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Certain aspects of some unitary quantum systems are well-described by evolution via a non-
Hermitian effective Hamiltonian, as in the Wigner-Weisskopf theory for spontaneous decay. Con-
versely, any non-Hermitian Hamiltonian evolution can be accommodated in a corresponding unitary
system + environment model via a generalization of Wigner-Weisskopf theory. This demonstrates
the physical relevance of novel features such as exceptional points in quantum dynamics, and opens
up avenues for studying many body systems in the complex plane of coupling constants. In the case
of lattice field theory, sparsity lends these channels the promise of efficient simulation on standardized
quantum hardware. We thus consider quantum operations that correspond to Suzuki-Lie-Trotter
approximation of lattice field theories undergoing non-Unitary time evolution, with potential ap-
plicability to studies of spin or gauge models at finite chemical potential, with topological terms,
to quantum phase transitions — a range of models with sign problem. We develop non-Hermitian
quantum circuits and explore their promise on a benchmark, the quantum one-dimensional Ising
model with complex longitudinal magnetic field, showing that observables can probe the Lee-Yang
edge singularity. The development of attractors past critical points in the space of complex couplings
indicates a potential for study on near-term noisy hardware.

I. INTRODUCTION

Non-unitary quantum dynamics of lattice field theo-
ries are of interest because of their connection to quan-
tum field theories coupled to baths at finite tempera-
ture and/or finite chemical potential, or with topologi-
cal terms. See [1] for a review of open quantum systems.
It is also important in the analysis of phase transitions,
where the behavior of the Fisher zeros, Lee-Yang zeros,
and other features of the partition function at complex
values of the parameters give insight into the nature of
various thermal and quantum phase transitions (see [2—
10]). Such systems have been studied in the context of
quantum computing in [11-23]. Various algorithms for
open quantum systems have been studied in [24-35].

A class of non-unitary dynamics corresponding to
non-Hermitian Hamiltonian dynamics (H # H') gen-
erates a class of models with sign problems, a pressing
issue in both condensed matter and high-energy par-
ticle physics. Non-Hermitian quantum mechanics has
been of great interest in the past couple of decades (see
[36-39]).

To give a specific example: of particular interest are
quantum simulations of general spin models. The lat-
tice O(IN) nonlinear sigma models are discretized field
theories exhibiting phenomena like confinement, and
asymptotic freedom, which occur in gauge theories (see
[40-44]). They exhibit quantum phase transitions of
various (or infinite) orders, with condensation of topo-
logical excitations characterizing the ground state. At
finite chemical potential, less is known about these mod-
els.

This is in part due to the fact that classical Monte
Carlo studies of such systems are rendered difficult by

the sign problem, which occurs because the effective
Hamiltonians are non-Hermitian. There are important
known exceptions, where re-parameterizations of the
theory admits description in terms of new “dual” vari-
ables where the partition function is manifestly real and
positive, and can be sampled effectively as well as be
studied by other analytic methods (see [45-50]). How-
ever, this may not be feasible or possible for all sys-
tems (with lattice gauge theory in D > 2 an important
example of physical interest). Quantum computing of-
fers the possibility of directly addressing the sign prob-
lem, however quantum gates act in a unitary fashion
on input quantum states, making it unclear whether
non-Hermitian Hamiltonian dynamics can be efficiently
simulated.

In this work, we describe quantum algorithms for the
real-time evolution of a quantum state according to the
Schrédinger equation with a non-Hermitian Hamilto-
nian. This evolution (or an approximation thereof) is
accomplished after a Suzuki-Lie-Trotter (SLT) expan-
sion of a unitary time evolution operator. These unitary
time steps are augmented by preparation of, and mea-
surement on, ancillary qubits in order to accomplish the
desired non-unitary evolution.

Two algorithms that we present take advantage of the
fact that there are unitary system + environment mod-
els (a.k.a. unital quantum channels) that are “close” to
non-Hermitian time evolution. We construct a Trotter-
ized Lindbladdian with a unitary portion correspond-
ing to the Hermitian component of a non-Hermitian ef-
fective Hamiltonian, a non-Hermitian evolution accord-
ing to the anti-Hermitian component, and additional
“quantum jump” operations that move the system away
from evolution according to the target non-Hermitian
Hamiltonian. The algorithms are an implementation of
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a damping channel. The Liouvillian that corresponds to
this nearest unital channel can potentially share phys-
ical properties of the non-Hermitian Hamiltonian sys-
tem of interest, particularly when the non-Hermiticity
is small.

Second, we show it is possible to simulate a non-
Hermitian Hamiltonian without quantum jumps, but
instead each Trotter step is either a step forward or
backward in time. “True” evolution of the system
according to a non-Hermitian Hamiltonian is always
achieved, however forward time evolution is not guaran-
teed. Ancillary post-selection determines not success or
failure, but rather whether a given Trotter step moved
the system backwards or forwards in time. At readout,
ancillary measurement outcomes project onto a specific
map between simulation time and computational time.

In this paper, as a first application, we test these
methods on the coarsest (Z3) discretization of the O(2)
nonlinear sigma model: a 1D quantum Ising spin chain
in a transverse field. Non-Hermiticity is introduced via
an imaginary longitudinal magnetic field. The model
has been well-studied (see [5-8]), both on and off the
real axis, which makes it an ideal benchmark to test
discrete-time, finite-volume quantum algorithms, and
to construct and measure observables which probe fea-
tures of interest such as phase transitions and scaling
behavior in the approach to non-unitary critical points.
The Lee-Yang zeros correspond to a non-trivial Jordan-
block for the lowest energy pair (by real part) in the
eigensystem of the non-Hermitian Hamiltonian. This
model also has a “true” sign problem, in that the tensor
formulation—or other “dual-variable” formulations—of
the theory does not eliminate complex phases, and is
thus an interesting case study for quantum computa-
tion of theories with a sign problem.

We show in this paper that these algorithms have the
ability to detect the finite size quantum analog of the
Lee-Yang edge, where the partition function vanishes
due to the effective non-Hermitian Hamiltonian losing
an eigenvector. In quantum simulation, this edge cor-
responds to a point past which the time evolution de-
velops a fixed point at large times due to the effective
ground state energy developing an imaginary part.

Recently, a noisy intermediate scale quantum (NISQ)
algorithm for imaginary time (purely anti-Hermitian)
evolution was designed in [18], which is efficient when
correlation lengths of the system are small. In the case
of general non-Hermitian hamiltonian evolution, suc-
cessful SLT evolution can be accomplished by utilizing
this “QITE" (quantum imaginary time evolution) algo-
rithm for terms in the Hamiltonian with imaginary cou-
plings, and standard algorithms for the unitary part of
the time-step. Thus a simple extension of QITE is also
applicable for these non-Hermitian Hamiltonians. How-
ever, this algorithm would suffer near points of interest
such as phase transitions where there is long range or-

der that we wish to emphasize in this paper. We leave
application of QITE to open lattice field theories of this
form for future work. Throughout this paper, we have
set i = 1, and normalized all quantities in plots to make
them dimensionless.

