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ABSTRACT. While detailed chemical kinetic models have been successful in rep-
resenting rates of chemical reactions in continuum scale computational fluid
dynamics (CFD) simulations, applying the models in simulations for engi-
neering device conditions is computationally prohibitive. To reduce the cost,
data-driven methods, e.g., autoencoders, have been used to construct reduced
chemical kinetic models for CFD simulations. Despite their success, data-
driven methods rely heavily on training data sets and can be unreliable when
used in out-of-distribution (OOD) regions (i.e., when extrapolating outside of
the training set). In this paper, we present an enhanced autoencoder model
for combustion chemical kinetics with uncertainty quantification to enable the
detection of model usage in OOD regions, and thereby creating an OOD-aware
autoencoder model that contributes to more robust CFD simulations of re-
acting flows. We first demonstrate the effectiveness of the method in OOD
detection in two well-known datasets, MNIST and Fashion-MNIST, in com-
parison with the deep ensemble method, and then present the OOD-aware
autoencoder for reduced chemistry model in syngas combustion.

1. Introduction. Accelerating simulations has been a critical research topic mo-
tivated by the need for faster device designs and real-time control applications. For
simulations of chemically reacting flows, which are crucial in power, propulsion and
energy conversion systems, one primary computational bottleneck comes from the
modeling of chemical reactions. To model the rates of chemical reactions, which
occur at atomic and molecular scales, accurately for computational fluid dynamics
(CFD) simulations at continuum scales, detailed kinetic models consisting of a large
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number of species and elementary reactions are needed. The large size and the com-
plexity involved greatly increase the computational cost due to the need to solve a
large set of highly coupled differential equation system. The wide range of chemical
time scales in a multicomponent system adds to numerical stiffness and further in-
creases the computational cost. Therefore, incorporation of such detailed chemical
kinetic models in CFD simulations presents a huge challenge for the computational
power and time. Reduced chemical kinetic models can accelerate CFD predictions
of reacting flows and hence enable faster designs. The method in this work can also
be used to develop reduced order models of systems useful for real-time control in
engineering applications.

Data-driven approaches, such as principal component analysis (PCA) [4,5,9, 10,
15-17,21,27,28] and deep neural networks (DNNs) [18,19,30,31], have been applied
for reducing chemical kinetic models for combustion. The reduction approaches fall
into two major categories. One is to identify the critical species and elementary
reactions via sensitivity analysis [5,28] and eliminate the less important ones, under
certain target conditions. These works are based on the assumption that only a
subset of species and elementary reactions are needed to achieve the engineering
level accuracy. Esposito and Chelliah [5] applied PCA with sensitivity of kinetic
parameters for ethylene-air combustion under three conditions, i.e., ignition, flame
propagation and extinction, and reduced the dimension from 111 species and 784 re-
actions to fewer than 40 species. In the other category, instead of eliminating species
and reactions, the reduction is achieved by defining a smaller set of new compressed
variables as a function of the original thermo-chemical variables, e.g., a truncated
set of principal components (PCs) in PCA. The governing equations of the PCs are
then transported as part of the CFD to solve the chemical state. This category
of work is inspired by the observation that chemical states are mostly distributed
along low dimensional manifolds (LDMs) in the high dimensional thermo-chemical
state space. Various techniques, e.g., PCA and autoencoder (AE) neural networks,
have been used to identify these manifolds. Sutherland and Parente [27] conducted
PCA analysis for CO/Hs combustion dataset from a high-fidelity three-dimensional
(3-D) direct numerical simulation (DNS) of turbulent flames and identified a linear
approximation of the LDMs with two PCs for the original dataset with dimension
of 12. Mirgolbabaei et al. [19] and Zhang et al. [31] found nonlinear approximations
of the LDMs by training AE NNs using datasets collected for Hy auto-ignition in
turbulent jet from one-dimensional turbulence (ODT) simulation, and for CO/Hx
combustion from a large ensemble of 0-D stirred reactors under various parametric
conditions, respectively.

Although great success has been achieved in the data-driven work, where reduced
models are derived from a training dataset consisting of thermo-chemical states
collected under certain conditions, potential risks arise when applying the reduced
models in new CFD predictions, especially when the combustion conditions are
far away from (or in out-of-distribution (OOD) regions of) the training dataset.
The solution accuracy can be significantly deteriorated. Even worse, one can get
nonphysical solutions that violate physical laws, e.g., mass conservation, and false
extinction/ignition prediction in combustion engine simulations, which eventually
lead to poor design choices. Data-driven reduced chemistry models that can not
only provide us fast and accurate predictions but also allow the interpretation of
confidence and detection of OOD samples are needed. In this work, we present a
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reduced chemical kinetic model with OOD-detection capability leveraging AE NN
in conjunction with an uncertainty quantification (UQ) method.

