This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 13188C

Finite Element Tools for Performance Portability of
Implicit and IMEX Simulations on Next Generation

Architectures

PRESENTED BY

Roger P. Pawlowski, Eric T. Phipps, C. R. Trott, John N. Shadid
and Eric C. Cyr

@iiicicy NISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
NA0003525.

Motivating Example: Fast/Stiff/Implicit Modes in Plasma Physics

* Application codes are significant investments and need to cover a wide variety of problems
* Step over fast modes to simulate time scales of interest: Implicit or IMEX schemes

e 5-Moment Plasma Model

* Speed of light arises from coupling of electromagnetic field: explicit CFL ~cAt/Ax
* Plasma oscillation arises from Ampere’s law to momentum conservation: explicit CFL ~At
* Collisions explicit CFL~At

* Cyclotron frequency explicit CFL~|B|At
9pa

at + V. paua Z marsrc Z marsink

srcs sinks

8(paua) _ Qq
T +v (paua®ua +paI+Ha) m—pa (E _'_-

+ Zmausrcrsrc . Z mauarsink 4 Z Roz,B

Stiff Modes: — i bra
. a_E _ 2V X B — _i Z q_a u
Speed of light 5 ¢ = e & ma Pala
Plasma Oscillation

0B
Collisions B TV xE=D

M Cyclotron frequency

Motivation

* Implicit/IMEX Solution Methods
* Large-scale Newton-based solvers leveraging iterative linear solvers (GMRES, CG)
* Requires Jacobian-vector product, Jacobian sensitivities for preconditioning
* Combine with block/physics-based preconditioning for implicit solves (Algebraic Multigrid within blocks)

* IMEX methods split fast and slow modes
* Implicit terms solve for stiff modes (plasma oscillation, speed of light)
* Explicit terms are accurately resolved
* IMEX assumes an additive decomposition: 24 + FU)+GU) =0

. At=CFL~1
Implicit Explicit
. %)
. 2
| | | |
* Requirements: G(IU) F&{)

* Performance Portability
* Keep the code base manageable: write physics once in a clear and concise manner
* Move terms from explicit to implicit depending on time scale of interest (evaluate sensitivities)

Requirement: Performance Portable Automatic Differentiation

Trilinos Discretization Tools Overview

* MPI Related
* Panzer (Multiphysics Assembly and Utilities) |

* DOF Manager: Global Indexing for mixed bases, mixed
equations

e Connection Manager: Mesh DB abstraction Panzer
* Workset Builder: Mesh over-decomposition for AMT Phalanx Intrepid2
* Linear Algebra Builder: Epetra/Tpetra/Thyra Sacado
 Disc-FE: Multiphysics assembly, Mixed Eq Sets, Mixed Bases, Kokkos

BCs, Compatible discretizations, Projections

* Local Node |

* Intrepid2: FE Basis Library

* Shards: Cell/Element Topology

* Phalanx: DAG Assembly: flexibility/complexity
e Sacado: Automatic differentiation scalar types

github.com/trilinos/Trilinos]

* Kokkos: Performance portability

Performance Portable Automatic Differentiation with Kokkos, Sacado and Phalanx

Performance Portability: Kokkos

Write algs once, run on
many architectures: e.g.

multi-core CPU, Nvidia GPU,

Xeon Phi, AMD GPU, ARM,

Performance Portable
Shared-memory
Programming Model in C++

Supports clear, concise,
thread-scalable parallel
patterns

* for, reduce, scan, task

Multidimensional array
with compile-time
polymorphic layouts.

Kokkos devs are on the c++
standards committee

* C++23 std::mdspan is
Kokkos::View

&

Q)

Kokkos
Tools

(= |
=5

Science and Engineering Applications
= Kokkos

Support

Trilinos

Kokkos EcoSystem _
Kokkos Remote Spaces] [Kokkos Kernels _
Kokkos Core _
i
\ Y

CPU + GPU

Multi-Core Many-Core

https://github.com/kokkos/kokkos

Layouts for Performant Memory Access

View<double**> A(“A”, m, n);

