

1 **Comparing the Extraction Performance of Cyclodextrin-containing Supramolecular Deep**
2 **Eutectic Solvents Versus Conventional Deep Eutectic Solvents by Headspace Single Drop**
3 **Microextraction**

4
5 Muhammad Qamar Farooq,^{a,b} Victoria R. Zeger,^a Jared L. Anderson^{a,b,*}
6

7 ^a*Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA*
8 ^b*Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA*

9 **Abstract**

10 A headspace single drop microextraction (HS-SDME) method coupled with high performance
11 liquid chromatography was developed to compare the extraction of eighteen aromatic organic
12 pollutants from aqueous solutions using cyclodextrin-based supramolecular deep eutectic solvents
13 (SUPRADESs) and alkylammonium halide-based conventional deep eutectic solvents (DESs).
14 Different derivatives of beta-cyclodextrin (β -CD) were employed as hydrogen bond acceptors
15 (HBA) in SUPRADESs and the extraction performance investigated. SUPRADES comprised of
16 the 20 wt% native β -CD HBA provided the highest enrichment factors of analytes compared to
17 SUPRADESs comprised of other derivatives of β -CD (random methylated β -cyclodextrin,
18 heptakis(2,3,6-tri-O-methyl)- β -cyclodextrin, and 2-hydroxypropyl β -cyclodextrin). In addition,
19 native β -CD and its derivatives were dissolved in the neat DESs and their effect on the extraction
20 of analytes examined. Dissolution of 20 wt% native β -CD in the choline chloride ($[\text{Ch}^+][\text{Cl}^-]$):2Urea DES resulted in a significant increase in the extraction efficiencies of target analytes
21 compared to the neat $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES. Under optimum conditions, the extraction method
22 required a solvent microdroplet of 6.5 μL , 1000 rpm stir rate, 30% (w/v) salt concentration, and a
23 temperature of 40 °C. The tetrabutylammonium chloride : 2 lactic acid DES resulted in the highest
24 enrichment factors while the $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES had the lowest for most of the analytes among
25 the evaluated solvents. The method provided limits of detection (LODs) down to 35 $\mu\text{g L}^{-1}$.
26 Furthermore, the developed method was applied for the analysis of spiked tap and lake water,
27 where relative recoveries ranging from 83.7%–119.7% and relative standard deviations lower than
28 19.2% were achieved.

30 **Keywords:** Headspace single drop microextraction; Supramolecular deep eutectic solvents;
31 Organic pollutants; High performance liquid chromatography; Cyclodextrins
32

33 **Corresponding Author:**

34 Jared L. Anderson
35 Ames Laboratory-USDOE and Department of Chemistry
36 Iowa State University
37 1605 Gilman Hall
38 Ames, IA 50011
39 Tel.: +1 515-294-8356
40 E-mail address: andersoj@iastate.edu
41 ORCID: 0000-0001-6915-8752

42 **1. Introduction**

43 Sample pretreatment and preconcentration are crucial steps in the chemical analysis of
44 complex matrices. These steps often represent a bottleneck in the development of analytical
45 methods capable of determining analytes at ultra-trace levels. Conventional sample preparation
46 techniques such as liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are tedious,
47 labor intensive, and can require large amounts of toxic organic solvents [1]. To overcome the
48 shortcomings of traditional sample preparation approaches, various microextraction methods in
49 which the volume of extraction phase is small compared to that of the sample have been developed.
50 Current trends in the microextraction field are focused on miniaturization, simplification of sample
51 preparation steps, minimization of organic solvents, and developing faster methods that provide
52 high enrichment factors and selectivity [2], [3]. Over the last few decades, microextraction
53 techniques such as solid-phase microextraction (SPME) [4], dispersive liquid-liquid
54 microextraction (DLLME) [5], hollow fiber liquid-phase microextraction (HF-LPME) [6], and
55 single drop microextraction (SDME) [7] have been introduced to overcome many limitations of
56 traditional extraction procedures.

57 SDME, introduced by Liu and Dasgupta in 1996 [7], is an efficient microextraction
58 technique that utilizes a solvent microdroplet for the preconcentration of analytes. SDME can be
59 operated in either direct-immersion (DI) [8] or headspace (HS) modes [9]. DI-SDME enables the
60 preconcentration of non-volatile compounds by directly immersing the microdroplet in the sample
61 solution, while HS-SDME is used for the extraction of semi-volatile and volatile compounds by
62 exposing the microdroplet to the sample's headspace [10]. HS-SDME is an efficient and cost-
63 effective technique that avoids the influence of complex matrices [11], while also providing low
64 analyte carryover, being simple in operation, and having low extraction solvent consumption [11].

65 However, the technique has important shortcomings, such as limited microdroplet surface area and
66 volume, as well as volatility of the microdroplet [12]. These issues are related to both the small
67 surface area of the microsyringe needle tip and loss of the microdroplet due to volatilization,
68 especially when exposing the solvent over long periods of time at elevated temperatures in the HS-
69 SDME mode [13].

70 An ideal HS-SDME solvent should possess the following features: (1) high boiling point
71 and low vapor pressure, (2) high viscosity to stabilize the microdroplet, (3) capability of
72 solubilizing target analytes, and (4) low toxicity. Most of the commonly used organic solvents for
73 HS-SDME, such as toluene, hexane, decane, and *n*-octyl alcohol, are not environmentally green
74 and do not have a negligible vapor pressure, resulting in loss of the microdroplet by evaporation
75 during the extraction [14]. Ionic liquids (ILs) and deep eutectic solvents (DESs) possess a number
76 of attractive properties as HS-SDME solvents. ILs are non-molecular ionic compounds that
77 possess melting points lower than 100 °C. Their structural tunability, negligible vapor pressure,
78 and high thermal stability has made them attractive solvent systems for various applications [15].
79 DESs, introduced by Abbott et al., are prepared by mixing a hydrogen bond acceptor (HBA) and
80 hydrogen bond donor (HBD) to yield a homogenous mixture possessing lower melting points than
81 both of the individual components [16]. The physico-chemical properties of DESs can be easily
82 tuned by changing either the HBA, HBD, or their relative molar ratio [17]. In addition to retaining
83 many of the same properties as ILs, DESs provide additional advantages such as low cost, easy
84 preparation, low toxicity, and higher biodegradability than ILs [18].

85 DESs have been employed as extraction solvents in a number of microextraction
86 techniques, such as DLLME [19], SPME [20], microwave-assisted extraction [21], and ultrasound-
87 assisted extraction [22]. The employed DESs are generally hydrophilic making them unsuitable

88 for extractions that require the solvent to be directly immersed in aqueous samples [23]. Most
89 DESs typically exhibit very short retention times in reverse phase liquid chromatography due to
90 their polar nature and also do not typically interfere with the separation of target analytes that may
91 elute at higher retention times [24]. Until now, only a few studies have employed DESs in HS-
92 SDME for the extraction of polycyclic aromatic hydrocarbons (PAHs) [25], terpenes [26], volatile
93 aromatic hydrocarbons [27], pesticides [28], and bioactive compounds [29].

94 Cyclodextrins (CDs) are a class of cyclic oligosaccharides typically comprised of six (α -
95 CD), seven (β -CD) or eight (γ -CD) glucopyranose units possessing an α -(1-4) linkage [30]. Their
96 hydrophobic internal cavity and hydrophilic external surface makes them suitable for non-covalent
97 guest-host interactions with hydrophobic and volatile compounds [30], [31]. CDs have attracted
98 interest in a wide range of applications and have been used as excipients in drug delivery [32],
99 pharmaceutical solubilizers for various drugs [33], catalysts for organic reactions [34], and chiral
100 selectors in separations [35]. Recent studies have explored the possibility of combining the
101 properties of CDs and DESs, either by dissolving CDs in DESs [36], [37], or by preparing
102 supramolecular deep eutectic solvents (SUPRADESs) where the CD is used as the HBA and
103 combined with carboxylic acid-based HBDs [38], [39]. It has been previously reported that the
104 solubility of CDs can be significantly enhanced in DESs compared to water. For example, native
105 β -CD can be dissolved as high as 50 wt% in a DES comprised of choline chloride : 2 urea
106 ($[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$) compared to only 1.8 wt% in water [36]. In another study, the addition of native
107 β -CD to a DES comprised of the ammonium acetate HBA and lactic acid HBD increased the
108 extraction efficiency of polyphenols by approximately 21% compared to the neat DES [40].
109 Moreover, SUPRADESs prepared by mixing various β -CD derivative as HBAs with urea
110 derivative as HBDs (*N*-methylurea and *N,N'*-dimethylurea) have been employed as reaction media

111 for various organic reactions such as the hydroformylation [41], Tsuji–Trost reactions [42], and
112 Suzuki and Heck coupling [43]. However, melting points greater than 80 °C limit their scope in
113 other applications besides catalysis [38]. Recently, Fourmentin and co-workers have reported the
114 formation of room temperature liquid SUPRADES with the random methylated β -cyclodextrin
115 (RAMEB) HBA and levulinic acid HBD [38]. A 1300-fold increase in solubility of trans-anethole
116 was observed in the RAMEB:Levulinic acid SUPRADES compared to water [38]. These CD-
117 based SUPRADESs not only retain the physico-chemical properties of DESs but also possess the
118 capability of forming guest-host inclusion complexes [38], [39]. Until now, no study has reported
119 the use of cyclodextrin-containing SUPRADESs in the extraction of organic pollutants.

120 This study evaluates the performance of SUPRADESs comprised of native β -CD and its
121 derivatives (RAMEB, heptakis(2,3,6-tri-O-methyl)- β -cyclodextrin (TM- β -CD), and 2-
122 hydroxypropyl β -cyclodextrin (HP- β -CD)) as HBAs and the L-lactic acid (LcA) HBD as
123 extraction solvents in HS-SDME. Native β -CD and its derivatives are employed as additives to the
124 $[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$ and $[\text{N}_{4444}^+][\text{Cl}^-]:2\text{LcA}$ DESs and their extraction performance compared to the
125 analogous neat DESs. Neither SUPRADESs or the DESs containing the native β -CD and its
126 derivatives as additives, have been employed as solvents for HS-SDME. The 1.7% (w/v) β -CD in
127 aqueous solution (previously reported for HS-SDME of PAHs [44]) has also been examined and
128 a comparison carried out with SUPRADES and DESs. The effect of various experimental
129 parameters including microdroplet volume, stir rate, salt concentration, extraction temperature,
130 and extraction time have been evaluated and optimized. The analytical performance of the solvents
131 was evaluated through the analysis of real matrices including spiked tap water and lake water. This
132 study provides an efficient method for the extraction of organic pollutants at ultra-trace levels

133 using HS-SDME and also offers insight towards the use of CDs and their derivatives in greener
134 classes of microextraction solvents.

135 **2. Experimental**

136 **2.1 Materials**

137 Tetrabutylammonium chloride ($[N_{4444}^+][Cl^-]$, >97%), $[Ch^+][Cl^-]$ ($\geq 99\%$), urea (99%), TM-
138 β -CD ($>90\%$), HP- β -CD ($>98\%$), and acetonitrile ($\geq 99.9\%$) were obtained from MilliporeSigma
139 (St. Louis, MO). LcA (98%) was purchased from Alfa Aesar (Ward Hill, MA). Native β -CD (98%)
140 was purchased from Acros Organics (Morris Plains, NJ). RAMEB (95%) was obtained from
141 Tokyo Chemical Industry (Portland, OR).

142 Eighteen different organic pollutants including UV-filters, PAHs, alkylphenols,
143 plasticizers, and food ingredients were analyzed. The analytes acetophenone (AP, 99.0%), 2-
144 chloroaniline (2-Cla, >98.0%), benzophenone (BP, 99.0%), 2-nitronaphthalene (2-NiNap,
145 85.0%), biphenyl (BiPh, 99.5%), 3-*tert*-butylphenol (3-*t*BP, 94%), 2-ethylhexyl salicylate (ES,
146 $\geq 99.0\%$), and 1-chloro-4-nitrobenzene (CNB, 99.0%) were purchased from MilliporeSigma (St.
147 Louis, MO). The analyte 2-bromo-4-fluorobenzaldehyde (BFB, 99.0%) was purchased from
148 Oakwood Products, Inc. (West Columbia, SC). Naphthalene (Nap), fluorene (Fl), phenanthrene
149 (Phe), anthracene (Ant), and pyrene (Py), all possessing purities greater than 96.0%, and 20 mL
150 glass vials capped with screw cap and PTFE septa were purchased from Supelco (Bellefonte, PA).
151 The analytes 4-octylphenol (4-OP, 99%), 2-nitrophenol (2-NiPh, 99%), and ethyl benzoate (EB,
152 99%) were acquired from Alfa Aesar (Ward Hill, MA), Acros Organics (Morris Plains, NJ), and
153 J. T. Baker (Phillipsburg, NJ), respectively. Dipentyl phthalate (DPP, >99.0%) was obtained from
154 AccuStandard (New Haven, CT). Sodium chloride was purchased from Fisher Scientific (Fair
155 Lawn, NJ). A 25 μ L microsyringe gas tight syringe with a flat-cut needle tip used to perform

156 extractions was purchased from Hamilton (Reno, NV). Ultrapure water ($18.2\text{ M}\Omega\text{ cm}$) was
157 produced by a Milli-Q water filtration system (Millipore, Bedford, MA). Lake water was obtained
158 from Ada Hayden Lake (Ames, IA). Acronyms of all chemicals are also provided in Table S1.

159 Pure analytes were dissolved in HPLC grade acetonitrile to prepare stock standard
160 solutions with concentration values ranging from 1,000 to 20,000 mg L⁻¹, depending on the
161 solubility and final concentration of the compound. These standard solutions were stored at 4 °C
162 and used for the preparation of the stock mixture solution. The stock mixture solution was
163 prepared using the following concentration of analytes: 250 mg L⁻¹ of AP, 300 mg L⁻¹ of 2-NiPh,
164 300 mg L⁻¹ of 2-Cla, 300 mg L⁻¹ of 3-*t*BP, 250 mg L⁻¹ of BFB, 300 mg L⁻¹ of CNB,
165 125 mg L⁻¹ of EB, 300 mg L⁻¹ of BP, 250 mg L⁻¹ of 2-NiNap, 50 mg L⁻¹ of Nap, 20 mg L⁻¹ of
166 BiPh, 50 mg L⁻¹ of Fl, Phe, and Ant, 600 mg L⁻¹ of 4-OP, 500 mg L⁻¹ of Py, 1500 mg L⁻¹ of DPP,
167 and 600 mg L⁻¹ of ES. Aqueous working standard solutions were prepared by adding 20 µL of this
168 stock mixture solution to deionized water. The total acetonitrile content in the daily aqueous
169 solution was kept at a constant value of 0.2 % (v/v). The final concentration of the target analytes
170 used for optimization experiments was 500 µg L⁻¹ of AP, 600 µg L⁻¹ of 2-NiPh, 600 µg L⁻¹ of 2-
171 Cla, 600 µg L⁻¹ of 3-*t*BP, 500 µg L⁻¹ of BFB, 600 µg L⁻¹ of CNB, 250 µg L⁻¹ of EB, 600 µg L⁻¹ of
172 BP, 500 µg L⁻¹ of 2-NiNap, 100 µg L⁻¹ of Nap, 40 µg L⁻¹ of BiPh, 100 µg L⁻¹ of Fl, Phe, and Ant,
173 1200 µg L⁻¹ of 4-OP, 1000 µg L⁻¹ of Py, 3000 µg L⁻¹ of DPP, and 1200 µg L⁻¹ of ES.

