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2 I Finding models for multi-scale, multi-physics systems

Given experimental/high
fidelity simulation data from a
system,

Find a mathematical model
that describes the system

Experiments/simulations
generate noisy, biased,
sparse data




3 I Model power tradeoff
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4 ‘ Case study: inductive bias in image classification

Translation, scaling, and rotation shouldn’t affect an image’s class

v(El

Data augmentation: train with transformed versions of training data
> How thoroughly should transformations be sampled?

o Increased cost of training

Choose model form to have desired invariance/equivariance
> E.g. ConvNets for approximate translational invariance’

' Lawrence et al. IEEE Transactions on Neural Networks, 1997




s 1 Other examples of inductive bias

Rotation invariant model for galaxy classification

> Dieleman et al. Monthly Notices of the Royal Astronomical Society,
2015

Warp invariant model
- Wong et al. DICTA, 2016

Permutation invariant model
o Meltzer et al. arXiv:1905.03046

Rotation and translation equivariant model for 3d point cloud data
o Thomas et al. arXiv:1802.08219



s | Extracting coarse grain models

Find coarse grained dynamics, e.g. evolution of particle density for,

It may be reasonable to assume,
o Conservation

o Translational equivariance
o Rotational equivariance



Problem statement

Assume system is described by 15t order in time, autonomous PDE,

81;’LL:NU

Discretize in time,

un—|—1 _ ufn, i AtNun _ (I 1 AtN)uTb
Given observation&y”} | find,

o™ — (I + AtN )"

More generally,




s | Operator regression

Fitting functions Fitting operators
M, h,
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o I Modal operator regression for physics (MOR-Physics)

For,

"t = (I + AtN)u”

Choose,
Nu=F tg(k; &) Fh(u; &)

Wher§ afd are neural networks

Optimization problem becomes,

o™ — (I + AtN)PO"

Other modal approaches
> Wu and Xiu, JCP, 2020

o Lietal. arXiv:2010.08895



MOR-Physics: motivation

For smooth functions in a periodic domain,

Physical space Fourier space
> .
— Z — [ el"® v fr = / f(x)e 7" dx
& < - -
e F (jr)"
Parameterization
contains, - Advection
I
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1 I MOR-Physics: introducing inductive biases

Translational equivariance:

applyh  point-wisgh o u)(z) = h(u(x))

Reflective symmetry:¥#  solves the PDE, so doks
et h{u) = sign(u)h(|ul)

|sotropy:
et 9(w) = g(I[xl]3)

Global conservation:

et 9() = g(K)(1 — b 0)



i3 1 Validation: spatial operator regression in 1D

Given{ui,vi = 0:u} | find,
argﬁlin Z N w; — ;|

whereN = F~lg(k)Fh(u)

assuming translational
equivariance

Uy
generated from low pass filtered
white noise
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Figure 2: Application of the Burgers operator, dzu”, ( ) and regressed operator (~=—-)
to a function (top left). Img(k)] (botiom left) and h(u) (bottom right) for both operators.
Relative error, ||Lu — 8;u?||/||8,u?|| vs. training set size (fop right).
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Validation: spatial operator regression in 2D

Givenwi,vi = Au;} | find,
argﬁlin Z N w; — ;|

whereN = F~lg(k)Fh(u)

assuming translational
equivariance

and compare effect of isotropy
U

generated from low pass filtered
white noise
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Figure 3: Application of Laplacian to a function, V2u, (top left) and application of the
regressed operator with isotropy assumption to the same function, Lu, (top right). Real
part of the symbol of the Laplacian (===-), regressed operator without isotropy assumption

(

), and regressed operator with isotropy assumption (

) (bottom left). Relative error,

[|[Lu — V2ul|/||V2u|| vs. training set size (bottomn right).




