

DEMSI

Discrete Element Model for Sea Ice

Sandia
National
Laboratories

Conservative Remap and Interpolation for the Discrete Element Model for Sea Ice

Kara Peterson, Dan Bolintineanu
Sandia National Laboratories

Adrian Turner
Los Alamos National Laboratory

14th World Congress on Computational Mechanics
MS233 Approaches, Applications, and Analysis of Heterogeneous
Numerical Methods

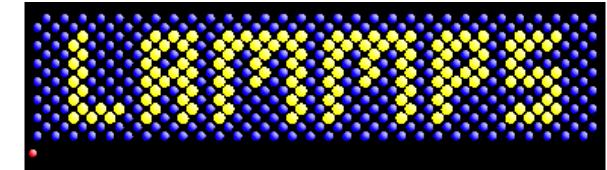
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-XXX

New sea ice model under development for use in coupled Earth system models

Dynamics: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

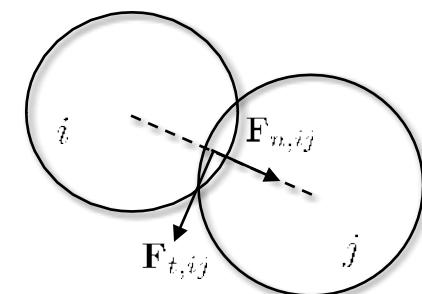
- <https://lammps.sandia.gov>
- Particle based molecular dynamics code
- Includes support for DEM and history dependent contact models



Thermodynamics: CICE Consortium Icepack Library

- <https://github.com/CICE-Consortium/Icepack>
- State-of-the-art sea-ice thermodynamics package including vertical thermodynamics, salinity, shortwave radiation, snow, melt ponds, ice thickness distribution, biogeochemistry

- Dynamics are computed using circular Lagrangian elements that interact via contact forces for bonded and unbonded elements
- DEM enables capture of complex anisotropic deformation that continuum sea ice models have difficulty reproducing



Coupling with ocean and atmosphere models

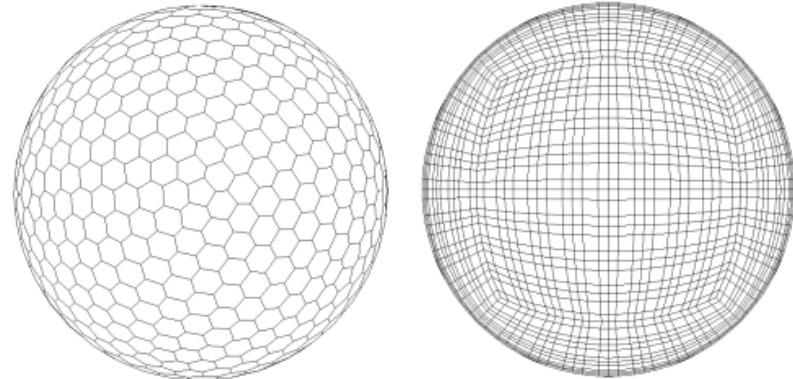
- Requires interpolation between Lagrangian particles and Eulerian grids

Particle-to-particle remap

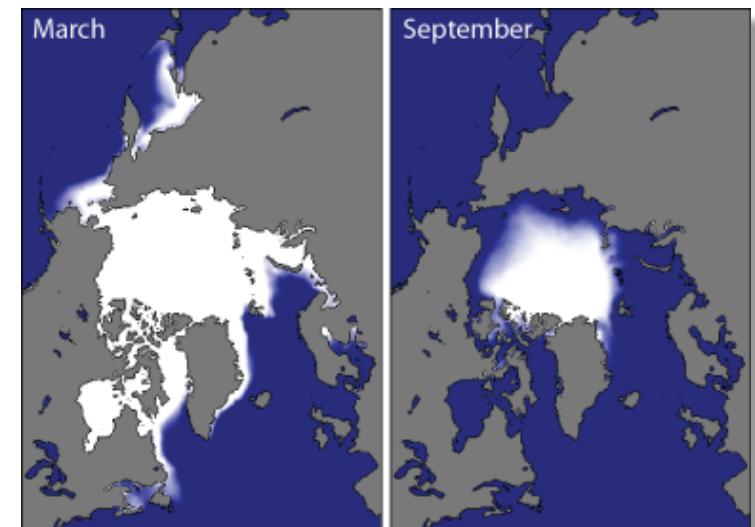
- Periodic remap to initial particle distribution to manage large deformations and particle clustering
- Provides method for adding new particles due to thermodynamic growth

For this presentation will focus on the particle-to-particle remap

Example global grids

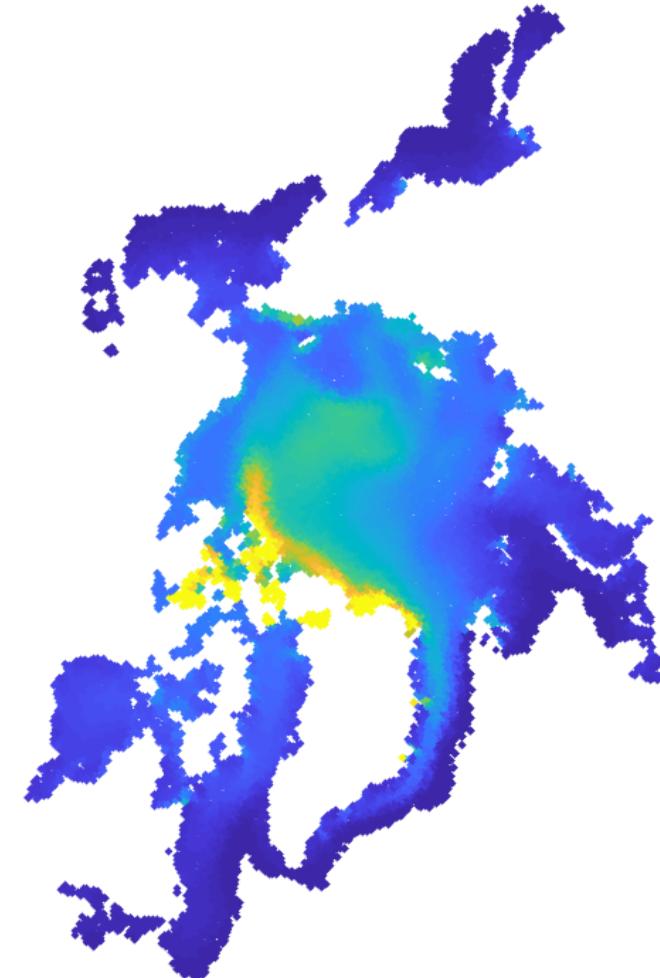


Satellite sea ice concentration illustrating large seasonal variation in sea ice domain



Climatology: 1981-2010 (nsidc.org)

- Remap challenges in DEMSI
- Remap implementations
 - Geometric remap
 - Moving Least Squares
- Computational results



Arctic Sea Ice Thickness in DEMSI

Each circular discrete element particle represents a region of ice with varying thickness including open water