This paper is organized as follows: In section II,
we give an interpretation of arbitrary non-Hermitian
Hamiltonians as open quantum systems, analogous to
effective models of heavy particle decay. In section
III, we talk about modeling non-Hermiticity in a sys-
tem+environment setting utilizing the formalism of
quantum operations. In section IV, we introduce the al-
gorithms for simulating general non-Hermitian Hamil-
tonians on a quantum computer and write down the
corresponding quantum operations. In section V, we
talk about methods to realize these quantum opera-
tions. In section VI, we apply our algorithms to the
transverse field Ising model with an imaginary longitu-
dinal field, propose quantum circuits for a small system,
and present numerical results of observables and com-
pare with results from exact non-unitary evolution. We
conclude in section VII.

II. NON-HERMITIAN HAMILTONIANS

Effective descriptions of quantum many body systems
coupled to a bath can, in certain cases, be described
or approximated in terms of effective (and often non-
Hermitian) Hamiltonians. A common, simple example
of non-Hermiticity elucidated by Feshbach [15], and ini-
tially applied to nuclear physics, is that of spontaneous
decay of massive resonances, where a small discrete sub-
system of at-rest massive particles is weakly coupled to
a infinitely sized system of light particles with a continu-
ous range of momenta. Phase space suppression ensures
that information flow is overwhelmingly “one way” from
the massive system to the light one.

‘When supplemented with a superselection rule, there
is a sense, which we review here, in which tracing
out the light particle bath yields evolution via the
Schrédinger equation with an effective non-Hermitian
Hamiltonian. Dispersive terms in this Hamiltonian ac-
count for the decay process.

Such evolution is not norm preserving (trace preserv-
ing in the density matrix formalism), so to make sense
of it, we must extend the system, as we now review.
In the case of a simple single particle decay, there is
a unitary system -+ environment model that completes
a non-Hermitian Hamiltonian model with H = —iI'l
(T being the width of the particle), and time evolution
operator e T*. This evolution operator acts on the oth-
erwise trivial 1D Hilbert space spanned by the massive
non-interacting particle state, |M). By supplementing
the one dimensional single-particle Hilbert space acted
on by H with a “de-excited” vacuum state (the state of



no massive particle), the trivial space is promoted to a
more physical qubit where measurement yields one of
two possible results: “particle there” or “particle gone”.
The operation is the usual amplitude damping channel
modeling the loss of energy via some array of possibly
unspecified decay processes.

In the extended Hilbert space, with all decay prod-
ucts traced out, an initial density matrix pg = |M){M|
where the particle is there with certainty, evolves in
time ¢ to py = e V| M)(M| + (1 — e~ 1%)|0)(0], a mixed
state with statistics pehere = €77, and Pgone = 1 — e Tt
which obviously preserves the trace condition.

One can also consider more complicated systems
with additional massive particles that may interact
amongst each other non-trivially, e.g. with oscillations
such as those exhibited by the Ky-K( system (see [14]).
Such effective Hamiltonians have Hermitian compo-
nents accommodating oscillation, and anti-Hermitian
parts modeling decay.

In essence, we “make sense” of these simpler non-
Hermitian Hamiltonians via an enlargement of the
Hilbert space that accommodates a unital quantum
channel. A sequestered block of a block diagonal den-
sity matrix then evolves according to a time evolution
operator that is the solution of the Schrédinger equation
with that non-Hermitian Hamiltonian.

This idea can be generalized to any non-Hermitian
Hamiltonian, and we will emphasize that in the case of
field theory, with its axiom of local interactions (and
the associated sparsity in the corresponding Hamilto-
nian), such theories may be amenable to simulation on
quantum hardware.

To make sense of an arbitrary non-Hermitian Hamil-
tonian, consider Hy = Go+iKg, with G and Ko Hermi-
tian. A sensible (dispersive) model has no eigenvalues
with positive imaginary part. If Hy has eigenvalues in
the upper half of the complex plane, this can be cor-
rected by subtracting an overall imaginary shift in the
Hamiltonian.

In fact, we shall be more conservative, and shift the
vacuum energy to ensure that —Kj is a positive semi-
definite operator: Hy — Hy — i max(eigenvalues(Kjy))1.
This shift creates no change to the relative eigenspec-
trum of states or their characterization. It only adds
an overall universal decay rate. The positivity of — K|
is required so that small time-steps according to non-
Hermitian Hjy can be represented by a unitary sys-
tem-+environment model !

! Some non-Hermitian Hamiltonians have only real eigenvalues
(see [36]). This subtraction could possibly be unnecessary in
these special cases. Since these systems can be shown to be re-
lated to Hermitian but generally non-local Hamiltonians [51],
they may be intrinsically difficult to simulate without the sub-
traction we perform.

Minimally, to accommodate the system decay associ-
ated with the shifted Hamiltonian in a unitary quantum
channel, the N-dimensional Hilbert space acted on by
Hy must be increased in size by at least one additional
basis vector, which we call the “empty” state. We now
consider a new Hamiltonian acting on the larger space

i (M)

We consider density matrices of the form

Sys
_ [ PNxn 0 9
r ( 0 1- Trp%’iN ) ' @

Our goal now is to construct a Lindblad formulation 2 of
the problem on the new N +1 dimensional Hilbert space
that does not spoil the superselection rule forbidding
superpositions of the system state with the empty state.

We then aim for an evolution of p in the N 4+ 1 di-
mensional space which follows

% = [G’,p] - {K,p} + EQiiPijv (3)

and where the “quantum jump” terms in the sum do not
pollute the upper IV x N block of the density matrix.
Trace preservation requires that K= > I:IIA/Z In Ky's
eigenbasis, with the imaginary energy shift, we have

Koy = —diag(T'y, -+ ,Tyn), (4)

where the I'; are positive decay constants. Our require-
ments are met with N Lindblad operators given by,

P Onxn Oy :
i = { — Ko} L (5)
where {\/ ff(o} s the i*h row of v/ — K. For a small
discrete time—stép, a Trotterized advancement corre-
sponds to an (N + 1)-element Kraus operator set:

N —i6tGo ,6tKo 0
B (e e
0 ( 0 1 ) )
OnxN On )

Ei= ( [Vin— B o
i
where [\/m} _is the it row of \/m,

7
The quantum operation described by this set of Kraus

(6)

2 A pedagogical treatment of open quantum systems that in-
cludes Lindblad evolution and the formalism of quantum op-
erations used here can be found in, for example, Nielsen and
Chuang’s textbook, Chapter 8 [52]



operators correctly advances the system by one time-
step, up to O(6t?) terms. Keeping with the particle
decay analogy, there are IV “flavors” of massive particles
interacting with one another in the top left block of p.
The Kraus operators F;, with ¢ =1,--- N correspond
to these different “flavors” decaying.

Over evolution time, the system of interest is de-
caying into the empty state while undergoing non-
hermitian evolution. Statistics at late times will tend to
be dominated by the empty measurement, with failure
of the simulation to yield information about the system
of interest.

Novel properties of the non-hermitian lattice system,
as a rule of thumb, would be expected to be manifest
at time scales inverse to the anti-Hermitian Hamilto-
nian term’s magnitude. However, failure probabilities
are expected to approach unity at time scales inverse
to the system volume multiplied by the anti-Hermitian
coupling strengths. This is the usual price of fitting
non-Hermitian evolution into completely positive maps:
naive implementation comes at the cost of growing
probability of a “garbage” outcome.

