Revealing Power, Energy and Thermal Dynamics
of a 200PF Pre-Exascale Supercomputer

Woong Shin
Oak Ridge National Laboratory
Oak Ridge, TN, USA
shinw@ornl.gov

J. Austin Ellis
Oak Ridge National Laboratory
Oak Ridge, TN, USA
ellisja@ornl.gov

ABSTRACT

As we approach the exascale computing era, the focused understand-
ing of power consumption and its overall constraint on HPC ar-
chitectures and applications are becoming increasingly paramount.
Summit, located at the Oak Ridge Leadership Computing Facility
(OLCF), is one of the fastest and largest pre-exascale platforms in
operation today. This paper provides a first-order examination and
analysis of power consumption at the component-level, node-level,
and system-level, from all 4,626 Summit compute nodes, each with
over 100 metrics at 1Hz frequency over the entire year of 2020. We
also investigate the power characteristics and energy efficiency
of over 840k Summit jobs and 250k GPU failure logs for further
operational insights. To the best of our knowledge, this is the first
systematic analysis of power data of HPC system at this scale.
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1 INTRODUCTION

Ever since the end of Dennard’s scaling [10], the power and energy
footprint of HPC data centers has been increasing. In the pursuit of
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breaking the exascale barrier, such energy demands present a signif-
icant challenge that ultimately requires the need for highly energy-
efficient HPC data centers. HPC practitioners must consider issues
at both the HPC system-level and the data center-level[4, 36]—both
adding additional dimensions to system design and deployment.
At exascale, system design, deployment, and operation all require
exploring design parameters and operational parameters in un-
charted territories. In such an exploration, operational data plays
an important role [28]. Insights from data provide the necessary
means for system designers or operators to drive efficiency close
to the limits; however, gaining such insights can be a challenge.
In this work, we aim to provide such insights necessary for fu-
ture energy-efficient exascale HPC data centers—with a focus on
revealing the power and energy dynamics of an HPC data center
both as a whole and as related to its job history. To achieve this
goal, we have instrumented the Summit HPC data center[3], the US
Department of Energy (DOE) 200PF pre-exascale system at the Oak
Ridge Leadership Computing Facility, and have gathered data that
covers power and energy data from the Summit system itself and
its supporting infrastructure. In particular, we have leveraged an
out-of-band telemetry stream, accumulating data for the entire year
of 2020 at a 1Hz sampling rate from all 4,626 nodes, 100 metrics per
node that cover the power and temperature of individual compo-
nents within each node. This data was cross analyzed with the job
scheduler logs, the power & cooling supply information from the
facility, and GPU failure logs. With such comprehensiveness, we are
able to deeply characterize the tendencies of Summit’s leadership-
class jobs down to its smallest scale HPC workloads, and reveal
its short-term and long-term impact on HPC data center energy
efficiency. The contributions of this work are as the following:
HPC data collection and workload power characterization:
We reveal the dynamic power consumption behavior of HPC ap-
plications and their impact at unprecedented resolution and scale.
Using the high-resolution power measurement data, we have char-
acterized the spatial-temporal behavior of HPC applications at scale.
In doing so, we have developed analysis methods that are geared
towards understanding dynamic patterns across a long period of
time. We were able to quantify the frequency and amplitude of
power consumption especially tied to the well-known behavior of
HPC applications themselves and the operational policies in place.
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Figure 1: Architectural overview of the Summit system at Oak Ridge Leadership Computing Facility

HPC data center cross-cutting interactions: We also provide
a comprehensive illustration of the dynamic impact of HPC work-
loads on energy efficiency from a data center holistic point of view.
With a special focus on correlating sensor and operational data
from multiple domains of the HPC data center, we provide illus-
trations of cross-cutting dynamics that go beyond the traditional
boundaries such as software vs. hardware and HPC platform vs.
facilities. We provide understandings of the dynamic interactions
between components across layers within the HPC data center that
can help to design various control algorithms, methods, systems
that are required to enable an energy-efficient HPC data center.

Reliability and variability study at scale: Finally, we provide
an analysis reporting the long-term system reliability characteris-
tics of a large-scale dense GPU deployment that leverages medium
temperature direct liquid cooling. This study explores the long-term
relationship between various GPU failures and the temperature the
system yields given the HPC workload and the cooling supplied by
the supporting facility. This study leverages high-resolution com-
ponent level thermal readings across the whole cluster associated
with temporal features such as HPC job allocations, and the spatial
features such as node locations or component locations.

2 ARCHITECTURE

Power, energy and cooling of Summit. Summit, currently ranked

No. 2 on the Nov. 2020 edition of the Top500 list [11] of super-
computers, is a 122.3 petaflops pre-exascale system (200 petaflops
theoretical peak) located at the Oak Ridge Leadership Computing
Facility (OLCF). Summit caters to the DOE Office of Science’s (SC)
workload consisting primarily of full-system jobs that solve chal-
lenges in research areas of national importance such as advanced
scientific computing, basic energy, biological and environmental,
fusion energy, high energy physics, and nuclear physics. Summit
incorporates Power9 CPUs, NVidia Volta V100 GPUs, and Mellanox
Enhanced Data Rate (EDR) InfiniBand (IB) network technologies
(Table 1). It has a total of 4,626 IBM AC922 nodes each powered
by two CPUs and six GPUs. Summit’s peak power consumption is
13 MW and is currently ranked No. 11 on the Green500 list with
14.719 GFlops/watts, supported by a 20MW facility (Figure 1) that
provides the necessary power and cooling to the compute cluster
floor (Figure 1-(c)).

Summit leverages medium temperature water (MTW) in the
secondary loop to maximize cooling efficiency at this scale and
density. With a 70°F (20°C) supply temperature from a central energy

Table 1: Summit system specification

OLCF Summit
Nodes 4,626 IBM AC922C 8335-GTX nodes
Cabinets Total 257 watercooled cabinets, 18 nodes each

Power consumption 13 Megawatts peak

Econ. Primary loop 8 cooling towers (59°F ~ 87°F)

Trim Primary loop 5 chillers (42°F ~ 48°F)

Secondary loop supply: 64°F ~ 71°F & return: 80°F ~ 100°F

IBM AC922C 8335-GTX nodes

Processor 2 x IBM Power9 22C 3.07GHz direct water-cooled
GPU 6 x NVidia Volta GV100 direct water-cooled
Memory 512GB DDR4 + 96GB HBM2 + 1.6TB NVMe
Interconnect Dual-rail Mellanox EDR Infiniband

Node max power 2,300 Watts (220V ~240V AC)

Thermal output 8,872 BTU/hr max (2,600 Watts)

IBM Power9 22C Processor

TDP 300 Watts

Frequency 3.07 GHz

Cores 22 per CPU / 4 threads per core
NVidia Volta V100 SXM2

TDP 300 Watts

Frequency 1335 MHz ~1530 Mhz (boost)

Processors 80 SMs

Memory 16GB 4096-bit HBM2

plant (Figure 1-(d)), this secondary loop first touches each 18 node
cabinet’s rear-door heat exchangers and the cold plates of the two
CPUs and the six GPUs on each node (Figure 1-(a),(b)). Here, MTW
minimizes chilled water use by enabling cooling towers based on
evaporative cooling in the primary loop (Econo HX - Figure 1-(d)
right) when the weather conditions are advantageous (i.e., wet-bulb
temperature is below the necessary supply temperature).

The facility relies on chilled water only when the cooling towers
cannot sufficiently remove heat to drive supply temperature down
to the required supply temperature (Trim HX loop - Figure 1-(d)
left). This is especially true during the hot and humid Tennessee
summer months. With this dual mechanism primary cooling loop,
the facility uses chilled water for only about 20% of the year.