Fractional area in thickness category i : a_i

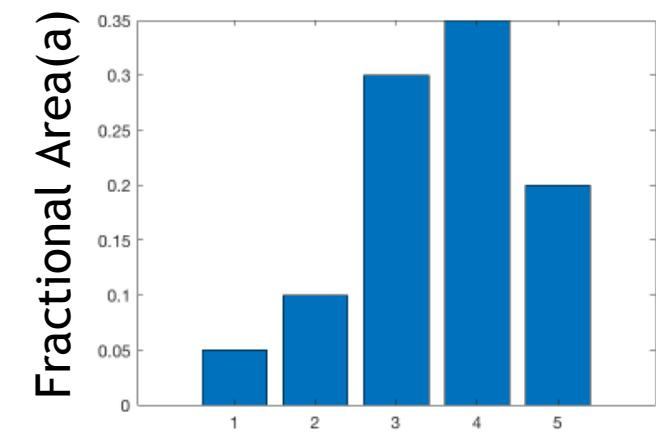
Fractional volume in thickness category i : v_i

Concentration (fraction of ice in particle) : $c_p = \sum a_{i,p}$

Fractional Volume : $v_p = \sum_i v_{i,p}$

Thickness: $h_p = v_p/c_p$

Additional quantities like ice enthalpy and snow thickness are also modeled, leading to a system of hierarchical tracers for remap



Thickness Category (i)

Physical constraints including conservation and bounds preservation

- Remap algorithms must
 - Conserve total ice area and volume
 - Maintain bounds for remapped quantities
 - Maintain consistency between tracer quantities $h_p = v_p/c_p$

Conserved Quantities

Total ice area: $A_{ice} = \sum_p c_p A_p = \sum_p \sum_i a_{ip} A_p$

Total ice volume: $V_{ice} = \sum_p c_p h_p A_p = \sum_p \sum_i v_{ip} A_p$

Physical Bounds

$$0 \leq c_p \leq 1 \quad 0 \leq h_p \quad 0 \leq v_p$$

Physical constraints including conservation and bounds preservation

- Remap algorithms must
 - Conserve total ice area and volume
 - Maintain bounds for remapped quantities
 - Maintain consistency between tracer quantities $h_p = v_p/c_p$
- For conservation we use an effective element area A_p
 - Define Voronoi cells associated with initial partial distribution
 - Effective element areas are transported with Lagrangian particles

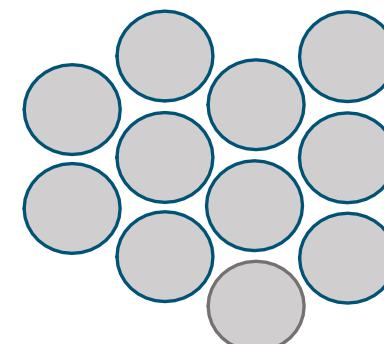
Conserved Quantities

$$\text{Total ice area: } A_{ice} = \sum_p c_p A_p = \sum_p \sum_i a_{ip} A_p$$

$$\text{Total ice volume: } V_{ice} = \sum_p c_p h_p A_p = \sum_p \sum_i v_{ip} A_p$$

Physical Bounds

$$0 \leq c_p \leq 1 \quad 0 \leq h_p \quad 0 \leq v_p$$



Physical constraints including conservation and bounds preservation

- Remap algorithms must
 - Conserve total ice area and volume
 - Maintain bounds for remapped quantities
 - Maintain consistency between tracer quantities $h_p = v_p/c_p$
- For conservation we use an effective element area A_p
 - Define Voronoi cells associated with initial partial distribution
 - Effective element areas are transported with Lagrangian particles

Conserved Quantities

$$\text{Total ice area: } A_{ice} = \sum_p c_p A_p = \sum_p \sum_i a_{ip} A_p$$

$$\text{Total ice volume: } V_{ice} = \sum_p c_p h_p A_p = \sum_p \sum_i v_{ip} A_p$$

Physical Bounds

$$0 \leq c_p \leq 1 \quad 0 \leq h_p \quad 0 \leq v_p$$



9 GEOMETRIC REMAP

Procedure

- Compute intersections between old and new effective element areas
- Compute mean preserving linear reconstructions of tracer for each old particle using neighbor values
- Integrate reconstruction over area intersections and sum to get area average on the new particle

Linear reconstructions

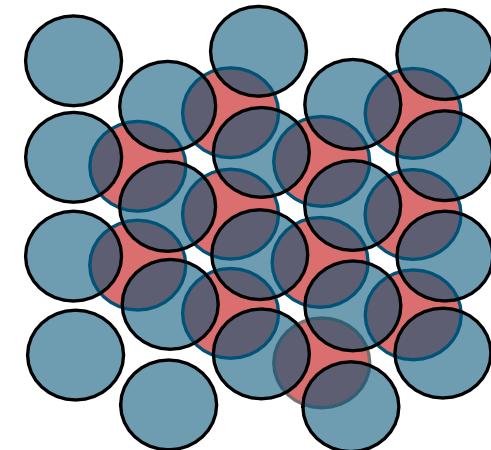
$$c_p(\mathbf{x}) = \bar{c}_p + \alpha_c \nabla c_p \cdot (\mathbf{x} - \mathbf{x}_c)$$

$$v_p(\mathbf{x}) = \bar{v}_p + \alpha_v \nabla v_p \cdot (\mathbf{x} - \mathbf{x}_c)$$

Limiting coefficients (van Leer limiting)

$$0 \leq \alpha_c \leq 1 \quad 0 \leq \alpha_v \leq 1$$

Element centroid \mathbf{x}_c



Procedure

- Compute intersections between old and new effective element areas
- Compute mean preserving linear reconstructions of tracer for each old particle using neighbor values
- Integrate reconstruction over area intersections and sum to get area average on the new particle

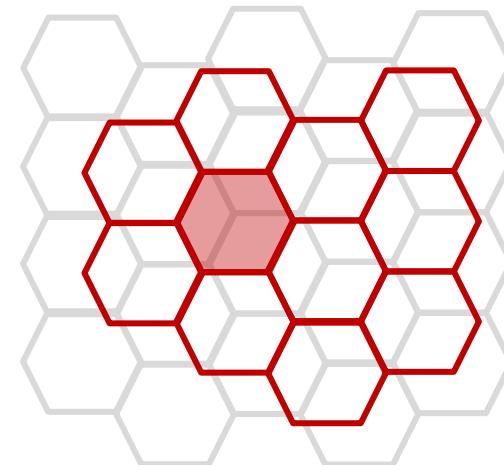
Linear reconstructions

$$c_p(\mathbf{x}) = \bar{c}_p + \alpha_c \nabla c_p \cdot (\mathbf{x} - \mathbf{x}_c)$$

$$v_p(\mathbf{x}) = \bar{v}_p + \alpha_v \nabla v_p \cdot (\mathbf{x} - \mathbf{x}_c)$$