For any algorithm that simulates a non-Hermitian
Hamiltonian via a trace preserving quantum operation,
the probability of success for a single Trotter step de-
pends on the way we normalize the desired evolution so
as to fit it into a trace preserving quantum operation.
As we have emphasized, — Ky must minimally be posi-
tive definite, and thus probability for a successful time
step on an initial density matrix p without an undesired
quantum jump is bounded:

ps < Tr (E'OpEA’g) =Tr (e&kpe‘stk) . (7)

Realistically, K will not in general be diagonal in the
lattice basis, and we will not know its spectrum. In-
stead, for a lattice model, we will have K as a sum of
locally acting operators, K= > k; that we implement
as individual anti-hermitian “gates,” and for which we
do know the spectra. In a simulation we must enforce
positivity of each —k;. This will over-compensate in
general, and in a typical simulation the bound in Eq. (7)
will not be saturated.

We next move on to study the construction of simula-
tions that target non-hermitian Hamiltonian evolution
on lattice models.

III. MODELING ANTI-HERMITICITY

Our algorithms are general, however in view of sim-
plicity of exposition and also our intention to study
lattice field theories with local interactions, we need
only put focus on non-Hermitian Hamiltonian terms
which are single site or involve interactions between

nearest neighbor degrees of freedom. In this section,
we describe a family of Kraus operator decompositions
of an arbitrary non-unitary time-step, limits of which
correspond to our “random walk through time” algo-
rithm with probabilistic time evolution, and damping
circuits with straightforward time evolution which min-
imize failure probability.

A. Single Qubit anti-Hermiticity

If the anti-Hermitian part of the Hamiltonian acts
only locally on lattice degrees of freedom, the Trotter-
ized transfer matrix can be separated into a unitary
part encompassed in G and a non-unitary part from
K which acts only on local system sites. We focus on
finding a single qubit quantum operation that approxi-
mates a time step according to such an anti-Hermitian
Hamiltonian. It can, in fact, be shown that any Trotter-
ized multi-qubit non-Hermitian evolution can be decom-
posed into unitaries and single-qubit non-unitary quan-
tum operations, as we explain further in Section III B.

Tracing out the entire system with the exception of a
single qubit gives a reduced density matrix for the i’th
lattice site, p;. The portion of the Trotter step that
solves Eq. (3) corresponding to anti-Hermitian evolu-
tion is

i — et ®)

where k; here is the portion of K acting at site q.
This takes a form similar to a single element non-trace-
preserving quantum operation, with Kraus operator
Eé = %% As emphasized in Section 2, requiring posi-
tivity of —k; guarantees that Eé TE@ < 1, as required by
unitarity. Without loss of generality, one can always ap-
ply a unitary transformation to rotate the single qubit
anti-Hermitian evolution to point along the z-axis. We
thus consider the specific case k; = ©(6, — s1), so that
we have

.. (1—5)0t© 0
i e
Ey = ( 0 o (145)5t0 ) ; (9)

where O is a coupling strength, and we require s > 1.

In the following section, we offer a few simple con-
structions of Kraus operator sets that can be incorpo-
rated as quantum channels in a circuit-based implemen-
tation of non-Hermitian quantum dynamics. Each has
its advantages and disadvantages relative to each other.
First, we show that in order to implement two-qubit
non-unitary gates, it is sufficient to have the capability
to implement one-qubit non-unitary gates.



B. Decomposing Two-Qubit Gates

The aim in this section is to decompose a general
N-qubit operator into a single qubit non-unitary op-
eration, and N-qubit unitaries. We will first show this
for the two-qubit case and then generalize. This is valu-
able since many lattice field theory interactions are non-
linear, and their quantum-computation encodings will
necessarily be reduced to single- and two-qubit gates,
which may themselves be non-unitary. Being able to
reduce two-qubit non-unitary gates, for instance into
two-qubit unitary operations, and a single-qubit non-
unitary operation allows the implementation of more
complicated systems that possess two-qubit gates.

Consider an arbitrary two qubit Trotterized evolution
operation of the form

Moy = e 2 where Hy = Gy + iKo. (10)
Using the Trotter expansion, we can write it as a unitary
piece and a non-unitary piece:

Mg =~ MUMNU = e_i(stG2€6tK2. (11)
The unitary piece can in principle be implemented on
a quantum computer. Now, consider the Pauli decom-
position of K5. Since K5 is Hermitian, the coefficients,
a;; of the decomposition will be real

MNU = exp 5tZaij(&i®&j) (12)
4,J
~ H M&JU = H exp{dta;;(6, ®6;)},  (13)
i, ,J

where the Trotter expansion has been used in the second
equality, and ¢, j = 0,1,2,3, with 69 = 1. Since MYy,
is Hermitian V (4, j), it admits a spectral decomposition
with orthonormal eigenvectors

My = UYAY (O], (14)
where /% is the unitary matrix comprised of the eigen-
vectors of My, ordered in the decreasing order of the

eigenvalues; A is a diagonal matrix with the eigenval-
ues in decreasing order. One can show that

(i,4) = (0,0)

(id) # (0,0 P

]\ij _ exp{ét apo :ﬂ_g} ® ]].2,
exp{ét a,;j (':73 } [029] ]]_2,

Using this, we can write
Myu =A% [ U (exp{6ta;; 65}@12)(T7)". (16)

(i,5)#
(0,0)

e - )
: U9yt i

iy~ oo T v2)
o U 0

[¥1) e v{)
[p2) — T(a00) —  |vd)
0) — (M17) 0)

Figure 1. Block circuit of a general Trotterized two qubit op-
eration in terms of single qubit non-unitaries (implemented
by T), and two-qubit unitary entanglers, U*’s.

This is the required decomposition. The U#’s are two
qubit unitaries (entanglers), and the operations in the
middle are single qubit operations, one of which is al-
ways the identity.

This decomposition is easily generalized to non-
unitary operations acting on N qubits:

lell%l} — U{ki}A{ki}(U{ki}>T’ (17)

where the set {k;} is a label for the Pauli basis for a 2V
dimensional Hilbert space. The (ordered) eigenvalue
matrix is then

/A\{kz} _ {eXp{&f a{o} ﬂg} ®12N 5 ki =0V

18
exp{&ta{ki}@} R Aon, Ti:k; #£0, (18)

which yields
MNU = A{O} X

H U{ki}(exp{ét afl;} &3} ® ILQN) ((A]{k"’})T. (19)
{’%}}#

Here, the Uki’s are N -qubit unitary operators . Even in
this general case, the non-unitarity can be moved to be
on just a single qubit. Note that these N-qubit entan-
glers need not be efficiently implementable, generally.
A block circuit of the two-qubit case is shown in Figure
1, where T is a unitary implementation of the quan-
tum operations we describe in section IV to implement
single-qubit non-unitary evolution using a single ancil-
lary qubit. Mz is a measurement of the spin in the &,
basis, and X = 6.

IV. EXPLICIT QUANTUM CHANNELS FOR
THE SINGLE QUBIT CASE

In this section, we will elaborate on the specific quan-
tum channels based on the ideas from the previous sec-
tions. These are channels obtained by embedding the



non-Hermitian system into a bigger, unital channel us-
ing ancillary qubits. Then, the undesired evolution can
be minimized through post-selection on the measure-
ments of the ancillary qubits. The first two approaches
below take the system away from the desired evolution
in the eventuality of a wrong measurement on the an-
cillary qubit. The last one solves this problem at the
expense of accumulating Trotter error.