Telemetry datafor MTW operations: Figure 2 depicts the teleme-
try system that supports MTW operations. Data center-level electri-
cal and mechanical data is aggregated with power and temperature
data emitted from individual nodes and is processed, summarized,



Revealing Power, Energy and Thermal Dynamics
of a 200PF Pre-Exascale Supercomputer

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Table 2: Data specification (12 months)

id Source Sample Interval ~ Rows Footprint Description
(a) Summit per node OpenBMC Telemetry 1 sec 134B  8.5TB (compressed) Per-node, per-component power and temperature
(b) Central Energy Plant (CEP) Approx. 15 sec 2M 256MB Mechanical, electrical and environmental data
(c) Job scheduler allocation history End of every job 938K 285MB Project, user, node count, allocation param. submit, start & end time
(d)  Per-node job scheduler allocation history ~ End of every job ~ 87M 14GB Per-node job allocation history, end of job statistics
(e) NVidia GPU XID error log At occurrence 256K 50MB GPU error hardware and software errors
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Figure 3: Compute node out-of-band data collection path
from the on chip controllers (OCCs) via per-node board man-
agement controllers (BMC)

and rendered to engineers in near real-time. Given the node alloca-
tion and outside weather conditions, the facility cross-checks no-
table data center control parameters such as MTW supply & return
temperature and MTW flow with the histogram-based component-
wise temperature distribution summary of the HPC platform (27,756
GPUs and 9,252 CPUs).

This system relies on the out-of-band telemetry streams pushed
to the telemetry system at a 1Hz data rate from the baseboard
management controllers (BMCs) of each Summit compute node [2]
as depicted in Figure 3. At a 460k metrics/sec ingest rate, per-node
& per-component power and temperature sensor changes from all
Summit compute nodes are propagated to the point-of-analysis
with an average 4.1-second delay [32]. Despite the high-resolution
and low-latency propagation, no impact occurs on HPC applications
due to the method’s out-of-band nature.

While the primary use of such telemetry data streams is on near
real-time verification of data center state, the data streams are ex-
ported and archived for long-term analysis. We have decided to
store the high-frequency datasets in their original form despite the
projected size when accumulated. By leveraging several lossless
data compression methods throughout the telemetry data pipeline,
the footprint of an aggregated 460k metrics per second data stream

Distribution of (meter - summation) in kW

Figure 4: Power meter vs. per-node sensor at scale

from Summit resulted in a manageable 1MB/s data stream. Accumu-
lation of an entire year data resulted in a moderate 8.5TB footprint
on disk per year.

3 METHODOLOGY

Data collection and pre-processing: We take a data-intensive
approach to analysis that leverages the comprehensive dataset from
the data center as described in Section 1. We have leveraged the near
real-time telemetry data stream developed to support MTW opera-
tions described in Section 2. The data stream has a high sampling
rate at 1Hz and a broad scope that includes the state of individual
components in the HPC system under load and the facility’s state
that supplies the necessary power, energy, and cooling. Table 2
describes the character of each data-stream involved.

Leveraging a parallel data analytics & computing tool Dask [9],
we first aggregated the 1Hz data stream down into a manageable
size & form. Here, we have coarsened the data to a 10-second win-
dow, but we have avoided information loss by storing statistical
information such as min., max., mean, and standard deviation val-
ues of the samples in each window per time-series from each node.
We further collapsed the coarsened per-node time-series data into
a cluster level time-series using different aggregation methods we
have implemented depending on the analysis. For studies that re-
quire job context, we performed the collapse after joining the time
series with job scheduler allocation logs. We further joined the
resulting datasets with facility mechanical & electrical data from
the facility and the GPU failure logs to perform a data center level
end-to-end analysis.
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Per-node power measurements and error management: The
power measurement primarily used in this work is an aggrega-
tion of per-node power measurement to approximate the cluster-
level power consumption or to perform a per-job breakdown of
power consumption. However, there were challenging aspects of
the method that can impact its accuracy. 1Hz emits from each node
were based on a 1-second interval sampling of a 500us instanta-
neous power measurement!. The payloads were timestamped later
at the aggregation point after an average 2.5-second delay (max.
5 seconds) [32]. Also, due to the number of sensors involved (i.e.,
two power supplies in total 4,626 nodes), various errors caused by
per-node variation could accumulate.

To cope with these errors, we have primarily used 10-second
window coarsening (min., max., mean, and standard deviation)
before performing the summarization at the cluster level. This
method was validated against the measurements from the main
switchboards (MSBs) that distribute power to the compute cabinets
(Figure 1-(c)). Specifically, we compared the summation of the per-
node 10-second mean input power (Figure 1-(a)) that belongs under
each MSB with per MSB 10-second mean power consumption at
each MSB. Figure 4 shows the result of this comparison.

Overall, our method using the summation of the 10-second mean
power of each node was on average 11% from the actual physical
MSB measurement. However, we have found that the oscillation
and its amplitude were in phase and had the same magnitude, re-
spectively. The distribution of the differences over time, seen in
lower portion of Figure 4, lie tightly around their mean values and
have low standard deviation. Yet, there were subtle differences be-
tween the mean values of the differences across MSBs, indicating
an external factor is influencing the MSB discrepancies. With the
focus on understanding the dynamics of HPC consumption, the
tight sync supports the use of the per-node measurements for arbi-
trary job level per-node aggregations that follow this section. For
brevity, we accept the 11% differences as a caveat and largely rely
on the magnitudes of the more readily available on-node sensor
measurements.

4 SYSTEM POWER AND ENERGY

4.1 Overview

In this Section, we characterize the system’s power and energy
consumption and observe that the behavior of HPC applications
can best explain the resulting power consumption. In the HPC
job context, we have analyzed aspects to characterize the exact
workloads common to 840k Summit jobs across various node counts
and the total system trends during 2020 and how they ultimately
impact facility operations. Leveraging the high-resolution per-node
1Hz power measurement data, we quantify the dynamics of cluster-
level power consumption envelopes.

Cluster power and energy: Figure 5 outlines the power and en-
ergy trend of the Summit system and the supporting facility during
the entire year of 2020. Average power consumption was between
5MW and 6MW with a constant small percentage of extremes that
touches both the system idle (2.5MW) and peak (13MW) power
consumption throughout the year. Under this power consumption,

!Energy accumulators were not available from the BMCs.
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Figure 5: Summit power and energy trends (year 2020)
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Figure 6: Distribution of the total energy consumed during a
job run versus the maximum input power for each Summit
scheduling class.

the average power usage effectiveness (PUE) 2 of the data center is
1.11 thanks to the cheap evaporative-based cooling. However, in
summer, the PUE increases to an average of 1.22 due to the chilled
water used to trim down the supply temperature (bottom row)>.
As mentioned in Section 2, data center PUE is primarily impacted
by the outside weather condition. Yet, PUE is also impacted by the
large extremes of the HPC workloads and is just futher exaggerated
in the summertime when the "expensive" cooling is employed.

Impact of HPC applications: To understand the extreme differ-
ences in power consumption, we must examine the impact of HPC
applications. Figure 6 depicts jobs of five different scheduling classes
based on the number of nodes as shown in Table 3 using the Gauss-
ian kernel density distribution of input power and total energy
consumed. Classes 1 and 2 are large-scale jobs that run on more
than 20% of the Summit’s nodes, and Classes 3-5 are considered
small-scale jobs which run on less than 20% of the nodes. The
smaller contour rings show higher data density, and the large outer
contour rings represent low-density regions. Plots for Classes 3-5
2PUE is a metric used to evaluate data center efficiency. It is the total facility energy
divided by the IT equipment energy, where a value close to 1.0 indicates an efficient
data center

3The high PUE at 1.3 during early February was due to scheduled maintenance of the
cooling towers that led the CEP to run at 100% chilled water
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Table 3: Summit scheduling classes by job node count.

