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Abstract—Demand response programs are considered as a
valuable resource in smart grids that provide several advantages
of load shifting, peak load reduction, mediating intermittency of
renewable energy integration, etc. Flexible price-based incen-
tives have been recognized as a critical strategy in motivating
and compensating consumers’ load adjustment actions for a
successful implementation of demand response. Game theoret-
ical approaches, especially Stackelberg games are popularly
adopted to model the relationship between electricity price
and customers’ demand response and solved by the classical
centralized backward induction (BI) method. However, the BI
method generally requires convexity of the follower’s model for
necessary optimality conditions, and the computational time of
any centralized approach increases sharply with larger problem
instances. In this paper, the Stackelberg game of electricity
pricing-demand response between a distribution system operator
(DSO) and load aggregators (LAs) is decomposed based on a
collaborative optimization (CO) framework, where each LA is
treated as a discipline with its own domain constraints (e.g.
building temperature control), while the DSO at the system
level tries to reduce the solution discrepancy and guide the
searching towards optimality. Several groups of comparison
experiments have demonstrated the effectiveness of the proposed
collaborative decision approach in solving the demand response
game.

Index Terms—Stackelberg Game, Bilevel Optimization, De-
composition Based Approach, Collaborative Optimization, De-
mand Response

NOMENCLATURE

Indices
T, t, n Decision period, index for hours, LAs
Parameters
Ct, P Cost of elec. generation, price upperbound
Ln,t, Ln,t Lower, upperbound of demand limit for LAs
Dhn,t, Ddn,t Nominal thermal, non-thermal demand of LAs
αn,t, θ Satisfaction preferences of LAs, penalty coef.
ε Dissipation rate of virtual battery
Bn,t, Bn,t Lower, upperbound of SOC for virtual battery
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Variables
pt, dln,t Electricity price, total demand of each LA
hrn,t, drn,t Thermal, non-thermal load of each LA
m, bn,t Peak load, level of charge in virtual battery

I. INTRODUCTION

With the high penetration of renewables, electricity grid
systems face more challenges in improving grid reliability, en-
hancing operational flexibility for regulations, providing more
contingency reserves, etc. An efficient strategy for dealing
with these challenges is demand side management programs,
which include every action on the demand side in order
to improve the grid characteristics [1], [2]. Generally, two
broad sub-categories of demand side management are energy
efficiency programs and demand response programs. Demand
response programs could be further classified as 1) incentive-
based demand response programs in which consumers are
awarded for consumption adjustment as per the desire of
the supply-side (e.g., direct load control, load curtailment,
emergency demand reduction), and 2) price-based demand
response programs where electricity tariffs (e.g., time of use
pricing, critical peak pricing, real time pricing) are utilized to
motivate the consumption pattern change [3], [4].

Extensive research has been conducted on demand response
programs, which can be categorized into 1) Aggregated
demand response flexibility and potential quantification. A
demand response estimation framework for residential and
commercial buildings is presented in [5] based on the combi-
nation of EnergyPlus and two-state models for thermostat-
ically controlled loads. Regression models are then fit to
predict the demand response potential based on key inputs
like hour of day, set point change, outside temperature,
etc. The demand response flexibility of residential smart
appliances is quantified based on the measurements from
a large scale pilot project [6], and the maximum amount
of time a certain increase or decrease of power that can
be realized within the comfort requirement is calculated.
A bottom-up approach for the quantification of building
flexibility services is proposed in [7], where cost curves



from the solution of optimal control problems with low-
order models is computed to show both the amount and cost
of the flexibility at a given time. 2) Interactive modeling
between electricity pricing and demand response. Stackelberg
game models are proposed for a distribution system operator
(DSO) leader and load aggregators (LAs) followers, where
the leader has the privilege of setting prices and the followers
change their demand patterns in response to the price signals
[4], [8]. A tri-level demand response model is developed
in [9] for a grid operator, multiple service providers, and
corresponding customers, where a two-loop Stackelberg game
is proposed to capture the interactions between the different
actors. In local energy transaction, the electricity pricing and
trading behavior with demand response are modeled in [10]
by both cooperative and non-cooperative games. The leader’s
attitude (selfish or benevolent) and price structure (uniform
or discriminatory) are explored in the profit distribution of
non-cooperative bilevel optimization. It is shown in [11] that
plain time-of-use pricing is not a promising demand response
policy if residential customers are equipped with home energy
management systems. Then two new approaches are proposed
to uncover the residential demand response: optimal load
aggregation under augmented time-of-use pricing and active
demand response participation in unit commitment under
rewards. 3) Demand response with temperature control. The
demand response potential from a large number of thermostat-
ically controlled loads that have to maintain their temperatures
within a fixed range through ON/OFF control is studied in
[12]. In the proposed hierarchical framework, virtual battery
constraints are developed based on building thermal properties
to guarantee the thermal comfort range for end users [13]
and aggregated for LAs, which are then incorporated into the
electricity pricing-demand response game between the DSO
and LAs at the upper layer. At the lower layer, a model-
free control strategy is used to track and allocate the resulted
demand profile.