174 **2.2 Instrumentation**

175 Two Shimadzu LC-20A high performance liquid chromatographs (Kyoto, Japan) were
176 used for the separation, detection, and quantification of analytes after extraction. Each liquid
177 chromatograph was equipped with a 20 µL sample loop, a DGU-20A₃ degasser, two LC-20AT
178 pumps and a SPD-20A UV-vis detector. A Restek Ultra C₁₈ column (250 mm x 4.6 mm i.d., 5 µm

179 particle size, Bellefonte, PA, USA) was used to perform all separations with mobile phases
180 comprised of acetonitrile and water. The separation gradient employed in this study started from
181 53% (v/v) acetonitrile, and was linearly increased up to 60% (v/v) over 3 min, then to 70% (v/v)
182 over the next 8 min, then to 100% acetonitrile in 8.25 min and held for 8.75 min. The flow rate
183 was kept constant at 1.00 mL min⁻¹. The analytes 3-tBP, EB, 4-OP, DPP, and ES were monitored
184 at a UV detection wavelength of 220 nm while all other analytes were analyzed at 254 nm.
185 Acquisition and processing of data was performed using Shimadzu LC solution software.

186 **2.3 Preparation of DESs**

187 All DES were prepared using similar methods to those previously reported [16], [37], [38].
188 Firstly, appropriate amounts of the HBA and HBD were weighed in a 20 mL vial containing a
189 magnetic stirrer. The vial was then heated for three hours at 80 °C, after which a uniform and
190 homogenous DES formed. The $[N_{4444}^+][Cl^-]:2LcA$ DES was prepared by mixing one mole of
191 $[N_{4444}^+][Cl^-]$ HBA with two moles of LcA, while the $[Ch^+][Cl^-]:2Urea$ DES was prepared by
192 mixing one mole of $[Ch^+][Cl^-]$ with two moles of urea. SUPRADES comprised of β-CD and LcA
193 was prepared by mixing 200 mg of β-CD and 800 mg of LcA to attain a homogenous mixture of
194 20 wt% β-CD:LcA. A similar preparation procedure was followed to obtain various wt%
195 compositions of β-CD and its derivatives with LcA for the preparation of different SUPRADES.
196 Figure S1 shows the generic structure of β-CD and its derivatives as well as the chemical structures
197 of the $[N_{4444}^+][Cl^-]:2LcA$ and $[Ch^+][Cl^-]:2Urea$ DESs. For dissolution of β-CD and its derivatives
198 in the $[N_{4444}^+][Cl^-]:2LcA$ and $[Ch^+][Cl^-]:2Urea$ DESs, the required amount of β-CD or its
199 derivatives was weighed and added to the DES and the mixture stirred for three hours at 80 °C to
200 obtain a solution of CD in the DES.

201 The water content of all solvents, provided in Table S2, was measured by a Metrohm 831
202 Karl Fischer coulometric titrator and the viscosity of all DESs, provided in Table S3, was measured
203 using a Brookfield DV1 cone and plate viscometer with a CPA-51Z cone spindle. Conventional
204 DESs examined in this study including $[N_{4444}^+][Cl^-]:2LcA$ and $[Ch^+][Cl^-]:2Urea$ were also
205 characterized by ^{13}C and 1H NMR, and all spectra are provided in the Supporting Information (SI).

206 **2.4 HS-SDME procedure**

207 A small stir bar (12 x 4.5 mm) was added to a 10 mL aqueous solution containing 30%
208 (w/v) NaCl. Then, a 20 μ L volume of the stock mixture solution was added to the vial and the vial
209 capped. A microsyringe was used to withdraw a 6.5 μ L microdroplet of solvent. A section of
210 parafilm (2 cm x 1 cm) was carefully and tightly wrapped on the bottom edge of a pipette tip and
211 then subsequently pulled onto the microsyringe needle to aid in stabilization of the microdroplet.
212 The microsyringe, equipped with the pipette tip, was then inserted into the septum of the sample
213 vial and clamped to a support to ensure consistent immersion of the syringe into the sample
214 headspace. The distance between the surface of the sample solution and the DES microdroplet was
215 kept constant at 1.5 cm. The plunger was then carefully depressed to expose a 6.5 μ L solvent
216 microdroplet to the sample vial. Magnetic stirring was then initiated at a specific stir rate. The
217 schematic diagram of the experimental setup is shown in Figure 1. Following extraction, the
218 microdroplet was retracted into the syringe and injected into the sample loop of the HPLC. To
219 avoid any carryover effects, the syringes, stir bars, and glass vials were washed and dried
220 thoroughly following every extraction. Throughout the entire study, all extractions were
221 performed in triplicate (unless otherwise specified) to study the precision and accuracy of results.

222 **Results and Discussion**

223 **3.1 Optimization of HS-SDME parameters**

224 Factors such as microdroplet volume, stir rate, ionic strength of the aqueous sample
225 solution, extraction time, amount of native β -CD or its derivatives in the CD-based SUPRADES,
226 and extraction temperature were optimized to obtain the maximum extraction efficiencies of
227 analytes. All parameters were optimized using a factor-by-factor approach. Optimization
228 conditions were evaluated for four different solvents including 20 wt% β -CD:LcA SUPRADES,
229 $[N_{4444}^+][Cl^-]$:2LcA DES, $[Ch^+][Cl^-]$:2Urea DES, and 1.7% (w/v) β -CD in aqueous solution. No
230 studies have reported the use of the 20 wt% β -CD:LcA SUPRADES and $[N_{4444}^+][Cl^-]$:2LcA DES
231 in HS-SDME. The $[Ch^+][Cl^-]$:2Urea DES and aqueous solution of native β -CD have been
232 previously used for the extraction of PAHs using HS-SDME [25], [44]. The purpose of evaluating
233 the $[Ch^+][Cl^-]$:2Urea DES and the 1.7% (w/v) β -CD in aqueous solution was to compare their
234 extraction performance with the 20 wt% β -CD:LcA SUPRADES and $[N_{4444}^+][Cl^-]$:2LcA DES
235 under the optimized conditions. Moreover, the capability of the $[Ch^+][Cl^-]$:2Urea DES and the
236 1.7% (w/v) β -CD in aqueous solution to extract other analytes besides PAHs, including
237 alkylphenols and plasticizers, was also evaluated in this study.

238 **3.1.1 Effect of microdroplet volume**

239 The microdroplet extraction solvent volume directly affects the preconcentration of
240 analytes. Generally, increasing the volume of extraction solvent results in higher analyte extraction
241 efficiencies in the HS-SDME mode [45]. Microdroplet volumes of 4.0, 5.0, and 6.5 μ L were
242 selected to evaluate the extraction efficiencies of the solvents. Native β -CD, $[Ch^+][Cl^-]$, and lactic
243 acid are all considered hygroscopic [46] and can absorb water from the sample headspace during
244 extraction. Therefore, microdroplet volumes greater than 6.5 μ L could not be employed as the
245 droplet became too large to be sustained on the microsyringe tip over prolonged extraction times.

246 Figure 2 shows the influence of microdroplet volume on the analyte peak areas using the
247 20 wt% β -CD:LcA SUPRADES extraction solvent system at an extraction time of 10 min. Results
248 for the other three solvents are shown in Figures S2-S4 of SI. Peak areas of all the analytes
249 increased as the microdroplet volume became larger. Moreover, the increase in peak areas was
250 generally higher for solvents containing native β -CD, (i.e, 20 wt% β -CD:LcA SUPRADES and
251 1.7% (w/v) β -CD in aqueous solution) when the microdroplet volume was increased from 4 μ L to
252 6.5 μ L. For example, the increase in microdroplet volume from 4 μ L to 6.5 μ L resulted in a 45.6%
253 and 32.3% increase in peak area of 2-NiPh and 2-Cla, respectively, using the 20 wt% β -CD:LcA
254 SUPRADES compared to only a 2.6% and 8.4% increase in peak area of 2-NiPh and 2-Cla,
255 respectively, using the $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES. These results indicate that the amount of extracted
256 analytes can be increased by using a larger microdroplet volume. A microdroplet volume of 6.5
257 μ L was chosen for subsequent experiments to obtain the maximum extraction efficiencies for all
258 analytes.

259 **3.1.2 Effect of stir rate**

260 Sample agitation is an important factor that affects the extraction efficiencies and
261 equilibration times of analytes by influencing their mass transfer between the aqueous solution,
262 headspace, and extraction solvent. Upon increasing the stir rate, analyte mass transfer to the
263 microdroplet can be accelerated and generally reduces the equilibration time [47]. However, too
264 vigorous agitation can cause detachment of the solvent microdroplet from the syringe whereas
265 sluggish agitation can result in the formation of a “depletion zone” around the extraction solvent
266 and decreased extraction efficiency [48].

267 In this study, the stir rate was varied from 400-1000 rpm using an extraction time of 10
268 min for all four solvents. Figure 3 demonstrates the effect of stir rate on the extraction of analytes

269 using the 20 wt% β -CD:LcA SUPRADES solvent. Results from all other solvents are presented in
270 Figures S5-S7. As expected, the extraction efficiencies of AP, BFB, CNB, EB, Nap, BiPh, Fl, Phe,
271 Ant, Py, and ES increased gradually as the stir rate was increased. However, the effect was smaller
272 for 2-NiNap, BP, 3-tBP, 2-Cla, and 2-NiPh. Among the four extraction solvents, the $[\text{Ch}^+][\text{Cl}^-]$
273]:2Urea DES exhibited the smallest increase in analyte peak areas when the stir rate was increased.

274 **3.1.3 Effect of ionic strength**

275 The addition of salt to the aqueous sample solution can be used to enhance the extraction
276 of analytes in HS-SDME since water molecules preferably solvate kosmotropic salts prompting
277 the transfer of analytes to the headspace due to their lower solubility. However, the addition of
278 salts is not always beneficial in SDME for some analytes [44], [49]. In this study, sample solutions
279 containing varying concentration of NaCl (0, 10, 20, and 30% (w/v)) were examined to investigate
280 the salting-out effect.

281 Employing the 20 wt% β -CD:LcA SUPRADES as extraction solvent, extraction
282 efficiencies of all analytes were observed to increase upon addition of salt compared to extractions
283 performed in the absence of salt, as shown in Figure 4. Figures S8-S10 show the peak areas at
284 varying salt concentrations using the other three solvents ($[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA DES, $[\text{Ch}^+][\text{Cl}^-]$
285]:2Urea DES, and 1.7% (w/v) β -CD in aqueous solution). Peak areas of smaller molecular weight
286 analytes such as AP, 2-NiPh, and 2-Cla were much higher compared to larger molecular weight
287 molecules such as the PAHs, DPP, and ES. For example, the peak areas of 3-tBP and Phe increased
288 by 66.7-fold and 1.4-fold, respectively, when the salt concentration was increased from 0 to 30%
289 (w/v). The increase in extraction efficiencies of small molecular weight analytes upon increasing
290 the salt concentration in the aqueous solution can be related to their higher polarity. For high
291 molecular weight analytes, the extraction efficiencies increased after addition of 10% (w/v) salt

292 and then remained constant up to 30% (w/v). For example, a 3.9 and 2.5-fold increase was
293 observed for BiPh and Fl, respectively, when the salt content was increased from 0 to 10% (w/v).
294 Further increasing the salt concentration to 30% (w/v) resulted in similar peak areas as that of 10%
295 (w/v) salt content. In some cases, a decrease in the extraction efficiencies was observed upon
296 increasing the salt content from 10% (w/v) to 30% (w/v). The decreased peak areas of the PAHs
297 and other large hydrophobic molecules such as 4-OP, DPP, and ES can be related to their highly
298 hydrophobic character and their interaction with the glass vial when their solubility decreases in
299 the aqueous solution [50]. Moreover, the higher ionic strength increases the viscosity of the sample
300 solution and can decrease the diffusion of large molecular weight analytes, resulting in a decrease
301 in their extraction efficiency [25], [51]. Overall, the decrease in extraction efficiencies of
302 hydrophobic high molecular weight analytes was much smaller compared to the increase in
303 extraction efficiencies of polar analytes; therefore, a salt concentration of 30% (w/v) was used for
304 further experiments.

305 **3.1.4 CD composition in SUPRADESs**

306 Comparing the extraction behavior of SUPRADESs comprised of different β -CD
307 derivatives (native β -CD, RAMEB, TM- β -CD, and HP- β -CD) as HBAs mixed with the LcA HBD
308 are among the main purposes of this study. The effect of β -CD derivative concentration within
309 each SUPRADES was also examined. The amount of native β -CD in the native β -CD:LcA
310 SUPRADES was increased from 10-30 wt% to evaluate its effect on extraction performance.
311 SUPRADESs comprised of the native β -CD HBA and LcA HBD containing less than 10 wt% of
312 native β -CD were observed to be solids at room temperature; moreover, SUPRADES containing
313 greater than 30 wt% of native β -CD were too viscous to be withdrawn into the microsyringe. Figure
314 S11 shows the extraction performance of SUPRADES comprised of the native β -CD HBA and the

315 LcA HBD where the concentration of native β -CD in the SUPRADES was increased gradually
316 (10, 12.5, 15, 17.5, 20, 30 wt%). The SUPRADES containing 20 wt% native β -CD provided
317 superior extraction of BFB, EB, Nap, BiPh, and Ant compared to other concentrations of native β -
318 CD.

