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. | Segmentation is a classic computer vision problem

Image segmentation is well studied
o Small files

o Large training sets

https://www.cityscapes-dataset.com/

CT segmentation is different Cityscape

> Volumetric; larger files (~1e5 pixels)

> Class imbalance (lots of background)

> Noise/artifacts in scans o t

o Small training sets with “bad” human labels

o Inconsistent scan quality (domain shift) ’ t

).

Medical researchers are leading this work toward Deep Learning Rattlesnake Tail
solutions. (~1e9 voxels)
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o I Deep learning is not thresholding

DL predicted classes
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The coarseness of the prediction is at the level of the

expert label from the original training domain and does
not separate individual fibers.




- | Encoder-decoder network with skip connections

Encoder learns features at different resolutions.

Decoder uses encoded features passed via skip
connections for segmentation.

V-net was developed to process 3D images.

> F. Milletari, N. Navab, and S. A. Ahmadi, “V-net: Fully
convolutional neural networks for volumetric medical image

segmentation,” in 2016 Fourth International Conference on
3D Vision (3DV), Oct 2016, pp.565-571

V-Net architecture for segmenting volumetric data
(Image from Milletari, et al. 2016)



1 | Geometric uncertainty is characterized with dropout layers forb

Dropout layers can be used to add stochasticity in DL model predictions.  [1] Y. Gal and Z. Ghahramani, Dropout as a bayesian
o Typically used for regularization during training approximation: Representing model uncertainty in deep

. : : . learning, in Proceedings of the 33rd International
o Gal, et al. [1] introduced active dropout layers during inference Conference on Machine Learning, 2016,

Variance over several DL binary segmentation predictions is an
indication of uncertainty.

CT scan slice Expert label DL label with uncertainty map

In the training domain, the DL model is accurate and exhibits little uncertainty about predictions.
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Recall our training example:

Woven compaosite
example 1

The new examples are different:
e Scanning equipment

* Resolution

* Material composition

Woven composite
example 2

DL notoriously fails to generalize under domain shift.



s | DL model trained and ready for deployment: the good newsorb
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We can refine our predictions using uncertainty maps.



17 ‘ Uncertainty can be used to inform segmentation

We leverage uncertainty maps to enable generalization of a trained model to shifted domains

CT slice from shifted
domain

C. Martinez, K. M. Potter, M. D. Smith, E. A. Donahue, L. Collins, J. P. Korbin, and S. A. Roberts, Segmentation certainty through uncertainty:
Uncertainty-refined binary volumetric segmentation under multifactor domain shift, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2019.

I I Em B



18 ‘ Uncertainty can be used to inform segmentation

We leverage uncertainty maps to enable generalization of a trained model to shifted domains

CT slice from shifted Unusable
domain segmentation

Predict segmentation
using model trained

on original domain I

L)

C. Martinez, K. M. Potter, M. D. Smith, E. A. Donahue, L. Collins, J. P. Korbin, and S. A. Roberts, Segmentation certainty through uncertainty:
Uncertainty-refined binary volumetric segmentation under multifactor domain shift, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2019.
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20 ‘ Uncertainty can be used to inform segmentation

We leverage uncertainty maps to enable generalization of a trained model to shifted domains

CT slice from shifted
domain
. Predict segmentation
using model trained

on original domain I

Unusable
segmentation

Uncertainty map

Flip predictions for
voxels with high

uncertainty |

Refined segmentation

C. Martinez, K. M. Potter, M. D. Smith, E. A. Donahue, L. Collins, J. P. Korbin, and S. A. Roberts, Segmentation certainty through uncertainty:
Uncertainty-refined binary volumetric segmentation under multifactor domain shift, in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, 2019.



21 ‘ Key idea: Use imperfect refined results as training data
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Using the imperfect refined label
as training data results in a
model able to segment images
from the shifted domain.
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23 | Conclusion

» CT segmentation can be automated with DL.
» Supervised learning with expert labels is best.

- Limitations in training data availability can be
overcome by leveraging uncertainty maps to
refine predictions.

- Qualitative results indicate that imperfect
labels can be used as training data to produce
a new DL model that overcomes domain shift.