CPU/MIC GPU
) e Each thread accesses strided range of entries
e Each thread accesses contiguous range hread d all values i
f entries * Thread group can read all values in one memory
o] _ . transaction
* Ensures neighboring values are in cache e Ensures coalesced accesses (consecutive threads
access consecutive entries)
Layout Right Layout Left
(Row-wise) (Column-wise)
0,1)
CPU Thread 04 GPU Thread-block 04 '
0.3)
r >. (1,0)
(1,1)
CPU Thread 1§ GPU Thread-block 1% ;'
(1,3)
g " 20
2,1)
CPU Thread 2 § GPU Thread-block 2{
(2.,9) \’
g " @0
(3,1)
CPU Thread 3 4 GPU Thread-block 3¢)

Example: Dense Matrix-vector Multiply

» Kokkos::View has shared pointer
semantics

* Allocates memoryin a
MemorySpace

* Executes Kernel using an
ExecutionPolicy coupled to an
ExecutionSpace.

e Execution policy determines
parallel distribution of work to
threads

* ExecutionSpace is where to run
the kernel

Kokkos::View<double*xx> A("A",m,n); // Create rank-2 array with m rows and n columns
// using default execution space and layout

Kokkos::View<double*> b("b",n); // Create rank-1 array with n rows

Kokkos::View<double*> c("c",m); // Create rank-1 array with m rows

// Function implementing dense matrix-vector product.

// The function is templated on the types of views storing A, b, and c
template <typename ViewTypeA, typename ViewTypeB, typename ViewTypeC>
void matvec(const ViewTypeA& A, const ViewTypeB& b, const ViewTypeC& c) {

// The scalar type used in this calculation, e.g., double
typedef typename ViewTypeC::value_type scalar_type;

// The best ordinal type for the architecture we are running on, e.g., int or size_t
typedef typename ViewTypeC::size_type size_type;

// The execution space where this functor will run
typedef typename ViewTypeC::execution_space execution_space;

// Matrix dimensions
const size_type m = A.extent(0);
const size_type n = A.extent(1);

Kokkos::RangePolicy<execution_space> policy(@,m)
Kokkos::parallel_for("MatVec", policy, KOKKOS_LAMBDA(const size_type i)
{

scalar_type t = 0.0;

for (size_type j=0; j<n; ++j)

t += A(1,3)*b(3);
c(i) = t;
1)
}

// Execute matrix-vector product for given views A, b, and c
matvec(A, b, c);

Example: Dense Matrix-vector Multiply

Architecture Name Architecture Description Execu- Compiler Bandwidth
tion Measured
Space (GB/s)
Skylake Single-socket 3.0 GHz, Intel Xeon OpenMP Intel 19.0 64.4
Gold 6154 CPU, 18 cores, 2
threads/core
GPU NVIDIA V100 GPU CUDA NVCC 10.1 833
Architecture Name Expected Measured Throughput with Wrong
Throughput Throughput Layout
Skylake 16.1 18.0 15.3
GPU 208 213 263 GFLOP/s

Memory layouts have a critical impact on performance!

Throughput measured using STREAM Triad Benchmark:
McCalpin, IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, 1995

Sacado: Template-based Automatic Differentiation (AD)

* Implement equations templated on the scalar type double Fad<double>
e Libraries provide new scalar types that overload the math Operation | Forward AD rule
operators to propagate embedded quantities c=axb |cé=a=xbh
* Hidden derivative array c = ab c=ab+ ab
. thes chain rule f?r int:carnal dfrivatives c=a/b ¢ = (a— Cé)fb
. ression templates for performance . 1.
xpressi p p =t 6= ra™1g
* Analytic Values (NO finite differencing involved)! c=sin(a) | ¢ = cos(a)a
e Algorithms: Forward mode (FAD) and reverse mode (RAD) ¢=cos(a) | ¢ =—sin(a)a
 SFAD: Static FAD - compile time derivative length c=expla) | ¢ =ca
e DFAD: Dynamic FAD — runtime derivative length C = 1'38;{*11-] C = ﬂ_x’fﬂ-
e SLFAD: In between SFAD and DFAD — compile time MAX derivative
length, runtime sets true length
double* x;
 For various AD tools, see www.autodiff.org . double* £;
6 .ee
O .
template <typename ScalarT> Q§§> computeF (x, £) ;
void computeF (ScalarT* x, ScalarT* f£f)
{ DFad<double>* x;
£f[0] = 2.0 * x[0] + x[1] * x[1]; DFad<double>* dfdx;
£[1] = x[0] * x[0] * x[0] + sin(x[1]); JaCObian