319 Different derivatives of β -CD with varying degrees of substitution (DS) including RAMEB
320 (DS = 12.9, R = -H or -CH₃) [39], HP- β -CD (DS = 5.6, R = -H or -CH₂-CH(OH)-CH₃) [39], and
321 TM- β -CD (DS = 21, R = -CH₃) [52] employed as HBAs are shown in Figure S1. SUPRADESs
322 were prepared by mixing 20 wt% of a β -CD derivative with LcA HBD and their extraction
323 performance evaluated. Figure 5 shows an extraction performance comparison for SUPRADESs
324 comprised of various CD-derivatives. The 20 wt% native β -CD:LcA SUPRADES provided the
325 highest extraction of AP, 2-NiPh, BFB, EB, 2-NiNap, Nap, BiPh, Fl, Phe, Ant, and ES. The
326 extraction of other analytes using the 20 wt% native β -CD:LcA SUPRADES was similar to the
327 RAMEB and HP- β -CD-based SUPRADESs. Overall, the SUPRADES comprised of the TM- β -
328 CD HBA provided the lowest extraction of analytes compared to native β -CD, RAMEB, and HP-
329 β -CD. Based on these results, the 20 wt% native β -CD:LcA SUPRADES was chosen as the solvent
330 for subsequent studies.

331 The dissolution of CDs in the $[N_{4444}^+][Cl^-]:2LcA$ and $[Ch^+][Cl^-]:2Urea$ DESs and the use
332 of these solvents was also investigated. It has been previously reported that native β -CD is highly
333 soluble in the $[Ch^+][Cl^-]:2Urea$ DES [37], therefore, 1.7, 10, 20, and 30 wt% of native β -CD was
334 dissolved in the $[Ch^+][Cl^-]:2Urea$ DES and used as extraction solvent. Figure 6 shows a significant
335 increase in the peak areas of AP, 2-Cla, BFB, CNB, EB, Nap, BiPh, Fl, and ES upon increasing
336 the native β -CD concentration to 20 wt% in the $[Ch^+][Cl^-]:2Urea$ DES while the extraction
337 efficiencies of other analytes were observed to be similar to the neat $[Ch^+][Cl^-]:2Urea$ DES. For

338 example, the peak areas of BiPh and ES increased by 11.2 and 31.2-fold, respectively, while that
339 of Ant and Py increased by 1.1 and 1.3-fold, respectively, upon increasing the native β -CD
340 concentration from 0 to 20 wt% in the $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES. The peak areas of analytes did not
341 change upon further increasing the β -CD concentration to 30 wt% in the $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES.

342 The dissolution of other CD-derivatives was also evaluated in the $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES.
343 RAMEB and TM- β -CD were found to be insoluble in the neat $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES, but HP- β -
344 CD could be solubilized at levels up to 20 wt%. Its extraction performance was evaluated and
345 compared with the 20 wt% native β -CD solution in $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES and the neat $[\text{Ch}^+][\text{Cl}^-]$
346]:2Urea DES, as shown in Figure S12. The solution of 20 wt% HP- β -CD in $[\text{Ch}^+][\text{Cl}^-]$:2Urea
347 resulted in similar peak areas as that of the solution of 20 wt% native β -CD in $[\text{Ch}^+][\text{Cl}^-]$:2Urea
348 for most of the analytes except BFB and CNB, whose peak areas were smaller in the solution of
349 20 wt% HP- β -CD in $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES. Due to the significant increase in extraction
350 efficiencies of target analytes by the solution of 20 wt% native β -CD in $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES, it
351 was employed as extraction solvent for further experiments.

352 Neither the native β -CD or TM- β -CD were found to be soluble in the $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA
353 DES. HP- β -CD was observed to be soluble at 20 wt% in the $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA DES and RAMEB
354 was found to be soluble at 5 wt% in the $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA DES; both of these solvents were
355 examined and the resulting analyte extraction efficiencies are shown in Figure S13. The extraction
356 performance of the 5 wt% RAMEB:LcA SUPRADES was found to be similar to the neat
357 $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA DES. However, the 20 wt% HP- β -CD:LcA SUPRADES provided better
358 extraction of 3-tBP and 2-NiPh and peak areas were lower in the case of BFB, EB, Nap, BiPh, and
359 Ant compared to the neat $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA DES. Peaks areas of the other analytes were observed
360 to be similar for both the solution of 20 wt% HP- β -CD in $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA and neat $[\text{N}_{4444}^+][\text{Cl}^-]$

361]:2LcA DES. These results show that the effect of CD on the extraction performance of DESs is
362 dependent upon the HBA and HBD of the DESs.

363 **3.1.5 Effect of extraction temperature**

364 Temperature plays a very important role in HS-SDME as it affects the kinetic and
365 thermodynamic parameters of the extraction process. Increasing the extraction temperature
366 typically results in enhanced Henry's constant values and diffusion coefficients, leading to an
367 increased concentration of analytes in the headspace and improved analyte mass transfer into the
368 solvent microdroplet [53], [54].

369 Extraction efficiencies of the target analytes were studied by performing the extractions at
370 20 °C and 40 °C. As mentioned previously, the microdroplet volume increases over time due to
371 the hygroscopic nature of the studied solvents. Although the microdroplets were stable for 2 hours
372 at 20 °C, they became dislodged from the microsyringe within the first hour of extraction at 40 °C.
373 To overcome this challenge, a 2 cm x 1 cm segment of parafilm was wrapped around the end of
374 the pipette tip, resulting in an increased contact surface area of the syringe needle and permitting
375 stabilization of larger microdroplet volumes. Microdroplets up to 15 µL were observed to be stable
376 using this modification. An extraction temperature of 60 °C was also investigated; however, the
377 microdroplets became unstable at approximately 75 min, even when employing the modified
378 syringe tip.

379 Figure 7 shows a comparison of analyte peak areas at 20 °C and 40 °C for the 20 wt% β -
380 CD:LcA SUPRADES using an extraction time of 90 min, salt concentration of 30 % (w/v), and
381 stir rate of 1000 rpm. Results for other solvents are shown in Figures S14-S16. Peak areas for most
382 of the analytes increased with an increase in temperature from 20 °C to 40 °C. The peak area of 4-
383 OP increased by 19.1-fold when the temperature was increased from 20 °C to 40 °C. However, a

384 decrease in peak areas for BFB, EB, Nap, BiPh, and Fl was observed with the same temperature
385 increase using the 20 wt% β -CD: LcA SUPRADES. Similar peak areas for 2-NiPh and CNB were
386 measured at 20 °C and 40 °C. A significant increase in peak areas for most of the analytes was
387 observed when the $[N_{4444}^+][Cl^-]$:2LcA DES was employed as the extraction solvent. The extraction
388 efficiency of BFB did not change with increasing temperature, while EB, Nap, and BiPh were
389 extracted less with an increase in temperature, as shown in Figure S14. In the case of the $[Ch^+][Cl^-]$
390]:2Urea DES, the increase in peak areas at 40 °C ranged from 1.1 to 4.4-fold for most analytes
391 compared to 20 °C, except for EB, Nap, BiPh, Fl, and Ant where a decrease in peak areas was
392 observed at 40 °C. Increased extraction temperatures were least beneficial for the 1.7% (w/v) β -
393 CD in aqueous solution, where the peak areas of 9 analytes increased and the other 9 analytes
394 decreased. However, as demonstrated in Figure S15, the extraction efficiencies of high molecular
395 weight analytes such as 4-OP, Py, DPP, and ES at 20 °C was much smaller and increased at 40 °C.
396 To obtain reasonable extraction of analytes, 40 °C was chosen as an extraction temperature for the
397 1.7% (w/v) β -CD in aqueous solution solvent. For all of the extraction solvents, a considerable
398 increase in extraction efficiencies was observed at 40 °C for analytes that possess high molecular
399 weight and low vapor pressure; therefore, 40 °C was selected for the subsequent studies.

400 **3.1.6 Effect of extraction time**

401 Typically, the amount of analyte extracted increases at longer extraction times when
402 equilibrium is attained [55]. Figure 8 shows the sorption-time profile for all analytes at 40 °C using
403 the 20 wt% β -CD:LcA SUPRADES. Sorption-time profiles generated for all other solvents at 20
404 °C and 40 °C are presented in Figures S17-S24. A time-course from 10, 30, 60, 90, 120, and 150
405 min was used to construct the sorption-time profiles in the case of 20 wt% β -CD:LcA and
406 $[N_{4444}^+][Cl^-]$:2LcA DESs. For the 1.7% (w/v) β -CD in aqueous solution and the $[Ch^+][Cl^-]$:2Urea

407 DES, extraction times up to 120 minutes were evaluated. At 150 minutes, the microdroplet volume
408 for the $[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$ DES was too large and unstable whereas the microdroplet for the 1.7%
409 (w/v) β -CD in aqueous solution became too small to recover and attain reproducible results. At 20
410 $^{\circ}\text{C}$, most of the analytes did not equilibrate even after extraction times of 150 minutes; therefore,
411 only sorption-time profiles at 40 $^{\circ}\text{C}$ were evaluated.

412 Sorption-time profiles at 40 $^{\circ}\text{C}$ revealed that 2-NiNap, BP, Phe, Ant, 4-OP, Py, DPP, and
413 ES reached equilibrium at 120 min using the 20 wt% β -CD:LcA SUPRADES solvent. The increase
414 in analyte peak area from 90 min to 120 min was much lower than the increase from 60 to 90 min.
415 As an example, the extraction of Phe and Ant increased by 43.8% and 40.6%, respectively, when
416 the extraction time was increased from 60 min to 90 min, but increased by only 11.9% and 5.6%,
417 respectively, when the extraction time was increased from 90 min to 120 min. The analyte 3-tBP,
418 which exhibited the highest peak area among all of the analytes, did not equilibrate until 150
419 minutes. An equilibration time of 90 min was observed for AP and 2-Cla, 30 min for BFB, CNB,
420 and Fl, and 10 min for Nap, BiPh, and EB, as shown in Figure 8. A decrease in peak areas was
421 observed for analytes that possess high vapor pressure and attain equilibrium within 30 min.
422 Similar trends were observed for the $[\text{N}_{4444}^+][\text{Cl}^-]:2\text{LcA}$ DES, as shown in Figure S21. To avoid
423 excessively long extraction times and loss of extraction efficiencies for analytes that rapidly attain
424 equilibrium, 90 min was selected as the optimum extraction time for the 20 wt% β -CD:LcA
425 SUPRADES and $[\text{N}_{4444}^+][\text{Cl}^-]:2\text{LcA}$ DES.

426 In the case of the 1.7% (w/v) β -CD in aqueous solution and $[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$ DES,
427 maximum extraction efficiencies for most analytes were obtained at 60 min (see Figures S22 and
428 S23); therefore, this time was selected for these solvents. For the solution of 20 wt% β -CD in
429 $[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$, most of the analytes equilibrated at 90 minutes, except for ES which did not

430 reach a plateau until 120 minutes, as shown in Figure S24. Additionally, no decrease in extraction
431 efficiencies was observed for EB, Nap, and BiPh; therefore, 90 minutes was also selected as the
432 optimal extraction time for this solvent.

433 **3.2 Analytical figures of merit**

434 The developed extraction method was used to determine the analytical figures of merit
435 under optimum conditions. Calibration curves for each analyte were constructed in ultrapure water
436 using the two best performing solvents, namely, 20 wt% β -CD:LcA SUPRADES and $[N_{4444}^+][Cl^-]$
437]:2LcA DES at an extraction time of 90 min, 40 °C temperature, 30% (w/v) salt concentration, 6.5
438 μ L microdroplet volume, and stir rate of 1000 rpm. Figures of merit including the slope and error
439 of calibration of curve, standard deviation of regression ($S_{y/x}$), correlation coefficient (R), limit of
440 detection (LOD), and limit of quantification (LOQ) are listed in Tables 1 and 2 for 20 wt% β -
441 CD:LcA SUPRADES and $[N_{4444}^+][Cl^-]$:2LcA DES, respectively.

442 Calibration curves for all analytes demonstrated good linearity with correlation coefficients
443 ranging from 0.983-0.999. Higher calibration slopes were obtained for the $[N_{4444}^+][Cl^-]$:2LcA DES
444 compared to the 20 wt% β -CD:LcA SUPRADES for most of the analytes except 2-Cla, 3-tBP, and
445 4-OP, where an opposite trend was observed. The enrichment factor (E_F) and relative standard
446 deviation (RSD) was calculated by performing triplicates of extractions using the 20 wt% β -
447 CD:LcA SUPRADES, the $[N_{4444}^+][Cl^-]$:2LcA DES, the solution of 20 wt% β -CD in $[Ch^+][Cl^-]$
448]:2Urea DES, 1.7% (w/v) β -CD in aqueous solution, and $[Ch^+][Cl^-]$:2Urea DES, as shown in Table
449 3.

450 The reproducibility of method, determined by RSD, ranged from 2.3% to 9.9% for the 20
451 wt% β -CD:LcA SUPRADES, 2.1%-7.2% for the $[N_{4444}^+][Cl^-]$:2LcA DES, 4.2%-11.6% for the
452 solution of 20 wt% β -CD in $[Ch^+][Cl^-]$:2Urea DES, 2.8%-16.5% for the 1.7% (w/v) β -CD in

453 aqueous solution, and 0.6%-14.5% for the $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES. The enrichment factor (E_F) was
454 used to evaluate and compare the extraction performance of different solvents and was calculated
455 using equation 1:

$$456 E_F = \frac{\text{Concentration of analyte in the solvent microdroplet}}{\text{Initial concentration of analyte in the sample}} \quad (1)$$

457 where the concentration of analyte in the solvent microdroplet was calculated from the calibration
458 curve obtained by direct injection of analyte standard solutions in acetonitrile (Tables S4 and S5)
459 and the solvent microdroplet volume of 6.5 μL .

460 As shown in Table 3, the $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA DES provided the highest E_F for most analytes
461 including AP, 2-NiPh, BFB, CNB, EB, BP, 2-NiNap, Nap, BiPh, Fl, Phe, Ant, DPP, and ES. The
462 20 wt% β -CD:LcA SUPRADES provided the highest E_F for 2-Cla, 3-tBP, 4-OP, and Py. Overall,
463 under the optimized conditions, the 20 wt% β -CD:LcA SUPRADES, $[\text{N}_{4444}^+][\text{Cl}^-]$:2LcA DES, and
464 solution of 20 wt% β -CD in $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES provided higher enrichment factors than
465 previously employed solvents for HS-SDME, namely, 1.7% (w/v) β -CD in aqueous solution and
466 the $[\text{Ch}^+][\text{Cl}^-]$:2Urea DES [25], [44].