Various approaches for UQ of NN models have been developed, including fully
Bayesian NNs [14], assumption-based variational inference [6,8], and empirical en-
semble approaches [1,11,23]. Whilst being shown successful, these methods require
either high computational demands, strong assumptions or large memory costs to
store the ensemble of models. As an attractive alternate, prediction interval (PI)
methods [20,22,24,26] directly communicate uncertainty, by providing a lower and
upper bound for a NN output such that the value of the prediction falls between
the bounds for some target percentage (e.g., 95%) of the unseen data, and hence
present more understandable information for decision making [22,26]. Nix and
Weigend [20] proposed a maximum likelihood framework for building PIs with two
NNs, where one predicts the value and the other predicts the variance. This method
assumes Gaussian distribution for model errors and may fail in capturing bounds
for asymmetric distributions. The quality-driven (QD) approach [22] requires no
distributional assumption by defining a sophisticated loss function, but it is unable
to generate point estimates and has a fragile training process. Built on QD, the
prediction intervals with specific value prediction (PIVEN) method in [26] adds the
capability to calculate point estimates and the PI method in [24] further improves
the training stability of QD by integrating a penalty function to the loss.

While showing promising results, the recently developed PI methods [22, 24, 26]
rely on sophisticated loss functions to obtain a well-calibrated PI. This inadvertently
introduces highly sensitive hyperparameters which require delicate tuning [24] in
training process to achieve the desired performance and make these methods less
practical and less robust when deployed. Recently, we developed the prediction
interval based on three neural networks (PI3NN)-—a novel method for calculating
PIs [29]. Different from the other methods [22,24,26] that rely on sophisticated loss
functions to obtain a well-calibrated PI, the PI3NN method uses the standard loss
functions, e.g., mean squared error (MSE), for training, enabling simple and robust
training. At the same time, it possesses the desirable properties as the state-of-the-
art PI methods have—such as requiring no distributional assumption and producing
tight PI bounds, and in addition, it is noninstrusive and shows the capability to
capture domain shift and reasonably quantify larger uncertainty on OOD samples
in benchmark regression tasks.

In this work, we combine the PI3NN method with AE NNs and present an en-
hanced AE reduced model, AE-PI3NN, for chemical kinetics with OOD-detection
capability. In section 2, we present the problem setting with combustion back-
ground and 0-D stirred chemical reactor configurations. Section 3 summarizes the
methodology details. We assess the AE-PI3NN performance in detecting OOD
samples in comparison with a state-of-the-art deep ensemble (DE) method [11] and
present the results in section 4, where 4.1 shows a case with two well-known image
datasets: MNIST and Fashion-MNIST, and 4.2 presents the reduced modeling re-
sults of syngas combustion chemistry. Section 5 summaries the conclusions of the
work.

2. Problem description. Combustion of complex hydrocarbon fuels is a multi-
scale multi-physics process. To simulate the evolution of chemical state and flow,
we need to solve a set of governing equations consisting of mass continuity, Navier-
Stokes momentum, species and energy equations. The governing equations are
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supplied with constitutive relations that approximate atomic processes at continuum
scales. For combustion of a mixture of ideal gases, a few commonly used constitutive
relations with simplified assumptions, for governing equations of species and energy,
are summarized below. For more details we refer the readers to [3].

e Species diffusion can be driven by various gradients of, e.g., species concentra-
tion, temperature and pressure. We only consider the diffusion due to species
concentration, i.e., Fickian diffusion. The diffusion coefficients are approxi-
mated with a simplified mixture-averaged model [2].

e Heat flux generally consists of contributions from heat conduction, heat trans-
port due to mass diffusion, thermal diffusion (also known as Dufour effect)
and thermal radiation. In the work, we only consider contributions from heat
conduction and mass diffusion.