}

computeF (x,dfdx) ;

http://www.autodiff.org/

AD performance without modifications to Kokkos kernels

View<DFad<double>**> A (“A”, m, n);

CPU GPU

Layout Right Layout Left
(Row-wise) (Column-wise)

dx 7 7 v dx

L L

N

val

val 77
4 [(0.0
CPU Thread 0 GPU Thread-block 04 (o #
g 03)
(1.0
(| (1,1)
CPU Thread 1 GPU Thread-block 14 /'
(1.3) 4 ¥
4 [o) ¢
CPU Thread 2 < GPU Thread-block 2{ "7

read-pioc 2.2)

4 2,3)
g g (3,0) 4
@3.,1)
@3.2)

L 63

T
AN

CPU Thread 3 i GPU Thread-block 3 ¢

e Achieved by specializing Kokkos::View data structure for Sacado scalar types
— Rank-r Kokkos::View is internally stored as a rank-(r+1) array of doubles

— Specialized Kokkos layout applied to internal rank-(r+1) array for coalesced access on GPU (derivative values are strided, not
consecutive on GPU)

AD Matrix-Vector Multiply

typedef Sacado::Fad::SFad<double,p> FadType;
Kokkos::View<Fadtypexx> A("A",m,n); // Create rank-2 array with m rows and n columns
// using default execution space and layout

Kokkos::View<FadTypex> b("b",n); // Create rank-1 array with n rows
Kokkos::View<FadTypex> c("c",m); // Create rank-1 array with m rows
/...

matvec(A, b, c);

Architecture Name Expected Throughput Measured Throughput No View Specialization

Skylake 30.4 34.1 34.0
GPU 393 395 317

Derivative dimension: p =8

Throughput measured using STREAM Triad Benchmark:
McCalpin, IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, 1995

11

Layout Impact on Derivative Array Size

* Performance loss from incorrect
layout is more apparent for larger
derivative sizes

* Small derivative size might get
multiple values in same memory
transaction (more cache hits)

Throughput (GFLOP/s)

= N N W W
(9]
o

450

OU‘Ig
o O o

i ©
o O

100

AD Througputon NVIDIA V100 GPU

M View Spec.

m No View Spec.

4 8 16
Derivative Dimension

12

Hierarchic Parallelism

* Flat parallelism is
performant IF you can
saturate the GPU with
work.

* Not always possible
especially for implicit
methods.

e Parallelism

Flat: one thread per
cell

Hierarchic: Team of
threads work on each
Cell/FAD entry

* Three level hierarchy:

League

Team (CUDA thread
block)

Vector
(warp/hyperthreads)

= [(Fe0 - Vot +sop(w) dx

Hierarchic Diffusion/Rxn Kernel for “double” scalar type

typedef double ScalarT;
typedef Kokkos::LayoutRight Layout;
typedef Kokkos::TeamPolicy<ExecSpace> Policy,; <

Kokkos ::View<ScalarT#x**%*, Layout, ExecSpace> grad_phi;
Kokkos ::View<ScalarTx#**, Layout, ExecSpace> f;

Kokkos::View<ScalarT#*%*, Layout, ExecSpace> phi;
Kokkos::View<ScalarT=*x, Layout, ExecSpace> s;
Kokkos::View<ScalarT=*x, Layout, ExecSpace> r;

const int num_cell
const int num_basis
const int num_points
const int num_dim
Kokkos :: parallel_for (

grad_phi.extent(0);
grad_phi.extent(1);
grad_phi.extent(2);
grad_phi.extent (3);

Policy(num_cell, 8, 1), // League size == num_cell, team size == 8, vector size == 1
KOKKOS_LAMBDA(const typename Policy::member_type& team)
{

const int cell = team.league_rank();

const int team_index = team.team_rank();

const int team_size = team.team_size();

ScalarT value, value2;
for (int basis=team_index; basis<num_basis; basis+=team_size) { e
value = ©.90; value2 = 0.90;
for (int qp=0; gp<num_points; ++qp) {
for (int dim=@; dim<num_dim; ++dim)
value += f(cell,qgp,dim)*grad_phi(cell, 6 basis,qgp,dim);
value2 += s(cell,gp)*phi(cell,h basis,qp);
}

r(cell ,basis) = value+value?2;

1)

Hierarchic AD Ker

* Sacado FAD - parallelize over
derivative dimension

* Need a specialized Layout for
contiguous derivative values
in the View

* Declare the layout explicitly:

* Allows using both flat and
hierarchic kernels in the same
code base!

