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Motivating Example: Fast/Stiff/Implicit Modes in Plasma Physics

* Application codes are significant investments and need to cover a wide variety of problems
* Step over fast modes to simulate time scales of interest: Implicit or IMEX schemes

e 5-Moment Plasma Model

* Speed of light arises from coupling of electromagnetic field: explicit CFL ~cAt/Ax
* Plasma oscillation arises from Ampere’s law to momentum conservation: explicit CFL ~At
* Collisions explicit CFL~At

* Cyclotron frequency explicit CFL~|B|At
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Motivation

* Implicit/IMEX Solution Methods
* Large-scale Newton-based solvers leveraging iterative linear solvers (GMRES, CG)
* Requires Jacobian-vector product, Jacobian sensitivities for preconditioning
* Combine with block/physics-based preconditioning for implicit solves (Algebraic Multigrid within blocks)

* IMEX methods split fast and slow modes
* Implicit terms solve for stiff modes (plasma oscillation, speed of light)
* Explicit terms are accurately resolved
* IMEX assumes an additive decomposition: 24 + FU)+GU) =0

. At=CFL~1
Implicit Explicit
. %)
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| | | |
* Requirements: G(IU) F&{)

* Performance Portability
* Keep the code base manageable: write physics once in a clear and concise manner
* Move terms from explicit to implicit depending on time scale of interest (evaluate sensitivities)

Requirement: Performance Portable Automatic Differentiation




Trilinos Discretization Tools Overview

* MPI Related
* Panzer (Multiphysics Assembly and Utilities) |

* DOF Manager: Global Indexing for mixed bases, mixed
equations

e Connection Manager: Mesh DB abstraction Panzer
* Workset Builder: Mesh over-decomposition for AMT Phalanx Intrepid2
* Linear Algebra Builder: Epetra/Tpetra/Thyra Sacado
 Disc-FE: Multiphysics assembly, Mixed Eq Sets, Mixed Bases, Kokkos

BCs, Compatible discretizations, Projections

* Local Node |

* Intrepid2: FE Basis Library

* Shards: Cell/Element Topology

* Phalanx: DAG Assembly: flexibility/complexity
e Sacado: Automatic differentiation scalar types

github.com/trilinos/Trilinos ]

* Kokkos: Performance portability

Performance Portable Automatic Differentiation with Kokkos, Sacado and Phalanx




Performance Portability: Kokkos

Write algs once, run on
many architectures: e.g.

multi-core CPU, Nvidia GPU,

Xeon Phi, AMD GPU, ARM,

Performance Portable
Shared-memory
Programming Model in C++

Supports clear, concise,
thread-scalable parallel
patterns

* for, reduce, scan, task

Multidimensional array
with compile-time
polymorphic layouts.

Kokkos devs are on the c++
standards committee

* C++23 std::mdspan is
Kokkos::View
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https://github.com/kokkos/kokkos




Layouts for Performant Memory Access

View<double**> A(“A”, m, n);

CPU/MIC GPU
) e Each thread accesses strided range of entries
e Each thread accesses contiguous range hread d all values i
f entries * Thread group can read all values in one memory
o ] _ . transaction
* Ensures neighboring values are in cache e Ensures coalesced accesses (consecutive threads
access consecutive entries)
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Example: Dense Matrix-vector Multiply

» Kokkos::View has shared pointer
semantics

* Allocates memoryin a
MemorySpace

* Executes Kernel using an
ExecutionPolicy coupled to an
ExecutionSpace.

e Execution policy determines
parallel distribution of work to
threads

* ExecutionSpace is where to run
the kernel

Kokkos::View<double*xx> A("A",m,n); // Create rank-2 array with m rows and n columns
// using default execution space and layout

Kokkos::View<double*> b("b",n); // Create rank-1 array with n rows

Kokkos::View<double*> c("c",m); // Create rank-1 array with m rows

// Function implementing dense matrix-vector product.

// The function is templated on the types of views storing A, b, and c
template <typename ViewTypeA, typename ViewTypeB, typename ViewTypeC>
void matvec(const ViewTypeA& A, const ViewTypeB& b, const ViewTypeC& c) {

// The scalar type used in this calculation, e.g., double
typedef typename ViewTypeC::value_type scalar_type;

// The best ordinal type for the architecture we are running on, e.g., int or size_t
typedef typename ViewTypeC::size_type size_type;

// The execution space where this functor will run
typedef typename ViewTypeC::execution_space execution_space;

// Matrix dimensions
const size_type m = A.extent(0);
const size_type n = A.extent(1);