Based on the above assumptions, the governing equations for thermo-chemical

state variables, i.e., species mass fractions Y (k =1,...,n,) and total enthalpy h,
are
8ka =7 .
ot +V- (pqu) =V [pDk (VYk + YkVIHM)] + MW,
oph

Dp e —
rra + V- (puh) = Dt + V- ()\VT—i— ;hkak (VYk + YlenM)> + 7 :Vu,
(1)

where ny is the number of species, p is density, p is pressure, u is velocity vector, T
is the stress tensor, A is the thermal conductivity, Dy, My and wy are the mixture-
averaged diffusion coefficient, molecular weight and net molar production rate of the
kth species, respectively, and M = (Y72, Y} /Mk)_1 is the mixture mean molec-
ular weight of the ng species. The rates of chemical reactions are computed using
continuum kinetic models. For chemical kinetic models consisting of n. elementary
reactions, the net production rate of kth species is,

Ne
Wy = E Vk,i%Yis
i=1

where vy, ;; is the contribution from the ith elementary reaction with 7; being the
reaction rate and v ; being the stoichiometric coefficient(zero if the kth species is
not in the ith reaction). For an elementary reaction, e.g.,

H+ Oy = O 4+ OH,

the reaction rate is v; = ky[H]|[O2] — k,[O][OH], where [ ] is species concentration.
The forward reaction rate constant £y in the modified Arrhenius form is ky =
ATmexp(—E,/RT) and the reverse reaction rate constant is calculated as k, =
ky/Keq with Keq being the equilibrium constant. In the reaction rate constant, 7'
is temperature and R is the universal gas constant. The parameters (A, n, E,) are
constants provided by chemical kinetic models.

Equations in (1) involving multiple physics, e.g., turbulence, mixing and chemical
reactions, are challenging to solve, especially when detailed kinetic models are used
to describe the reaction kinetics. Detailed kinetic models consisting of a large
number of chemical species and elementary reactions are needed for accurately
representing combustion kinetics, e.g., AramcoMech 2.0 [12] with n, = 493 species
and n, = 2716 elementary reactions for C0—C4 combustion. The large size means a
large set of equations to solve and inevitably strong stiffness. For example, the time
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scales associated with chemical reactions span over several orders of magnitude,
from picoseconds to seconds, for n-heptane combustion [13]. Solving such large stiff
partial differential equation systems is computationally challenging if not prohibitive
for CFD simulations in engineering device conditions. To reduce the cost, we develop
a data-driven reduced chemistry model in this work.

We collect datasets of thermo-chemical state variables from a large ensemble of
inexpensive 0-D stirred reactor, called perfectly stirred reactor(PSR) [25], calcula-
tions. PSR is a canonical 0-D configuration with inlets and outlets and has been
widely used in studies of chemical kinetics. The fuel and oxidizer mixture stream
enters, resides and reacts inside the reactor for certain time, represented by a time
scale called residence time scale 7,, before existing the reactor. By controlling the
residence time scale 7,., various thermo-chemical states inside the reactor can be ob-
tained from equilibrium (infinite residence time) to unreacted (zero residence time)
states.

Let @ = [x1,22,...,2%n,] = [Y1,..., Yn,, T or h] being the thermo-chemical state
vector, consisting of the mass fractions of ns species and temperature/enthalpy, the
governing equations of a PSR reactor are

dYy  Yiin—Yi .
— 7’ M
dt T + kwk/p7
0. 2)
dT ZZS:l (hk,in - hk:)Yk,in/cp . (
i - = Miiohi/(pcp),

k=1

where hy, is the specific enthalpy of the kth species, ¢, is the mixture-averaged spe-
cific heat, variables with subscript “in” represent the inflow state, and n, = ngs + 1
is the dimension of the thermo-chemical state space. A steady state solution of
the PSR reactor can be obtained when the time derivative is approaching zero.
For a combustible mixture inflow x;,, a steady state solution equal to the equi-
librium state of the inflow mixture is obtained when 7, is infinite, while an extin-
guished /nonreacting state solution is obtained when the time scale 7, is too small
for the mixture to react. By varying the inflow state x;, and the residence time
scale 7., we can populate a thermo-chemical database with different combustion
sample states from the steady PSR reactor.

In a previous work [30], a database consisting of Ngamp = 1.63 million samples,
Dpsr = {acl-}fv:s"l““", has been collected for the training and testing of AE NN models.
The same dataset is used here in this work. The dataset considers the syngas CO/Ha
combustion case in [7], where the chemical mechanism with n, = 11 species is used
to describe the syngas oxidization. The thermo-chemical state vector x; is composed
of 12 components, i.e., temperature 1" and mass fractions of the 11 chemical species
Yy (k= 1,...,ns). To have a fair representation of all feature variables, which
vary by several orders of magnitude, in the model, the data is scaled to [—1,1] via
* = 2( — Tmin)/(®max — Tmin) — 1, where i, and Tpay are the minimum and
maximum values of samples in the dataset Dpgr. In the following, we continue to
use the notation x for the scaled data x* for simplicity. The dataset Dpggr is split
into multiple parts: 70% for training, i.e., Dirain = {wi}ivz"f““ with the number of
training samples Nipain &~ 1.14 million, and 20% for testing Diest = {wi}f\ii‘“ with
Niesy being the number of testing samples.
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3. Methodology.