Specifically, for the Stackelberg model of pricing-demand
response game, the classical backward induction (BI) or
Karush-Kuhn-Tucker (KKT) conditions has/have been applied
in a number of studies [8] [4] [14]. The general two steps in
the BI method are that given the electricity price from the
leader, the equivalent optimality conditions of the followers’
model are first derived and then substituted back into the
upper level to transform the original bilevel model into a final
single level model. Convexity is required to derive equivalent
global optimal conditions of the original model. Since BI is
a centralized solution approach, all the information of load
aggregators needs to be collected by a central unit to make
decisions, and the computational cost increases sharply with
larger problem scale. Different distributed solution approaches
[4] [15] [16] have been investigated for the purpose of
reducing the solving time with less information sharing. In
this work, we make a first attempt to apply a decompo-
sition based distributed decision approach — collaborative
optimization (CO) to the Stackelberg demand response game.
CO origins from multi-disciplinary design problem, and it has

been utilized in different domains, e.g., low energy building
design [17], aircraft design [18], etc. The detailed procedure
of collaborative optimization is elaborated in later sections.

The organization of this research is as follows. The electric-
ity pricing and demand response game between a DSO and
LAs is presented in Section II. Then, the Stackelberg game
model is decomposed in collaborative optimization decision
framework in Section III. Several groups of case studies are
conducted to evaluate and compare the performance of the
proposed approach in Section IV. The conclusions are drawn
in Section V.

II. DEMAND RESPONSE GAME

In the Stackelberg game here, the objective of the DSO is to
maximize the profit in Eq.(1), which includes the electricity
selling profit (first two terms), the overall satisfaction from
load aggreagators (the third term in Eq.(1)) and the peak load
penalty (the fourth term in Eq.(1)). As a leader, the DSO has
the privilege of setting the price signal. The electricity price
is limited by its marginal generation cost Ct and by an upper
bound. Eq.(3) defines the peak load as the maximum total
load for the whole duration.

DSO : maxUo =
∑
n,t pt · dln,t −

∑
n,t Ct · dln,t

+
∑
n,t S(Dl, dl)− θ · T ·m

(1)

Ct ≤ pt ≤ P , ∀t (2)

m ≥
∑
n dln,t, ∀t (3)

LAs : maxUn =
∑
t S(Dl, dl)−

∑
t pt · dln,t (4)

dln,t = hrn,t + drn,t, ∀n, t (5)

Ln,t ≤ drn,t ≤ Ln,t, ∀n, t (6)

0.9 ·
∑
tDdn,t ≤

∑
t drn,t ≤ 1.1 ·

∑
tDdn,t, ∀n, t (7)

Bn,t ≤ bn,t ≤ Bn,t, ∀n, t (8)

bn,t = ε · (bn,t−1 + hrn,t −Dhn,t), ∀n, t (9)

As followers, LAs respond to the price signal from the
leader and try to maximize their own utility functions in
Eq.(4), including the satisfaction value of electricity consump-
tion (first term) and bill payment (second term). The function
S(Dl, dl) in Eq.(10) is used to represent the monetary value
of customers’ satisfaction. It’s value is 1 when the actual
consumption after demand response is equal to the nominal
demand.

S(Dl, dl) = (Dln,t) · wn,t · (
dln,t
Dln,t

)αn,t (10)

Eq.(10) is revised based on [8] to maintain the convex
property. Note that Dln,t = Dhn,t + Ddn,t is the total
nominal load; w is a user defined parameter; α represents
the sensitivity of demand shifting. Eq.(5) defines the total
consumption as the summation of the thermal load hr and
the non-thermal load dr. Eq.(6) limits the hourly non-thermal
demand and Eq.(7) uses the range ±10% to ensure that



the daily non-thermal load does not fluctuate too much
for the required daily work. The stricter equality constraint∑
t drn,t =

∑
tDdn,t could be an alternative to Eq.(7),

which means only demand shifting is allowed for non-thermal
consumption and curtailment is not allowed.

Eq.(8)-(9) constrain the level of charge of the virtual battery
for the aggregated buildings that is derived based on the
building thermal characteristics. The difference between the
actual power consumed hr by a thermal appliance and the
nominal thermal load Dh determines whether the virtual
battery is being charged or discharged. ε is the virtual
battery dissipation rate, which depends on the properties of
the thermal load (e.g. insulation characteristics) and can be
determined empirically. For further details on developing the
virtual battery constraints, readers are referred to our previous
work [13].