* If we don’t declare, uses
layout for flat parallelism

* Layout construction with
vector striding shown for
clarity

e Setbasedonnode
architecture at compile time.

* Vector loop is handled
internally in Sacado FAD type

nel

Hierarchic Diffusion/Rxn Kernel for “DFad<double>”" scalar type

typedef Sacado::Fad::SFad<double,p> ScalarT;
typedef Kokkos::LayoutRight Layout;

const int Stride = 32;

typedef Kokkos::LayoutContiguous<Layout,bStride>
typedef

Kokkos:: TeamPolicy<ExecSpace> Policy;

Kokkos::View<ScalarT#*x*x 6 /ContLayout)\ ExecSpace>
Kokkos::View<ScalarT#%x,/ ContlLayout, \ExecSpace>
Kokkos::View<ScalarT##%%,| ContLayout, ExecSpace>
Kokkos::View<ScalarT#*=*, ContLayout , /ExecSpace>
Kokkos::View<ScalarT#*=*, ContLayout / ExecSpace>

// Typename of local scalars within the kernel

const int num_cell = grad_phi.extent(9);
const int num_basis = grad_phi.extent(1);
const int num_points = grad_phi.extent(2);
const int num_dim = grad_phi.extent(3);
Kokkos::parallel_for(

Policy(num_cell, 256/Stride, Stride),

KOKKOS_LAMBDA(const typename
{

const int cell = team.league_rank();
const int team_index = team.team_rank();
const int team_size = team.team_size();
local_scalar_type value, value2;

for (int basis=team_index; basis<num_basis;

value = ©0.0; value2 = 0.0;
for (int gp=0; gp<num_points; ++qgqp) {
for (int dim=@; dim<num_dim; ++dim)

value += f(cell,gp,dim)*grad_phi(cell,
value2 += s(cell,gp)*phi(cell, basis,qp);
}

r(cell,basis) = c*x(value+value2);

3;

ContLayout ; <

grad_phi;
f;

phi;

S;

r;

// League size == num_cell,
// vector size
Policy:: member_type& team)

32

basis+=team_size) {

basis,gp,dim);

typedef typename Kokkos::ThreadLocalScalarType<decltype(s)>::type local_scalar_type;

team size == 8,

Flat vs Hierarchic Parallelism

* Hierarchic is
significantly more
performant for our
use case

 Static FAD
implementations are
more performant

Time per Cell (sec)

1E-4

1E-5

1E-6

1E-7

NVIDIA V100 GPU
(p =50)

\‘““““—--‘-—-—-—.

200 600 1000 1400 1800 2200 2600 3000
Mesh Cells

square = flat
X = hierarchic

-=-Flat SFad
-=-Flat SLFad
-=-Flat DFad
—<Hier. SFad
—<Hier. SLFad
—<Hier. DFad

15

Hierarchic Roofline (Nvidia V100)

104 {V100 FMA: 7826.1 GFLOP/s
/ / WA: 3925.9 GFLOP/s
* Roofline: —
. v 103
* Triangles: HBM bound 3 o Ll
e Squares: L2 bound S O L2
* Circles: L1 bound 5 V HBM
E 102 4
* SFad and SLFad are c
memory bound 3 SFad (flat)
£ SLFad (flat)
a 10! DFad (flat)
SFad (hierarchical)
SLFad (hierarchical)
DFad (hierarchical)
10° - . .
1072 1071 100 101

Arithmetic Intensity [FLOPs/Byte]

Empirical Roofline Toolkit: C. Yang, et. al., 2018 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC, 2018.
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/software/ert
NOTE: L1 is theoretical limit — not in ERT tool at time of runs 16

Example: Mixed-Basis Poisson Finite Element Assembly

* Same operators used in

plasma code V2¢ = f V=g
* Least squares Finite
Element discretization ¢ € Hv)
* Mixed H-Div and H-Grad f(V -g—f)(V-w)dQ=0 VYw e Hy, g € Hv,
formulation Q
* Assess volumetric operator f(VqS -g) - (Vq)dQ =0 VYqe Hy
performance Q
Description Operator Panzer C++ Class Name
1. Evaluate g at Quadrature Points g=).,,0iW; DOF
2. Evaluate V¢ at Quadrature Points Vo =). 90:Vg; DOFGradient
3. Evaluate V - g at Quadrature Points V-g=)}.g;V-w; DOFDiv