3.1. Autoencoder for reduced chemistry. For a high dimensional dataset, AE
NN learns nonlinear mappings between the original high dimensional space and the
reduced low dimensional space, i.e., % : R" — R"= and ¢ : R™ — R"=  where
n, < ng, from data. More specifically, it learns simultaneously two groups of func-

tions, i.e., encoding functions z = f,, () = {zi = fw.i(x) : i =1,...,n.} and
decoding functions & = g,,,,(2) = {%; = Gw,j(2) : j = 1,...,n.}, parameterized by
Ntrain

vectors w, and wy, respectively, from a given training dataset, Dyain = {2, ;25"
by minimizing the difference between Diy,in and the corresponding reconstructed
dataset, D = {Gw, (fuw, (®:))};2". The training of AE can be done with a stan-
dard MSE loss function. In the AE reduced chemistry work [30,31], in addition to
the reconstruction MSE loss, the loss function considers also a penalty loss €1 due
to the violation of elemental mass conservation, as in

B 1 Nirain o
Lae= Dl = &ill; + cele. 3)
train i—1

It has been shown that the AE NN can reduce the mechanism size for CO/Hy
combustion from 12 to 2 with little loss of accuracy [30, 31].
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FIGURE 1. Elemental mass conservation errors. An elemental error
of 20% is expected to cause large errors in temperature prediction
thus false extinction/ignition events in engine simulations. With
OOD-aware model, non-physical solutions with conservation laws
violated can be detected before leading to poor engine designs.

3.2. OOD-aware autoencoder. Data-driven modeling approaches like AE NN,
although flexible and powerful, can be very dangerous to use in practice. One
potential risk is model extrapolability. A trained data-driven model can always
provide users predictions even for conditions that are very different from the training
set. While this may be also true for some physical models, they usually come with
explicit physical assumptions and well-known suitable application scenarios as well
as clear explainability and interpretability. Using a model without knowing the
applicable regions in CFD can dangerously lead to very poor even non-physical
predictions. For example, Figure 1 shows the elemental mass conservation errors of
two test sets, i.e., PSR and DNS, from the reduced chemistry model. The maximum
error in PSR test set, which has the same distribution as the training set, is less than
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1%, while it shoots up to 20% in the DNS set [7], which has a different distribution
than the training set. Such a large elemental error in reduced chemistry models is
expected to cause significant errors in energy/temperature prediction, thus leading
to false ignition or extinction solutions in engine simulations. An OOD-aware AE
model for reduced chemistry that is able to detect the potential danger is thus
needed for robust CFD predictions of combustion systems. In this work, we assess a
recently developed uncertainty estimation methods, PI3NN [29], in capturing OOD
samples for AE models, in comparison with the state-of-the-art DE method [11].

3.2.1. The DE method. Lakshminarayanan et al. [11] proposed a scalable deep en-
semble method for predictive uncertainty quantification and assessed the method
performance in predicting uncertainty for OOD samples. The method assumes a
Gaussian data distribution and uses M NNs with random-initialized parameters
to get an ensemble prediction of the mean and variance. Each NN outputs the
predicted mean pg,, () and variance og (x) (m = 1,..., M), trained with the
negative log-likelihood (NLL) loss function,

Nirai
1 train 1 2 ;i — iQ
{ogaz +(y i) (4)

4 2 202 '
i=1 ?

where Niyain is the number of samples in the training dataset Dyyaim = {4, yz}N train

The final predicted mean and variances are,

M:

ptpe(T
(5)

UDE

Z;
Z ) + 11g,, (®)) — php(@).

S \

The method is shown to be able to capture the uncertainty difference between
in-distribution (ID) and OOD samples in the classification problem with MNIST
and NotMNIST images in [11].

3.2.2. The PI3SNN method. The PI3NN method was proposed recently for quan-
tifying uncertainty of regression models [29]. For a regression task, the method
can provide a lower bound and an upper bound of the PI such that predictions
fall between the bounds at a target percentile . It requires no data-distribution
assumption, introduces no sensitive hyper-parameters and importantly, introduces
no accuracy loss for the regression models.