Summit scheduling policy
Class Node Range  Max Walltime (hours)

1 2765 - 4608 24
2 922 - 2764 24
3 92-921 12
4 46 - 91 6
5 1-45 2

have many small contour rings showing that the joint distribution of
maximum input power and energy has a multi-modal pattern with
several high-density regions. In contrast, the large-scale classes
have few smaller contour rings showing most of the points are
concentrated in fewer peaks. Overlap of maximum input power is
minimal across different groups showing that the maximum power
is strongly correlated with job class, while the energy value of jobs
across classes has a more extended overlap range.

Figure 7 shows the cumulative distribution functions of jobs with
respect to job node count, job wall time, mean power, maximum
power, and the maximum and mean power difference. The above
row considers jobs of class 1, while the second row considers jobs
of class 2. The red vertical lines correspond to 80 percent in the
cumulative densities. Over 60% of Class 1 jobs use node counts
in the upper band region of over 4,000 nodes with a maximum
frequency at 4096 nodes. However, 80% of Class 2 jobs run on less
than 1,500 nodes, with most jobs running on 1,024 or 1,000 nodes.
Class 2 jobs have a longer run time than class 1; 80% of the Class
2 jobs take almost up to 3 hours, whereas 80% of jobs in Class 1
take less than 43 minutes. The Class 1 and Class 2 mean power
curve is similar, but the magnitude of the power values is higher
for Class 1 due to the higher node counts. Also, 80% of the jobs
consume less mean power because only 20% of the jobs lie beyond
the red line or are in a higher power region. We see a similar trend
for the maximum power in two classes, 80% of Class 1 and Class 2
jobs consume less than 6.6 MW and 1.6 MW, respectively, but their
largest values are 10.7 MW in Class 1 and 5.6 MW in Class 2. The
difference between maximum and mean values show significantly
more variation in Class 1 than in Class 2.

Figure 8 shows the distribution of maximum input power and
energy across different domain sciences for Class 1 and Class 2. We
can learn various features of jobs from different sciences based on
domain-specific power and energy plots. Variation in peak power
values can be due to different applications and kernels used across
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Figure 8: Job level power and energy consumption break-
down by science domains
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Figure 9: Distribution of CPU and GPU per-node power con-
sumption for mean values and maximum values for all the
jobs across five different classes.

various disciplines. Also, certain codes and algorithms may domi-
nate certain disciplines, so their power and energy profile outweighs
contributions from less popular cases. High power peaks near 10
MW in Class 1 show a high degree of parallelism, and the significant
variation in energy consumption is an artifact of job run time.

Component level power consumption: The component-level
power consumption characterization per-node provides insight into
the CPU and GPU power usage profile. The joint density distribu-
tion of power consumed by CPUs and GPUs per-node for each job
is shown in Figure 9. Each compute node in the Summit machine
has 6 GPUs and 2 CPUs. The regions having smaller rings in the
plots represent higher density, and we can observe that the spread
of data density is mainly near the x-axis or y-axis. We infer from
the mean plots that the jobs concentrated into dense regions near
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the x-axis represent CPU-intensive jobs, and the set of jobs aligned
near the y-axis are primarily GPU focused. A broader spread along
the y-axis of maximum value plots shows that there are quite a few
jobs that utilize GPU resources for a certain period. Fewer contour
rings near the upper right corner of maximum power plots show
jobs do not heavily use both CPU and GPU resources together.

Summary: Power consumption of the system exhibits two very dis-
tinct modes of power consumption: average and peak power con-
sumption. The difference is notable, and applications within distinct
scheduling classes play a significant role on these extremes. Sched-
uling classes delineated well the separate modes. Specifically, just a
few large-scale jobs define the peak power consumption, while smaller
Jjobs define the average power consumption. Decreasing per job node
count, GPUs are indeed the main workhorses that define the peak,
where as CPUs mostly define the average.

4.2 Power Consumption Dynamics

Peaks, valleys, and spikes of power consumption: Amongst
the features common to power and energy profiles, swings with
large amplitudes and short time intervals are the most impactful
to the power systems. Massive swings in an HPC data center work
load can cause the power system to experience both frequent and
sustained pressure. Figure 10 contains an analysis of rising and
falling edges in the power profile. We define a rising or falling edge
as a change in the power usage of greater than 868 W averaged
across nodes in the job. Edges for jobs at 4,608 nodes, or full system-
scale, therefore need a change of at least 4MW to be defined as an
edge in this analysis. The upper left plot shows the cumulative dis-
tribution of edge counts per job for each Summit job category. The
upper right plot contains the cumulative distribution of durations
for each edge in the upper left plot. The edge duration is defined
as the time from the start of the rising edge to the end time where
power has returned back 80% from its peak to its initial power.
We report that the large majority of jobs, 96.9%, experience nei-
ther rising nor falling edges during their lifetime, so we cumulate
the distribution of those with greater than one swing. Class 4 jobs

Shin, et al.

experience the most edges and the durations of each edge is incred-
ibly short relative to other categories. This would appear as higher
frequency swings of at least 40 to 79 kW depending on the job
size. In contrast, the leadership Class 1 jobs experience relatively
fewer edges per job with 95% of jobs with an edge experiencing less
than 15 edges (still quite substantial operationally), but the duration
distribution indicates that these edges are relatively more sustained
for the life of the job. Whereas 60% of Class 1 job edges last less
than 25 minutes, 20% of the leadership class edges last longer than
200 minutes. Another observation is that the Class 5 jobs have a
job-scheduler dictated wall-limit of 120 minutes that is confirmed
here by the non-differentiable point at the maximum cumulative
density.

To further characterize the largest swings, we employ Fourier
analysis to find the most critical frequencies and their amplitudes.
The power data for each job is differenced due to its auto-correlated
nature and then an FFT is applied to discover the maximum ampli-
tude and its corresponding frequency. Distributions for both most
important frequencies and amplitudes are found in the lower por-
tion of Figure 10. Certain frequencies are common across multiple
classes, such as .005Hz, or 200 second intervals, which indicates
that the largest shifts in power consumption are occurring most
commonly with periods of 200 seconds, irrespective of job category.
Of the five categories, leadership Class 1 jobs are the most evenly
distributed in terms of important frequencies with only a small
taper towards .05Hz. Amplitude distributions skew toward lower
amplitudes but with a conspicuous stair-stepping pattern towards
the higher amplitudes. The location of the stairs could be a arti-
fact of popular node counts, such as 3,000 or 4,096, or component
level power consumption differences, such as different arithmetic
engines being used.

In Figure 11, snapshots of power consumption and PUE around
rising edges at various MW levels have been summarized by su-
perimposing the snapshots aligned at the edge. For example, the
7MW rising edge on the top-rightmost figure is a summary of four
7MW rising edges detected during summer. Shading indicates the
surrounding 95% confidence interval among the detected snapshots
over time. The power consumption versus PUE plots are noticeably
symmetric and inversely proportional, and optimal PUE (closest to
1.0) favors the largest 7MW swings in power consumption where
workload is highest. In the 4MW rising edge snapshots, we no-
tice common, but brief spikes that occur on roughly 60 second
intervals, where as the 7MW snapshots the duration is longer and
the average edge begins to fall after 120 seconds. Interestingly,
the dynamic power consumption behavior exhibits largely similar
patterns across similar magnitudes of edges.

