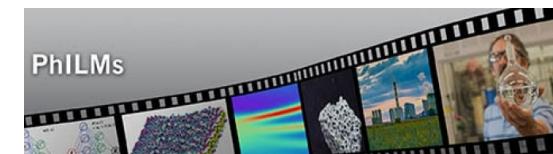
Eric C. Cyr

Nat Trask

Mitch Wood

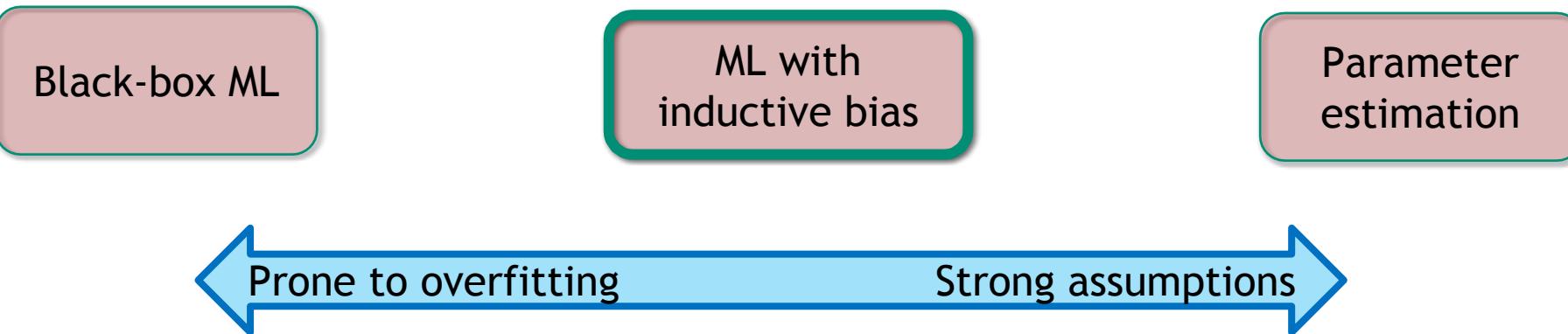
U.S. DEPARTMENT OF
ENERGY

Office of
Science



www.pnnl.gov/computing/philm

Conclusion



ML with physics informed inductive biases

- More powerful than parameter estimation
- Better generalization and extrapolation than black-box ML

Paper and code:

- Patel et al. *CMAME*, 2021 (arXiv:2009.11992)
- <https://github.com/rgp62/MOR-Physics>