467 3.3 Analysis of real matrices

468 The optimized HS-SDME method was employed for the analysis of real water samples,
469 including lake water and tap water. The NaCl content of the real matrices was adjusted to 30%
470 (w/v) based upon the aforementioned experimental results. No analytes were detected in the lake
471 and tap water samples. Therefore, spiked samples were analyzed to examine the presence of any
472 matrix effects for the determination of analytes. Matrix effects originate from components of the
473 sample other than the target analytes that can interfere in the quantitative determination of analytes
474 [56]. Relative recoveries of analytes are used to evaluate the effect of sample matrix on the
475 extraction method. Relative recoveries were calculated as the ratio of the peak area of extracted

476 analyte from the sample matrix and predicted peak area obtained from the calibration curves of the
477 overall method (Table 2 and 3). Generally, relative recoveries within the range of 80%-120% are
478 deemed acceptable and indicate that matrix effects do not give rise to significant error in analyte
479 quantification [57], [58].

480 Table 4 shows the obtained reproducibility (expressed as RSD) and relative recoveries
481 (RR) of the target analytes in the lake and tap water using the 20 wt% β -CD:LcA SUPRADES and
482 the $[N_{4444}^+][Cl^-]:2LcA$ DES. The relative recoveries ranged from 95.1%-119.7% and 92.4%-
483 112.7% for the lake and tap water, respectively, using the 20 wt% β -CD:LcA SUPRADES. The
484 RSD values were observed to be lower than 19.2% and 16.1% for all analytes in the lake water
485 and tap water, respectively, using this solvent. Employing the $[N_{4444}^+][Cl^-]:2LcA$ DES extraction
486 solvent, the relative recoveries ranged from 83.7%-113.9% and 95.2%-114.6% in the lake water
487 and tap water, respectively. RSD values lower than 13.6% were obtained for both real matrices
488 using the $[N_{4444}^+][Cl^-]:2LcA$ DES. The results show that the SUPRADES and DES employed in
489 this study are tolerant to the real matrices and can be used for extraction of analytes in real samples.

490 **Conclusions**

491 For the first time, SUPRADES comprised of β -CD and its derivatives were employed as
492 extraction solvents in HS-SDME for the extraction of organic pollutants. The extraction
493 performance of SUPRADES was compared with neat DESs ($[N_{4444}^+][Cl^-]:2LcA$ and $[Ch^+][Cl^-]$
494 $]:2Urea$) as well as with 1.7% (w/v) β -CD in aqueous solution. Experimental parameters including
495 microdroplet volume, stir rate, salt concentration, extraction temperature, and extraction time were
496 optimized to attain the maximum extraction efficiencies for target analytes. The addition of native
497 β -CD and its derivatives to the neat DESs was also studied.

498 Among the evaluated extraction solvents, the 20 wt% β -CD:LcA SUPRADES and the
499 $[N_{4444}^+][Cl^-]$:2LcA DES provided the highest enrichment factors for the target analytes. The
500 extraction efficiency of the $[Ch^+][Cl^-]$:2Urea DES increased upon addition of the 20 wt% native
501 β -CD. The developed HS-SDME method was validated for the 20 wt% β -CD:LcA SUPRADES
502 and the $[N_{4444}^+][Cl^-]$:2LcA DES. High linearity ($R>0.983$) and low LODs ($<14.6 \mu\text{g L}^{-1}$) were
503 attained for all analytes. The developed method was also applied for analysis of real matrices
504 including lake water and tap water. RSD values lower than 19.2% were obtained, in all cases. No
505 matrix effects were observed in the lake water and the tap water, with relative recovery values
506 ranging from 83.7%-119.7%.

507 This study demonstrates that SUPRADES comprised β -CD-based HBAs can be easily
508 employed as selective solvents in HS-SDME. No significant variation in analyte extraction
509 efficiencies were observed when SUPRADES comprised of different derivatives of β -CD
510 (possessing varying degree of substitution) were employed as extraction solvents. This study
511 shows that the extraction behavior of DESs can be modulated by tailoring their HBAs and HBDs
512 and that derivatized CDs can serve as beneficial HBAs for imparting selectivity into the solvent.

513 In future studies, the effect of CD cavity size on the extraction selectivity of SUPRADESs
514 can be evaluated by using α -CD and γ -CDs in the design and preparation of SUPRADESs.
515 Moreover, the application of SUPRADESs to other microextraction techniques that can exploit
516 their physico-chemical and solvent properties will be explored.

517 **Acknowledgements**

518 This research is supported by the Chemical Measurement and Imaging Program at the National
519 Science Foundation (Grant number CHE-1709372) and the U.S. Department of Energy, Office of
520 Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the

521 Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State
522 University under contract DE-AC02-07CH11358. The authors acknowledge Dr. María J. Trujillo-
523 Rodríguez for her assistance in this study.

524 **Declaration of competing Interest**

525 The authors declare no conflicts of interest.

526 **Supporting Information.** Water content, viscosity of DESs, acronyms of all chemicals, figures
527 of merit of the calibration curves, chemical structures of CDs and DESs, results of the
528 optimization of experimental parameters for all extraction solvents, ^1H and ^{13}C NMR spectra for
529 $[\text{N}_{4444}^+][\text{Cl}^-]:2\text{LcA}$ and $[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$ DESs.

530 **References**

531 [1] J. Pawliszyn, Sample preparation: Quo vadis?, *Anal. Chem.* 75 (2003) 2543–2558.
532 <https://doi.org/10.1021/ac034094h>.

533 [2] J. Pawliszyn, S. Pedersen-Bjergaard, Analytical Microextraction: Current Status and
534 Future Trends, *J. Chromatogr. Sci.* 44 (2006) 291–307.
535 <https://doi.org/10.1093/chromsci/44.6.291>.

536 [3] F. Pena-Pereira, I. Lavilla, C. Bendicho, Miniaturized preconcentration methods based on
537 liquid-liquid extraction and their application in inorganic ultratrace analysis and
538 speciation: A review, *Spectrochim. Acta - Part B At. Spectrosc.* 64 (2009) 1–15.
539 <https://doi.org/10.1016/j.sab.2008.10.042>.

540 [4] C.L. Arthur, J. Pawliszyn, Solid Phase Microextraction with Thermal Desorption Using
541 Fused Silica Optical Fibers, *Anal. Chem.* 62 (1990) 2145–2148.
542 <https://doi.org/10.1021/ac00218a019>.

543 [5] M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani,
544 Determination of organic compounds in water using dispersive liquid-liquid
545 microextraction, *J. Chromatogr. A.* 1116 (2006) 1–9.
546 <https://doi.org/10.1016/j.chroma.2006.03.007>.

547 [6] L. Zhao, H.K. Lee, Liquid-phase microextraction combined with hollow fiber as a sample
548 preparation technique prior to gas chromatography/mass spectrometry, *Anal. Chem.* 74
549 (2002) 2486–2492. <https://doi.org/10.1021/ac011124c>.

550 [7] H. Liu, P.K. Dasgupta, Analytical chemistry in a drop. solvent extraction in a microdrop,

Anal. Chem. 68 (1996) 1817–1821. <https://doi.org/10.1021/ac960145h>.

[8] M.A. Jeannot, F.F. Cantwell, Mass Transfer Characteristics of Solvent Extraction into a Single Drop at the Tip of a Syringe Needle, Anal. Chem. 69 (1997) 235–239. <https://doi.org/10.1021/ac960814r>.

[9] A.L. Theis, A.J. Waldack, S.M. Hansen, M.A. Jeannot, Headspace solvent microextraction, Anal. Chem. 73 (2001) 5651–5654. <https://doi.org/10.1021/ac015569c>.

[10] E. Psillakis, N. Kalogerakis, Developments in single-drop microextraction, TrAC - Trends Anal. Chem. 21 (2002) 54–64. [https://doi.org/10.1016/s0165-9936\(01\)00126-1](https://doi.org/10.1016/s0165-9936(01)00126-1).

[11] L. Xu, C. Basheer, H.K. Lee, Developments in single-drop microextraction, J. Chromatogr. A. 1152 (2007) 184–192. <https://doi.org/10.1016/j.chroma.2006.10.073>.

[12] M. Havlikova, R. Cabala, V. Pacakova, M. Bursova, Z. Bosakova, Critical evaluation of microextraction pretreatment techniques – Part 1: Single drop and sorbent-based techniques, J. Sep. Sci. 42 (2019) 273–284. <https://doi.org/10.1002/jssc.201800902>.

[13] M.A. Jeannot, A. Przyjazny, J.M. Kokosa, Single drop microextraction-Development, applications and future trends, J. Chromatogr. A. 1217 (2010) 2326–2336. <https://doi.org/10.1016/j.chroma.2009.10.089>.

[14] W. Wardencki, J. Curyło, J. Namieśnik, Trends in solventless sample preparation techniques for environmental analysis, J. Biochem. Biophys. Methods. 70 (2007) 275–288. <https://doi.org/10.1016/j.jbbm.2006.07.004>.

[15] T.D. Ho, C. Zhang, L.W. Hantao, J.L. Anderson, Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives, Anal. Chem. 86 (2013) 262–285.

572 https://doi.org/10.1021/AC4035554.

573 [16] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent
574 properties of choline chloride/urea mixtures, *Chem. Commun.* 9 (2003) 70–71.
575 https://doi.org/10.1039/b210714g.

576 [17] R. Craveiro, I. Aroso, V. Flammia, T. Carvalho, M.T. Viciosa, M. Dionísio, S. Barreiros,
577 R.L. Reis, A.R.C. Duarte, A. Paiva, Properties and thermal behavior of natural deep
578 eutectic solvents, *J. Mol. Liq.* 215 (2016) 534–540.
579 https://doi.org/10.1016/j.molliq.2016.01.038.

580 [18] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep
581 eutectic solvents - Solvents for the 21st century, *ACS Sustain. Chem. Eng.* 2 (2014) 1063–
582 1071. https://doi.org/10.1021/sc500096j.

583 [19] F. Aydin, E. Yilmaz, M. Soylak, Vortex assisted deep eutectic solvent (DES)-
584 emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea
585 samples, *Food Chem.* 243 (2018) 442–447.
586 https://doi.org/10.1016/j.foodchem.2017.09.154.

587 [20] R. Wang, W. Li, Z. Chen, Solid phase microextraction with poly(deep eutectic solvent)
588 monolithic column online coupled to HPLC for determination of non-steroidal anti-
589 inflammatory drugs, *Anal. Chim. Acta.* 1018 (2018) 111–118.
590 https://doi.org/10.1016/j.aca.2018.02.024.

591 [21] J. Chen, M. Liu, Q. Wang, H. Du, L. Zhang, Deep eutectic Solvent-Based Microwave-
592 Assisted method for extraction of hydrophilic and hydrophobic components from radix
593 *salviae miltiorrhizae*, *Molecules.* 21 (2016) 1383.

594 https://doi.org/10.3390/molecules21101383.

595 [22] T. Khezeli, A. Daneshfar, R. Sahraei, A green ultrasonic-assisted liquid-liquid
596 microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic,
597 caffeoic and cinnamic acid from olive, almond, sesame and cinnamon oil, *Talanta*. 150
598 (2016) 577–585. https://doi.org/10.1016/j.talanta.2015.12.077.

599 [23] S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Hydrophobic Deep Eutectic Solvents in
600 Developing Microextraction Methods Based on Solidification of Floating Drop:
601 Application to the Trace HPLC/FLD Determination of PAHs, *Chromatographia*. 81
602 (2018) 1201–1211. https://doi.org/10.1007/s10337-018-3548-7.

603 [24] Y. Dai, E. Rozema, R. Verpoorte, Y.H. Choi, Application of natural deep eutectic solvents
604 to the extraction of anthocyanins from *Catharanthus roseus* with high extractability and
605 stability replacing conventional organic solvents, *J. Chromatogr. A*. 1434 (2016) 50–56.
606 https://doi.org/10.1016/j.chroma.2016.01.037.

607 [25] A. Mehravar, A. Feizbakhsh, A.H.M. Sarafi, E. Konoz, H. Faraji, Deep eutectic solvent-
608 based headspace single-drop microextraction of polycyclic aromatic hydrocarbons in
609 aqueous samples, *J. Chromatogr. A*. 1632 (2020) 461618.
610 https://doi.org/10.1016/j.chroma.2020.461618.

611 [26] Z. Triaux, H. Petitjean, E. Marchioni, M. Boltoeva, C. Marcic, Deep eutectic solvent-
612 based headspace single-drop microextraction for the quantification of terpenes in spices,
613 *Anal. Bioanal. Chem.* 412 (2020) 933–948. https://doi.org/10.1007/s00216-019-02317-9.

614 [27] S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Enhanced headspace single drop
615 microextraction method using deep eutectic solvent based magnetic bucky gels:

616 Application to the determination of volatile aromatic hydrocarbons in water and urine
617 samples, *J. Sep. Sci.* 41 (2018) 966–974. <https://doi.org/10.1002/jssc.201700807>.

618 [28] M.M. Abolghasemi, M. Piryaei, R.M. Imani, Deep eutectic solvents as extraction phase in
619 head-space single-drop microextraction for determination of pesticides in fruit juice and
620 vegetable samples, *Microchem. J.* 158 (2020) 105041.
621 <https://doi.org/10.1016/j.microc.2020.105041>.

622 [29] B. Tang, W. Bi, H. Zhang, K.H. Row, Deep eutectic solvent-based HS-SME coupled with
623 GC for the analysis of bioactive terpenoids in *Chamaecyparis obtusa* leaves,
624 *Chromatographia*. 77 (2014) 373–377. <https://doi.org/10.1007/s10337-013-2607-3>.

625 [30] W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S.M.
626 Smith, T. Takaha, Structures of the common cyclodextrins and their larger analogues -
627 beyond the doughnut, *Chem. Rev.* 98 (1998) 1787–1802.
628 <https://doi.org/10.1021/cr9700181>.

629 [31] A. Ciobanu, D. Landy, S. Fourmentin, Complexation efficiency of cyclodextrins for
630 volatile flavor compounds, *Food Res. Int.* 53 (2013) 110–114.
631 <https://doi.org/10.1016/j.foodres.2013.03.048>.

632 [32] S.-L. Chang, A.K. Banga, Transdermal Iontophoretic Delivery of Hydrocortisone from
633 Cyclodextrin Solutions, *J. Pharm. Pharmacol.* 50 (2011) 635–640.
634 <https://doi.org/10.1111/J.2042-7158.1998.TB06897.X>.

635 [33] B. ME, L. T, Cyclodextrins as pharmaceutical solubilizers., *Adv. Drug Deliv. Rev.* 59
636 (2007) 645–666. <https://doi.org/10.1016/J.ADDR.2007.05.012>.