Limiting coefficients (van Leer limiting)

$$0 \leq \alpha_c \leq 1 \quad 0 \leq \alpha_v \leq 1$$

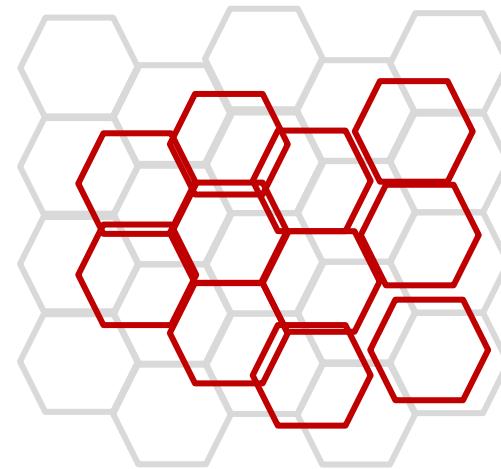
Element centroid \mathbf{x}_c Intersections Ω_{pq} Old particles p New particles q

GEOMETRIC REMAP FLUX CORRECTION

- This algorithm is conservative and bounds preserving when remapping between well-defined grids
- In practice there are gaps and overlaps between effective cell areas
- Use flux-based optimization algorithm to correct the remapped areas
- Fluxes are then used in an iterative procedure to modify the tracer values to ensure conservation
- Permon (<https://github.com/permon/permon>) used to solve resulting quadratic program

Flux correction

$$\begin{cases} \text{minimize} & \frac{1}{2} \|\hat{f} - f^T\|_{\ell_2}^2 \\ & \text{subject to} \\ A^{\min} \leq \hat{A} + D\hat{f} \leq A^{\max} & \end{cases}$$



Intersections Ω_{pq}

Old particles p

New particles q

$$A_q \neq \sum_p \Omega_{pq}$$

Procedure

- Find old particle neighbors of new particle
- Compute moment matrix and solve
- Compute remapped variable
- Implemented with interpolatory weight function, but tests indicate weight function does not make much difference to solution
- In practice the choice of neighborhood for the reconstruction makes a large difference for elements on edge of the particle distribution

Moment matrix

$$M = \sum_{p \in N_q} bb^T w_p$$

$$b^T = [1 \quad (x - x_p) \quad (y - y_p)]$$

Interpolant

$$c(x, y) = \sum_{p \in N_q} b^T M^{-1} b c_p w_p$$

$$h(x, y) = \sum_{p \in N_q} b^T M^{-1} b h_p w_p$$

Weight function $w_p = \frac{\exp(-d^2)}{d^2 + \epsilon}$

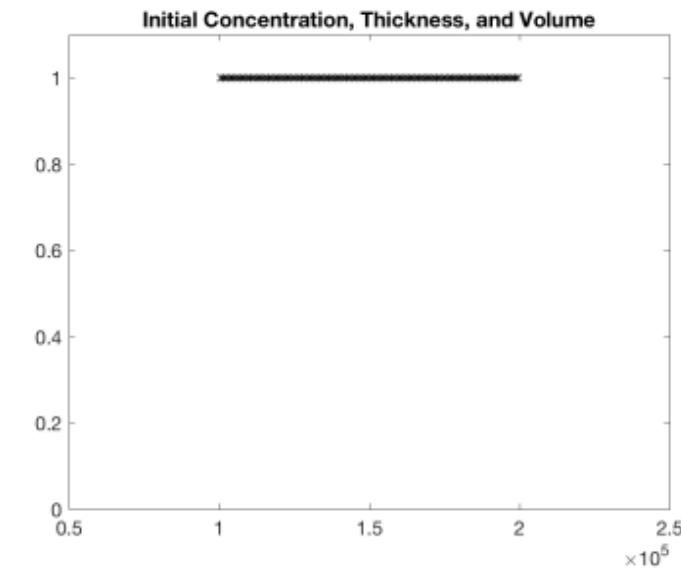
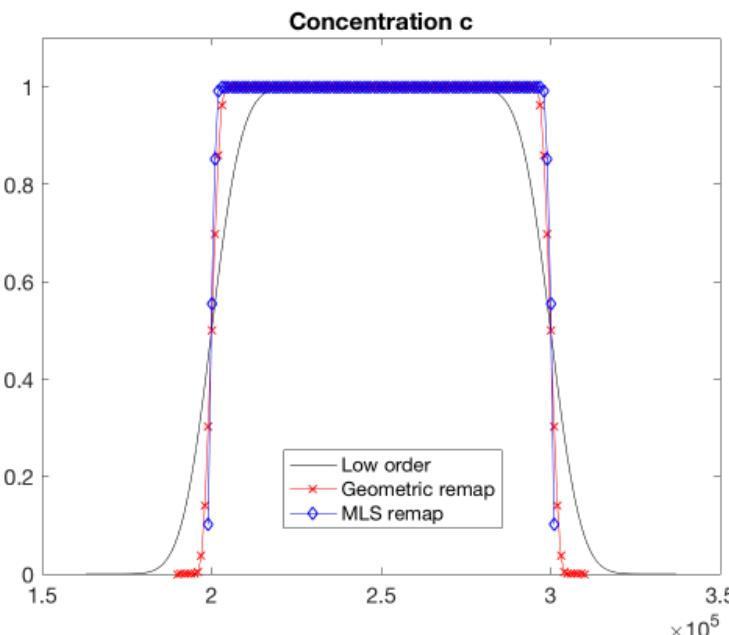
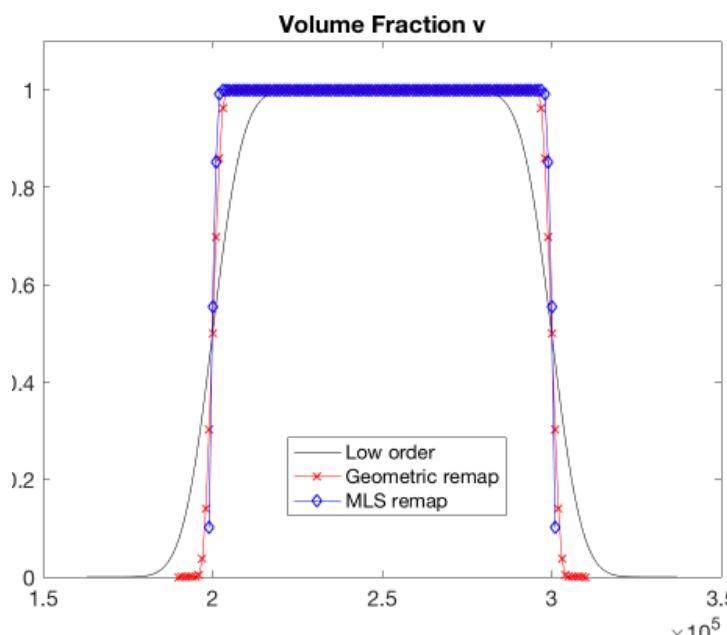
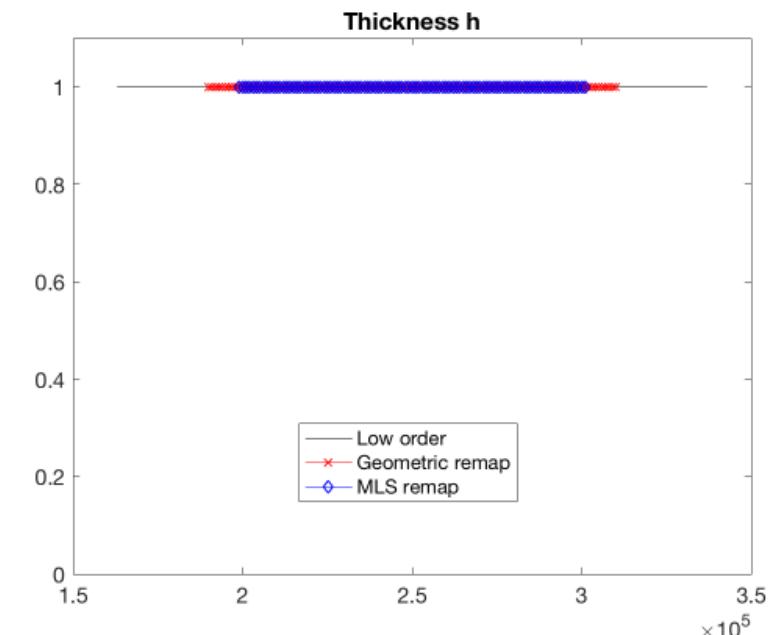
- MLS interpolation is not inherently mass conserving or bounds preserving
- For each tracer we apply an optimization algorithm to enforce physical properties
- Local min/max are computed from values of old elements used in MLS reconstruction
- Prior to optimization the concentration is multiplied by approximate fractional area in the case of boundary cells $c_q = c_q \left(\sum_p \Omega_{pq} \right) / A_q$