The three channels described here are considered to
be implemented uninterrupted for the desired amount
of evolution time. This is how the numerical results in
Sec. VI were calculated. However, the channels could
just as well be supplemented with tomography of the
quantum state to “checkpoint” evolution along the way.
In this way all three approaches are able to reproduce
the desired evolution up to controllable errors.

A. System in Decline

The first channel we discuss is modeled on, and in-
spired by the operation corresponding to particle decay
in [14]. Implementation requires that we, at minimum,
extend the single qubit system to a qutrit, although for
purposes of utilization on standard hardware, we will
instead exhibit here a realization via extension by an ad-
ditional qubit. We refer to this new qubit as the “com-
pensatory” system. This qubit adds additional states
for probability of the system qubit to move into, and
so “compensates” the “decay” experienced by the sys-
tem qubit. To write the Kraus operators, first we will
rotate into the z-axis and normalize as mentioned in
Sec. IIT A, then let us write down the two matrices

A (1 0 s (0
with v = 1 — e 4%®_ Now, a set of two Kraus operators
acting on this 4 dimensional Hilbert space is given by

ssp _ (Q1 0 ;sp_ (000
Eo (0 1)’ Ey (920 '

To simulate the non-Hermitian system, we impose a
super-selection rule, and, on initialization, only consider
states which populate the 2 x 2 blocks lying on the di-
agonal of the 2-qubit density matrix, with the 2 x 2
block in the upper left (the 0-state of the compensatory
qubit) representing the system that will evolve accord-
ing to the effective non-Hermitian Hamiltonian.

With the Kraus operators in Eq. (21) this quantum
operation is an amplitude-damping channel in which
a decay of the system’s 1-state, represented by FEj, is
compensated for by population of the 1-state of the
compensatory qubit via Ej. To begin describing the
evolution, we write down a density matrix for the sys-
tem and compensatory qubit in block-diagonal form,

(21)

po = [0){0] ® pg’® + |1) (1| ® p§. The state p© is
a “garbage state” that contains minimal information

about the system that we intend to simulate. Here,
while we use the notation p** (p%), these blocks are
not themselves individual density matrices. Evolving
the system an amount of time, §t, we find
po = pse = 10) (0] @ p5” + [1) (1 ® pf;
=10) (0] ® Q1950
+11) (1@ (off +2p™0h).  (22)

On any given time step, the probability, psys, for mea-
suring the compensatory qubit in the O-state after a
single step of evolution is given using the maximal case
of Eq. (7) by

Psys = It (PopétPO) = Tr(lesysQI)v (23)
where Py is the projector onto the O-state of the com-
pensatory qubit. In order to actually implement the
quantum operation described by Eq. (21), a minimal ad-
ditional third qubit must be introduced for a unitary op-
eration as an ancillary environment, which, when traced
out, yields the above Kraus operator set. With this op-
eration, the upper 2 x 2 block will evolve, up to normal-
ization, precisely as desired up to computational error
in the lab, and finite-time Trotter error.

This is, however, at the expense of depletion of the
system of interest into the “garbage” state that eventu-
ally and inevitably (without tuning) dominates the den-
sity matrix, given enough iterations of the non-unitary
portion of the time-step. Longer system-evolution times
are associated with greater expense in performing to-
mography that yields information about the state of
the target system.

We should note that in some (or many) cases, our
damping channel will be overly conservative. Probabil-
ities of success may be arranged to be higher with more
careful construction of the operation. This is due to
the fact that the original non-Hermitian Hamiltonian
may have either purely real eigenvalues due to symme-
try arguments [36], or eigenvalues with a positive imag-
inary part that are overcompensated for in our pursuit
of ensuring unital quantum channels to simulate local
interactions. Of course we will not typically know in
advance the spectrum of these Hamiltonians (that be-
ing the purpose of their simulation), and playing it safe
is likely to be best practice.

B. Damping Channels

We can also realize the non-Hermitian dynamics
without extending the system space with a compen-
satory qubit, but rather use an ancillary qubit to elevate
the non-unitary operation to a unitary one.



The simplest way to implement the non-unitary dy-
namics may be a phase damping quantum channel, with
measurement performed on a single ancillary qubit in
the computational basis. In the framework at the end
of Sec. II, and the beginning of Sec. IIT A, this case
corresponds to minimizing s, and having only a single
additional Kraus operator complete the set. Minimiz-
ing s provides the single-step optimal probability of ob-
taining evolution via EPC rather than the other Kraus
element. It can be arranged so that a “0” outcome of
ancillary measurement corresponds to the desired EP¢
evolution, and “1” is associated with an undesired EPC
evolution. In this case,

E(?C:<(1) \/%) and EPC:((O) \%) (24)

with v = 1 — e~*9% Implementation of the channel

is via a controlled y-rotation, R, (¢), where the system
qubit acts as the control, the ancilla qubit as the target,
and ¢ = 2sin” ' (/7).

For the phase damping circuit, a “1” measurement is
irrecoverable, destroying any entanglement built up be-
tween the i*" qubit and the rest of the system, putting
the i qubit in the pure state p} = |1)(1]. These 1-
measurements correspond to the inevitable quantum
jumps associated with a probabilistic algorithm.

A low probability to measure the 1-state in the an-
cillary ensures errors are local and sparse. Long-range
or global properties of the system of interest may sur-
vive this approximation to non-Hermitian Hamiltonian
dynamics. We study this numerically in section VI by
comparing observables in the 1D Ising model at imagi-
nary longitudinal field calculated using the phase damp-
ing gate implementation, to those calculated exactly.

We note that one could just as easily consider any
right-acting unitary rotation of EPC, such as EPC6,
(which in this case would give an amplitude damping
channel).

C. Random walk through time

In contrast to the previous two approaches where a
measurement of “1” on the ancillary qubit results in a
complete loss of entanglement between the qubit and
the rest of the system, in this section, we present an al-
gorithm where an unsuccessful measurement on the an-
cilla(s) means that the system has evolved in the wrong
direction in time by a fraction of the time-step, dt. Let
A; and B; be a set of N and M Kraus operators that
define the trace preserving quantum operation given by

N M
R(p) = AipAl +> " B;pBI, (25)
i=1 j=1

with

A; = /o exp{fiééti} exp{f(éti},
B; =/B; exp{iét?t;} exp{—f(ét;}. (26)
Here, A; does a forward time-step by 6t;, and Ej does
a backward time-step by dt;. Note that dt;, 5t < dt;
the equality is when N = M = 1.