4. Integrate Eq. 6 withh=V¢ — g f (h) - (Vq)dQ2 Integrate_GradBasisDotVector
5. Integrate Eq. 5 withs =V -g— f ,/S (s)(V-w)dQ Integrate DivBasisTimesScalar

18

Performance: Nvidia V100

Int_GradBasisDotVector 20

1.e+01 m Hierarchic
-®-Flat 25 . .
® Hierarchic+Shared Memory
-B-Hierarchic (no shared mem) 20
1.E+00 -A-Hierarchic (shared mem)
15

Time (s)

10
— [

Speedup over Flat Parallelism
o

L\‘ * 3 I
1.E-02 o N o 2
*— e —Ah—————4 N °<<° \\eé' f_)c"}
& Q o &
oF Y N
Q Q"\ e
)
» °
1.E-03 & R
0 2000 4000 6000 8000 10000 X/ &9
) Q& & I
Workset Size N N

* Shared memory can have a significant impact on performance

* Shared memory size is very limited: example limited to 2" order bases

19

Hierarchic Roofline

No Shared Memory

104 V100 FMA: 7826.1 GFLOP/s
d ~ AMA: 3925.9 GFLOP/s
g 103
("]
a
o)
|
L
2 o L1
2
g 107 o
S HBM
£ v
O .
‘%G:) Il Int GradBasis
a 10! Int_DivBasis
EEm DOF
EEE DOFDiv
BN DOFGrad
10° : : ,
1072 107t 10° 101

Arithmetic Intensity [FLOPs/Byte]

NOTE: all runs use the DFad AD type

102

Performance [GFLOP/sec]

With Shared Memory

V100

104 i

FMA: 7826.1 GFLOP/s

~

WA: 3925.9 GFLOP/s

Significant speedup, but shared memory not perfectly performance bound due to mixed scalar type.

Empirical Roofline Toolkit: C. Yang, et. al., 2018 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC, 2018.
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/software/ert

NOTE: L1 is theoretical limit — not in ERT tool at time of runs

103_
BH—V
=i
R O L1
104 4 o L2
V HBM
Il Int GradBasis
101 Int_DivBasis
I DOF
Il DOFDiv
B DOFGrad
10° : - -
1072 107! 10° 10! 10°
Arithmetic Intensity [FLOPs/Byte]
20

Complexities

View<Scalarxx,...> a;

parallel_for (...

* References to individual values

have to be handled inaspecific const Scalar& tmp = a(i,j); // compiler error for AD types!

way D;
View<Scalarxx,...> a;
. using ref_type = View<Scalar**,...>::reference_type;

* Shared memory requires type- S i i

specialization for FAD sizing parallel_for (...

const ref_type tmpl = a(i, j);

. SpecializjnF FAD-only for const auto tmp2 = a(i,J);

hierarchic layouts in a general e

kernel P

* MPL to choose layout based on
scalar type using scratch_view = View<ScalarTx,

typename DevlLayout<ScalarT>::type,
typename PHX::exec_space::scratch_memory_space,

* Kokkos supports use of Iambdas, Kokkos::MemoryUnmanaged >;

but bug in gcc 5/6 caused scratch_view tmp_field;

compiler failure (ﬁXEd in gcc7) in if (Sacado::IsADType<ScalarT>::value) {

nested lambdas. const int fadSize = Kokkos::dimension_scalar(field_.get_view());

tmp_field = scratch_view(team.team_shmem(),numBases,h fadSize);
}
. else {

* EXpIICIt template mstqntlatlon tmp_field = scratch_view(team.team_shmem(), numBases);

for reduced compile times.)

21

Summary

AD is a powerful tool for writing a flexible code base for using operators in both
explicit and implicit modes

Performance portability requires careful attention to memory layouts
* Hidden dimensions in AD makes this more complex

Hierarchic parallelism significantly improves performance for our use case
* Comes with extra complexity, potential for race conditions

Comment: Converting code to be performance portable is application specific.

» Kokkos team experience: 50% can do simple flat parallelism, 30 % need hierarchic, 20% need
algorithmic specialization.