Summary: Within a small percentage of large class jobs, only a
short window of time actually contributes to the peak power con-
sumption. However, transition to this peak power consumption is
rather violent and can happen within tens of seconds. Analysis on
frequency and amplitude suggests that we can characterize these
Jjobs—possibly for potential predictive model based on categorization;
however, power prediction is most likely improbable with the power
consumption history alone. We find that sufficient information about
the HPC applications and job scheduling, such as job allocations and
Jjob operations may best explain future behavior.
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Figure 12: Component-wise temperatures and thermal re-
sponse of Summit’s water cooling system during the sum-
mer (July 24 to Sept. 30, 2020). Multiple time series snap-
shots are superimposed and aligned at their rising or falling
edges (“0 mins” in the X-axis).

5 RESPONSE OF THE SYSTEM

Large-scale synchronous parallel behavior of HPC applications
induces the dynamic power consumption, as seen in Section 4. Then,
how Summit’s system responds to intense changes in workloads.

Power and thermal response of the system: To provide a clear
look into the facilities overall dynamics under load, we extend the
edge detection and summarization method used in Section 4.2. A
pulse from an increase in overall workload is followed by reciprocal
response from Summit’s water cooling system. Figure 12 shows the
power consumption and PUE along with node component statistics
and cooling system measurements during three types of rising
edges and one falling edge. Rows 2 and 3 contain node component
statistics, such as the mean and maximum temperatures for both
the V100 GPUs and Power9 CPUs. Alternatively, Row 4 contains
the temperatures of the incoming and outgoing MTW supply and
Row 5 has the actual supply tons of refrigeration from the MTW
supply and the higher cost chillers. Again, PUE is mostly symmetric
and inversely proportional to the power consumption, except that

after the large 7MW falling edge, there are noticeable oscillations in
the PUE’s steady state behavior. GPU temperatures themselves are
tightly responding to power swings, with the maximums continuing
to rise (in the 7MW case) after the rising edge and temperature
means follow the power envelope. CPU temperatures in contrast
remain relatively fixed throughout the rising and falling edges.
Much of the component-wise temperature variances are potentially
due to physical variances in spatial location and manufacturing
processes.

The cooling system’s response is triggered by the measured tem-
perature of the return MTW supply. The data indicates a roughly
one minute delay before the tons of refrigeration and supply tem-
peratures increase. Furthermore, comparing the rising and falling
edges shows that the attenuation of the return MTW temperature
and tonnage is much slower during decreases than increases.

Energy efficiency: Overall, the PUE of Summit is maximized and
stable for long leadership class jobs in which workload is constant
and machine utilization is highest. Constant context switching
that comes from serving smaller jobs, though absolutely neces-
sary, greatly increases the variance and overall magnitude of the
PUE. The large differences between peak and average power con-
sumption, ultimately, have an impact on HPC data center energy
efficiency. Leveraging live telemetry data mentioned in Section 2,
the facility allows GPU and CPU temperatures to rise as high as
possible but under the threshold where the system can operate
without adverse effects such as thermal-induced throttling or even
device shutdowns. However, even though peak power is observed
in few job allocations, the cooling plant is tuned to safely handle
peak power consumption at any moment. The power swings in
Figure 11 and 12 can be faster than the cooling mechanical systems,
and so abundantly safe precautions are maintained. Such practices
result in a general overcooling of the system, but the difficulty in
responding to such dynamic power movements makes it unavoid-
able. For the Summit system, the impact can be noticeable when
running on expensive cooling during summer.

Summary: Energy-efficient HPC systems require an end-to-end view
of the data center. Traditionally, there was an information blockage
between the HPC platform and the underlying facility; however, this
may not be the case in the future. Advanced cooling technologies, such
as medium temperature water direct liquid cooling, already require
facility engineers to monitor HPC platform CPU & GPU thermal
responses. Further, the two separate control domains could benefit by
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Table 4: GPU failure composition. The double-ruler sepa-
rates failure types by those that can be associated with user
applications (top) and those that cannot (bottom).

GPU error Count  Max. count per node
Memory page fault 186,496 1,189 (0.6%)
Graphics engine exception 32,339 259 (0.8%)
Stopped processing 22,649 118 (0.5%)
NVLINK error 8,736 8,462 (96.9%)
Page retirement event 851 37 (4.3%)
Page retirement failure 210 89 (42.4%)
Double-bit error 179 33 (18.4%)
Preemptive cleanup 162 34 (20.1%)
Internal microcontroller warning 74 33 (44.6%)
Graphics engine fault 44 5(11.4%)
Fallen off the bus 31 8 (25.8%)
Internal microcontroller halt 29 4(13.8%)
Driver firmware error 26 2(7.7%)
Driver error handling exception 21 21 (100%)
Corrupted push buffer stream 11 9 (81.8%)
Graphics engine class error 1 1(100%)

having information flow between each other. Making the large power
consumption visible or deterministic enough to be predictable by the
cooling plant can open additional energy savings opportunities. We
believe safe and robust data-driven algorithmic approaches can claim
these opportunities.

6 RELIABILITY

We investigate the long-term impact of the overall thermal state
that results from the dynamics of power consumption (Section 4)
and the response of the system (Section 5). Motivated by prior
research [22, 26, 33] on Titan [1], the predecessor of Summit, we
focus on the impact on GPUs, especially under the influence of high
temperatures.

6.1 Failures

General trend: GPUs are the most power-consuming component
of a node, which is associated with additional challenges such as
reliability and overheating. At the same time, GPU reliability is
paramount for many scientific applications, where a failure can
potentially obliterate an existing compute effort with tens of thou-
sands of node-hours already invested.

NVIDIA GPU XID error logs (Table 2-(e)) indicate that Summit
saw a total of 251,859 GPU errors in 2020, whose composition by
type is shown in Table 4. Only a tiny fraction is constituted by driver-
and hardware-failures, such as double-bit or off-the-bus errors,
while the vast majority can be associated with user applications.
The presence of nodes accounting for a disproportionate share of
non-software errors of each type heavily suggests the presence of
manufacturing defects (e.g. [38]).

To better understand the co-occurrence between different types
of GPU failures, we counted them separately for every Summit
node, and computed the Pearson correlation between the resulting
4,626-dimensional vectors for every pair of failure types. Figure 13
shows the correlation coefficients significant at 0.05 after applying
the Bonferroni correction to account for the number of pairs. Beside
the expected co-occurrences such as between double-bit errors, pre-
emptive cleanups, and page retirement events, the analysis shows
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Figure 13: GPU failure co-occurrence

an extremely strong correlation between internal micro-controller
warnings and driver errors handling GPU exception. The latter
suggests that soft errors such as micro-controller warnings can be
efficient for early diagnostics and ultimately prevention of fatal
driver errors.

GPU failure frequency per node-hour of computation in a job
depends significantly on the application domain and project it be-
longs to. Figure 14-(a) shows top-15 projects in terms of failure
frequency, and decomposes their error occurrences by type. Fig-
ure 14-(b) shows an analogous breakdown for the subset of GPU
failures that are not associated with user application, and the corre-
sponding top-15 projects. High variability of hardware errors across
application domains and individual projects within them indicates
that distinct workload patterns are a major factor affecting GPU
reliability.

High-temperature and failures: [22, 26, 33] suggest that GPU
overheating is likely to be a contributing factor to off-the-bus and
double-bit error occurrences. To account for workload specificity
of a job encountering an error, we considered temperature at the
offending GPU core in the context of temperature distribution
across all GPUs within the job at the moment of failure. We used
the z-score, the number of standard deviations above the mean, as
a metric of thermal extremity that is independent of the associated
workload. Figure 15 shows how the frequency of failure occurrences
depends on their thermal extremity. Due to missing temperature
data*, only a part of GPU failures is represented by the plot. To make
the analysis more informative, we removed the data for a "super-
offender" node accounting for 97% of all the NVLink errors, which
suggests a permanent chip malfunction. Almost no distributions

“Due to software issues in the data aggregation path, there were significant loss in
temperature data during spring and early summer of 2020
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Figure 14: GPU failure overview

exhibit left skewness, indicating that overheating is not a significant
aspect of GPU failures of any type except for, potentially, graphics
engine faults. Somewhat surprisingly, thermal distributions for
double-bit and off-the-bus errors, as well as for internal micro-
controller warnings and page retirement failures, are right-skewed.
This may potentially suggest that these errors tend to occur more
often on the GPUs that did not yet warm up from a task. In terms
of the absolute temperature, the only failures taking place at 60°C
or above were 1.4% of the NVlink errors and 5.2% of the off-the-bus
errors — in particular, the highest known temperature for double-bit
errors was 46.1°C.