For a regression NN, y = f,, (), with the parameter vector w learned from a
training set Dirain = {:L'Z,yl}N“a‘“ the PI3NN method introduces two additional
stand-alone NNs, denoted by ug(x) and ve(x), to quantify the upper and the lower
bounds of the PI, respectively. The two NNs, ug(x) and ve(x), are trained sepa-
rately with regular loss functions such as MSE, by using the datasets

Dupper - {(xiyyz fw mz ’ Yi > fw(xz> 1= 1 Ntrain}
and

Dlower = {(whfw(wi) - yz) ‘ Yi < fw(wi)ai = 17 .. -aNtrain} .
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The upper and lower bounds of the PI for a target percentile v are then defined as
[fw — Brvg, fuw + ayug] with 3, and «, being the roots of the following equations,

Ntrain(l - '7)

Qupper(a) = Z linfu(mi)-‘rozug(mi)(mhyi) - T =0,
(miuyi)epupper
Nr in 1-—
Quower(8) = Z ]]‘yiﬁfw(mi)—ﬂvg(wi)(miayi) - % =0,

(®4,9:) EDlower
where 1(-) is the indicator function.

In Figure 2, we demonstrate the PI3NN method on a 1-D toy regression dataset
with additive asymmetric non-Gaussian data noise, and compare it with the DE
method. The training samples are drawn from y = 2® + ¢ with « € [—4,4]. The
asymmetric noise ¢ is defined as,

E:{loc, FC20 ith ¢~ N (0, 1).

2¢, otherwise

For such asymmetric noise, the 95% PI produced by PI3NN captures about 95% of
training data with tight bounds in [—4, 4], while DE produces an unnecessarily wide
lower bound in [—4,4] due to its Gaussian assumption on noise distribution. The
PI3NN method works well with the asymmetric noise since it handles the upper
and lower bounds of the PI separately with two NNs. The DE method can only
predict symmetric Pls since it assumes Gaussian data distribution with mean pupg
and variance 0%, as in Eq. (5). Both PI3NN and DE produce reasonably wide PIs
in the OOD region [—7,—4] U [4,7].

150 150 PI3NN
100 100
50 50 - Data
—— Ground Truth
0 0 Py | - Prediction
-50 -50 No data
[ 95% PI
-100 -100
-150 -150
-5 0 5

FIGURE 2. Estimation of 95% PI prediction in toy regression task
y = =3 4+ ¢ with asymmetric noise . The 95% PI produced by
PI3NN captures about 95% of training data with ¢ight bounds
within training region, while DE produces an unnecessarily wide
lower bound. Both methods produce reasonably wide PIs in the
OQOD region.

4. Experiments. In this work, we combine the two methods, i.e., DE and PI3NN,
with AE and check the OOD-detection performance in two experiments. Figures
3 (a) and (b) show the NN architecture of AE with DE and PI3NN, respectively.
In the first experiment, the NNs are trained and tested on two well-known image
datasets: MNIST and Fashion-MNIST. In the second experiment, two combustion
datasets: PSR and DNS, are used for the assessment.
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FIGURE 3. Architecture diagrams of AE with DE and PI3NN. Neu-
rons are represented by the circles with different edge colors for
different types of layers, i.e., red for input and output layers, green
for bottleneck layer, and blue for other hidden layers. The red
circles filled with gray are outputs for variance/standard deviation
variables. The diagrams shown here are simplified for illustration
only. The actual numbers of layers and neurons in each layer vary
in different experiments.

4.1. MNIST VS. Fashion-MNIST. In the image experiment, the NNs are trained on
MNIST training set with 60,000 digit images, and tested on MNIST and Fashion-
MNIST test sets, which are unseen in training and referred to as the ID and OOD
test sets, respectively. The ID test set has 10,000 digit images and the OOD has
10,000 fashion and clothing images.

The standalone AE has five dense layers: input layer, hidden layer with 392
neurons and ReLU activation function, bottleneck layer with 64 neurons and ReLLU
activation function, hidden layer with 392 neurons and ReLU activation function,
and output layer with sigmoid activation function. When combining AE with DE
method, as shown in Figure 3(a), we add one more branch, consisting of a hidden
layer with 784 neurons with ReLu activation function and an output layer with ()2
followed to guarantee nonnegative outputs, to the bottleneck layer z, for variance
a%m prediction. When the PI3NN method is applied for uncertainty estimation, a
class of additional NNs are used for variance prediction as shown in Figure 3(b),
without any modifications to AE. The architecture of variance NNs in PI3NN can
be flexible, ranging from one NN for one output feature, i.e., one pixel, to one NN
for all output features, i.e., 784 pixels. In the work, we divided the 784 features
into 7 groups and trained a NN for each with 112 output features.