637 [34] J. Potier, S. Menuel, D. Fournier, S. Fourmentin, P. Woisel, E. Monflier, F. Hapiot,
638 Cooperativity in aqueous organometallic catalysis: Contribution of cyclodextrin-
639 substituted polymers, *ACS Catal.* 2 (2012) 1417–1420. <https://doi.org/10.1021/cs300254t>.

640 [35] I. Fejős, E. Kalydi, M. Malanga, G. Benkovics, S. Béni, Single isomer cyclodextrins as
641 chiral selectors in capillary electrophoresis, *J. Chromatogr. A.* 1627 (2020) 461375.
642 <https://doi.org/10.1016/J.CHROMA.2020.461375>.

643 [36] J.A. McCune, S. Kunz, M. Olesińska, O.A. Scherman, DESolution of CD and CB
644 Macrocycles, *Chem. - A Eur. J.* 23 (2017) 8601–8604.
645 <https://doi.org/10.1002/chem.201701275>.

646 [37] T. Moufawad, L. Moura, M. Ferreira, H. Bricout, S. Tilloy, E. Monflier, M. Costa Gomes,
647 D. Landy, S. Fourmentin, First Evidence of Cyclodextrin Inclusion Complexes in a Deep
648 Eutectic Solvent, *ACS Sustain. Chem. Eng.* 7 (2019) 6345–6351.
649 <https://doi.org/10.1021/acssuschemeng.9b00044>.

650 [38] T. El Achkar, T. Moufawad, S. Ruellan, D. Landy, H. Greige-Gerges, S. Fourmentin,
651 Cyclodextrins: From solute to solvent, *Chem. Commun.* 56 (2020) 3385–3388.
652 <https://doi.org/10.1039/d0cc00460j>.

653 [39] T. El Achkar, L. Moura, T. Moufawad, S. Ruellan, S. Panda, S. Longuemart, F.X.
654 Legrand, M. Costa Gomes, D. Landy, H. Greige-Gerges, S. Fourmentin, New generation
655 of supramolecular mixtures: Characterization and solubilization studies, *Int. J. Pharm.* 584
656 (2020) 119443. <https://doi.org/10.1016/j.ijpharm.2020.119443>.

657 [40] C. Georgantzi, A.E. Lioliou, N. Paterakis, D.P. Makris, Combination of lactic acid-based
658 deep eutectic solvents (DES) with β -cyclodextrin: Performance screening using

659 ultrasound-assisted extraction of polyphenols from selected native Greek medicinal plants,
660 *Agronomy*. 7 (2017) 54. <https://doi.org/10.3390/agronomy7030054>.

661 [41] M. Ferreira, F. Jérôme, H. Bricout, S. Menuel, D. Landy, S. Fourmentin, S. Tilloy, E.
662 Monflier, Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures
663 based on various cyclodextrins and N,N'-dimethylurea, *Catal. Commun.* 63 (2015) 62–65.
664 <https://doi.org/10.1016/j.catcom.2014.11.001>.

665 [42] F. Jérôme, M. Ferreira, H. Bricout, S. Menuel, E. Monflier, S. Tilloy, Low melting
666 mixtures based on β -cyclodextrin derivatives and N,N'-dimethylurea as solvents for
667 sustainable catalytic processes, *Green Chem.* 16 (2014) 3876–3880.
668 <https://doi.org/10.1039/c4gc00591k>.

669 [43] X. Zhao, X. Liu, M. Lu, β -cyclodextrin-capped palladium nanoparticle-catalyzed ligand-
670 free Suzuki and Heck couplings in low-melting β -cyclodextrin/NMU mixtures, *Appl.*
671 *Organomet. Chem.* 28 (2014) 635–640. <https://doi.org/10.1002/aoc.3173>.

672 [44] Y. Wu, L. Xia, R. Chen, B. Hu, Headspace single drop microextraction combined with
673 HPLC for the determination of trace polycyclic aromatic hydrocarbons in environmental
674 samples, *Talanta*. 74 (2008) 470–477. <https://doi.org/10.1016/j.talanta.2007.05.057>.

675 [45] A. Przyjazny, J.M. Kokosa, Analytical characteristics of the determination of benzene,
676 toluene, ethylbenzene and xylenes in water by headspace solvent microextraction, *J.*
677 *Chromatogr. A*. 977 (2002) 143–153. [https://doi.org/10.1016/S0021-9673\(02\)01422-X](https://doi.org/10.1016/S0021-9673(02)01422-X).

678 [46] P.J. Smith, C.B. Arroyo, F.L. Hernandez, J.C. Goeltz, Ternary Deep Eutectic Solvent
679 Behavior of Water and Urea–Choline Chloride Mixtures, *J. Phys. Chem. B*. 123 (2019)
680 5302–5306. <https://doi.org/10.1021/ACS.JPCB.8B12322>.

681 [47] A. Tankeviciute, R. Kazlauskas, V. Vickackaite, Headspace extraction of alcohols into a
682 single drop, *Analyst*. 126 (2001) 1674–1677. <https://doi.org/10.1039/B103493F>.

683 [48] Z. Mester, R. Sturgeon, J. Pawliszyn, Solid phase microextraction as a tool for trace
684 element speciation, *Spectrochim. Acta Part B At. Spectrosc.* 56 (2001) 233–260.
685 [https://doi.org/10.1016/S0584-8547\(00\)00304-9](https://doi.org/10.1016/S0584-8547(00)00304-9).

686 [49] C. Yao, P. Twu, J.L. Anderson, Headspace Single Drop Microextraction Using Micellar
687 Ionic Liquid Extraction Solvents, *Chromatogr. 2010* 725. 72 (2010) 393–402.
688 <https://doi.org/10.1365/S10337-010-1675-X>.

689 [50] C. Yao, W.R. Pitner, J.L. Anderson, Ionic liquids containing the
690 tris(pentafluoroethyl)trifluorophosphate anion: A new class of highly selective and ultra
691 hydrophobic solvents for the extraction of polycyclic aromatic hydrocarbons using single
692 drop microextraction, *Anal. Chem.* 81 (2009) 5054–5063.
693 <https://doi.org/10.1021/ac900719m>.

694 [51] X. Sun, J. Tan, H. Ding, X. Tan, J. Xing, L. Xing, Y. Zhai, Z. Li, Detection of Polycyclic
695 Aromatic Hydrocarbons in Water Samples by Annular Platform-Supported Ionic Liquid-
696 Based Headspace Liquid-Phase Microextraction, *J. Anal. Methods Chem.* 2018 (2018).
697 <https://doi.org/10.1155/2018/3765682>.

698 [52] T. Kiss, F. Fenyvesi, N. Pasztor, P. Feher, J. Varadi, R. Kocsan, L. Szente, E. Fenyvesi, G.
699 Szabo, M. Vecsernyes, I. Bacsikay, Cytotoxicity of different types of methylated β -
700 cyclodextrins and ionic derivatives, *Pharmazie*. 62 (2007) 557–558.
701 <https://doi.org/10.1691/PH.2007.7.7.7051>.

702 [53] H. L, L. HK, Application of static and dynamic liquid-phase microextraction in the

703 determination of polycyclic aromatic hydrocarbons, *J. Chromatogr. A.* 976 (2002) 377–
704 385. [https://doi.org/10.1016/S0021-9673\(02\)01152-4](https://doi.org/10.1016/S0021-9673(02)01152-4).

705 [54] S.A. Pierson, M.J. Trujillo-Rodríguez, J.L. Anderson, Rapid analysis of ultraviolet filters
706 using dispersive liquid–liquid microextraction coupled to headspace gas chromatography
707 and mass spectrometry, *J. Sep. Sci.* 41 (2018) 3081–3088.
708 <https://doi.org/10.1002/jssc.201800415>.

709 [55] L. Kocúrová, I.S. Balogh, V. Andruch, A glance at achievements in the coupling of
710 headspace and direct immersion single-drop microextraction with chromatographic
711 techniques, *J. Sep. Sci.* 36 (2013) 3758–3768. <https://doi.org/10.1002/JSSC.201300575>.

712 [56] G.G. Guilbault, M. Hjelm, Nomenclature for automated and mechanised analysis, *Pure*
713 *Appl. Chem.* 61 (1989) 1657–1664. <https://doi.org/10.1351/pac198961091657>.

714 [57] L. Kudlejova, S. Risticevic, D. Vuckovic, Solid-Phase Microextraction Method
715 Development, in: *Handb. Solid Phase Microextraction*, Elsevier, 2012: pp. 201–249.
716 <https://doi.org/10.1016/B978-0-12-416017-0.00007-3>.

717 [58] D. Steiner, R. Krska, A. Malachová, I. Taschl, M. Sulyok, Evaluation of Matrix Effects
718 and Extraction Efficiencies of LC-MS/MS Methods as the Essential Part for Proper
719 Validation of Multiclass Contaminants in Complex Feed, *J. Agric. Food Chem.* 68 (2020)
720 3868–3880. <https://doi.org/10.1021/acs.jafc.9b07706>.

721

722 **Figure Legends:**

723 **Figure 1.** Schematic diagram of HS-SDME experimental setup, where a microsyringe needle
724 equipped with a pipette tip is inserted into the sample headspace of the vial septum. The analyte
725 solution is stirred continuously using a magnetic stirrer. A solvent microdroplet is exposed to the
726 headspace of sample vial by completely depressing the plunger. After extraction, the solvent
727 microdroplet is withdrawn into the microsyringe and injected into the sample loop of the HPLC.

728 **Figure 2.** Effect of microdroplet volume on the extraction performance of studied analytes using
729 the 20 wt% β -CD:LcA SUPRADES extraction solvent. Experimental conditions: volume of
730 analyte solution: 10 mL; stir rate: 1000 rpm; temperature: 20 °C; and extraction time: 10 min.
731 Spiked analyte concentrations: 500 $\mu\text{g L}^{-1}$ for AP, BFB, 2-NiNap, 600 $\mu\text{g L}^{-1}$ for 2-NiPh, CNB,
732 BP, 1200 $\mu\text{g L}^{-1}$ for 2-Cla, 4-OP, ES, 2000 $\mu\text{g L}^{-1}$ for 3-tBP, 250 $\mu\text{g L}^{-1}$ for EB, 100 $\mu\text{g L}^{-1}$ for Nap,
733 Fl, Phe, Ant, 40 $\mu\text{g L}^{-1}$ for BiPh, 1000 $\mu\text{g L}^{-1}$ for Py, and 3000 $\mu\text{g L}^{-1}$ for DPP. All extractions were
734 performed in triplicate.

735 **Figure 3.** Comparison of the stir rate for the HS-SDME method using the 20 wt% β -CD:LcA
736 SUPRADES extraction solvent. Experimental conditions: volume of analyte solution: 10 mL;
737 microdroplet volume: 6.5 μL ; temperature: 20 °C; and extraction time: 10 min. Spiked analyte
738 concentrations: 500 $\mu\text{g L}^{-1}$ for AP, BFB, 2-NiNap, 600 $\mu\text{g L}^{-1}$ for 2-NiPh, CNB, BP, 1200 $\mu\text{g L}^{-1}$
739 for 2-Cla, 4-OP, ES, 2000 $\mu\text{g L}^{-1}$ for 3-tBP, 250 $\mu\text{g L}^{-1}$ for EB, 100 $\mu\text{g L}^{-1}$ for Nap, Fl, Phe, Ant,
740 40 $\mu\text{g L}^{-1}$ for BiPh, 1000 $\mu\text{g L}^{-1}$ for Py, and 3000 $\mu\text{g L}^{-1}$ for DPP. All extractions were performed
741 in triplicate.

742 **Figure 4.** Influence of salt concentration on the amount of extracted analytes using the 20 wt% β -CD:LcA
743 SUPRADES extraction solvent. The inset within the figure shows the enlarged peak areas
744 for 4-OP, Py, DPP, and ES. Experimental conditions: volume of analyte solution: 10 mL;
745 microdroplet volume: 6.5 μL ; stir rate: 1000 rpm; temperature: 20 °C; and extraction time: 10 min.
746 Spiked analyte concentrations: 500 $\mu\text{g L}^{-1}$ for AP, BFB, 2-NiNap, 600 $\mu\text{g L}^{-1}$ for 2-NiPh, CNB,
747 BP, 1200 $\mu\text{g L}^{-1}$ for 2-Cla, 4-OP, ES, 2000 $\mu\text{g L}^{-1}$ for 3-tBP, 250 $\mu\text{g L}^{-1}$ for EB, 100 $\mu\text{g L}^{-1}$ for Nap,
748 Fl, Phe, Ant, 40 $\mu\text{g L}^{-1}$ for BiPh, 1000 $\mu\text{g L}^{-1}$ for Py, and 3000 $\mu\text{g L}^{-1}$ for DPP. All extractions were
749 performed in triplicate.

750 **Figure 5.** Comparison of peak areas for target analytes using the SUPRADESs comprised of native
751 β -CD or its derivatives (RAMEB, HP- β -CD, and TM- β -CD) as HBA and LcA HBD as extraction
752 solvent. The inset represents the magnified peak areas for the last four analytes. Experimental
753 conditions: volume of analyte solution: 10 mL; microdroplet volume: 6.5 μL ; stir rate: 1000 rpm;
754 temperature: 20 °C; salt concentration: 30% (w/v); and extraction time: 120 min. Spiked analyte
755 concentrations: 500 $\mu\text{g L}^{-1}$ for AP, BFB, 2-NiNap, 600 $\mu\text{g L}^{-1}$ for 2-NiPh, CNB, BP, 1200 $\mu\text{g L}^{-1}$
756 for 2-Cla, 4-OP, ES, 2000 $\mu\text{g L}^{-1}$ for 3-tBP, 250 $\mu\text{g L}^{-1}$ for EB, 100 $\mu\text{g L}^{-1}$ for Nap, Fl, Phe, Ant,
757 40 $\mu\text{g L}^{-1}$ for BiPh, 1000 $\mu\text{g L}^{-1}$ for Py, and 3000 $\mu\text{g L}^{-1}$ for DPP. All extractions were performed
758 in triplicate.