GPUs getting cold water that was already used for cooling other
cards are potentially more susceptible to overheating and ultimately
to failures. Given the cooling order of node components (see Fig-
ure 1-(a)), we would expect to see an increase in failures from GPU
0 to GPU 1 to GPU 2 (for CPU 0) and from GPU 3 to GPU 4 to GPU
5 (for CPU 1), if this were the case. However, the observed trend
in Figure 16, showing the breakdown of failures by placement of
the offending GPU, is close to the reverse. Although "second-hand"
GPU water-cooling does not seem to be an issue, the plot demon-
strates other peculiar trends of GPU reliability. While frequent
failures on GPU 0 and low failure count for CPU 1-connected GPUs
can be attributed to the presence of single-GPU and single-CPU
jobs, the reasons for heightened frequency of double-bit errors and
page retirement events on GPU 4 are not immediately clear. At the
same time, high off-the-bus failure count on these three GPUs may
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indicate that irregularity of HPC tasks makes graphics cards more
susceptible to falling off the bus.

Summary: Compared to the prior generation system Titan[1], the
GPUs are not the same. Different architecture and cooling mechanisms
introduce different outcomes. While high-temperature was a reason
for the major errors in the case of Titan, its direct effect on GPU failures
in the current system is not significant. However, given the influences
of applications and the highly dynamic nature of HPC workloads we
have observed so far, temporal characteristics in temperature changes
may have high impact. The reason for errors being associated with
lower-temperature GPUs is inconclusive. A potential explanation may
be related to the 10-second aggregations used in the paper. If failure of a
GPU makes it go idle during a large-scale load, its average temperature
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Figure 17: Variation of GPU and power consumption during peak system load

over the 10-second interval is expected to be lower compared to the
rest of the GPUs.

6.2 Variability

Impact of node variability: Figure 17 shows variability in power
consumption and temperature of individual GPUs during the compute-
intense part of an exemplar large-scale job spanning 4608 Summit
nodes and lasting around 21.5 minutes in total. The job was part of
a material science application BerkeleyGW [6], which computed
quasiparticle eigenenergies using density functional theory. The
criterion for selecting this job was its near-full utilization of Summit
compute resource. In particular, the insignificant variability in GPU
power consumption exhibited by the job at certain time intervals
allows for studying other factors of thermal behavior of the system.

Distributions of 10-second averages of power consumption and
core temperature for each of the 27,648 GPUs is represented by
the blue and orange boxplots, respectively. The system transitions
between near-idle and maximum capacity in less than half a minute,
and component temperature follows the power consumption trends
in a matter of seconds.

The second row of the plot shows the power-temp relation in
each of the 27,648 GPUs at six selected time intervals. The plots illus-
trate that GPU core temperature depends on its power consumption
in a monotonic, near-linear way. However, power consumption is
not the only factor in the thermal response of the system, as can be
seen from the third plot. Despite the spread of non-outlier (defined
according to the 1.5 interquartile range rule) power consumption
in individual GPUs being as narrow as 62W, the spread of their non-
outlier temperatures is 15.8°Celsius. It suggests that a part of the
temperature variability can be attributed to manufacturing varia-
tion in the chips, and to uneven impact of the cooling system due to
their location. Despite the scale of the workload, the vast majority
of the GPUs do not exceed 60°C, which speaks to the efficiency of
Summit’s cooling.

Impact of spatial locality: The two bottom rows of Figure 17
show GPU temperatures in individual Summit cabinets at the same

time intervals as above. The "Mean" row shows average GPU tem-
perature within each cabinet, while the "Max" row shows their
highest GPU temperatures achieved within the 10-second intervals.
Grey rectangles denote that there are no Summit nodes involved
with the job in the corresponding location. The bright green rec-
tangle represents the cabinet for which no telemetric data for the
duration of the job is available °. Spatial distribution of heat during
the peak loads on Summit (time intervals 3 and 4) remains quite
even. Darker areas at both top and bottom of the "Mean" plot for the
5th time interval suggest that heat dissipation on Summit exhibits
a slight spatial locality. The presence of standalone light yellow
cells in the "Max" plots is explained by the cold water outake points
towards other systems that are located by these cabinets.

Summary: Given the numerous Summit components, the system is
influenced by subtle differences that are introduced by spatial features
within the node and on the actual Summit floor. We show that such
features can be observed and monitored to great benefit. In an energy-
efficiency context, continuous component-level temperature readings
are useful to monitor and control this aspect of the system in the
face of reliability issues. The tight thermal response of components to
power consumption dynamics may require higher resolution. Sheer
number of components can impose a challenge, but the advances in
modern HPC data collection systems makes such practices possible.

7 RELATED WORKS

Energy-efficient HPC: Power and energy challenges of exascale
HPC drove various efforts at multiple areas in the HPC data center
towards energy efficiency [5, 36]. To achieve performance goals
within the power constraints, HPC practitioners employ energy-
efficient hardware components and infrastructure [7, 27]. Also,
software-driven fine-grained application task management [13, 39],

SThere are missing values in telemetrics coming from 24 nodes associated with the
job, of which 18 constitute the bright green cabinet and the other 6 belong to distinct
cabinets.
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job scheduling [14, 19, 21, 35, 40], are employed to pursue additional
energy efficiency.

Power and energy analysis: Studies on the power and energy of
HPC systems help to design and develop techniques and strategies
that improve energy efficiency by providing insights of HPC work-
load characteristics [12, 17, 30, 31, 37], hardware impact [8, 16],
energy-performance trade-offs [12, 18], infrastructure power and
energy [25, 29], or manufacturing variability [15]. However, such
studies are often limited to specific benchmarks, periods, or specific
non-production HPC systems.

Patel et. al, [30, 31] addresses this issue by enabling continuous
power consumption monitoring on a production system and pro-
viding an in-depth analysis on power consumption across many
jobs. Our work shares a similar purpose and subject however, this
work differs in its comprehensive scope that aims to provide a
cross-cutting view of an HPC data center as a single system reveal-
ing cross-layer energy optimization opportunities throughout the
year. Also, in terms of power measurement and handling, this work
use out-of-band methods [20] that benefits from no-impact high-
frequency power measurement from the HPC system. Compared
to [20], this work uses a different similar out-of-band technology
[32] and relies on a relatively low-frequency sample rate at 1Hz,
but fully captured the power measurements without a loss for a
long period of time and aimed to deliver a full analysis.

GPU reliability studies: [34], [33] and [22] used exploratory data
analysis to investigate GPU errors in connection with temperature,
workload, location, and intrinsic characteristics of individual GPUs.
Ostrouchov et al. conducted survival analysis of GPUs based on
their inventory times and physical location in [26]. [23] and [24]
employed linear regression, support-vector machine, random forest,
and neural networks to predict GPU failures in HPC and data center
systems.