All the NNs are implemented with Tensorflow 2.4.0. For the training of NNs
in AE with DE, the specification of learning rate [, is found to be tricky with the
NLL loss function in Eq. (4). The reconstruction part, (y; — p;)?, prefers a learning
rate around 1073, while a much smaller learning rate around 107 is needed when
o2 included. For faster training, we first trained the NNs with the reconstruction
MSE loss for 800 epochs at I, = 1072 to get a well-reconstructed image output,
and then changed the loss function to the NLL loss function in Eq. (4) and trained
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FIGURE 4. Comparison of OOD detection accuracy in MNIST (ID)
and Fashion-MNIST (OOD) test sets between DE and PI3NN
methods. Both methods capture the difference between ID and
OOD with larger uncertainties for OOD samples. The confusion
matrices show that the majority of test samples are correctly de-
tected as OOD (true positive) or ID (true negative).

the NNs for another 20,000 epochs at I, = 107%. The training of the variance NNs
in AE with PI3NN was faster with 500 epochs at [r = 10~%. Training of NNs in
the image experiment was conducted on a 2019 MacBook Pro with a single CPU.
It took around 8 h in total to train the 7 variance NNs in AE with PI3NN. The
training of one NN in AE with DE took around 13 h.

Figure 4 shows the comparison results of DE with a single run (M = 1) and
PI3NN. A good uncertainty estimation method should predict small uncertainties
for samples from the same distribution with training set, i.e., ID, and large uncer-
tainties for samples outside of training distribution, i.e., OOD. Both DE and PI3NN
succeed in predicting larger uncertainties, shown as more and brighter white pixels
in Figure 4, for samples from Fashion-MNIST/OOD than samples from MNIST/ID.
To have a quantitative comparison, we first define an index for OOD detection as
the L2—norm of uncertainty vector of ith image, 07,; = ||o;||2, and then specify a
threshold value 0,04 such that any images with o;,; > 0,04 are detected as OOD
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samples. The subplots in the right hand side of Figure 4 show the OOD detec-
tion accuracy for DE and PI3NN, where o,,4 is defined as the 95% percentile of
{alzi}fv:“fi“ of the training set. Clearly, both methods show reasonably good detec-
tion accuracy with 95% samples from ID test set and 75% (or 74% for DE) samples
from OOD test set correctly classified. By varying the threshold value 0,,4, the
receiver operating characteristic (ROC) curves can be obtained, as shown in Figure
5, where DE with ensemble size of two (M = 2) is also shown. In this experiment,
DE with M = 2 shows an excellent OOD detection accuracy followed by PI3NN
and both are better than DE with M = 1.

1.0
0.8+
9
©
_g 0.6 1
.45
o
20.4
0]
2
= 0.2 —— DE, ens. size=1
' ---- DE, ens. size=2
—-—- PI3NN
0.0+ - -

00 02 04 06 08 1.0
False positive rate

FIGURE 5. Receiver operating characteristic curves of DE and
PI3NN in OOD detection. All methods can capture the OOD sam-
ples well in the image experiment. Though DE with ensemble size
of 2 shows better accuracy than PI3NN;, it requires two runs while
PI3NN only needs a single run. DE with a single run shows lower
OOD detection accuracy than PI3NN.

One observed difference in Figure 4 between the two methods in the MNIST /ID
test set is that PI3NN predicts high uncertainties only at the edges of digits where
the reconstruction errors are high, while DE predicts high uncertainties across the
body area of digits. The correlation coefficients between uncertainties and recon-
struction errors of all ID samples are -0.18 and 0.40 for DE and PI3NN, respec-
tively. The better alignment between uncertainties and errors of samples suggests
that PI3NN is a better error indicator. In addition, PI3NN is nonintrusive to AE,
while the accuracy of AE deteriorates in DE due to the multiple training tasks in
the NLL loss (Eq. (4)). The reconstruction MSE error in AE when combined with
DE was found to increase from 0.0025 to 0.0037 for the MNIST test set and from
0.0806 to 0.0937 for the Fashion-MNIST test set, while the reconstruction accuracy
was not affected when with PISNN.
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The image experiment with MNIST and Fashion-MNIST is designed for two
purposes. First, it is of interest to examine if PI3NN and DE can detect OOD
samples in image dimension reduction problems, and MNIST and Fashion-MNIST
are two popular image datasets in OOD studies. MNIST has been used as ID set in
a classification task [11], where the DE method is shown to be able to capture larger
uncertainties for OOD samples from NotMNIST set consisting of alphabets. Second,
it serves as a transition from the 1D toy regression to the complex combustion
problem in section 4.2 with increasing complexity. PI3NN and DE have been shown
capable of detecting OOD samples in both the 1D toy regression and the image
experiment. In the next, we look at the combustion problem.