15 I Coarse graining stochastic differential equations (SDESs)

SDE for particle trajectory. » PDE for particle density I

1. Compute evolution of binned density from SDE trajectories
2. Fit PDE for evolution of binned density

3. Compare to analytical result



16 ‘ SDEs: Conservation and reflective symmetry inductive
biases improves generalization

Density of Brownian data follows heat equatidh} At) — z(t) ~ N(0,2A%) — d,u = Au
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Figure 4: Evolution of the Brownian motion training data (fep row) and the heat equation
validation example (bottom row) from ¢ =0 ( Jtot=1( } compared to evolution of
5 realizations of the learned equation ( ). Each column depicts the final learned solution
with different physical assumptions yielding improved training and validation accuracy.




7 ‘ SDEs: Isotropy inductive bias improves generalization

Density of Levy flight data follows fractional heat equation’,
r(t + At) — 2(t) ~ L{e, 0, AtY*,0) = du = A%y
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Figure 7: Histograms showing evolution of Levy flight (first row). Evolution of learned op-
erator using histogram of Brownian motion at ¢ = 0 as the initial condition [second row).
Evolution of the fractional heat equation with square wave initial condition [third row). Evo-
lution of learned operator on square wave initial condition (fourth row)

1Lischke et al., arXiv:1801.09767



s I SDESs: Isotropy inductive bias improves generalization

Density of Levy flight data follows fractional heat equation’,
r(t + At) — 2(t) ~ L{e, 0, AtY*,0) = du = A%y
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Figure 8: Evolution of the fractional heat equation with Dirac delta initial condition (first
row). Evolution of the learned equation without isotropy assumption with Dirac delta initial
condition (second row). Evolution of the learned equation with isotropy assumption with
Dirac delta initial condition (third row).

1Lischke et al., arXiv:1801.09767



19 1 Isotropy inductive bias counteracts biased data

initial condition, 0 4

Vary anisotropy bias in data by setting 1 i
]
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Figure 10: Test error vs. size of training set for anisotropic model trained on data with degree
of anisotropy, 8§ = 0.0 (—®—), 8 = 0.1 (—®—), and 8 = 1.0 (—®); and for isotropic model
trained on data with 8 = 0.0 (-®-), 8 = 0.1 (-®-), and # = 1.0 (-®-). (statistically
isotropic: # = 0; statistically 1D : @ =1)



20 ‘ Application: coarse graining colloidal Poiseuille flow

Perform molecular dynamics simulations with
varying concentration (c), colloid particle size (d)

> Get time evolution of 1d profiles of

u = (un,up) = ([p", p°], [p" p"],))

Fit continuum model assuming conservation of
MEByuy = ) C gk (k. ¢, A)Chy (u, ¢, d)
k

dyup = S gt (k,c,d)Shi(u,c,d)
k k
k

where S and C are the sine and cosine
transform

Find time evolution for new c, d



22 ‘ Application: coarse graining colloidal Poiseuille flow
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Figure 15: Colloidal system with (e,d) = (0.15,2.5). Ewvolution of LAMMPS simulation
(—) and regressed 4 equation model (=), Small particle density (first column), small
particle momentum (second column), large particle density (third column), and large particle
momentum (fourth column) is shown for increasing time (rows).




23 | Future work

Limited to simple geometries and PDEs with smooth solutions

o Alternative basis
o Generalized moving least squares: Trask et al., NeurlPS, 2019

Bayesian version

Noisy data for more general problems
o Error-in-variables models

Applications

Comparisons to other operator regression methods
> Wu and Xiu, JCP, 2020
o Lietal arXiv:2010.08895
o Graph Neural operator: Li et al., NeurIPS, 2020
o DeepONets: arXiv:1910.03193
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25 ‘ Conclusion

Black-box ML : ML .With . Par.ame.ter
inductive bias estimation

|

<Prone to overfitting Strong assumptions>

ML with physics informed inductive biases
o More powerful than parameter estimation
o Better generalization and extrapolation than black-box ML

Paper and code:
o Patel et al. CMAME, 2021 (arXiv:2009.11992)

o https://github.com/rgp62/MOR-Physics