We demonstrate here a calculation which gives the
optimal number of Kraus operators. Under the assump-
tion that dt;, 6t;- < 1, the trace-preserving condition

(3, ATA; + > B]TB’] = 1) gives the following:
Z 047515, — Z B](Yt; = O7
( J
Z (673 + Z 5]' = 1
i J

The probabilities for the operators A and B are given
by

(27)

a; = Tr (/Lpflj) = q; + 20,0t Tr(f(p) + (9(5t12),

b = Te(BypBl) = B; — 26,0t e (Kp) + O (5t}?).
(28)

Using these, the average “distance” in time a single ac-
tion of the quantum operation in Eq. (25) would take
the system is

{t) :Zaiéti—ij(st; =0,
i J

where Eq. (27) was used in the second equality. This in-
deed is expected since this is a random-walk algorithm.
The quantity of interest is the root mean squared dis-
tance in time:

V) = (z:aZ 5t + ij Jt;?)l/z
= (Z ;67 + zJ: B;6t?
i J
+2Tx(Kp) ( PILLLEDY B0t ) v
<ot(D ity 8 | J
i J
+2Te(Kp) (Y cudti = Y B;01}) ) 7
i J

(29)

(30)
Finally, using (27), we have
V(t2) < ét. (31)



This can be maximized using just a single ancillary
qubit using the following Kraus operators:

Ei(&‘) = 2z exp (:122'@575) exp (:l:f( 5t),

7 (32)

which has the statistics of a coin that has a state-
dependant O(dt) bias. This channel evolves correctly
up to O(6t?). The drawback of this evolution is that,
due to the nature of a random walk, many more Trot-
ter steps are required than ~ 1/6t in order to evolve
the system the desired amount of time. This results in
an accumulation of Trotter error. Using this method a
judicious choice of post-selection must be done- for in-
stance, if we take too many steps in the backwards di-
rection, it would be better to start the simulation over.

V. CIRCUIT REALIZATION

In this section we give explicit forms of the unitary
evolution operators for each of the algorithms discussed
in Sec. IV. These are expressed in terms of known fun-
damental gates, and Kraus operators.

A. System in Decline realization

The algorithm described in Sec. IV A is best inter-
preted as a system and “compensatory” environment.
The Kraus operators for this algorithm (Eq. (21)) con-
tain in them how the probability moves between system
and environment during evolution. The actual imple-
mentation of these Kraus operators is quite ambiguous,
and so one needs to find a unitary (which is done with
an additional ancillary qubit) that applies these Kraus
operators correctly. We found that a unitary that ac-
complishes this is given by

~ 1 N ~ N . ~
Ush — 3 ((11 +6.) ® ESP + (6, —i6,) @ EP
— (6, +i6,) @ EFPT

t(1-6)® (SWAP)EgD(SWAP)), (33)

where SWAP is the standard two-qubit swap gate.
Here, the first operator in the tensor product acts on the
ancillary qubit, while the second operator acts on the
system-compensatory environment qubits. Note that
the unitary in Eq. (33) corresponds to the single qubit
quantum channel written down in Eq. (21), which ex-

|0>a * Ry(@) ¢
0). (] 1]
[s1)

Figure 2. Gate implementation of the unitary in

Eq. (34) for the System in Decline algorithm for a sin-
gle qubit Trotterized anti-Hermitian evolution. Here, ¢ =
2sin™! /1 — e=4%® and the subscripts a and ¢ denote the
ancillary and compensatory qubits, respectively.

plicitly gives

1 0 0000 0 0
0 vI=v 0000 —~y O
0 0 1000 0 0
~SD 0 0 0100 0 0
v 0 0 0010 0 0 (34)
0 0 0001 0 0
0 v 0000 y1I=v0
0 0 0000 0 1

The gate implementation of this unitary is shown in
Fig. 2. Acting with this unitary implements the evolu-
tion shown in Eq. (22). To see this, consider the com-
bined system-compensatory environment qubit density
matrix of the form
p=10).(0l, @ ™ + 1), (1, ®p% (35

where p© is a garbage state. The total density matrix
upon preparing the ancillary qubit in the 1-state is

prot = 10), (0], ® p, (36)

where the subscripts a and ¢ correspond to the ancillary
and the compensatory environment qubits, respectively.
Evolving by USP yields
. . 1 R o -
USP pyor, USPT = 5 ((]l +6.)® EgDpEg’DJr
(60— i5y) ® BSPpBSPY _ (6, +i6,) @ ESDpESD!
+(1-6.) @ BSPpESP ) (37)

Tracing out the ancillary qubit gives the desired evolu-
tion in Eq. (22).

B. Damping channel realization

In this section we give an explicit representation for
the Kraus operators in the case of the damping circuit,
and show their application on an arbitrary quantum



state. In Sec. III, we have considered how to implement
non-Hermitian operations on a single qubit, and how
to extend it to two qubits. It turned out that only the
technology for single-qubit non-unitary gates is neces-
sary, since non-unitary two-qubit gates can be written
in terms of two-qubit unitaries, and a single-qubit non-
unitary operation. Then, it reduces to a problem of im-
plementation of the two-qubit unitary entanglers. How-
ever, to actually implement the non-unitary operations
described in Sec. IIT A, one must enlarge the space and
perform a unitary operation. There are several equiv-
alent ways to implement the quantum operations de-
scribed in Sec. IIT A. Here, we include an additional an-
cillary qubit in order to construct a unitary on a larger
space. A unitary that is convenient to utilize is

UPC =10 EPC —i4, ® EPC, (38)
where the first operators in the tensor products act on
the ancillary qubit, and the second on the system qubit.
Acting on the total state por = |0) (0] ® p, for example,
with UPC yields the state

UPCpios UPCT = [0) (0] @ EPCpER
+ 1) (1] ® EPCpEYT, (39)

which upon post-selection on the ancillary qubit yields
the desired evolution according to Fy. Using the rep-
resentations from Eq. (24), and Eq. (38), we can write
the unitary corresponding to the damping gate as,

1 0 0 0

0V1-~v0 (40)
0 0 1 0 ’

0 —v/7 0 VI—7

Looking at the above matrix, this is nothing more than

a controlled y-rotation, with the system qubit as the
control. Now consider an arbitrary single-qubit state,

[/PC —

0 - 0
[1)) = cos 3 |0) + €*¥ sin 3 [1). (41)
We couple this state to an ancillary qubit,
1) = 10) ® [¢) = 0) [¥), (42)

to act on with UPC. The action of UPC is given by,
4DC 4 i o 0
U°*|0) |¢) = cos 3 |00) + /1 — ve'? sin 3 |01)

— et sing |11)
=10) EPC [v) — 1) EPC [¢) - (43)

At this point, a measurement is performed on the an-
cillary qubit, and it is clear if it is found in the O-state,

the final state, |¢f), up to normalization is

[vr) = cosg |00) + /1 — ~ve'® sing |01) (44)
which is the successful implementation of EPC.
_Now, consider an arbitrary single-qubit operator, M.
M; admits a singular value decomposition,
M, = UMV, (45)
where both V and U are unitary, and \is a diagonal
matrix with positive entries and let us assume, with-
out loss of generality, that the entries are sorted from
largest to smallest: A1 > Ao, If we normalize by Aq,
the matrix A is identical to EPC from Eq. (24), with
A2/A1 = /T —7~. Then to implement the matrix Ml,
one applies the matrix (1@ U)UPC(1® V1) to the state
|0) |¢). In this way, any single qubit matrix which is
invertible can be implemented.