1 Temperature H2 02 0]
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FIGURE 6. Normalized joint histogram of predicted values by AE
(with n, = 2) and true values for 12 thermo-chemical state vari-
ables, i.e., temperature and mass fractions of 11 species, in PSR
test set. The dark red area along the diagonal line shows that AE
can reduce the state dimension of syngas CO/Hy combustion from
ng, = 12 to n, = 2 without much loss of accuracy.

4.2. Syngas combustion chemistry. In the reduced chemistry experiment, the
training set consists of around 1.14 million combustion/thermo-chemical states from
steady 0-D PSR reactors (Eq. (2)). The ID test set is composed of around 0.34
combustion states also from steady 0-D PSR but at different parametric conditions
with the training set. The OOD test set, with around 1.0 million combustion states,
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FIGURE 7. Predictive uncertainty (the width of PI) vs. predictive
error of the ID (red) and OOD (blue) test sets from the PI3NN and
DE methods. Scatter points are samples randomly selected from
the two test sets. The filled contours show the normalized joint his-
togram for samples in ID/OOD test sets, with light red /blue colors
representing fewer samples and dark red/blue representing more
samples. DE with a single run ((a) — (¢)) fails to capture the dif-
ference in uncertainty for ID and OOD samples. DE with 10 runs
((d) = (f)) shows improved but still limited separation of OOD
samples from ID samples and it fails to produce the uncertainty-
error correlation. PI3NN ((g) — (¢)) shows a strong correlation be-
tween the uncertainty and the error and clearly demonstrates that
OOD and ID have different uncertainty magnitudes.

is taken from the 3-D DNS work in [7], where the full set of governing equations for
turbulent combustion including Eq. (1) are solved by using a high-fidelity solver [3].
Both ID and OOD test sets are not seen during training.

The AE NN with the same architecture as in [31] is used. It has five dense layers,
i.e., input layer, hidden layer in the encoder part with 12 neurons, bottleneck latent
layer with 2 neurons, hidden layer in the decoder part with 12 neurons, and output
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FIGURE 8. Receiver operating characteristic curves of PI3NN and
DE (M = 1,10,20) methods in OOD detection. PI3NN shows
the best OOD detection accuracy. DE shows improved detection
accuracy with increasing ensemble size (M).

layer. Hyperbolic tangent activation function, Tanh, is used. Also following [31], AE
is trained with a loss function consisting of two parts, i.e., the reconstruction MSE
loss and a soft penalty term e;. due to the violation of elemental mass conservation
law, as in Eq. (3). Figure 6 shows the normalized joint histogram of AE predicted
values and true values for samples in PSR/ID test set. The large sample number
distribution along the diagonal dashed line, represented by the dark red color, shows
that AE with n, = 2 has an accurate prediction of thermo-chemical state variables
in the syngas CO/Hy combustion case. The entire PSR dataset, Dpgg, is scaled
to -1 and 1, before split into the training and test sets, i.e., Dipain and Dyest. This
explains why, for some state variables, e.g., HCO and HO5, the samples from the
test set do not span the full range of -1 and 1 in Figure 6. HCO and HOs are
radical species that are produced and consumed in the thin flame region. The
radical species have much more complicated structures than the major species, e.g.,
Hs and Os, and hence pose a bigger challenge to accurate prediction. The good
agreement in Figure 6 suggests that the AE with n, = 2 can capture all the state
variables including the radical species even satisfactorily.

When combining AE with PI3NN, we use two sets of 12 variance NNs for the
upper and lower uncertainty profiles of the 12 output features, respectively. Each
NN outputs the upper or lower uncertainty of a single feature, where 1 dense hidden
layer with 1200 neurons and Tanh activation function is employed. Here, the vari-
ance NNs take the thermo-chemical vector  as input with 12 neurons, the same as
AE, instead of the bottleneck layer z as in the image experiment. The reason is that
z with two neurons is found to be, though representing combustion states satisfac-
torily as shown in Figure 6, incapable of describing the uncertainties of combustion
states well, which are much more complicated than the images expectedly. With
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the outputs from the variance NNs, the PI is then calculated following the proce-
dure in section 3.2.2 with a target percentage « of the training samples covered.
Different from the DE method, the variance NNs in PI3NN are trained indepen-
dently from AE, hence providing a nonintrusive method for uncertainty. In the
combustion problem, v = 0.6826 is specified to get the reported PIs. The learning
rate is specified as 5 x 10~% for the training of the NNs. All NNs in the combustion
experiment were trained by using the Compute and Data Environment for Science
(CADES) computing condo in Oak Ridge National Laboratory with a single CPU.
The training of two sets of 12 variance NNs with 6000 epochs for the upper and
lower PI bounds took about 43 h and 49 h, respectively.