III. COLLABORATIVE OPTIMIZATION

CO is a decomposition based decision making strategy for
distributed multi-disciplinary optimization architecture, and
the key in its actual implementation is how to partition a
complex system into several disciplines (or subsystem agents)
that can make independent decisions with the consideration
of the domain constraints [17] [19]. The motivation of de-
veloping a collaborative decision approach is to reduce the
computational cost and communication requirements, and to
provide a distributed design authority and modularized flex-
ibility by disciplines. The system partition process depends
on the characteristics of the target problem, which could
be based on disciplines or sequential subcomponents [20].
Take the building design problem as an example, it could be
decomposed by disciplines as architecture design, envelope
design, energy system design, etc. Each of these disciplines
needs perspective domain knowledge, and meantime, these
subsystems are also coupled by some design variables.

In the studied Stackelberg problem here, the bilevel prob-
lem structure is well-defined, and thus we decompose the
pricing-demand response problem into a system level coor-
dination model for the DSO and several models for LAs
at the lower or discipline level. The system level optimizer
coordinates the activities of all discipline level problems,
guiding the system towards optimality and consistency. The
system consistency is ensured via the auxiliary constraints
in Eq.(11), where dl′′n,t is the decisions from each LA at
the discipline level. Thus, the system level optimization now
becomes the objective function Eq.(1), constraints Eq.(2)-(10)
and Eq.(11). ∑

t(dln,t − dl′′n,t)2 ≤ 0.001 (11)

The discrepancy between the system level and discipline
level is represented by Eq.(12). The discipline level optimizer
receives the decision dln,t from the system level and then
seeks to minimize this discrepancy while subjected to local
constraints. The discipline level for each LA now have the
optimization with objective function Eq.(12) and constraints
Eq.(5)-(9).

LAs : maxUn =
∑
t(dl
′
n,t − dln,t)2 (12)

The overall collaborative decision procedure for the elec-
tricity pricing-demand response game is as follows:
• Step 1: Using the total nominal demand of LAs as

initial solution dl′′n,t = Dln,t. Solve the system level
optimization to obtain dln,t and pass it down to the
discipline level.

• Step 2: For discipline level, solve the optimization model
for each LA parallelly to obtain the solution dl′n,t. Then
pass this solution up to system level and let dl′′n,t = dl′n,t.

• Step 3: Repeat steps 1-2, stop the process if the objective
improvement of system level in two successive iterations
is less than a small tolerance, and the objective value of
each load aggregator at the discipline level is also less
than the defined tolerance.

Note that, in Step 1, the nominal demand is used for the
initial solution of dl′′n,t for the sake of simplicity, other pre-
defined solutions from heuristic algorithms could also be used
as a warm start to speed up the convergence.

IV. EXPERIMENTAL RESULTS

In this section, the results from the classical BI method
are used as a baseline for comparison with the CO approach.
The detailed BI solution process for solving the proposed
Stackelberg game in Section II can be found in our previous
study [4]. The solution from the BI method is a global
optimal.

A. Data preparation

For the case studies here, ten LAs are considered with
thermal demand (e.g. residential HVAC, commercial HVAC,
water heaters) and non-thermal demand. The hourly nominal
thermal demand profiles of ten LAs are simulated based on
different weather conditions and building thermal character-
istics, see Figure 1. The hourly nominal non-thermal demand
of LAs are generated based on a combination of commercial
building reference loads (e.g. large office, hospital, supermar-
ket, etc.) from the U.S. Department of Energy, see Figure
2, and the marginal cost data is obtained from [8]. The α
parameters in the satisfaction function of all LAs are assumed
to be the same, shown in Figure 3. α represents the sensitivity
of demand shifting, which is usually higher during peak
hours as the electricity price is high, therefore, the overall
peak reduction in demand response greatly depends on the
trade-off potential between customers’ comfort preference and
monetary saving.

B. Case studies

To illustrate the proposed solution approach, several groups
of case studies are designed based on whether a flat price
(FIX) or time-of-use (TOU) price structure is adopted, and
whether the penalty coefficient of peak load θ in Eq.(1) equals
10 or 20. Note that an additional constraint pt = pt−1,∀t ≥ 2
needs to be added into the system level when flat price
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Fig. 1: Nominal thermal demand of load aggregators
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Fig. 2: Nominal non-thermal demand of load aggregators

is selected. The stopping criteria of the CO is when the
system level objective value stops improving, and the ob-
jectives (solution discrepancy) of all LAs are zero. For ten
LAs, the iterated system level objectives of CO are plotted
in Figure 4 under TOU price structure, where the optimal
system objectives from the BI are used as their upperbounds.
Eventually, the solution of the CO converges to the optimal
solution of BI.

