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2 | Mixed-Precision Krylov Solvers in Trilinos:

*GMRES: linear solver used to find an approximate solution to Ax=b from a Krylov
subspace

*Many modeling and physics applications use discretizations of partial differential
equations that require GMRES or some other Krylov solver.

=Belos: linear solvers package in Trilinos
=Kokkos and Kokkos Kernels: Portable parallel linear algebra software for GPUs

=My work:
= Code a new adapter to use Kokkos as the linear algebra backend for Belos solvers
* Implement mixed precision operations
= Test performance improvements on a single node with GPU
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, | Algorithm: GMRES with lterative Refinement (GMRES-IR)

Why incorporate lower precision data storage in Krylov solvers?

=Krylov solvers are typically memory-bound (data movement is more expensive than FLOPS).
*Cheaper data movement and floating-point operations.

=Take advantage of new hardware for low-precision computations (e.g. GPU tensor cores).

Algorithm: Use mostly single (32-bit float) precision with occasional double (64-bit)
precisio

Algorithm 1 Iterative Refinement with GMRES Error Correction
1: rg = b— Axg [double]

2: for 1 =1,2,... until convergence: do

3: Use GMRES(m) to solve Au; = r; for correction wu; [single]
4: xi11 = x; + u; [double]

5 riv1 = b— Ax;q [double]

6: end for

Challenges:

*Lower precision computations result in more roundoff errors!
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+ I Is mixed-precision GMRES as accurate as double

p reCi S | on ?100 Linear Solver Convergence BentPipe2D1500
| | | | |
1071 | —l- Double Precision
1072 | —— Single Precision |
9 1073 | —— GMRES IR :
Sz w0t .
g2 — 10°} .
S o [Ny _6
S2 = 10°} .
©
a5 1077 F -
xZ _
107% | -
1079 | .
1010} -
10—11 l ] l | l l
0 2000 4000 6000 8000 10000 12000 14000

Number of Iterations

GMRES Double: 12967 iterations GMRES-IR: 13150 iterations

Matrix is 2D convection-diffusion problem over a 5-pt stencil. (Highly nonsymmetric.)
n = 2.25 million, number of non-zeros = 11,244,000

Running GMRES(50) to tolerance of 1e-10. (No preconditioning.)
For GMRES-IR: Residuals recomputed in double at each restart (each 50 iterations).
Tests run on a V100 GPU.



s 1 |s mixed-precision GMRES faster than double precision?
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Total time: 50.26 38.03 1.322
Ortho: GEMV Trans 20.20 15.78 1.280
Ortho: GEMV No
Trans 19.01 12.10 1.571
Ortho (norm) 1.71 1.49 1.152
A*x 7.33 2.95 2.484

(Timings do not include making an extra copy of the matrix A in single precision.)



s | Future Work:

*Test preconditioning (Block Jacobi, polynomial preconditioning, etc....)
*Incorporate half (16-bit) precision

*Make available to Sandia applications using Trilinos and Tpetra

Thank you!
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