759 **Figure 6.** Effect of native β -CD concentration in the $[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$ DES on the extraction
760 performance using HS-SDME. The inset within the figure shows the enlarged peak areas for 4-

763 OP, Py, DPP, and ES. Experimental conditions: volume of analyte solution: 10 mL; microdroplet
764 volume: 6.5 μ L; stir rate: 1000 rpm; temperature: 20 $^{\circ}$ C; salt concentration: 30% (w/v); and
765 extraction time: 120 min. Spiked analyte concentrations: 500 μ g L $^{-1}$ for AP, BFB, 2-NiNap, 600
766 μ g L $^{-1}$ for 2-NiPh, CNB, BP, 1200 μ g L $^{-1}$ for 2-Cla, 4-OP, ES, 2000 μ g L $^{-1}$ for 3-tBP, 250 μ g L $^{-1}$
767 for EB, 100 μ g L $^{-1}$ for Nap, Fl, Phe, Ant, 40 μ g L $^{-1}$ for BiPh, 1000 μ g L $^{-1}$ for Py, and 3000 μ g L $^{-1}$
768 for DPP. All extractions were performed in triplicate.

769 **Figure 7.** Comparison of the peak areas for studied analytes at an extraction temperature 20 $^{\circ}$ C
770 and 40 $^{\circ}$ C using the 20 wt% β -CD:LcA SUPRADES as extraction solvent. The enlarged peak areas
771 for 4-OP, Py, DPP, and ES are shown in the figure inset. Experimental conditions: volume of
772 analyte solution: 10 mL; microdroplet volume: 6.5 μ L; stir rate: 1000 rpm; salt concentration: 30%
773 (w/v); and extraction time: 90 min. Spiked analyte concentrations: 500 μ g L $^{-1}$ for AP, BFB, 2-
774 NiNap, 600 μ g L $^{-1}$ for 2-NiPh, CNB, BP, 1200 μ g L $^{-1}$ for 2-Cla, 4-OP, ES, 2000 μ g L $^{-1}$ for 3-tBP,
775 250 μ g L $^{-1}$ for EB, 100 μ g L $^{-1}$ for Nap, Fl, Phe, Ant, 40 μ g L $^{-1}$ for BiPh, 1000 μ g L $^{-1}$ for Py, and
776 3000 μ g L $^{-1}$ for DPP. All extractions were performed in triplicate.

777 **Figure 8.** Sorption-time profile of the studied analytes using the 20 wt% β -CD:LcA SUPRADES
778 as extraction solvent at 40 $^{\circ}$ C. (a) (◊) AP; (●) 2-Cla; (Δ) BP; and (■) 2-NiNap, (b) (X) BFB; (○)
779 CNB; (◇) Nap; (\triangle) BiPh; (□) Fl; (\pm) Phe; and (—) Ant, (c) (X) 2-NiPh; (●) 4-OP; (◇) Py; (\triangle) DPP;
780 and (■) ES, (d) (□) 3-tBP and (◆) EB. Experimental conditions: volume of analyte solution: 10 mL;
781 microdroplet volume: 6.5 μ L; stir rate: 1000 rpm; temperature: 40 $^{\circ}$ C; and salt concentration: 30%
782 (w/v). Spiked analyte concentrations: 500 μ g L $^{-1}$ for AP, BFB, 2-NiNap, 600 μ g L $^{-1}$ for 2-NiPh,
783 CNB, BP, 1200 μ g L $^{-1}$ for 2-Cla, 4-OP, ES, 2000 μ g L $^{-1}$ for 3-tBP, 250 μ g L $^{-1}$ for EB, 100 μ g L $^{-1}$
784 for Nap, Fl, Phe, Ant, 40 μ g L $^{-1}$ for BiPh, 1000 μ g L $^{-1}$ for Py, and 3000 μ g L $^{-1}$ for DPP. Triplicate
785 extractions were performed at 10, 60, 120, and 150 min and duplicates were carried out at 30 and
786 90 min.

787 **Table 1.** Analytical performance of the overall HS-SDME method using the 20 wt% β -CD:LcA
 788 SUPRADES extraction solvent

Analytes	Linear range ($\mu\text{g L}^{-1}$)	Slope \pm SD ($\times 10^2$)	$S_{y/x}^{\text{a}}$	R ^b	LOD ^c ($\mu\text{g L}^{-1}$)	LOQ ^d ($\mu\text{g L}^{-1}$)
AP	5-500	275.0 \pm 5.4	2372	0.9990	0.7	2.3
2-NiPh	12.5-1250	59.6 \pm 1.0	1156	0.9992	3.2	10.5
2-Cla	5-500	144.5 \pm 1.9	820	0.9996	1.3	4.3
3-tBP	5-500	316.9 \pm 8.1	3558	0.9984	0.6	2.0
BFB	5-500	188.5 \pm 3.8	1690	0.9990	1.0	3.3
CNB	5-500	187.8 \pm 4.0	1735	0.9989	1.0	3.3
EB	5-500	251.9 \pm 6.4	2809	0.9984	0.7	2.5
BP	5-500	559.9 \pm 8.0	3532	0.9995	0.3	1.1
2-NiNap	5-500	416.7 \pm 6.0	2663	0.9995	0.5	1.5
Nap	5-500	149.4 \pm 3.2	1389	0.9989	1.3	4.2
BiPh	2-200	267.7 \pm 4.3	760	0.9993	0.7	2.3
F1	5-500	320.7 \pm 9.1	4012	0.9980	0.6	2.0
Phe	2-200	1077.7 \pm 25.5	4486	0.9986	0.2	0.6
Ant	2-200	1843.2 \pm 32.7	5694	0.9992	0.1	0.3
4-OP	25-2500	78.2 \pm 2.5	5514	0.9974	2.4	8.0
Py	10-2500	163.1 \pm 6.7	14765	0.9958	1.2	3.9
DPP	50-2500	12.9 \pm 0.5	1061	0.9965	14.6	48.6
ES	25-2500	35.5 \pm 0.9	2000	0.9984	5.3	17.7

789 ^a Standard deviation of the regression

790 ^b Correlation coefficient

791 ^c Calculated as three times the signal-to-noise ratio

792 ^d Calculated as ten times the signal-to-noise ratio

793 ^e Conditions: Microdroplet volume: 6.5 μL ; sample volume: 10 μL ; extraction time: 90 min;
 794 extraction temperature: 40 $^{\circ}\text{C}$; stir rate: 1000 rpm; salt concentration: 30 % (w/v)

795 **Table 2.** Figures of merit of the calibration curves, limit of detection, and limit of quantification
 796 of the HS-SMDE method using the $[N_{4444}^+][Cl^-]$:2LcA DES extraction solvent

Analytes	Linear range ($\mu\text{g L}^{-1}$)	Slope \pm SD ($\times 10^2$)	$S_{y/x}$ ^a	R ^b	LOD ^c ($\mu\text{g L}^{-1}$)	LOQ ^d ($\mu\text{g L}^{-1}$)
AP	5-500	403.4 \pm 10.1	4454	0.9984	0.4	1.3
2-NiPh	12.5-1250	111.1 \pm 1.7	1882	0.9994	1.4	4.6
2-Cla	5-500	141.7 \pm 2.7	1187	0.9991	1.1	3.6
3-tBP	5-500	276.8 \pm 7.0	3080	0.9984	0.6	1.9
BFB	5-500	286.7 \pm 8.4	3717	0.9978	0.5	1.8
CNB	5-500	381.9 \pm 12.1	5333	0.9975	0.4	1.3
EB	5-500	683.1 \pm 23.6	10401	0.9970	0.2	0.8
BP	5-500	577.4 \pm 9.0	3940	0.9994	0.3	0.9
2-NiNap	5-500	473.3 \pm 8.7	3815	0.9992	0.3	1.1
Nap	5-500	230.7 \pm 4.7	2068	0.9990	0.7	2.2
BiPh	2-200	1095.3 \pm 15.3	2698	0.9995	0.1	0.5
F1	5-500	808.3 \pm 20.4	8990	0.9984	0.2	0.6
Phe	2-200	1638.2 \pm 44.4	7817	0.9982	0.1	0.3
Ant	2-200	2919.7 \pm 81.2	14281	0.9981	0.1	0.2
4-OP	25-2500	54.3 \pm 4.5	9908	0.9832	2.9	9.5
Py	10-2500	208.4 \pm 2.8	3868	0.9996	0.7	2.5
DPP	50-2500	24.8 \pm 0.7	9547	0.9985	6.2	20.8
ES	25-2500	83.0 \pm 1.8	4050	0.9988	1.9	6.2

797 ^a Standard deviation of the regression

798 ^b Correlation coefficient

799 ^c Calculated as three times the signal-to-noise ratio

800 ^d Calculated as ten times the signal-to-noise ratio

801 ^e Conditions: Microdroplet volume: 6.5 μL ; sample volume: 10 μL ; extraction time: 90 min;
 802 extraction temperature: 40 $^{\circ}\text{C}$; stir rate: 1000 rpm; salt concentration: 30 % (w/v)

803 **Table 3.** Enrichment factors and relative standard deviations of the target analytes obtained by
 804 HS-SDME using 20 wt% β -CD:LcA SUPRADES, $[N_{4444}^+][Cl^-]$:2LcA DES, solution of 20 wt%
 805 β -CD in $[Ch^+][Cl^-]$:2Urea DES, 1.7% (w/v) β -CD in aqueous solution, and $[Ch^+][Cl^-]$:2Urea DES
 806 extraction solvents

Analytes	20 wt% β -CD:LcA SUPRADES		$[N_{4444}^+][Cl^-]$:2LcA DES		20 wt% β -CD in $[Ch^+][Cl^-]$:2Urea DES		1.7% (w/v) β -CD in aqueous solution		$[Ch^+][Cl^-]$:2Urea DES	
	E_F^a	RSD ^b (%)	E_F^a	RSD ^b (%)	E_F^a	RSD ^b (%)	E_F^a	RSD ^b (%)	E_F^a	RSD ^b (%)
AP	369.7	3.6	584.0	4.6	241.9	5.1	44.1	11.7	74.1	4.0
2-NiPh	171.5	8.3	425.8	7.2	85.8	11.6	43.2	10.9	44.4	4.0
2-Cla	961.1	6.2	854.6	2.0	362.0	4.4	50.4	12.4	167.0	5.0
3-tBP	715.0	7.5	643.3	5.8	469.3	5.2	552.7	2.8	329.1	4.4
BFB	365.5	3.2	671.0	2.1	253.6	4.2	85.7	12.4	53.0	0.6
CNB	345.2	2.9	797.9	3.8	273.5	4.5	84.2	3.7	71.5	3.1
EB	366.2	5.0	1121.8	3.3	340.9	9.2	69.9	10.1	32.9	1.4
BP	338.3	8.6	358.5	4.2	182.5	4.7	222.2	11.2	82.5	10.0
2-NiNap	283.1	9.9	299.2	4.1	153.2	4.7	151.2	12.8	90.1	10.8
Nap	523.2	2.3	883.3	2.9	283.7	9.8	540.1	13.0	26.9	4.2
BiPh	193.9	3.8	767.1	4.9	356.8	7.8	157.2	15.8	14.1	8.2
Fl	274.1	6.1	546.0	6.9	245.7	8.5	153.0	10.3	22.9	14.5
Phe	221.5	10.5	262.0	6.1	126.0	6.9	116.2	8.8	33.7	9.7
Ant	148.4	11.1	173.0	5.8	95.8	8.5	59.3	10.5	16.6	5.5
4-OP	42.9	10.1	33.9	8.6	16.8	5.4	17.9	5.4	6.4	8.9
Py	34.7	8.2	30.5	4.3	13.4	2.5	16.0	14.4	6.7	6.9
DPP	2.1	10.4	2.5	8.6	1.3	1.9	0.6	3.0	0.4	12.5
ES	74.1	11.4	142.4	6.3	63.4	7.8	33.3	16.5	1.5	11.1

^a Enrichment factor calculated by Equation 1 in the text

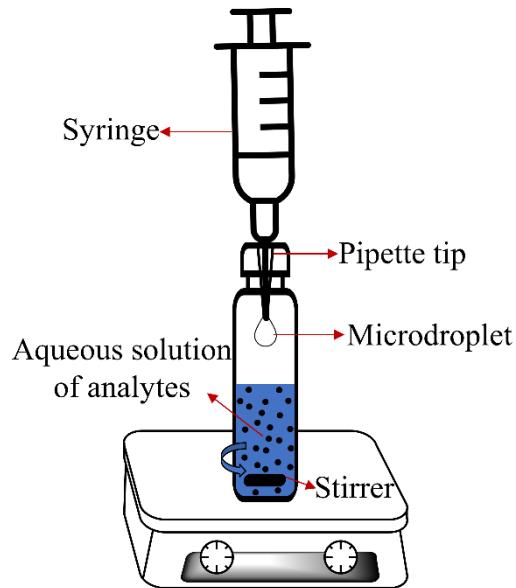
^b Relative standard deviation

^c Enrichment factor is calculated by using microdroplet volume of 6.5 μ L. Although the microdroplet volume increases overtime during extraction, it does not affect the extraction of target analytes. Using the 6.5 μ L neat ultrapure water microdroplet as extraction solvent did not result in the extraction of any analytes

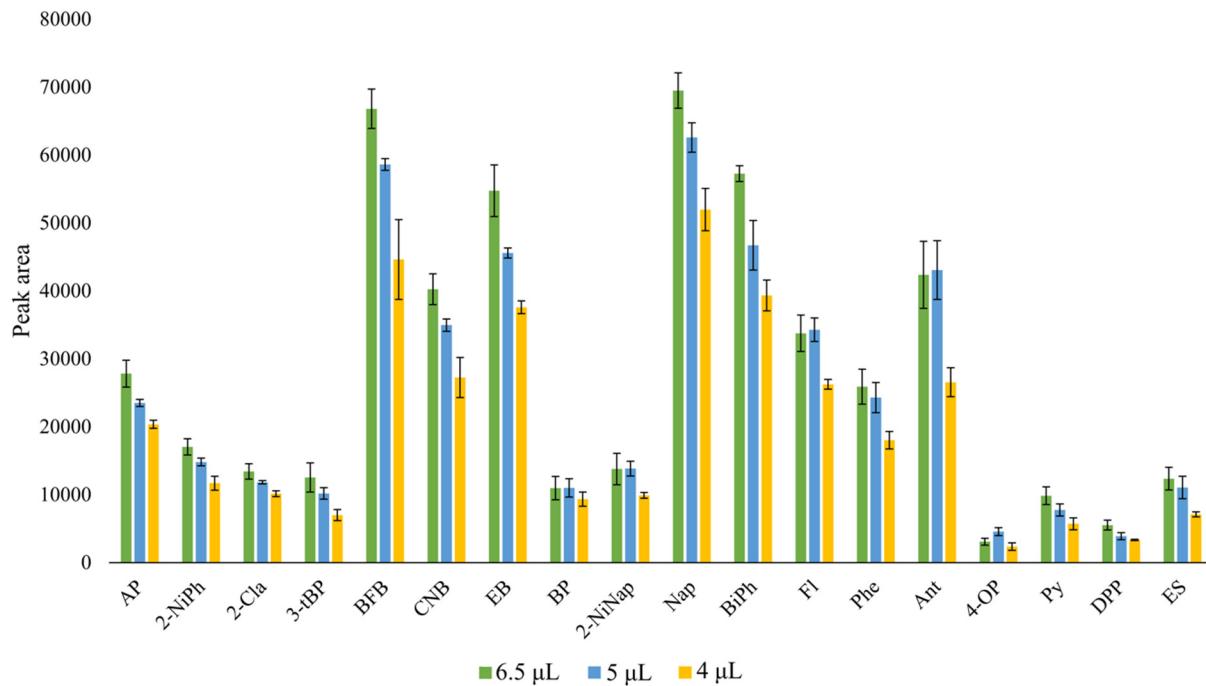
^d Spiked analyte concentrations: 500 μ g L^{-1} for AP, BFB, 2-NiNap, 600 μ g L^{-1} for 2-NiPh, CNB, BP, 1200 μ g L^{-1} for 2-Cla, 4-OP, ES, 2000 μ g L^{-1} for 3-tBP, 250 μ g L^{-1} for EB, 100 μ g L^{-1} Nap, Fl, Phe, Ant, 40 μ g L^{-1} for BiPh, 1000 μ g L^{-1} for Py, and 3000 μ g L^{-1} for DPP