8 CONCLUSION

Considering the breadth of the users and science domains that De-
partment of Energy owned and operated open science HPC data
centers must serve, and due to the increasing power and energy
footprint of HPC systems, HPC data center operational data be-
comes uniquely invaluable and enlightening as we move towards
the exascale era. In this work, a comprehensive analysis of a heavily
instrumented pre-exascale supercomputer reveals the dynamic na-
ture of HPC power consumption with respect to HPC applications,
the cooling system, and its overall energy efficiency. After close
examination of the impact of scale on the data center, we reveal that
relatively high-frequency & high-amplitude transitions between
two vastly different power consumption modes (peak and average)
introduce non-trivial issues at the data center level resulting in
increased operational cost caused by overcooling. This suggests
aggressive power and energy aware application optimizations and
scheduling policies can have impact even on HPC deployments like
Summit that impose no power constraints on its jobs. However, such
pursuits should be backed by data that provide a good understand-
ing of the bounds on system reliability. We consider the importance
of the operational data comprehensiveness for HPC data centers
as a single system, and such comprehensiveness, combined with
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the tools and techniques that enable cross layer understandings,
will open opportunities for more energy efficient HPC data centers.
We believe that purpose-driven end-to-end instrumentation across
the data center should be motivated by solid use-cases and oppor-
tunities. To this end, we believe this work contributes marching
towards such activities.

9 FUTURE WORK

Operational impact: Analysis of the dataset resulted in new and
deeper understanding of the workload itself and the response of
the system. On top of the understanding of the system from day-
to-day observation of the short-term monitoring activities, the
longer range, high-resolution, multi-datastream analysis revealed
new knowledge. Such knowledge was not readily applied to any
operational decisions yet, but the knowledge of such behavioral
dynamics have set the foundation for improvement and facility
oversight.

While confirming the well known swinging behavior of HPC
applications, this work revealed the magnitude, swing-frequency
and occurrence throughout the year. Large power swings that range
from 4MW to 7MW do happen in a few tens of seconds, but ac-
counts for rather low occurrence only with larger classes of jobs
throughout the year. With the understanding of such parameters,
the long-term cooling system response analysis revealed potential
avenues for facility improvements. For example, the higher PUE
experienced on the high-magnitude falling edges revealed potential
parameter tunings that can be made to the control system that
stages and de-stages cooling capacity (i.e., cooling towers) based
on the load. Also, with the first direct-liquid cooled GPU system
for OLCEF, the tight thermal response in the lower band tempera-
ture that closely follows the power envelope has introduced new
aspects of the system to follow-up in terms of energy-efficiency
and resilience.

Tangentially, the result of this analysis influences how OLCF
approaches monitoring and operational data analytics. Towards
higher-fidelity data-center wide comprehensive approaches invest-
ments and vendor engagements are made towards enabling such
data intensive facility and system operations in the continuum of
generations of OLCF systems to come.

In-depth analysis and modeling of system-wide application
job power profiles: In continuation, we plan to develop a com-
bined user and job power-profile fingerprinting capability that will
aid in predictive analysis of system- and node-level power consump-
tion. The drastic and immediate power swings show that using the
power consumption histories alone will most likely be insufficient.
A model that leverages both power consumption histories and the
streaming job queue data mediated by the fingerprints may lead
to more accurate predictions. From the existing 2020 Summit job
power dataset, we create fingerprints as vector representations that
describe user job power consumption at the OLCF. Fingerprints
are then clustered and user-portraits are generated. Queued jobs
will assume the average power portrait of the user given job size,
job launch arguments, and project ID. A default measure of uncer-
tainty would be associated with the queued-job fingerprint, and
as the job runs, the uncertainty in the fingerprint would converge.
Simultaneously, reliance on the fingerprint may or may not wane
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depending on how well the actual power consumption is match-
ing the predictions. With these features, we believe that predictive
power analytics would become more feasible.

Further, the analysis of job’s power consumption versus the
scientific domain motivates a more in-depth jobs and power con-
sumption study. As the percentage of machine learning and artificial
intelligence workloads has increased considerably, we will also be
focusing on analyzing the power usage patterns of ML/AI applica-
tions and how they differ from traditional modeling and simulation
jobs on OLCF leadership systems. We will expand our analysis of
CPU and GPU power consumption analyzing the correlation be-
tween AI/ML jobs and GPU across different science domains and
how these jobs affect the HPC power profile.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

1

OVERVIEW

This work was focused on analyzing telemetry data and logs from a
pre-exascale supercomputer. Due to the extreme size (8 TB) and the
operational nature of the dataset, we were not able to publish the
dataset for review. Instead, we submit the description of the datasets
involved and the related data processing scripts and analysis files for
review. If necessary, access to the telemetry dataset can be obtained
via contacting ORNL staff members (shinw@ornl.gov).

2

3
3.1

3.2

3.3

TOOLS AND PACKAGES USED FOR DATA
PRE-PROCESSING AND ANALYSIS

Dask (https://dask.org/)

Pandas (https://pandas.pydata.org/)

PyArrow (https://arrow.apache.org/docs/python/)
Numpy (https://numpy.org/)

Scipy (https://www.scipy.org/)

Matplotlib (https://matplotlib.org/)

Seaborn (https://seaborn.pydata.org/)

RAW DATASET DESCRIPTION

Dataset A

e Name: Summit per node OpenBMC telemetry Per-node per
component power and temperature measurements

e Files (type and quantity): one tar file per day that archives
1,440 parquet files per day, total 399 files (2019-12-27 to 2021-
1-31) except missing dates due to maintenance periods

e Memory Footprint: 8.5 TB

e Source: Per-node OpenBMC data from Summit archived via
the telemetry system for MTW operations

e Frequency: 1 sec

e Data of Creation / Last Update: one file per day from 2019-
12-27 to 2021-1-31

Dataset B

o Name: Central energy plant (CEP) data

e Files (type and quantity): One parquet per month, 12 parquet
files

e Memory Footprint: 256 MB

e Source: Control system of Summit’s central energy plant via
the telemetry system for MTW operations

e Frequency: Approx. 15 second interval

e Data of Creation / Last Update: One file per month, 2020-1-
31 2021-01-31

Dataset C

Name: Job Scheduler allocation history

Files (type and quantity): Single csv file

Memory Footprint: 285 MB

Source: IBM CSM system via telemetry data store for Summit

3.4

3.5

4

4.2

e Frequency: At occurence
e Data of Creation / Last Update: 2021-2-28

Dataset D

Name: Per node job scheduler allocation history

Files (type and quantity): Single csv file

Memory Footprint: 14 GB

Source: IBM CSM system via telemetry data store for Summit
Frequency: At occurence

Data of Creation / Last Update: 2021-2-27

Dataset E

Name: Nvidia GPU XID error log

Files (type and quantity): Single csv file

Memory Footprint: 50 MB

Source: Per-node syslog data via telemetry data store for
Summit

e Frequency: At occurence
e Data of Creation / Last Update: 2021-2-12

PRE-PROCESSED DATASET DESCRIPTION
4.1 Dataset 0

Name: Summit per node OpenBMC telemetry 10-second
aggregates

10-second aggregation of min, max, mean, std per-
node OpenBMC telemetry data that measures node-wise,
component-wise power and temperature.

Script: andes-load-summit-power-temp-openbmec-init10s-
agg.py

Input: 1 sec interval Summit per node OpenBMC telemetry
data

Output: 10 second aggregates of Summit per node OpenBMC
telemetry data - one parquet file per day

e Memory Footprint: 5.5 TB

Index used: timestamp

e Key Columns: timestamp, input_power.[count, min, max,

mean, std], p[0,1]_power.[count, min, max, mean, std],
p[0,1]_gpu[0,1,2]_power.[count, min, max, mean, std],
gpu[0,1,2,3,5]_[core,mem]_temp.[count, min, max, mean,
std]

Dataset 1

e Name: Cluster-level power time-series
o The cluster-level power time-series data has aggregated

cluster-level aggregated power values at every 10 seconds.
For each timestamp, the power values are calculated by tak-
ing the sum of input power from all the nodes at that in-
stance.