By considering the state using the single-site reduced
density matrix, p;, in standard (r,6, ) Bloch-ball co-
ordinates, the probability of successful implementation,
ps, is the probability associated with obtaining 0 on a
measurement of the ancillary qubit, as given by Eq. (7)

ps = Tr (E?CpiE(]))CT) =1- %(1 —rcosf), (46)

which is identical to the probability of success in the
System in Decline algorithm, since E(])DC and €2y are the
same. We note that this is independent of implemen-
tation/completion of EPC to a complete measurement
protocol, and bounded below: ps > 1 — v ~ 1 — 44t0O.
Using this lower bound, we can compute the probability
of success after N; applications of the operation. If we
set 6t = t/Ny,

pie > (1 —40t/N,)Ne, (47)

which, for large Ny, approaches e 4®*. Then, the prob-
ability of success after N; applications is bounded from
below by e~49%.

This bound for success identifies a line of constant
reliability for the circuit. We see that if ©¢t = ¢ with
c small the circuit has a relatively high probability of
success after many uses. That is, the circuit works well
along the line starting with © large which is run for
small times, and ending with © small but run for long
times. Notice the success of the circuit is independent
of the underlying physics of the model. The probability
of success is the same regardless of correlation length,
or phase symmetries, and is merely controlled by the
quantity ©ft.

The extension of the above to two-qubit gates is
a straightforward generalization of the single-qubit
case, however unnecessary, as we have already seen in
Sec. ITI B, one only needs the technology for single-qubit
non-unitary gates to implement two-qubit non-unitary
gates when the gate is a by-product of Trotterization.



C. Random walk realization

The steps in Sec. IV C show that by including a single
additional qubit, we achieve the best possible evolution
using the random walk method. For a general Hamilto-
nian, H = G+iK we would like to be able to identify a
Hamiltonian which corresponds to the enlarged unitary
evolution. This would allow for a more straightforward
gate interpretation. In this section we derive it explic-
itly.

Consider the full, enlarged, unitary, time-evolution
operator, separated into the original unitary evolution
from the Hermitian part of the Hamiltonian, G, and the
non-unitary evolution from the non-Hermitian part, K,

U ~ W1, (48)
where W, T, are the time-evolution operators for G,
and K, respectively. Explicitly,

~ 1 A 1 . A
W=o(1+6:)® e 1G04 F(1-6.)® '@t (49)

and

L1 2 1 :
T=-"21®k%" - —i5, ® e 5.

V2 V2

First we consider T, and expand to order O(dt), and
collect terms with G, and K,

(50)

1

P — (n—ia-y)®1+5t(1+i&y)®f%} (51)

(1-i6y) ®@1)[1®1+ %(1 +i6,)? @ K]

(1 —i6y) @ D1 ® 1 +idts, @ K]

S-S

1 . e ~

= (1 —i8y) @ DR L 0r),
where we have worked up to linear order in 6t and re-
stored the corrections explicitly in the last step. This
is a unitary time-evolution operator, where the non-
Hermitian part of the original Hamiltonian is now cou-
pled to the ancillary qubit through a &, interaction.

Second, the unitary part, W, is similar. Expanding
to linear order in dt and collecting similar terms,

1
W= 3
(1®1)—idt(6.®qG)
~ 671'615[72@@ +O(5t2)

. e 1 . Te
]].+O’Z)®€ 2G6t+§(]]_70,2)®616‘6t
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(52)

Then, the Hermitian part of H can be simulated with
an expanded Hamiltonian where the Hermitian part is
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coupled to the ancillary qubit through a &, interaction.
These forms allow Hamiltonian simulation regardless of
the form of G and K. If a qubit formulation for G
and K can be found, those qubit interaction terms can
be expanded to include a 6., &, interaction, respec-
tively, in order to simulate the full Hamiltonian using
the random-walk method.

VI. THE TRANSVERSE ISING MODEL WITH
AN IMAGINARY LONGITUDINAL FIELD

To put these above algorithms into practice, and test
the realizations proposed above, we consider a simple
lattice model whose Hamiltonian is non-Hermitian: the
one dimensional quantum Ising model with a real trans-
verse field and a purely imaginary longitudinal field 2,

2 AzAz h AT .0 Az
HIsing:_Zo'in_Tx Ui"’ZXZUi' (53)
(ig) i @

We re-scale all the couplings by the nearest-neighbor
coupling, and will omit it in the following, i.e. set A = 1.

Brute force classical Monte-Carlo simulations on the
discretized imaginary time (Euclidean) partition func-
tion (the 2D classical Ising model with an imaginary ex-
ternal field) exhibits a sign problem and disastrous nu-
merical convergence due to the imaginary field. Due to
its relative simplicity, however, the model admits study
with analytic methods, and much is known about the
structure of the phase diagram (see [5-8]). The model
is thus an ideal benchmark scenario for testing real-time
evolution algorithms.

With the longitudinal field set to zero and at large
volume, the model exhibits a second order quantum
phase transition at h, = 1, where the system switches
from a disordered phase to an ordered (magnetized)
one. In a dual description, the transition occurs due
to the condensation of topological “kink” excitations.
The critical point is associated with a conformal field
theory where ungapped kink-antikink bound pairs me-
diate long-range order, and the entropy of the ground
state diverges along with the correlation length in the
thermodynamic limit.

The non-Hermitian extension of the model with imag-
inary longitudinal field offers another viewpoint on the
phase transition. For h, > 1, there is an “exceptional
line,” defined by +£0.(h,) along which the ground state
(defined here as the eigenvector(s) with smallest real
part), merges with the first excited state. This is not a

3 This can also be understood, in discrete time evolution, as the
non-trivial part of the transfer matrix for the 2D Euclidean
classical Ising model with an imaginary external field.
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Figure 3. The exceptional line, (0, hs). for different system
sizes. In the infinite volume limit, the exceptional line devi-
ates from the © = 0 line at h, = 1. The top line corresponds
to a system size of 2, and the bottom one corresponds to a
system size of 10, with an increment of 2 for the other lines,
in comparison to the one immediately above.

typical degeneracy or level crossing, but rather one at
which the non-Hermitian Hamiltonian can be diagonal-
ized only up to a Jordan-block form. Thus, the system
“loses” an eigenvector along this line. This corresponds
to a zero in the generating functional for correlation
functions (the vacuum to vacuum transition amplitude).

For |©] > O.(h;), the ground state is degenerate in
its real part, but is separated into a pair of states with
energies that are complex conjugate paired. At large
volume, the exceptional line converges toward the © =
0 line at h, = 1, the location of the quantum phase
transition for the original Hermitian system. In Fig. 3,
we show the exceptional line for different system sizes.
This is the quantum analog of the Lee-Yang edge—zeros
which lie densely on a circle (as a function of ¢*#©) in the
statistical partition function in the large volume limit.
Above the critical h,, the zeros lie outside of a wedge
enclosing the real axis. As h, is reduced towards the
critical point, the wedge closes, and the zeros cluster
densely in the immediate vicinity of the real axis. In
the thermodynamic limit, the partition function in the
h.-O plane develops a branch-singularity along the h,
axis.

The zeros in the classical partition function map to
the line of exceptional points associated with the non-
Hermitian Hamiltonian. They also correspond to a non-
unitary critical point in the model; a CF'T with central
charge ¢ = —22/5 (see [8, 10]). The merger (and an-
nihilation) of the exceptional points coincides with the
usual 2D Ising CFT.