^e All extractions were performed in triplicate

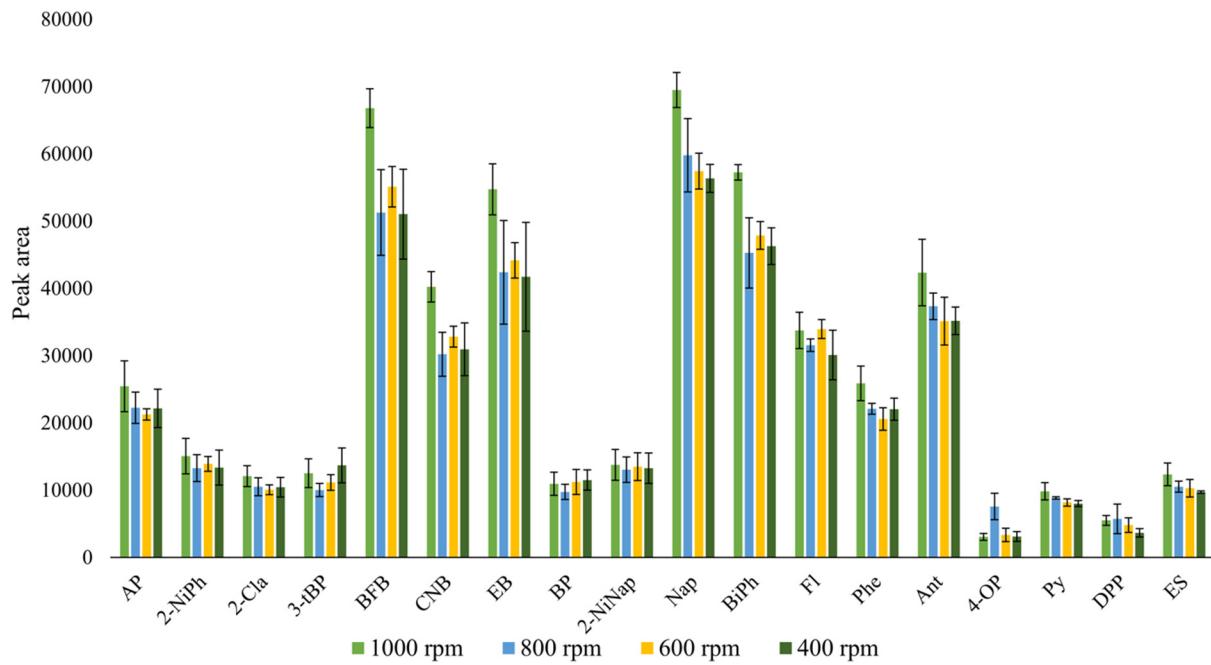
817 **Table 4.** Analysis of real samples by HS-SDME using 20 wt% β -CD:LcA SUPRADES and
 818 $[\text{N}_{4444}^+][\text{Cl}^-]:2\text{LcA}$ DES extraction solvents

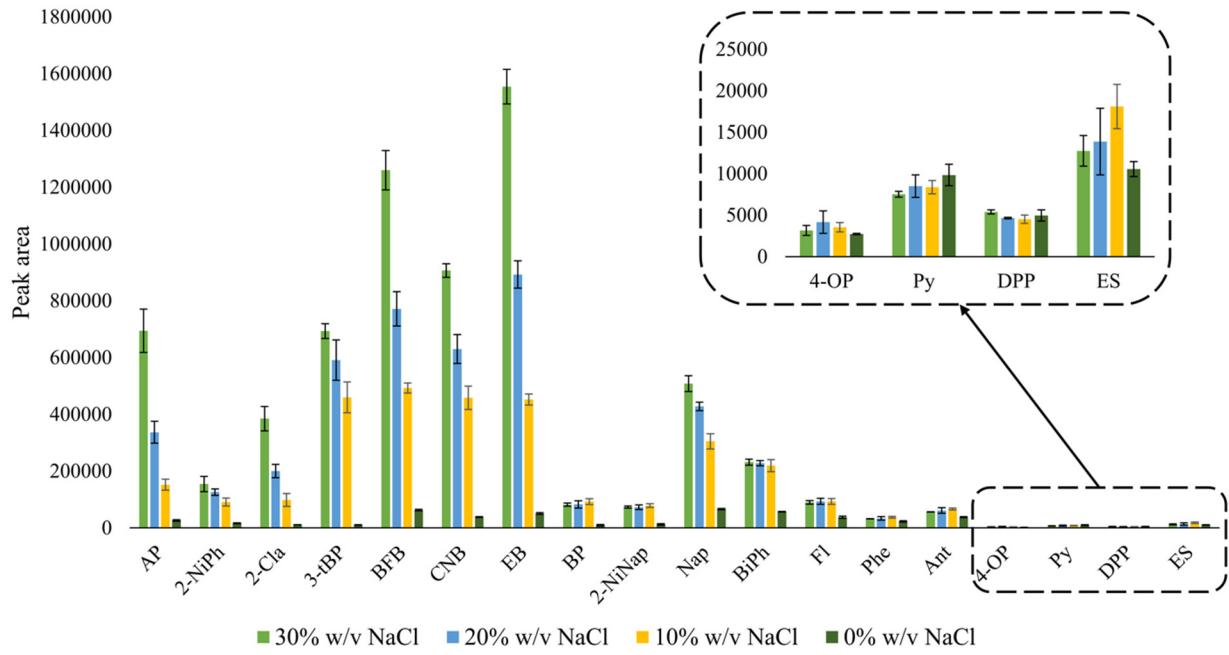

Analytes	20 wt% β -CD:LcA SUPRADES				$[\text{N}_{4444}^+][\text{Cl}^-]:2\text{LcA}$ DES			
	Lake water		Tap water		Lake water		Tap water	
	RR ^a (%)	RSD ^b (%)	RR ^a (%)	RSD ^b (%)	RR ^a (%)	RSD ^b (%)	RR ^a (%)	RSD ^b (%)
AP	114.1	9.9	96.6	8.4	100.1	1.6	105.5	7.6
2-NiPh	95.1	8.9	94.6	8.1	83.7	7.2	110.6	11.2
2-Cla	119.7	10.7	104.3	6.4	106.8	0.7	96.7	7.0
3-tBP	113.9	11.9	96.3	6.0	99.4	4.0	96.4	6.7
BFB	115.4	6.6	99.8	8.0	102.3	4.9	101.6	4.2
CNB	116.6	11.6	98.0	5.9	101.0	3.3	99.5	5.0
EB	119.4	8.8	111.1	8.6	102.1	6.5	110.7	2.6
BP	112.9	17.1	103.3	13.0	98.3	3.8	97.9	2.1
2-NiNap	112.2	16.3	92.4	6.7	89.8	4.2	95.2	5.3
Nap	109.6	5.5	103.1	10.7	103.2	8.5	112.3	4.8
BiPh	115.0	16.6	95.7	13.6	108.4	8.9	114.6	8.1
Fl	114.1	17.0	102.7	8.7	104.1	6.5	109.3	3.7
Phe	105.5	17.5	100.3	12.4	96.8	5.6	103.2	10.4
Ant	105.9	18.0	100.5	12.3	99.9	5.8	97.9	7.6
4-OP	111.5	19.2	112.7	9.0	113.9	11.1	107.6	3.0
Py	110.4	12.1	110.0	9.0	106.5	8.7	97.3	13.6
DPP	102.7	17.7	111.4	8.7	110.1	13.4	99.8	16.1
ES	95.4	17.9	102.6	8.8	98.6	3.6	94.8	11.1