Script: power_ts_job_ignorant.py



4.3

4.4

4.5

e Key

Files (type and quantity): Power time series dataset with 10
seconds frequency. 1 parquet file for a day with 1 minute
partition.

e Memory Footprint: 1.5 GB
o Index used: timestamp
o Key Columns: timestamp, count_inp, sum_inp, mean_inp,

max_inp

Dataset 2

Name: Cluster-level CPUs and GPUs component power time-
series

Cluster level CPU and GPU components are calculated by ag-
gregating power values for every CPU and GPU component
in a node.

e Script: power_ts_job_ignorant_component.py

Files (type and quantity): CPU and GPU component power
time series dataset with 10 seconds frequency. 1 parquet file
for a day with 1 minute partition.

e Memory Footprint: 0.5 GB
o Index used: timestamp
e Key

Columns: timestamp,mean_cpu_power,
std_cpu_power,min_cpu_power,
max_cpu_power,mean_gpu_power,
std_gpu_power,max_gpu_power

Dataset 3

e Name: Job wise power time-series
o The dataset has a time-series of power values for every job.

It is generated by combining node-level power consumption
data and the job scheduler data, which contains the list of
nodes on which job has run.

e Script: power_ts_job_aware.py

Files (type and quantity): Power time-series and job scheduler
time-series dataset each having one parquet file for a day.

e Memory Footprint: 49 GB
o Index used: allocation_id,timestamp
e Key Columns: allocation_id, timestamp, count_hostname,

sum_inp,max_inp, mean_inp

Dataset 4

e Name: Job wise CPU and GPU components power time-series

The data has time-series of CPU and GPU power consump-
tion usage for every jobs. It is generated by combining node-
level power consumption data and the job scheduler data,
which contains the list of nodes on which job has run.

e Script: power_ts_job_aware_component.py
o Files (type and quantity): CPU and GPU components power

time-series and job scheduler time-series dataset each having
one parquet file for a day.

e Memory Footprint: 45 GB

Index used: allocation_id

Columns: allocation_id,
count_hostnamemean_cpu_power, std_cpu_power,
max_cpu_power, cpu_nans, mean_gpu_power,
std_gpu_power, max_gpu_power, gpu_nans

timestamp,

Shin, et al.

4.6 Dataset5

e Name: Job-level power data
e The per-node job-level power allocated data contains aggre-

4.7

4.8

4.9

gated power values for a job across its run-time.

e Script: power_job_aware.py
o Files (type and quantity): Aggregating power time-series

data over its job run. The input dataset has csv files for each
day and the output dataset also has csv files for each day.
Memory Footprint: 14 GB

e Index used: allocation_id
e Key Columns: allocation_id, max_sum_inp, mean_sum_inp,

begin_time, end_time

Dataset 6

e Name: Job-level CPU and GPU components power data
e The job-level aggregated power values for per-node CPU

and GPU components for a job across its run-time.
Script: power_job_aware_component.py

e Files (type and quantity): Aggregating CPU and GPU com-

ponents power time-series data over its job run. The input
dataset has csv files for each day and the output dataset also
has csv files for each day.

Memory Footprint: 200 MB

e Index used: allocation_id

e Key Columns:

allocation_id,
max_cpu_pwr, mean_mean_gpu_pwr,
begin_time,end_time

mean_mean_cpu_pwr,
max_gpu_pwr,

Dataset 7

e Name: Job-level energy data

The job-level energy data is calculated by aggregating the
energy values consumed by each node of a job.

e Script: job_energy.py
o Files (type and quantity): The dataset has one parquet file

for each day. We sum up energy values across the nodes on
which job has run.

e Memory Footprint: 100 MB
e Index used: allocation_id

e Key Columns:

allocation_id, energy, gpu_energy,
num_nodes, num_gpus, begin_time, end_time, job_domain,
account

Dataset 8

e Name: Thermal cluster-level time-series

Each row corresponds to a 10-second time interval and con-
tains the number of nodes with thermal measurements, the
list of nodes and their GPUs that were hot, and the number
of nodes in each temperature band, together with telemetrics
for the cooling plant.

Script: andes-thermal-cluster.py

Files (type and quantity): 1 CSV file for each day.

Memory Footprint: 1 GB

Index used: timestamp

Key Columns: hostname, any_nan
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4.10

Dataset 9

o Name: Thermal cluster-level time series for component types
e Each row corresponds to a 10-second time interval and con-

4.11

tains information about component temperature distribu-
tion across Summit, together with telemetrics for the cooling
plant.

Script: thermal-cluster-comptype.py

Files (type and quantity): 1 CSV file for each day.

Memory Footprint: 2 GB

Index used: timestamp

Key Columns: gpu_core.mean

Dataset 10

Name: Thermal per-node job-level time series

e Fach row corresponds to a 10-second time interval in a job

4.12

and contains its number of nodes with thermal measure-
ments, the list of nodes and their GPUs that were hot, and
the number of nodes in each temperature band, together
with telemetrics for the cooling plant.

Script: andes-thermal-perjob-time.py

Files (type and quantity): 1 CSV file for each day.

Memory Footprint: 167 GB

Index used: timestamp, allocation_id

Key Columns: hostname, any_nan

Dataset 11

o Name: Thermal job-level time series for component types

4.13

Each row corresponds to a 10-second time interval in a job
and contains information about component temperature dis-
tribution across the job at this time, together with telemetrics
for the cooling plant.

Script: thermal-perjob-comptype.py

Files (type and quantity): 1 CSV file for each day.

Memory Footprint: 268 GB

Index used: timestamp, allocation_id

Key Columns: gpu_core.mean

Dataset 12

e Name: Summit cooling system and weather time-series
e Each row corresponds to a 10-second time interval and con-

4.14

tains telemetrics for the cooling plant.

Files (type and quantity): single parquet file
Memory Footprint: 350 MB

Index used: timestamp

Key Columns: mtwst, mtwrt

Dataset 13

Name: Main switch board meter data

e Power measurements at the main switch boards depicted in

Figure 1-(c) in the period of 2021-01-14 2021-01-15

Files (type and quantity): total 5 csv files, each per main
switch board

Dimension: 172,800 x 2

Memory Footprint: 7.2MB x 4

Index used: timestamp

Key Columns: B5600_MSBMSB_ID_MTRs

5 ANALYTICS DESCRIPTIONS
5.1 Figure 3

e Filename: validation.ipynb
e Datasets: Main switch board meter data (Dataset 12), Per-

5.2

5.3

5.4

5.5

node 10-second time series data
Tools Used: pandas, dask, matplotlib, seaborn

o Primary Calculations Performed: Per-node 10-second time

series data is joined with a node to MSB mapping that has
been manually created from the floormap. Then a groupby
summation per MSB was performed to produce 10-second
mean power time-series data. This data was compared with
10-second averages of the MSB level measurements.

Other Complimentary Calculations: N/A

Figure 4

o Filename: summit-pue-plot-clean.ipynb
e Datasets: Summit cooling system and weather time-series

(Dataset 11)

e Tools Used: pandas, numpy, matplotlib, seaborn
e Primary Calculations Performed: 5 columns of the Summit

cooling system and weather time-series data are summarized
into weekly box plots over the year 2020. For the weekly
power summaries, we also plot the maximum cluster-level
power seen that week.

Other Complimentary Calculations: We calculate the average
PUE of 2020 and the average PUE during just the summer
with Summit’s chillers active.

Figure 5

Filename: input_power_total_energy.ipynb

Dataset: Job-level power data (Dataset 5)

Tools Used: pandas, numpy, matplotlib, seaborn

Primary Calculations Performed: The energy consumption of
the jobs and maximum input power is an artifact of profiling
jobs. The Gaussian kernel density plots show the distribution
of input power and total energy across five classes.