In the CO approach, the electricity price pt is the local
decision variable in the system level and doesn’t appear in the
LA’s model, while in the BI the price variable from the leader
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Fig. 3: α parameter in satisfaction function
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Fig. 5: Resulted electricity prices in BI & CO (θ = 20)

model will be treated as given parameter in the follower’s
model. The marginal cost of electricity generation Ct and the
resulted electricity prices from both CO and BI are shown in
Figure 5. As shown, the two resulted prices are overlapped
for most of the time.

As observed from Figure 6 and Figure 1, the peak load
at about hour 17 are shifted to hour 22-24. Since the indoor
temperature is guaranteed by virtual battery constraints, this
shifting will flatten the total demand of all aggregators com-
bined with the resulted non-thermal demand shown in Figure
7, which benefits the DSO. Also, the electricity price in hour
21-24 is lower than the one in hour 17 which leads to more
cost saving. The peak reduction is demonstrated in Figure
8 which indicates that the resulted total demand profiles are
almost the same in both BI and CO methods and the total
demand is reduced from about 100 MW to about 72 MW.

For the cooling case here, a fully charged virtual battery
means that the temperatures of thermal loads are less than the
setpoint temperatures (e.g. 23.0 ◦C) as much as the comfort
band limits (1.5 ◦C). It can be observed from the virtual
battery level of all LAs in Figure 9 that the optimal strategy
of thermal control with the premise of maintaining preferred
temperature band is to charge the virtual battery (precooling)
at non-peak hour 7, and then the thermal load keeps at
a relatively lower level and building temperatures start to
increase towards the upper limit during the long discharging



TABLE I: Detailed profit and cost result comparison for CO and BI

System Level FIX (θ = 10) FIX (θ = 20) TOU (θ = 10) TOU (θ = 20)
BI CO BI CO BI CO BI CO

Peak Load 108.20 108.23 95.68 95.65 82.51 82.75 71.91 71.98
Average Load 71.48 71.49 64.40 64.38 71.34 71.42 64.99 64.99
PAR value 1.51 1.51 1.48 1.48 1.15 1.15 1.10 1.10
DSO revenue 200993 201021 190219 190190 196620 196721 185945 186022
DSO cost 72622 72642.4 65186 65166 66995 67108 59858 59876
DSO profit 128370 128379 125033 125023 129624 129613 126087 126145

Discipline Level FIX (θ = 10) FIX (θ = 20) TOU (θ = 10) TOU (θ = 20)
BI CO BI CO BI CO BI CO

bill payment of LA1 20785 20788 19686 19683 20428 20426 19336 19343
bill payment of LA5 18689 18692 17692 17690 18353 18366 17377 17384
bill payment of LA10 18943 18946 17925 17922 18551 18558 17539 17546
satisfaction of LA1 41335 41341 39241 39235 41187 41194 39164 39173
satisfaction of LA5 37002 37007 35111 35106 36849 36878 35057 35066
satisfaction of LA10 37313 37318 35388 35383 37046 37060 35188 35197
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Fig. 6: Resulted thermal demand of load aggregators (θ = 20)
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Fig. 7: Resulted non-thermal demand of load aggregators (θ = 20)

of virtual battery from hour 7-20. At the end hours, the virtual
battery starts to charge again that brings down the building
indoor temperatures.

The detailed experimental results of the several case studies
have been summarized in Table I for comparison. Load
aggregators LA1, LA5 and LA10 are used as an illustration,
the results for the other LAs have a similar pattern. Under
the same price structure, larger penalty coefficient θ results in
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Fig. 8: Total demand of all load aggregators (θ = 20)
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Fig. 9: Virtual battery level of load aggregators (θ = 20)

more peak reduction and thus smaller PAR (peak-to-average)
values. Meantime, more peak reduction means that more load
shifting is required for LAs, therefore, the satisfaction is
getting lower with more monetary compensation (cost savings
in the bill payment). Under the same θ value, more load
shifting potential could be exploited in TOU price structure
than FIX price. As shown in the table, results from CO and
BI are very close for the DSO at the system level and each



of the LAs at the lower level. This indicted the effectiveness
of applying the CO approach to solve one leader multiple
followers games in a distributed way.

V. CONCLUSION

In this research, CO, a system decomposition based dis-
tributed solution approach, is studied and applied to a popular
Stackelberg game of electricity pricing-demand response.
DSO serves as system coordinator and guides the solution
towards its benefit maximization with the consideration of
system consistency. Given the demand profile decisions from
the DSO, each LA testifies the feasibility of the demand
profile on its domain constraints and tries to minimize the
solution discrepency between its decision and system de-
cision. The effectiveness of CO in solving the presented
Stackelberg game is demonstrated in simulation on ten LAs in
comparison to the BI centralized method. For future study, the
scalability of collaborative decision approach will be tested
using a larger scale Stackelberg model, and different initial
solution generation methods will be explored to accelerate the
convergence speed.
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