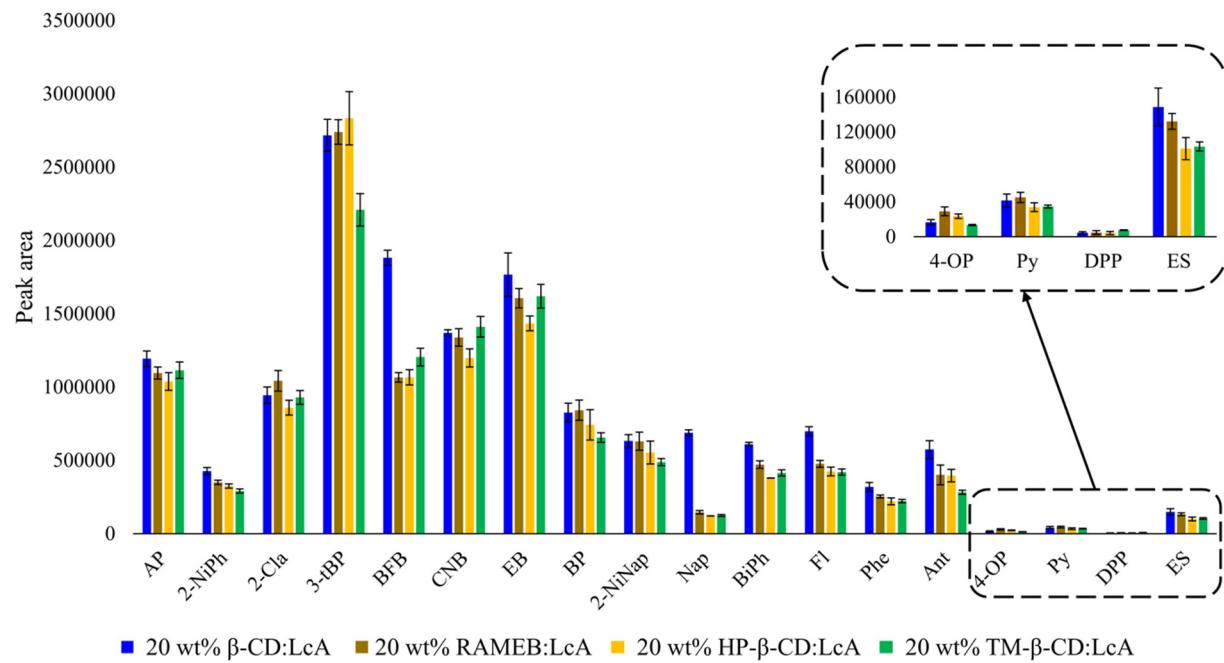
819 ^a Relative recovery

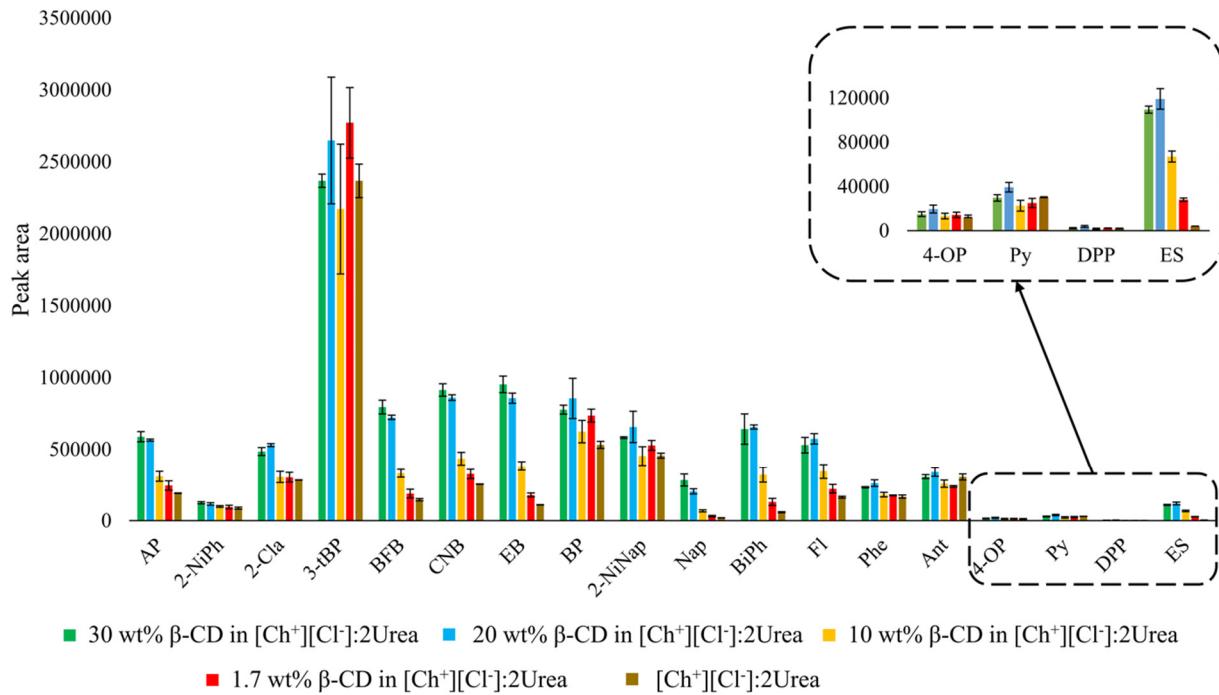

820 ^b Relative standard deviation

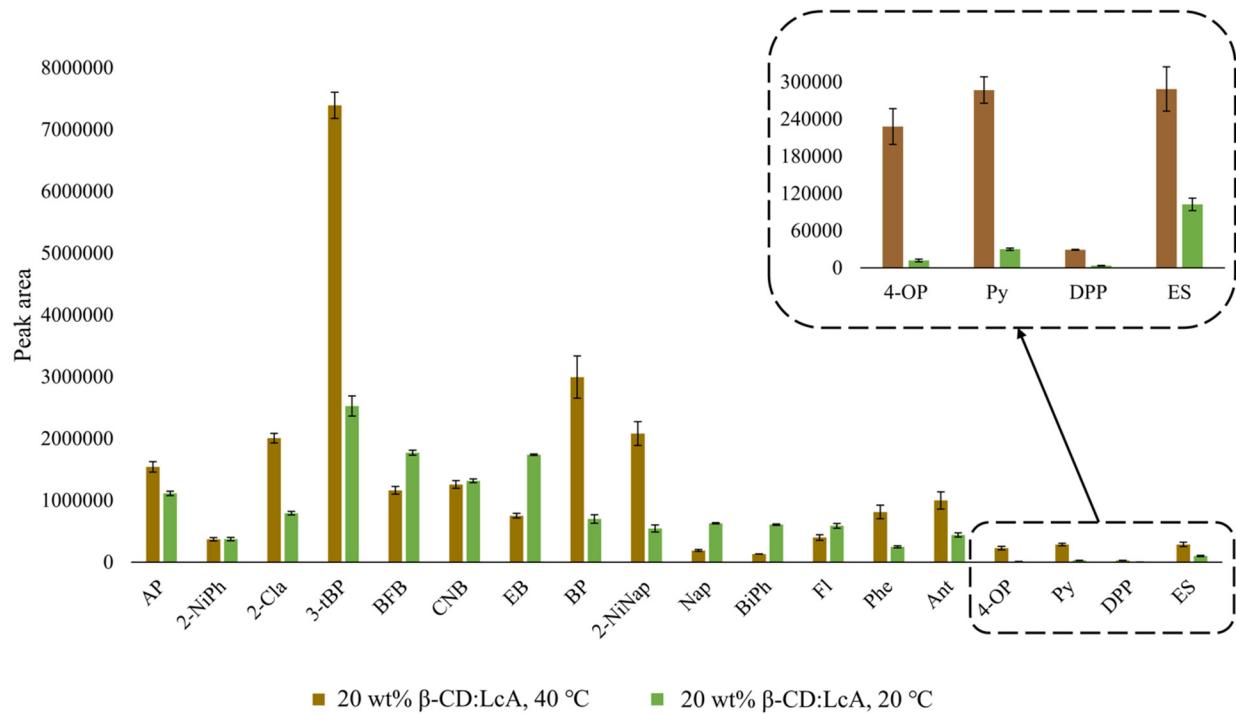
821 ^c Spiked analyte concentrations: 150 $\mu\text{g L}^{-1}$ for analytes AP, 2-Cla, 3-tBP, BFB, CNB, EB, BP, 2-
 822 NiNap, Nap, Fl, and Ant; 375 $\mu\text{g L}^{-1}$ for 2-NiPh; 60 $\mu\text{g L}^{-1}$ for BiPh and Phe; 300 $\mu\text{g L}^{-1}$ for Py;
 823 750 $\mu\text{g L}^{-1}$ for 4-OP, DPP, and ES


824 ^d Four replicates of all extractions were performed


Figure 1. Schematic diagram of HS-SDME experimental setup, where a microsyringe needle equipped with a pipette tip is inserted into the sample headspace through the vial septum. The analyte solution is stirred continuously using a magnetic stirrer. A solvent microdroplet is exposed to the headspace of sample vial by completely depressing the plunger. After extraction, the solvent microdroplet is withdrawn into the microsyringe and injected into the sample loop of the HPLC.


Figure 2. Effect of microdroplet volume on the extraction performance of studied analytes using the 20 wt% β -CD:LcA SUPRADES extraction solvent. Experimental conditions: volume of analyte solution: 10 mL; stir rate: 1000 rpm; temperature: 20 $^{\circ}\text{C}$; and extraction time: 10 min. Spiked analyte concentrations: 500 $\mu\text{g L}^{-1}$ for AP, BFB, 2-NiNap, 600 $\mu\text{g L}^{-1}$ for 2-NiPh, CNB, BP, 1200 $\mu\text{g L}^{-1}$ for 2-Cla, 4-OP, ES, 2000 $\mu\text{g L}^{-1}$ for 3-tBP, 250 $\mu\text{g L}^{-1}$ for EB, 100 $\mu\text{g L}^{-1}$ for Nap, Fl, Phe, Ant, 40 $\mu\text{g L}^{-1}$ for BiPh, 1000 $\mu\text{g L}^{-1}$ for Py, and 3000 $\mu\text{g L}^{-1}$ for DPP. All extractions were performed in triplicate.


Figure 3. Comparison of the stir rate for the HS-SDME method using the 20 wt% β -CD:LcA SUPRADES extraction solvent. Experimental conditions: volume of analyte solution: 10 mL; microdroplet volume: 6.5 μ L; temperature: 20 $^{\circ}$ C; and extraction time: 10 min. Spiked analyte concentrations: 500 μ g L^{-1} for AP, BFB, 2-NiPh, CNB, BP, 1200 μ g L^{-1} for 2-Cla, 4-OP, ES, 2000 μ g L^{-1} for 3-tBP, 250 μ g L^{-1} for EB, 100 μ g L^{-1} for Nap, Fl, Phe, Ant, 40 μ g L^{-1} for BiPh, 1000 μ g L^{-1} for Py, and 3000 μ g L^{-1} for DPP. All extractions were performed in triplicate.


Figure 4. Influence of salt concentration on the amount of extracted analytes using the 20 wt% β -CD:LcA SUPRADES extraction solvent. The inset within the figure shows the enlarged peak areas for 4-OP, Py, DPP, and ES. Experimental conditions: volume of analyte solution: 10 mL; microdroplet volume: 6.5 μ L; stir rate: 1000 rpm; temperature: 20 $^{\circ}$ C; and extraction time: 10 min. Spiked analyte concentrations: 500 μ g L⁻¹ for AP, BFB, 2-NiNap, 600 μ g L⁻¹ for 2-NiPh, CNB, BP, 1200 μ g L⁻¹ for 2-Cla, 4-OP, ES, 2000 μ g L⁻¹ for 3-tBP, 250 μ g L⁻¹ for EB, 100 μ g L⁻¹ for Nap, Fl, Phe, Ant, 40 μ g L⁻¹ for BiPh, 1000 μ g L⁻¹ for Py, and 3000 μ g L⁻¹ for DPP. All extractions were performed in triplicate.

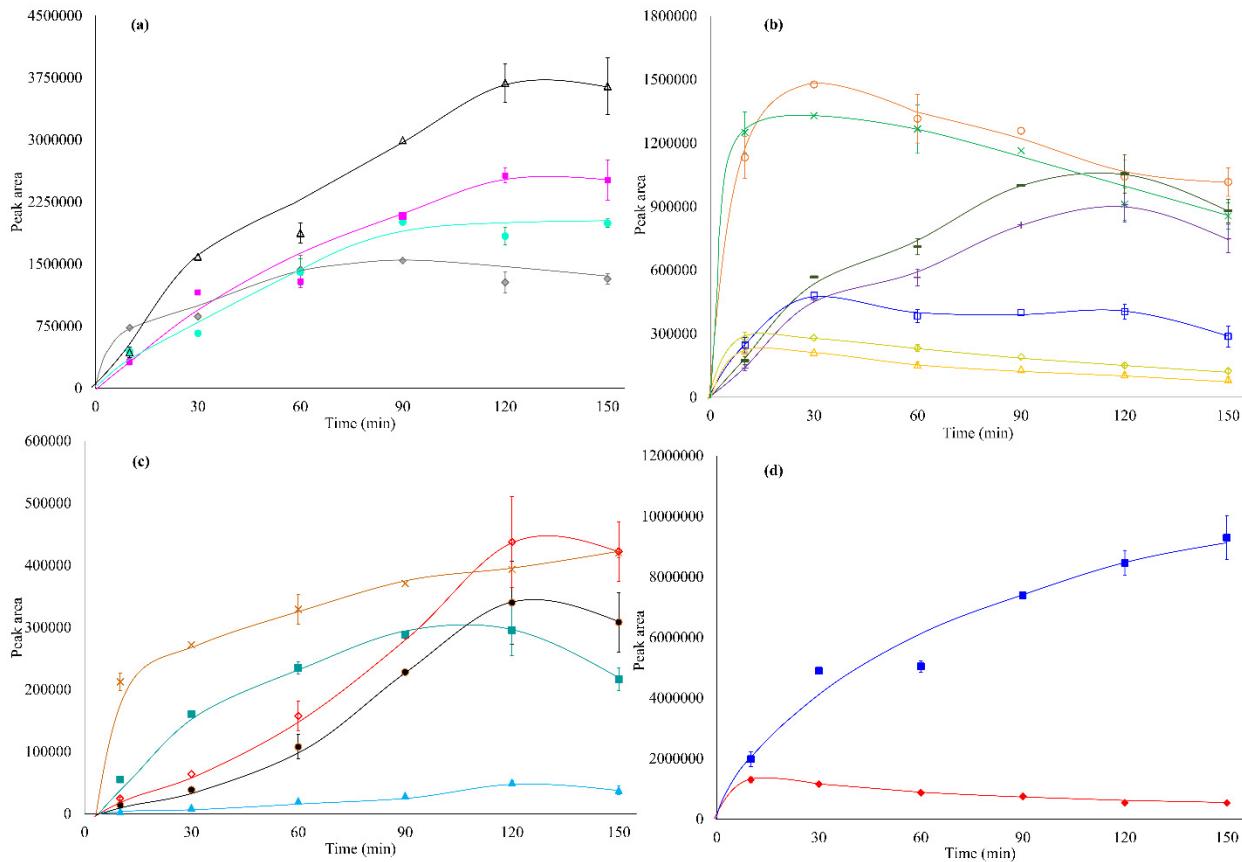

Figure 5. Comparison of peak areas for target analytes using the SUPRADESs comprised of native β -CD or its derivatives (RAMEB, HP- β -CD, and TM- β -CD) as HBA and LcA HBD as extraction solvent. The inset represents the magnified peak areas for the last four analytes. Experimental conditions: volume of analyte solution: 10 mL; microdroplet volume: 6.5 μ L; stir rate: 1000 rpm; temperature: 20 $^{\circ}$ C; salt concentration: 30% (w/v); and extraction time: 120 min. Spiked analyte concentrations: 500 μ g L⁻¹ for AP, BFB, 2-NiPh, 600 μ g L⁻¹ for 2-Cla, CNB, BP, 1200 μ g L⁻¹ for 3-tBP, 250 μ g L⁻¹ for EB, 100 μ g L⁻¹ for Nap, Fl, Phe, Ant, 40 μ g L⁻¹ for BiPh, 1000 μ g L⁻¹ for Py, and 3000 μ g L⁻¹ for DPP. All extractions were performed in triplicate.

Figure 6. Effect of native β -CD concentration in the $[\text{Ch}^+][\text{Cl}^-]:2\text{Urea}$ DES on the extraction performance using HS-SMDE. The inset within the figure shows the enlarged peak areas for 4-OP, Py, DPP, and ES. Experimental conditions: volume of analyte solution: 10 mL; microdroplet volume: 6.5 μL ; stir rate: 1000 rpm; temperature: 20 $^{\circ}\text{C}$; salt concentration: 30% (w/v); and extraction time: 120 min. Spiked analyte concentrations: 500 $\mu\text{g L}^{-1}$ for AP, BFB, 2-NiNap, 600 $\mu\text{g L}^{-1}$ for 2-NiPh, CNB, BP, 1200 $\mu\text{g L}^{-1}$ for 2-Cla, 4-OP, ES, 2000 $\mu\text{g L}^{-1}$ for 3-tBP, 250 $\mu\text{g L}^{-1}$ for EB, 100 $\mu\text{g L}^{-1}$ for Nap, Fl, Phe, Ant, 40 $\mu\text{g L}^{-1}$ for BiPh, 1000 $\mu\text{g L}^{-1}$ for Py, and 3000 $\mu\text{g L}^{-1}$ for DPP. All extractions were performed in triplicate.

Figure 7. Comparison of the peak areas for studied analytes at an extraction temperature 20 °C and 40 °C using the 20 wt% β -CD:LcA SUPRADES as extraction solvent. The enlarged peak areas for 4-OP, Py, DPP, and ES are shown in the figure inset. Experimental conditions: volume of analyte solution: 10 mL; microdroplet volume: 6.5 μ L; stir rate: 1000 rpm; salt concentration: 30% (w/v); and extraction time: 90 min. Spiked analyte concentrations: 500 μ g L⁻¹ for AP, BFB, 2-NiNap, 600 μ g L⁻¹ for 2-NiPh, CNB, BP, 1200 μ g L⁻¹ for 2-Cla, 4-OP, ES, 2000 μ g L⁻¹ for 3-tBP, 250 μ g L⁻¹ for EB, 100 μ g L⁻¹ for Nap, Fl, Phe, Ant, 40 μ g L⁻¹ for BiPh, 1000 μ g L⁻¹ for Py, and 3000 μ g L⁻¹ for DPP. All extractions were performed in triplicate.

Figure 8. Sorption-time profile of the studied analytes using the 20 wt% β -CD:LcA SUPRADES as extraction solvent at 40 °C. (a) (◊) AP; (●) 2-Cla; (Δ) BP; and (■) 2-NiNap, (b) (✗) BFB; (○) CNB; (◇) Nap; (\triangle) BiPh; (\square) Fl; (\pm) Phe; and (—) Ant, (c) (✗) 2-NiPh; (●) 4-OP; (◇) Py; (\triangle) DPP; and (■) ES, (d) (■) 3-tBP and (◇) EB. Experimental conditions: volume of analyte solution: 10 mL; microdroplet volume: 6.5 μ L; stir rate: 1000 rpm; temperature: 40 °C; and salt concentration: 30% (w/v). Spiked analyte concentrations: 500 μ g L⁻¹ for AP, BFB, 2-NiNap, 600 μ g L⁻¹ for 2-NiPh, CNB, BP, 1200 μ g L⁻¹ for 2-Cla, 4-OP, ES, 2000 μ g L⁻¹ for 3-tBP, 250 μ g L⁻¹ for EB, 100 μ g L⁻¹ for Nap, Fl, Phe, Ant, 40 μ g L⁻¹ for BiPh, 1000 μ g L⁻¹ for Py, and 3000 μ g L⁻¹ for DPP. Triplicate extractions were performed at 10, 60, 120, and 150 min and duplicates were carried out at 30 and 90 min.