Other Complimentary Calculations: N/A

Figure 6

o Filename: boxplot_input_power_total_energy.ipynb
o Datasets: Job-level power data (Dataset 5), Job-level energy

data (Dataset 7)

e Tools Used: dask, pandas, numpy, matplotlib, seaborn
e Primary Calculations Performed: The two leadership node

count classes are compared over a variety of metrics: Number
of Nodes in Job, Walltime of Job, Mean Power, Max Power,
and (Mean - Max) Power Difference. Each of those are shown
are cumulative density functions with the 80

Other Complimentary Calculations: N/A

Figure 7

e Filename: boxplot_input_power_total_energy.ipynb
o Datasets: Job-level power data (Dataset 5), Job-level energy

data (Dataset 7)
Tools Used: dask, pandas, numpy, matplotlib, seaborn



5.6

5.7

5.8

e Primary Calculations Performed: The two leadership node
count classes are compared in both energy and max power.
Results are further divided by OLCF project science domains
and presented as boxplot distributions.

o Other Complimentary Calculations: N/A

Figure 8

e Filename: cpu-gpu.ipynb

e Datasets: Job wise CPU and GPU components per-node
power (Dataset 6)

e Tools Used: dask, pandas, numpy, matplotlib, seaborn

e Primary Calculations Performed: Partition jobs into the 5
node count classes then produce four 2-dimensional kde-
plots based on mean and maximum CPU power as 1 dimen-
sion, and GPU Power for the two leadership classes and the
three smaller classes.

o Other Complimentary Calculations: N/A

Figure 9

Filename: summit-edges-plot-clean.ipynb

Datasets: Job wise power time-series (Dataset 3)

Tools Used: pandas, numpy, matplotlib, seaborn

Primary Calculations Performed: For each Summit job node-
count class, we calculate 1.) The number of rising and falling
edges per job where a rising/falling is at least a 4 MW change
in power over a 10 second interval at full system scale. Jobs
with fewer than 4626 nodes have the appropriately weighted
power change threshold (e.g. a job with 2313 nodes requires
a 2 MW change). A cumulative density function is then
created. 2.) The duration of each previously identified rising
or falling edge. A duration is defined as the time from the
beginning of the edge till the return back 80% from its peak
to its initial power. A cumulative density function is then
created. 3 4.) The job-level power time-series that contain a
rising or falling edges are differenced to find their 10 second
power changes. This differenced job power time-series then
has an FFT applied to it. The maximum amplitude and its
corresponding frequency are then collected and a density
function is created. Each job contributes a single amplitude
and a single frequency.

e Other Complimentary Calculations: Section 1 determines
the rising and falling edges over 4MW and presents the
snapshots surrounding the edge. The steepest rise and fall
over 10 seconds is determined to be 5.79 MW and -5.89 MW,
respectively. There are 165 rising edges and 81 falling edges
of greater than 4AMW.

Figure 10

Filename: power_dynamics_per_amp.ipynb

Datasets: Job wise power time-series (Dataset 3), Summit
cooling system and weather time-series (Dataset B11)
Tools Used: dask, pandas, numpy, matplotlib, seaborn
Primary Calculations Performed: For each Summit job, we
find the rising edges (same definition as Figure 9 edges)
for various amplitudes and the surrounding 5 minute time-
series snapshots (1 minute before and 4 minutes following).

5.9
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We calculate the 95% confidence interval around the mean
and display each amplitude sequentially. The numbers of
various rising edge amplitudes are tallied and provided at
the top of the figure. The snapshots are also used to find the
corresponding PUE data within the Summit cooling system
and weather time-series dataset. Those are also plotted with
their 95

Other Complimentary Calculations: A similar analysis is
completed but only for the summer months.

Figure 11

Filename: thermal_response.ipynb

e Datasets: Job wise power time-series (Dataset 3), Summit

cooling system and weather time-series (Dataset B11)

e Tools Used: dask, pandas, numpy, matplotlib, seaborn

5.10

Primary Calculations Performed: Taking just the 4AMW, 6MW,
and 7MW rising edges and adding the 7MW falling edges,
we plot the corresponding mean and max component tem-
peratures (both CPU and GPU), the supply and return tem-
peratures of the MTW cooling system, and the tons of re-
fridgeration (TOR) of the MTW system and the chillers. All
data is taken from the same 5 minute snapshot (1 minute
before and 4 minutes following) that surrounds the rising or
falling edge.

Other Complimentary Calculations: N/A

Figure 12

Filenames: gpu-failures-per-project.ipynb, gpu-failures-
correlation.ipynb

Datasets: Per node job scheduler allocation history (Dataset
D), Nvidia GPU XID error log (Dataset E)

e Tools Used: dask, pandas, numpy, matplotlib, seaborn
e Primary Calculations Performed: 1.) We cross examine the

5.11

nodes of all GPU failure logs and their OLCF project. Differ-
ent GPU failure types are tallied and the 15 most error prone
projects are listed 2.) We cross examine the nodes of only the
GPU hardware failure logs and their OLCF project. Different
GPU failure types are tallied and the 15 most error prone
projects are listed 3.) We count the GPU failures separately
for every Summit node, and compute the Pearson correlation
between the resulting 4,626-dimensional vectors for every
pair of failure types. We show the correlation coefficients
significant at 0.05 after applying the Bonferroni correction
to account for the number of pairs.

Other Complimentary Calculations: N/A

Figure 13

Filename: gpu-failures-thermal.ipynb

e Datasets: Nvidia GPU XID error log (Dataset E), Thermal

per-node job-level time series (Dataset 10)

e Tools Used: dask, pandas, numpy, matplotlib, seaborn

Primary Calculations Performed: For each error type, we
calculate the Z-score of the rank 0 GPU core temperature
when the error occurs and density functions are created.
We then plot the actual GPU core temperatures as density
functions.
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o Other Complimentary Calculations: N/A

5.12 Figure 14

Filename: gpu-failures-spatial.ipynb

Datasets: Nvidia GPU XID error log (Dataset E)

Tools Used: dask, pandas, numpy, matplotlib, seaborn
Primary Calculations Performed: GPU failure logs have their
PCI addresses mapped to their physical locations in the node
slot (0 - 5). Four error types are tallied for each of the 6 GPU
slots and presented as a histogram.

Other Complimentary Calculations: All error types are tal-
lied for each of the 6 GPU slots. Distribution of NVlink errors
for each of the 6 GPU slots and the outgoing link of the error
composes each historgram bar. Distribution functions are
created for each error type and their physical location in the
Summit machine. Physical locations have three coordinates:
Row on the Summit floor, cabinet within a row, and node
height within a cabinet.

5.13 Figure 15

o Filename: component_variation.ipynb

e Datasets: Thermal per-node job-level time series (Dataset
10)

e Tools Used: dask, pandas, numpy, matplotlib, seaborn

e Primary Calculations Performed: We identify one key 4608
node job that lasts 7 minutes long. We show a play-by-play
snapshot that present boxplots of both the individual GPU
powers and temperatures along with their maximums. Six
instants are further examined to visualize the distribution
of GPU powers versus the temperatures for all GPUs par-
ticipating in the job. Lastly, GPU core temperatures at the
six instants are aggregating into racks and displayed as a
heatmap looking down on the Summit floor layout. Both
mean and maximum GPU temperatures are plotted. Miss-
ing racks are plotted in grey and racks not participating are
plotted in bright green.

o Other Complimentary Calculations: Spread of the GPU core
temperatures is 15.8 degrees C and the spread of the GPU
power is 62.2 Watts.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/at-aaims/sc21\_sum
— mit\_power\_analysis\_artifacts

Artifact name:

— sc21\_summit\_power\_analysis\_artifacts
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