Kokkos::RangePolicy<execution_space> policy(@,m)
Kokkos::parallel_for("MatVec", policy, KOKKOS_LAMBDA(const size_type i)
{

scalar_type t = 0.0;

for (size_type j=0; j<n; ++j)

t += A(1,3)*b(3);
c(i) = t;
1)
}

// Execute matrix-vector product for given views A, b, and c
matvec( A, b, c );




Example: Dense Matrix-vector Multiply

Architecture Name Architecture Description Execu- Compiler Bandwidth
tion Measured
Space (GB/s)
Skylake Single-socket 3.0 GHz, Intel Xeon OpenMP Intel 19.0 64.4
Gold 6154 CPU, 18 cores, 2
threads/core
GPU NVIDIA V100 GPU CUDA NVCC 10.1 833
Architecture Name Expected Measured Throughput with Wrong
Throughput Throughput Layout
Skylake 16.1 18.0 15.3
GPU 208 213 263  GFLOP/s

Memory layouts have a critical impact on performance!

Throughput measured using STREAM Triad Benchmark:
McCalpin, IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, 1995



Sacado: Template-based Automatic Differentiation (AD)

* Implement equations templated on the scalar type double Fad<double>
e Libraries provide new scalar types that overload the math Operation | Forward AD rule
operators to propagate embedded quantities c=axb |cé=a=xbh
* Hidden derivative array c = ab c=ab+ ab
. thes chain rule f?r int:carnal dfrivatives c=a/b ¢ = (a— Cé)fb
. ression templates for performance . 1.
xpressi p p =t 6= ra™1g
* Analytic Values (NO finite differencing involved)! c=sin(a) | ¢ = cos(a)a
e Algorithms: Forward mode (FAD) and reverse mode (RAD) ¢=cos(a) | ¢ =—sin(a)a
 SFAD: Static FAD - compile time derivative length c=expla) | ¢ =ca
e DFAD: Dynamic FAD — runtime derivative length C = 1'38;{*11-] C = ﬂ_x’fﬂ-
e SLFAD: In between SFAD and DFAD — compile time MAX derivative
length, runtime sets true length
double* x;
 For various AD tools, see www.autodiff.org . double* £;
6 .ee
O .
template <typename ScalarT> Q§§> computeF (x, £) ;
void computeF (ScalarT* x, ScalarT* f£f)
{ DFad<double>* x;
£f[0] = 2.0 * x[0] + x[1] * x[1]; DFad<double>* dfdx;
£[1] = x[0] * x[0] * x[0] + sin(x[1]); JaCObian

}

computeF (x,dfdx) ;



http://www.autodiff.org/

AD performance without modifications to Kokkos kernels

View<DFad<double>**> A (“A”, m, n);

CPU GPU
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e Achieved by specializing Kokkos::View data structure for Sacado scalar types
— Rank-r Kokkos::View is internally stored as a rank-(r+1) array of doubles

— Specialized Kokkos layout applied to internal rank-(r+1) array for coalesced access on GPU (derivative values are strided, not
consecutive on GPU)



AD Matrix-Vector Multiply

typedef Sacado::Fad::SFad<double,p> FadType;
Kokkos::View<Fadtypexx> A("A",m,n); // Create rank-2 array with m rows and n columns
// using default execution space and layout

Kokkos::View<FadTypex> b("b",n); // Create rank-1 array with n rows
Kokkos::View<FadTypex> c("c",m); // Create rank-1 array with m rows
/...

matvec( A, b, c );

Architecture Name Expected Throughput Measured Throughput No View Specialization

Skylake 30.4 34.1 34.0
GPU 393 395 317

Derivative dimension: p =8

Throughput measured using STREAM Triad Benchmark:
McCalpin, IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, 1995
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Layout Impact on Derivative Array Size

* Performance loss from incorrect
layout is more apparent for larger
derivative sizes

* Small derivative size might get
multiple values in same memory
transaction (more cache hits)

Throughput (GFLOP/s)
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Hierarchic Parallelism

* Flat parallelism is
performant IF you can
saturate the GPU with
work.