$$\begin{cases} \text{minimize} & \frac{1}{2} \|\hat{c} - c^\top\|_{\ell_2}^2 \quad \text{subject to} \\ \sum \hat{c}_q A_q = A_{ice} & \text{and} \quad c_q^{\min} \leq \hat{c}_q \leq c_q^{\max} \quad q = 1, \dots, N. \end{cases}$$

$$\begin{cases} \text{minimize} & \frac{1}{2} \|\hat{h} - h^\top\|_{\ell_2}^2 \quad \text{subject to} \\ \sum \hat{c}_q \hat{h}_q A_q = V_{ice} & \text{and} \quad h_q^{\min} \leq \hat{h}_q \leq h_q^{\max} \quad q = 1, \dots, N. \end{cases}$$

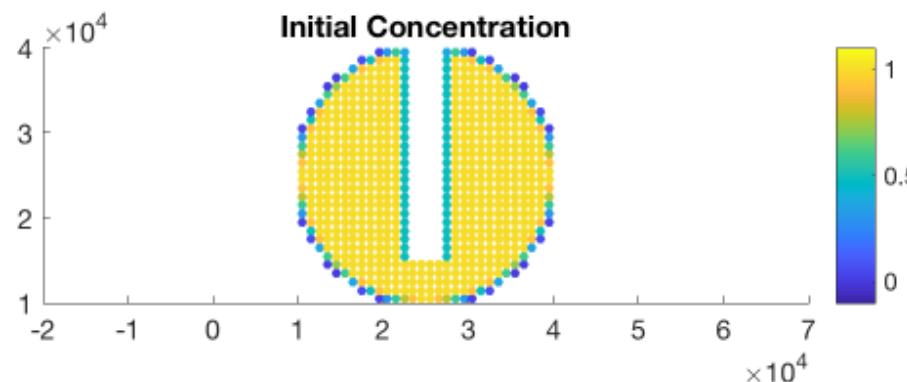
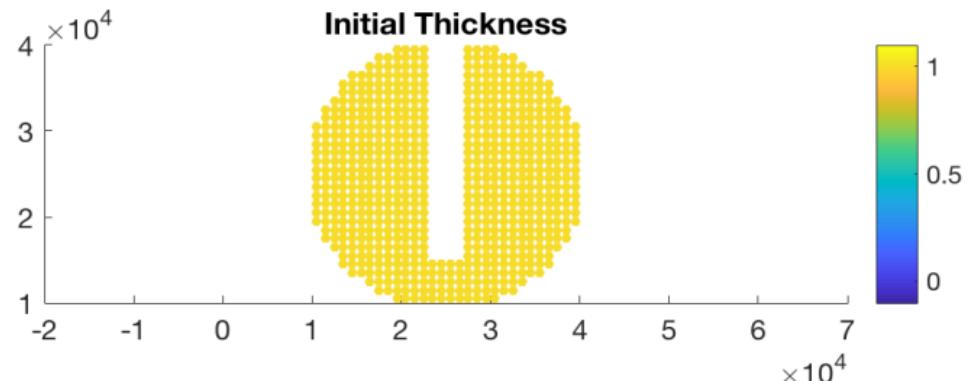
EXAMPLE PROBLEM: 1-D TRANSLATION

- Translation of constant concentration, thickness, and volume
- X total time steps
- Remap performed at each time step
- Both Geometric and MLS remap options resolve the boundary well and maintain bounds and consistency between thickness, volume, and concentration



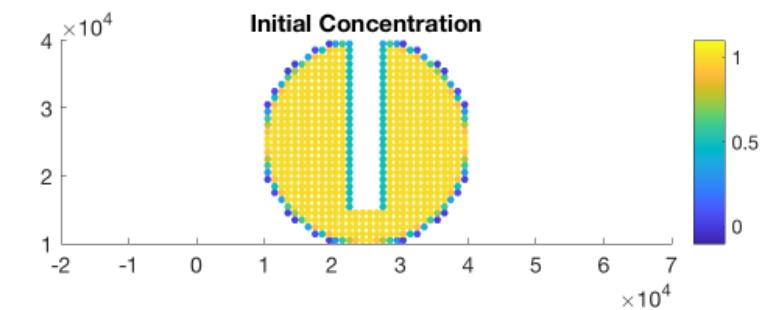
EXAMPLE PROBLEM: 2-D TRANSLATION

- Regular Particle Distribution
- Translation of discontinuous concentration, thickness, volume