Despite its non-unitarity, aspects of the complexified
Ising model described above admit quantum simula-
tion on a unitary machine. The techniques described
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in Sec. IV can be applied, and aspects of the structure
of the non-unitary lattice theory can be probed. In
part, the success of the methods can be traced to the
non-unitary features of the model—in particular the ef-
fective ground state energies becoming complex.

The imaginary part of the ground state energy past
the exceptional line leads to the domination (from ar-
bitrary initial configuration) of the ground state in the
long-time limit of system evolution. We give an example
of this with 4 system sites in Fig. 4, where we plot the
fidelity, as defined in Eq. (57) of the state of the system
and the ground state as a function of time for different
initial configurations. This is insensitive to quantum
noise that may be associated with the algorithm itself
(as in Sec. IV B), or, if sufficiently quiet, from environ-
mental noise as well. This makes our algorithms viable
for ground state preparation past the Lee-Yang edge.
The authors are hopeful that this will create new in-
roads not only for studying non-unitary models, but
also for learning about their real-value limits. In other
words, exploration of the behavior of complex structure
of the partition function can herald typical real-space
quantum phase transitions in fully unitary theories.

In the next subsections, we describe explicit applica-
tion of the algorithms in Secs. IV, V to the imaginary
longitudinal field Ising model in Eq. (53), constructing
gate sequence protocols that are generalizable in prin-
ciple to arbitrary volume. We simulate Trotter evolu-
tion and show how observables such as Rényi entropies
can distinguish the exceptional line in the h,-© plane.
The Rényi entropies are good observables because they
are sensitive to the interesting physics of the Lee-Yang
edge. Moreover, it is not hard to measure them ex-
perimentally (see [53-55]). The measurements rely on
interfering identical copies of the system with each other
(through applications of the SWAP gate). In this way
the n*P-order Rényi entropy is probed through measure-
ments of the parities of sub-systems of one of the copies.
The second-order Rényi entropy is the simplest, requir-
ing only two copies.

A. Quantum circuit - System in Decline

The anti-Hermitian part of the Ising model with an
imaginary longitudinal field described by the Hamilto-
nian in Eq. (53) can be implemented straightforwardly
using the unitary in Eq. (33). The Kraus operators for
this model are
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Figure 4. Fidelity between the state of the system and the
ground state (© = h, = 0.5) for five initial configurations
of the system- all in the 0-state (top line), all in the 1-state
(274 from the top), all in the +X state (3" from the top),
every qubit in a random pure state (4th from the top), and
the maximally entangled state (bottom line).

with v = 1 — e7#%®_ The circuit for a single time-step
for this model is shown in Fig. 5 for two system qubits
with one ancillary qubit and one compensatory qubit
for each of them.

Because the probability of success for this circuit is
identical to that of the damping channel circuit we leave
the numerical results to that section (see Sec. VIB).
Moreover, while the physical set-up is perhaps more in-
tuitive, the gate structure is more complicated than in
the damping circuit case, and so for ease of numerical
simulation we only study the damping channel circuit.

B. Quantum circuit - Phase damping circuit
implementation

The Ising model with a real transverse field, and a
purely imaginary longitudinal field can be implemented
almost immediately using the phase damping circuit
discussed in Sec. IV B. In this case, the Kraus opera-
tor, Fy corresponds to

- 1 0
ESD = (0 e?ét@) .

The actual circuit for a single time step is shown in
Fig. 6 for four physical spins, supplemented by four an-
cillary qubits which are used to implement the non-
unitary gates.

A comparison between the method and the exact evo-
lution for six spins can be seen in Fig. 7 in the ordered
phase. In the absence of errors it is clear that the cir-
cuit, and the method, reproduce the original dynamics

(55)
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almost perfectly. Another example, this time in the
disordered phase, can be seen in Fig. 8.

In the two previously mentioned figures, the phase
damping circuit was implemented with zero probability
of measuring the ancillary qubits in the “ruined” state.
This is the ideal case. However, it is important to see
how the algorithm can perform in the realistic case when
the |1) state for the ancillary qubit is measured with
a non-zero probability. To make this comparison, we
calculated the second-order Rényi entropy,

Sa(t) = —log(Tr[p*(1)]),

as a function of evolution time. Here p(t) is the reduced
density matrix for an even bipartite split of the system
at time, t. We calculate this quantity in the h,-O plane.
In Fig. 9 we see this calculation and a comparison be-
tween three things: On the left, evolution of the system
using the circuit in Fig. 6, performing a measurement
on the 350" time step of size 6t = 0.01, and choosing
the iteration with the least number of “1” measurements
on the ancilla for each data point, out of 350 runs; in
the middle, the calculation of S5 using the exact non-
unitary evolution in the h,-© plane; on the right, the
fidelity,

(56)

F(p,o) =Tr/ pt/20p'/2,

between the density matrices obtained using the damp-
ing algorithm, and the one from exact evolution. The
fidelity above is symmetric in p and o. The black line
denotes the exceptional line where the ground state and
first excited state merge.

We can see that the algorithm reproduces the fea-
tures of the exact evolution very well when © is small
generally, and when h, < ©. Overall, we see that the
fidelity is good over a modest range of the couplings,
even in the presence of many 1l-measurements on the
ancillary qubit.

(57)

C. Quantum circuit - Random Walk through time

Here we discuss how to apply the random-walk al-
gorithm to the transverse Ising model in an imaginary
longitudinal field. Using the procedure from Sec. V C,
we can expand the Hilbert space, and create a larger,
Hermitian Hamiltonian from the non-Hermitian Hamil-
tonian in Eq. (53). The new Hermitian Hamiltonian
has three terms corresponding to a three-spin interac-
tion and two, two-spin interactions. The three-body
interaction is the enlarged nearest-neighbor interaction
in the original Ising model with the new ancillary qubit,

e . ~Z ~ZAZ
Hyn = “Oanc E 0;0;.
(i5)

(58)
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Figure 5. A single Trotter step for a two spin Ising system with an imaginary longitudinal field using the System in Decline
channel (see Sec. VA). Here, ¢ = 2sin"' /1 — ¢=43t®. The quantum channel is implemented using one ancillary qubit
(denoted a) and one compensatory qubit (denoted ¢). The compensatory qubits are projected onto the O-state after the

desired amount of evolution.
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Figure 6.
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A single Trotter step for a four spin Ising system with an imaginary longitudinal field.

Here ¢ =

2sin™! /1 — e=4%®_ In this circuit a measurement is defined as M, which will return either zero or one. Subsequently the

state is flipped depending on the result.

An example of this interaction in a circuit is shown in
the third image in Fig. 10.

The second term is a Z-X interaction which comes
from the transverse field in the original Ising model.
This interaction is between the ancillary qubit and a
spin qubit,

Hy = —hy62,. > 67 (59)

An excerpt of a circuit showing this part of the Hamil-
tonian can be seen in the second image in Fig. 10. The
final term is very similar, a Y-Z spin-spin interaction

coming from the longitudinal field,

Hy, =064, 67 (60)
K3

A figure showing the quantum circuit implementation of
this interaction can be seen in the first image in Fig. 10.