* Not always possible
especially for implicit
methods.

e Parallelism

Flat: one thread per
cell

Hierarchic: Team of
threads work on each
Cell/FAD entry

* Three level hierarchy:

League

Team (CUDA thread
block)

Vector
(warp/hyperthreads)

= [ (Fe0 - Vot +sop(w) dx

Hierarchic Diffusion/Rxn Kernel for “double” scalar type

typedef double ScalarT;
typedef Kokkos::LayoutRight Layout;
typedef Kokkos::TeamPolicy<ExecSpace> Policy,; <

Kokkos ::View<ScalarT#x**%*, Layout, ExecSpace> grad_phi;
Kokkos ::View<ScalarTx#**, Layout, ExecSpace> f;

Kokkos::View<ScalarT#*%*, Layout, ExecSpace> phi;
Kokkos::View<ScalarT=*x, Layout, ExecSpace> s;
Kokkos::View<ScalarT=*x, Layout, ExecSpace> r;

const int num_cell
const int num_basis
const int num_points
const int num_dim
Kokkos :: parallel_for (

grad_phi.extent(0);
grad_phi.extent(1);
grad_phi.extent(2);
grad_phi.extent (3);

Policy( num_cell, 8, 1 ), // League size == num_cell, team size == 8, vector size == 1
KOKKOS_LAMBDA( const typename Policy::member_type& team )
{

const int cell = team.league_rank();

const int team_index = team.team_rank();

const int team_size = team.team_size();

ScalarT value, value2;
for (int basis=team_index; basis<num_basis; basis+=team_size) { e
value = ©.90; value2 = 0.90;
for (int qp=0; gp<num_points; ++qp) {
for (int dim=@; dim<num_dim; ++dim)
value += f(cell,qgp,dim)*grad_phi(cell, 6 basis,qgp,dim);
value2 += s(cell,gp)*phi(cell,h basis,qp);
}

r(cell ,basis) = value+value?2;

1)




Hierarchic AD Ker

* Sacado FAD - parallelize over
derivative dimension

* Need a specialized Layout for
contiguous derivative values
in the View

* Declare the layout explicitly:

* Allows using both flat and
hierarchic kernels in the same
code base!

* If we don’t declare, uses
layout for flat parallelism

* Layout construction with
vector striding shown for
clarity

e Setbasedonnode
architecture at compile time.

* Vector loop is handled
internally in Sacado FAD type

nel

Hierarchic Diffusion/Rxn Kernel for “DFad<double>”" scalar type

typedef Sacado::Fad::SFad<double,p> ScalarT;
typedef Kokkos::LayoutRight Layout;

const int Stride = 32;

typedef Kokkos::LayoutContiguous<Layout,bStride>
typedef

Kokkos:: TeamPolicy<ExecSpace> Policy;

Kokkos::View<ScalarT#*x*x 6 /ContLayout )\ ExecSpace>
Kokkos::View<ScalarT#%x,/ ContlLayout, \ExecSpace>
Kokkos::View<ScalarT##%%,| ContLayout, ExecSpace>
Kokkos::View<ScalarT#*=*, ContLayout , /ExecSpace>
Kokkos::View<ScalarT#*=*, ContLayout / ExecSpace>

// Typename of local scalars within the kernel

const int num_cell = grad_phi.extent(9);
const int num_basis = grad_phi.extent(1);
const int num_points = grad_phi.extent(2);
const int num_dim = grad_phi.extent(3);
Kokkos::parallel_for(

Policy( num_cell, 256/Stride, Stride ),

KOKKOS_LAMBDA( const typename
{

const int cell = team.league_rank();
const int team_index = team.team_rank();
const int team_size = team.team_size();
local_scalar_type value, value2;

for (int basis=team_index; basis<num_basis;

value = ©0.0; value2 = 0.0;
for (int gp=0; gp<num_points; ++qgqp) {
for (int dim=@; dim<num_dim; ++dim)

value += f(cell,gp,dim)*grad_phi(cell,
value2 += s(cell,gp)*phi(cell, basis,qp);
}

r(cell,basis) = c*x(value+value2);

3;

ContLayout ; <

grad_phi;
f;

phi;

S;

r;

// League size == num_cell,
// vector size
Policy:: member_type& team )

32

basis+=team_size) {

basis,gp,dim);

typedef typename Kokkos::ThreadLocalScalarType<decltype(s)>::type local_scalar_type;

team size == 8,




Flat vs Hierarchic Parallelism

* Hierarchic is
significantly more
performant for our
use case

 Static FAD
implementations are
more performant

Time per Cell (sec)
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square = flat
X = hierarchic
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—<Hier. SFad
—<Hier. SLFad
—<Hier. DFad
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Hierarchic Roofline (Nvidia V100)

104 {V100 FMA: 7826.1 GFLOP/s
/ / WA: 3925.9 GFLOP/s
* Roofline: —
. v 103
* Triangles: HBM bound 3 o Ll
e Squares: L2 bound S O L2
* Circles: L1 bound 5 V HBM
E 102 4
* SFad and SLFad are c
memory bound 3 SFad (flat)
£ SLFad (flat)
a 10! DFad (flat)
SFad (hierarchical)
SLFad (hierarchical)
DFad (hierarchical)
10° - . .
1072 1071 100 101

Arithmetic Intensity [FLOPs/Byte]