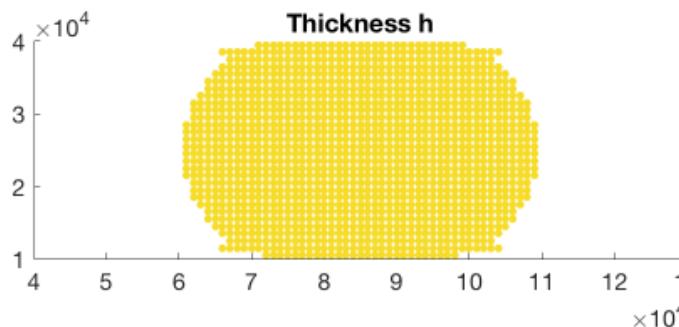
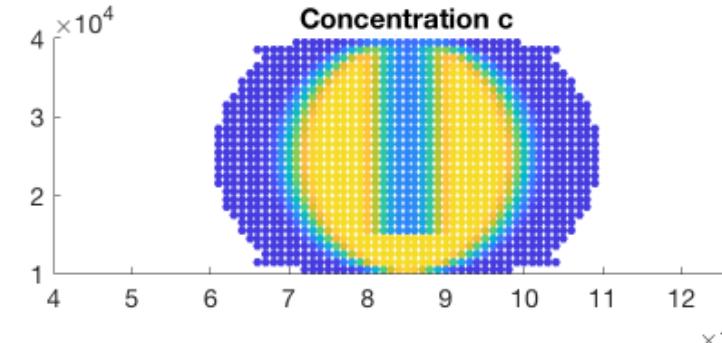
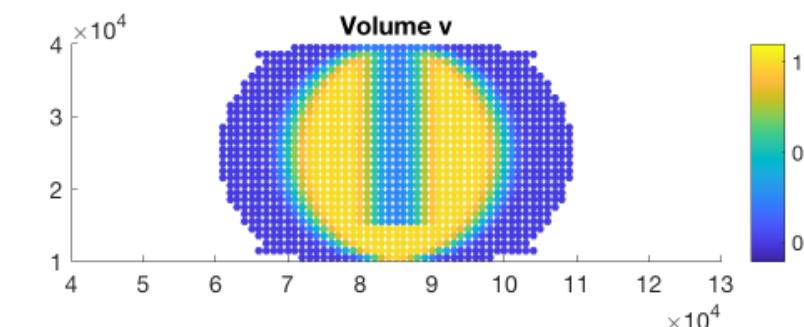


EXAMPLE PROBLEM: 2-D TRANSLATION

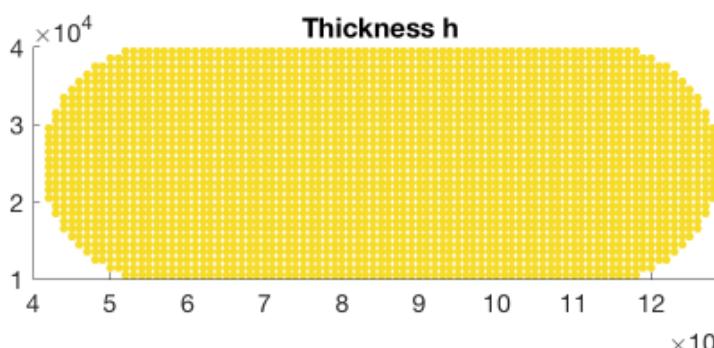
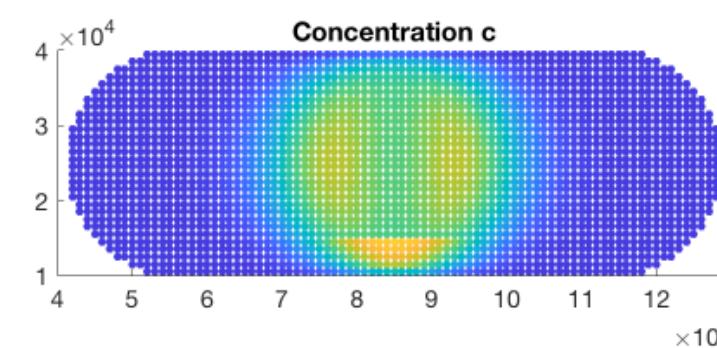
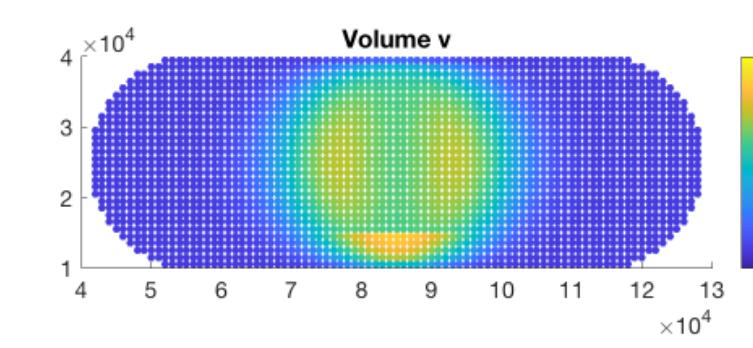
- Regular Particle Distribution
- Translation of discontinuous concentration, thickness, volume
- Plots at 120 remap steps



Geometric Remap

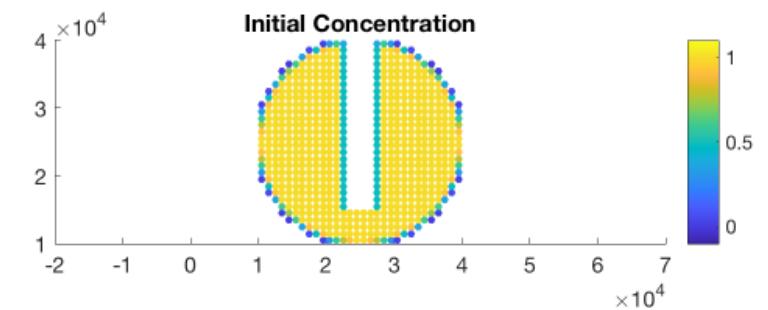


Low Order Remap

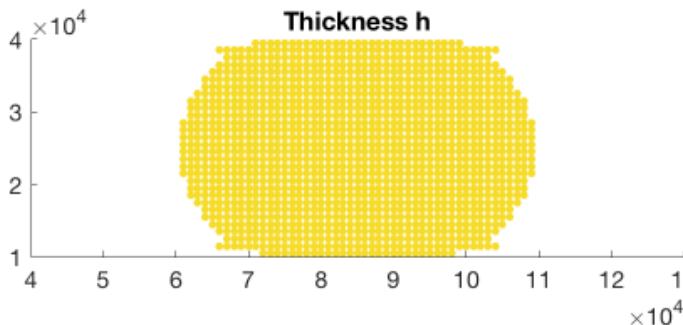
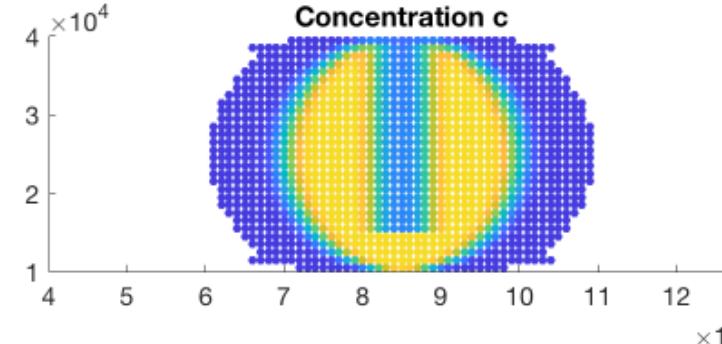
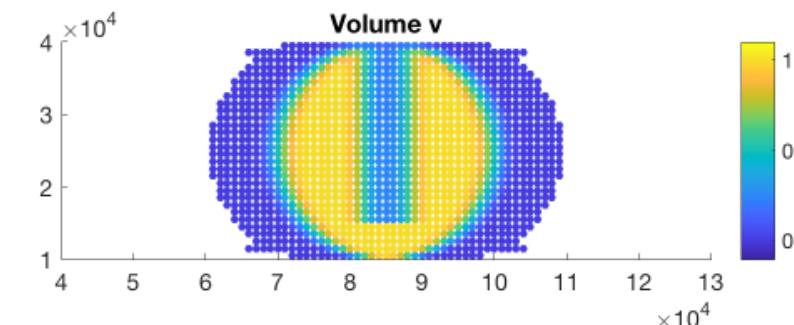