Using the above circuits, we can simulate (in an error-
free way) the random walk algorithm on a classical com-
puter. This allows us to assess the effect of the Trotter
decomposition, and the repeated retracing of the sys-
tem steps as it moves randomly forward and backward
in time. In practice, to simulate the random outcomes
of measurement on the ancillary qubit, we compute the
reduced density matrix for that single qubit by trac-
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Figure 7. A comparison between the exact non-unitary evo-
lution of six spins using the Ising Hamiltonian from Eq. (53),
and that using a Trotterized circuit like the one shown in
Fig. 6. The time is in units of the nearest-neighbor coupling,
with a Trotter step size 6t = 0.1. Here (o) is the expecta-
tion value of the o® term in Eq. (53) (orange triangles). Sim-
ilarly for (o*) (green circles). S is the second-order Rényi
entropy using a bipartite split (blue crosses). Here hy = 0.5
and © = 0.1 placing this data in the ordered phase.

ing out the actual system, and reading the probabilities
for measuring zero or one. We then project the system
accordingly into one of the two states, re-prepare the
ancillary qubit, and repeat the procedure.

In Fig. 11 we show an example of typical evolution
for the system. In this case we have placed a “mirror”
at Npctwal — 0 such that if the system would evolve
into negative times we simply re-prepare the entire sys-
tem in the initial state and begin again. On the y-axis
is the number of physical times steps taken, while the
z-axis is the number of actual Trotter steps taken in
the computation. We see it takes a great many steps
to to move significantly forward in physical time. Of
course this is clear from the very nature of the random-
walk algorithm, and the probabilities can be seen in
Fig. 12. It’s clear while there is an inherent asymmetry
in the probabilities, they are approximately 50-50% up
to O(dt).

Nevertheless, the algorithm maintains quantitative
agreement with the exact evolution. An example of
measured observables—the average spin along the x-
and z-directions—can be seen in Fig. 13. Here, we have
plotted the error-free measurements (blue crosses) one
can expect in the computation as a function of the ac-
tual number of Trotter steps that will be taken in the
computation, along with the exact spin value (orange
line) that moment in physical time (See Fig. 11). We
plot the actual error associated with these observables
in Fig. 14.
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Figure 8. A comparison between the exact non-unitary evo-
lution of six spins using the Ising Hamiltonian from Eq. (53),
and that using a Trotterized circuit like the one shown in
Fig. 6. The time is in units of the nearest-neighbor coupling,
with a Trotter step size 6t = 0.1. Here (o) is the expec-
tation value of the 0% term in Eq. (53) (orange triangles).
Similarly for (o*) (green circles). Sy is the second-order
Rényi entropy using a bipartite split (blue crosses). Here
hy = 2, and © = 0.1 placing this data in the disordered
phase.

VII. CONCLUSION

We have presented three algorithms to simulate non-
Hermitian Hamiltonian evolution on quantum comput-
ers using unital channels in conjunction with post-
selection. Both the System in Decline and the damp-
ing channel algorithms have the maximal approach in
terms of probability of success of a single trotter step to
simulating the non-Hermitian Hamiltonian of interest.
The additional quantum jumps in these algorithms take
one away from the desired evolution, but if the imagi-
nary coupling in the model is small or large relative to
the real couplings, the approximate Hamiltonian that is
simulated can possess similar characteristics.

For the random walk algorithm, each time step takes
the system forward or backward in time according to
the non-Hermitian Hamiltonian evolution. Because of
the larger number of steps necessary to move forward
in physical time, at least an order one factor of error is
accumulated throughout the simulation when the num-
ber of times steps is 2 1/dt, and strict post-selection
is necessary. Nevertheless, for small physical times the
results are in good agreement with exact calculations.

Using these algorithms we have studied a specific
model, the one-dimensional Ising model with a real
transverse field and a purely imaginary longitudinal
field. We found these algorithms are able to accurately
reproduce global spin observables (e.g. magnetization),
as well as the second-order Rényi entropy in the h,-
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Figure 9. The second-order Rényi entropy, S» calculated on a N, = 4 lattice in the h,-© plane. Here the Trotter step
size was 6t = 0.01 and Sy was measured on the 350th step. (left) The exact evolution; (middle) The calculation using the
phase-damping method, selecting the best out of 350 runs for each point in parameter space; (right) The fidelity between
the exact evolution and the algorithm.
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Figure 10. Gate implementation for the random time walk Ising model in Eq. (53) with two system qubits and one
ancillary qubit. V' diagonalizes the o, Pauli matrix, and H is the standard Hadamard gate. The three circuits correspond,
respectively, to the longitudinal field, the transverse field, and the nearest neighbor interactions.

O plane where the Lee-Yang edge occurs. We found  ditions make these algorithms excellent candidates for
the algorithms worked exceptionally well in the region  near-term quantum computing.

of small non-Hermiticity where the imaginary coupling
term is just a perturbation. We also found good agree-
ment at large imaginary coupling relative to the real
couplings, since the real exponential pulls the system
back quickly to the desired ground state. Finally, small
physical times were simulated with excellent agreement
since few errors have the oppurtunity to happen, and in
that case the algorithm is exact up to Trotterization er-
ror. For larger values of the imaginary coupling where
© ~ h, (along with longer simulation times) a more
extensive post-selection process is required. These con-

The above demonstrates that these algorithms can
be used to simulate non-Hermitian systems on near-
term devices, and in fact calculations are already un-
derway for the Ising model studied here [56]. In addi-
tion, these algorithms allow for simulations in imaginary
time (Euclidean time, or purely imaginary couplings)
on quantum computing hardware. Simulations at long
Euclidean times force the system into its ground state,
and so these algorithms could be useful for ground-state
studies, or studies of slightly excited states. Further-
more, the algorithms provide simple means to imple-



40000 60000 80000 100000

Nt

0 20000

Figure 11. An example of how the system evolves in physi-
cal time, versus the number of Trotter steps actually taken
in the computation. On the y-axis we plot the difference
between the number of forward steps and the number of
backward steps, while on the x-axis show the number of
Trotter steps taken. This evolution is for a four-spin system
with h, = 1.5, © = 0.5, and §¢ = 0.001.
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Figure 12. Histograms showing the probabilities for measur-
ing zero or one over an example run of 100,000 steps. We
see a slight bias towards measuring the zero state, however
this is only at O(dt). These probabilities are for a four-spin
system with h, = 1.5, © = 0.5, and 6t = 0.001.

ment any non-unitary single- or two-qubit gate; how-
ever, the probability for success depends on the distance
of the normalized eigenvalues from unity which gener-
ally could be quite large.

An interesting question to consider for future direc-
tions is the possibility to utilize the inherent noise in
NISQ era machines to study open quantum systems.
This possesses some challenges, since some noise is
unique to particular machines, it is not the same for
each qubit, and is not constant in time—among others.
However, the availability of “free” noisy quantum sys-
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Figure 13. A comparison between the (error free) measure-
ment of the average spin in the z and z direction (blue
crosses), and the exact expectation value of the same quan-
tities sampled at the same physical time (orange line) (See
Fig. 11). These measurements are for a four-spin system
with hy = 1.5, © = 0.5, and §t = 0.001.
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Figure 14. The error between the measured values and the
exact values from Fig. 13. We find reasonable quantitative
agreement over a large number of Trotter steps; however,
this is observable-dependent.

tems to study is tempting, and deserves further thought.
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