Empirical Roofline Toolkit: C. Yang, et. al., 2018 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC, 2018.
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/software/ert
NOTE: L1 is theoretical limit — not in ERT tool at time of runs 16



Example: Mixed-Basis Poisson Finite Element Assembly

* Same operators used in

plasma code V2¢ = f V=g
* Least squares Finite
Element discretization ¢ € Hv)
* Mixed H-Div and H-Grad f(V -g—f)(V-w)dQ=0 VYw e Hy, g € Hv,
formulation Q
* Assess volumetric operator f(VqS -g) - (Vq)dQ =0 VYqe Hy
performance Q
Description Operator Panzer C++ Class Name
1. Evaluate g at Quadrature Points g=).,,0iW; DOF
2. Evaluate V¢ at Quadrature Points Vo = ). 90:Vg; DOFGradient
3. Evaluate V - g at Quadrature Points V-g=)}.g;V-w; DOFDiv

4. Integrate Eq. 6 withh=V¢ — g f (h) - (Vq)dQ2  Integrate_GradBasisDotVector
5. Integrate Eq. 5 withs =V -g— f ,/S (s)(V-w)dQ  Integrate DivBasisTimesScalar

18



Performance: Nvidia V100

Int_GradBasisDotVector 20

1.e+01 m Hierarchic
-®-Flat 25 . .
® Hierarchic+Shared Memory
-B-Hierarchic (no shared mem) 20
1.E+00 -A-Hierarchic (shared mem)
15

Time (s)
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* Shared memory can have a significant impact on performance

* Shared memory size is very limited: example limited to 2" order bases

19



Hierarchic Roofline

No Shared Memory

104 V100 FMA: 7826.1 GFLOP/s
d ~ AMA: 3925.9 GFLOP/s
g 103
("]
a
o)
|
L
2 o L1
2
g 107 o
S HBM
£ v
O .
‘%G:) Il Int GradBasis
a 10! Int_DivBasis
EEm DOF
EEE DOFDiv
BN DOFGrad
10° : : ,
1072 107t 10° 101

Arithmetic Intensity [FLOPs/Byte]

NOTE: all runs use the DFad AD type

102

Performance [GFLOP/sec]

With Shared Memory

V100

104 i

FMA: 7826.1 GFLOP/s

~

WA: 3925.9 GFLOP/s

Significant speedup, but shared memory not perfectly performance bound due to mixed scalar type.

Empirical Roofline Toolkit: C. Yang, et. al., 2018 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC, 2018.
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/software/ert

NOTE: L1 is theoretical limit — not in ERT tool at time of runs

103_
BH—V
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R O L1
104 4 o L2
V HBM
Il Int GradBasis
101 Int_DivBasis
I DOF
Il DOFDiv
B DOFGrad
10° : - -
1072 107! 10° 10! 10°
Arithmetic Intensity [FLOPs/Byte]
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Complexities

View<Scalarxx,...> a;

parallel_for (...

* References to individual values

have to be handled inaspecific const Scalar& tmp = a(i,j); // compiler error for AD types!

way D;
View<Scalarxx,...> a;
. using ref_type = View<Scalar**,...>::reference_type;

* Shared memory requires type- S i i

specialization for FAD sizing parallel_for (...

const ref_type tmpl = a(i, j);

. SpecializjnF FAD-only for const auto tmp2 = a(i,J);

hierarchic layouts in a general e

kernel P

* MPL to choose layout based on
scalar type using scratch_view = View<ScalarTx,

typename DevlLayout<ScalarT>::type,
typename PHX::exec_space::scratch_memory_space,

* Kokkos supports use of Iambdas, Kokkos::MemoryUnmanaged >;

but bug in gcc 5/6 caused scratch_view tmp_field;

compiler failure (ﬁXEd in gcc7) in if (Sacado::IsADType<ScalarT>::value) {

nested lambdas. const int fadSize = Kokkos::dimension_scalar(field_.get_view());

tmp_field = scratch_view(team.team_shmem(),numBases,h fadSize);
}
. . . . . else {

* EXpIICIt template mstqntlatlon tmp_field = scratch_view(team.team_shmem(), numBases);

for reduced compile times. )

21



Summary

AD is a powerful tool for writing a flexible code base for using operators in both
explicit and implicit modes

Performance portability requires careful attention to memory layouts
* Hidden dimensions in AD makes this more complex

Hierarchic parallelism significantly improves performance for our use case
* Comes with extra complexity, potential for race conditions

Comment: Converting code to be performance portable is application specific.

» Kokkos team experience: 50% can do simple flat parallelism, 30 % need hierarchic, 20% need
algorithmic specialization.