EXAMPLE PROBLEM: 2-D TRANSLATION

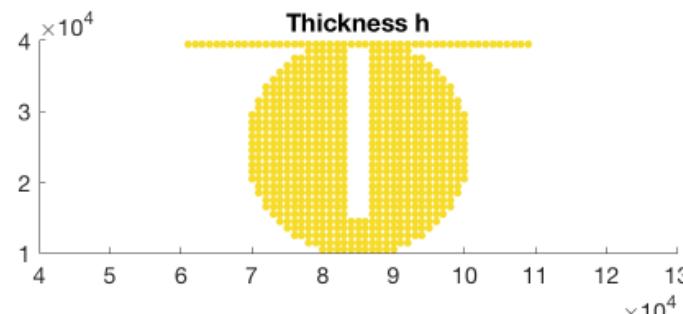
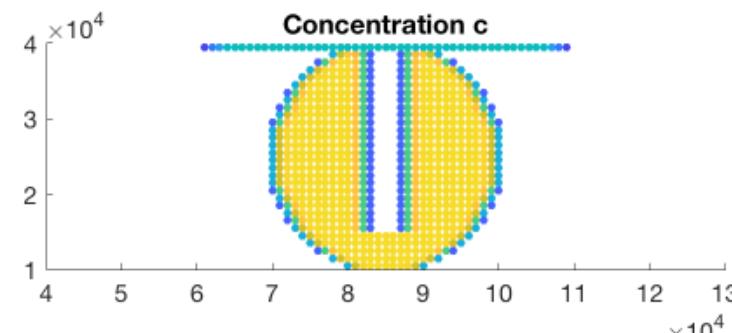
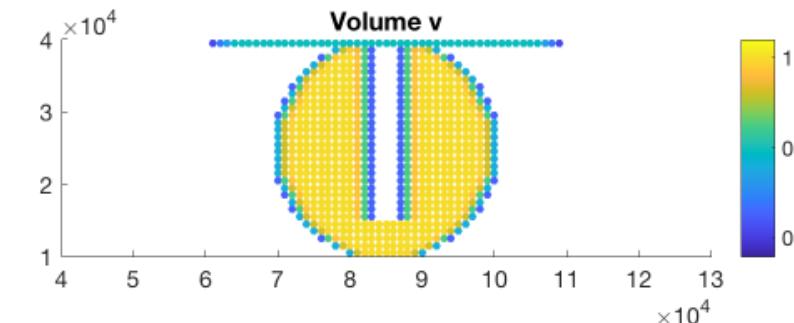
- Regular Particle Distribution
- Translation of discontinuous concentration, thickness, volume
- Plots at 120 remap steps



Geometric Remap

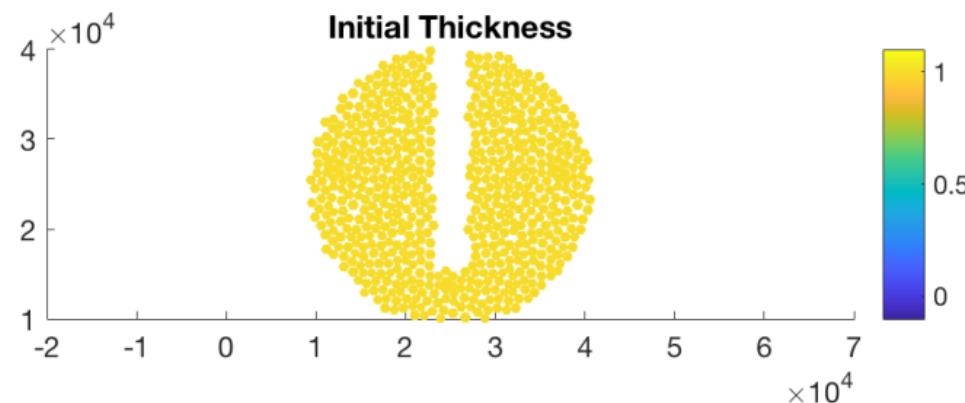
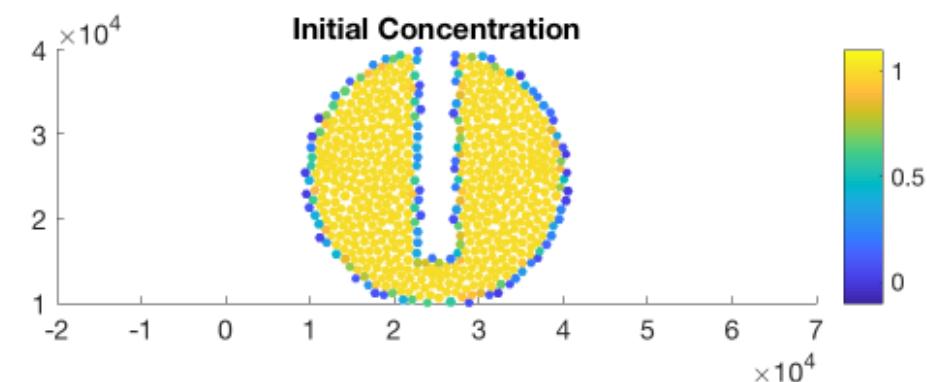


MLS Remap



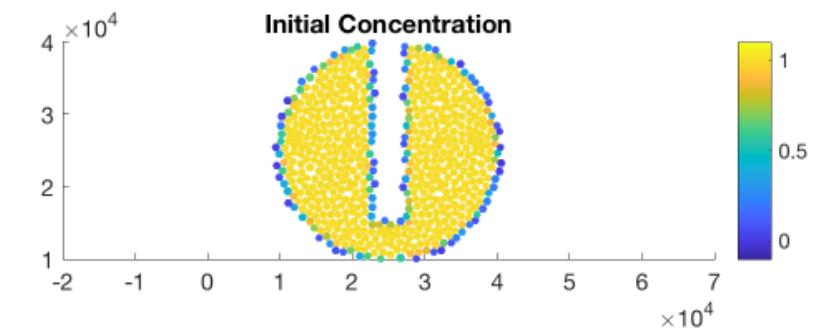
EXAMPLE PROBLEM: 2-D TRANSLATION

- Irregular Particle Distribution
- Translation of discontinuous concentration, thickness, volume