When combining AE with DE, we use an additional NN for feature variances. It
is designed in this way, instead of having a branch attached to the bottleneck latent
layer z as in the image experiment, to be consistent with PI3NN. The variance
NN takes the same input as AE and outputs variances for the 12 features with
three dense hidden layers. Every hidden layer has 60 neurons with Tanh activation
function. Softplus activation function is used for the output layer to guarantee a
nonnegative variance. The two NNs, i.e., AE and variance NN, are trained together
with the loss function,

1 Nirain 1 & 1 Qe (x‘k_,u’k>2+5 .
LDE:T Z §ZlOgU?’k+§Z > OB L ) (6)
rain b—1 k=1

i=1 ik

where Nipain is the number of samples in the training set, n, = 12 is the number
of input/output features, p; and 02k are the predicted mean and variance of the
kth feature of the ith sample, x; 1, respectively. The loss function in Eq. (6) is a
modified version of the NLL loss in Eq.(4) with output being a vector and elemental
mass conservation constraint added. In the training process, a competition between
the two terms in the loss function is observed, which leads to an undesirable accuracy
deterioration of the AE model, similar to the observation in the image experiment.
A decreasing stepwise learning rate with 6000 epochs is specified in the training,
where 0.01, 0.005 and 0.001 are used for the first 3000 epochs and 5 x 10~* is used
for the rest. The training of one NN in DE with AE took around 4.5 h, and the
total training time for DE with ensemble size of 10 and 20 was around 45 h and
90 h, respectively.

A sound PI method should be able to detect OOD samples by providing a large
uncertainty on OOD and a small uncertainty on ID. It should also produce a large
predictive uncertainty when the predictive error is high and vice versa, showing
a close correspondence between the uncertainty and the error. Figure 7 shows the
predictive uncertainty against the relative error for Temperature and mass fractions
of Hy and O of samples from ID and OOD test sets. Three methods, i.e., DE
with M = 1, DE with M = 10 and PI3NN, are compared. Results of PI3NN, in
subplots (g) — (i), show a strong correlation between the uncertainty and the error
with a large number of samples clustered along the diagonal line. Additionally,
PI3NN can clearly separate OOD samples (in blue colors) from ID samples (in
red colors) with different uncertainty and error magnitudes. In comparison, DE
with M = 1, in subplots (a) — (¢), cannot distinguish OOD samples from ID.
Although DE with ensemble size of ten (M = 10), in subplots (d) — (f), shows an
improved separation of OOD from ID, it does not produce as good uncertainty-
error correlation as PI3NN. We further increase the ensemble size in DE method to
M = 20, the ROC curve of which is plotted together with the other three methods
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in Figure 8. Clearly, PI3NN shows the best OOD detection accuracy with the ROC
curve close to the top left corner, representing a high true positive rate and low false
positive rate. For a high true positive rate of 90%, the false positive rate is as low as
4% in PI3NN. The DE methods shows improved detection accuracy with ensemble
size M increasing. But the accuracy appears to plateau at around M = 20. In DE
with M = 20, the false positive rate is 38%, which is much higher than the case in
PI3NN, when the true positive rate is 90%. Furthermore, PI3NN is easy to train,
while the training of DE is tedious due to the multiple objectives involved in its loss
function.

5. Conclusions. In this work, we developed an enhanced AE model for reducing
combustion chemical kinetics with OOD-detection capability by combining PI3NN
with AE, which will lead to more robust reacting flow simulations. The method
performance was first examined in the image experiment with samples from MNIST
and Fashion-MNIST, where a state-of-the-art uncertainty approach—DE—was also
considered. Both methods were found to capture the OOD samples in the image
experiment well. The methods, i.e, AE-PI3NN and AE-DE, were then applied
to syngas CO/Hy combustion. The dimension of combustion states was reduced
by AE from 12 to 2 at a good accuracy, implying that the number of differential
equations to solve in combustion simulations is 6 times smaller with the reduced
chemistry model. The AE-PI3NN showed excellent OOD-detection accuracy, e.g.,
90% true positive rate and 4% false positive rate, for syngas combustion with a
clear separation of uncertainty magnitudes for OOD samples from ID. Even though
the AE-DE showed improved detect accuracy with ensemble size M increasing, it
appeared to plateau at around M = 20 and produced a false positive rate of 38%
for the 90% true positive rate, which is much higher than the 4% in AE-PI3NN.
Furthermore, AE-PI3NN is nonintrusive and easy to train, while AE-DE shows
an undesirable accuracy deterioration in combustion prediction and the training is
sensitive to learning rate due to the multiple tasks in the loss function.
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