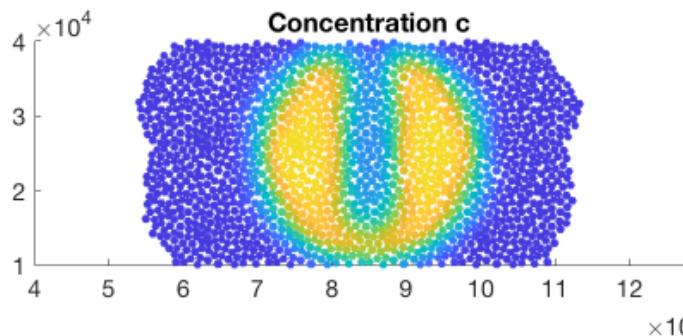
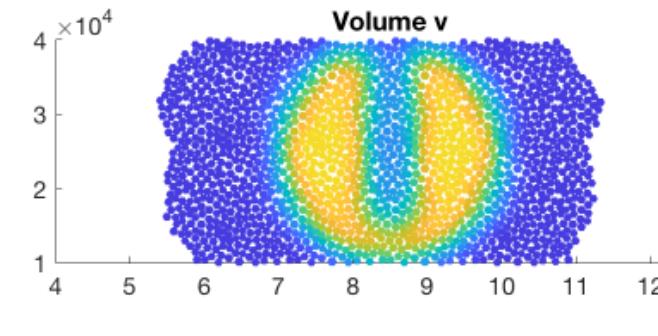
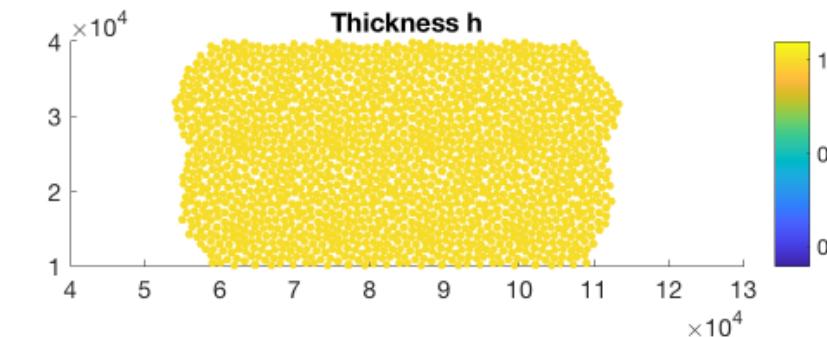


EXAMPLE PROBLEM: 2-D TRANSLATION

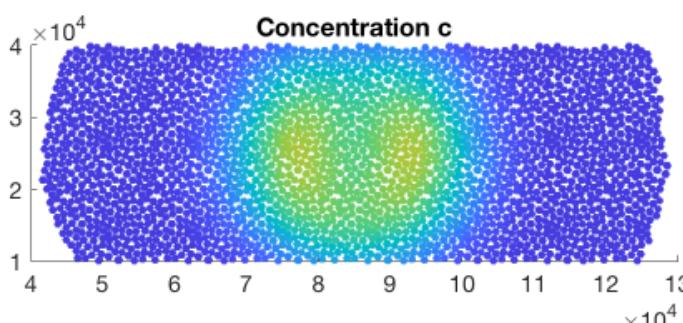
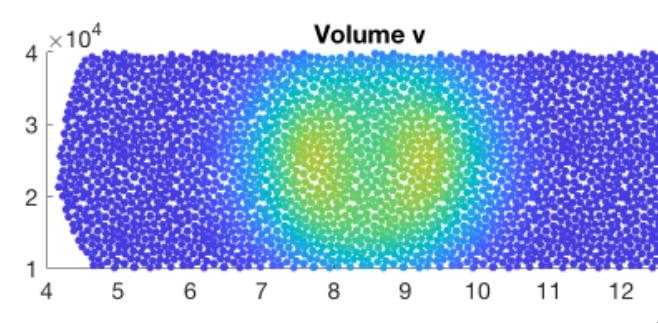
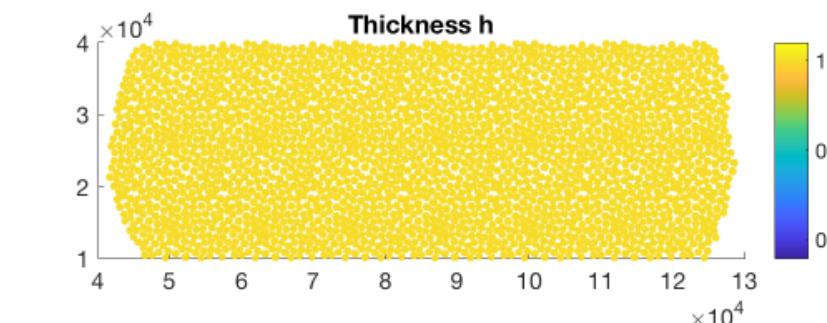
- Irregular Particle Distribution
- Translation of discontinuous concentration, thickness, volume
- Plots at 120 remap steps



Geometric Remap

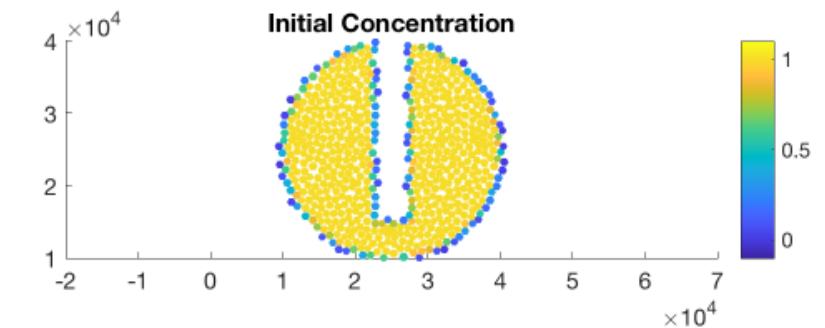


Low Order Remap

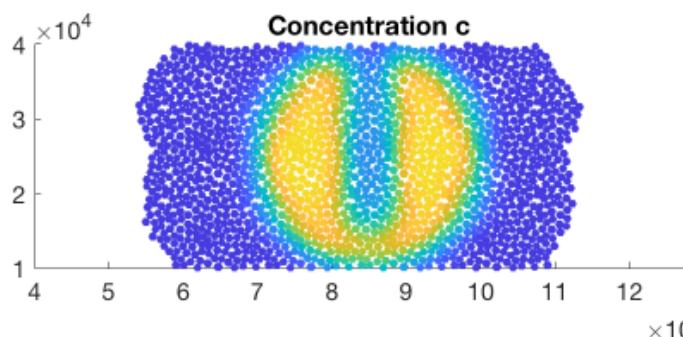
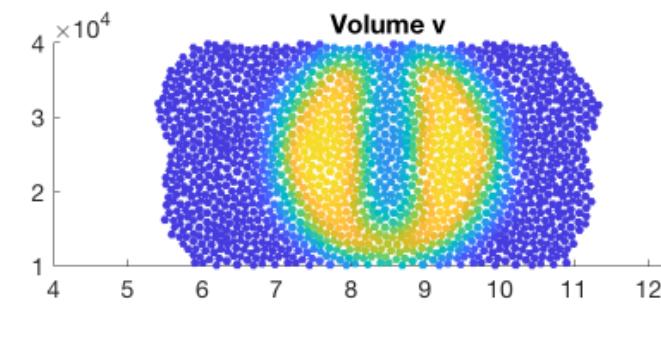
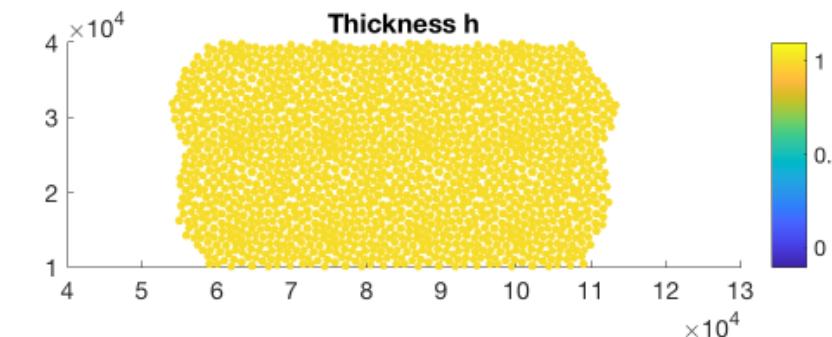


EXAMPLE PROBLEM: 2-D TRANSLATION

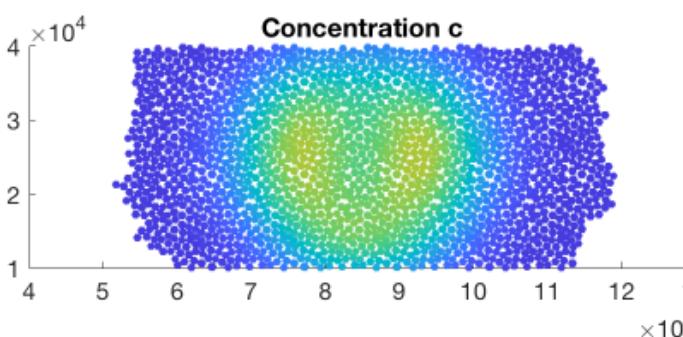
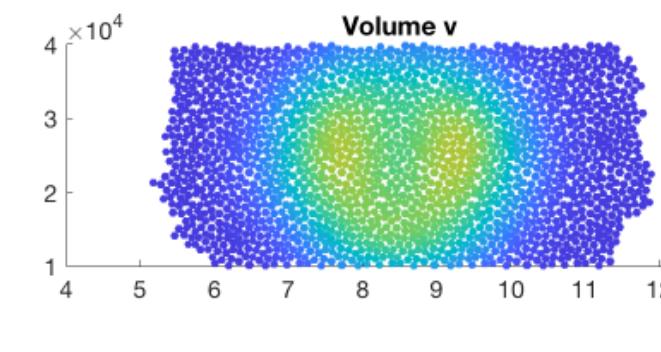
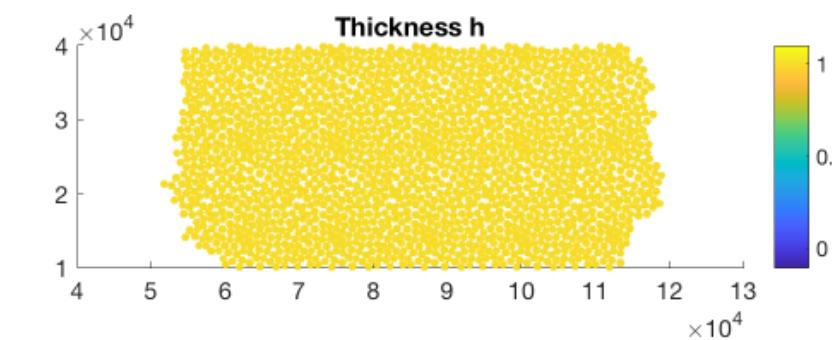
- Irregular Particle Distribution
- Translation of discontinuous concentration, thickness, volume
- Plots at 120 remap steps



Geometric Remap

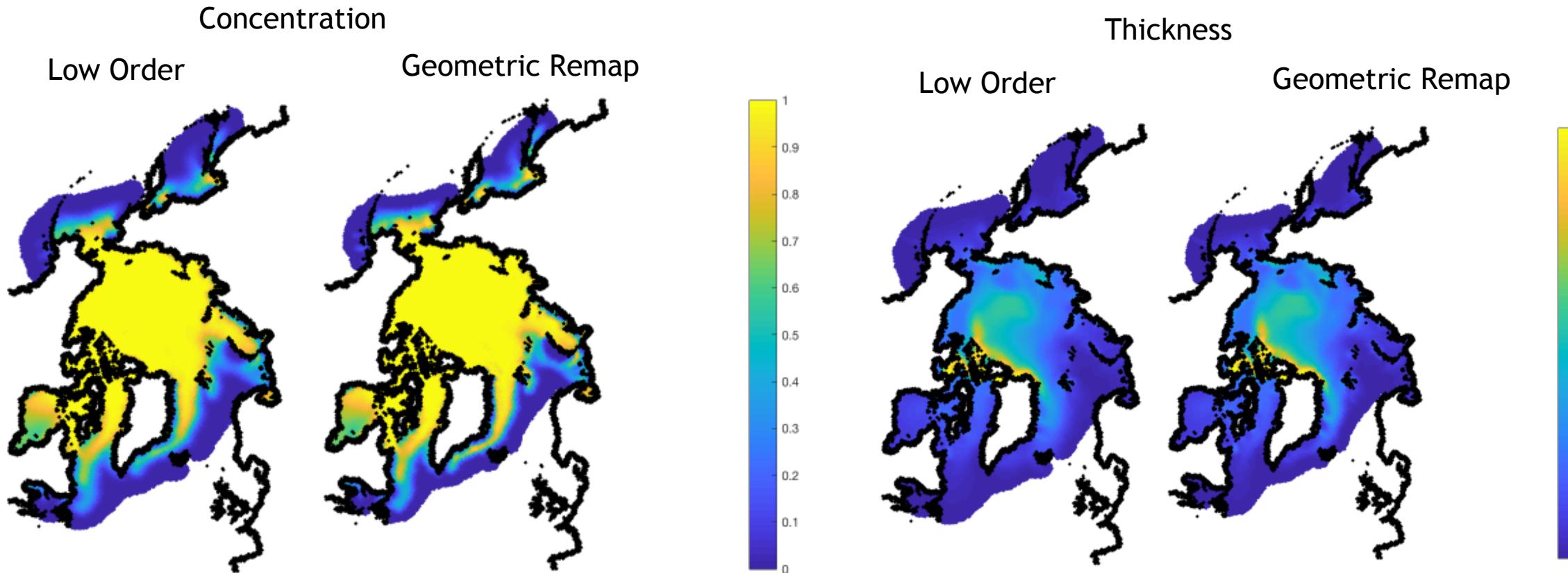


MLS Remap



EXAMPLE PROBLEM: ARCTIC BASIN

- Realistic particle distribution and forcing
- 30 days of simulation
- Remap performed once per simulated day
- Dynamic timestep of 3600 seconds



CONCLUSIONS

- Described two remap methods for particle-to-particle remap in DEMSI
 - Geometric with flux correction
 - MLS with mass correction
- Geometric remap works well for all test cases
- MLS is potentially more computational efficient, but exhibits significant numerical diffusion for irregular particle distributions
- Ongoing and future work
 - Additional testing and debugging of MLS remap
 - Investigate alternative algorithms for enforcing physical constraints

