

LA-UR-21-23055 (Accepted Manuscript)

Determination of chemical decay mechanisms of Parylene-C during X-ray irradiation using two-dimensional correlation FTIR

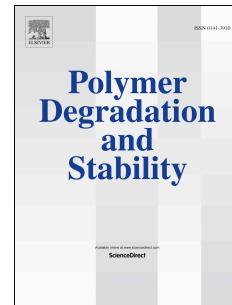
Herman, Matthew Joseph
Blair, Michael W.

Provided by the author(s) and the Los Alamos National Laboratory (2021-11-22).

To be published in: Polymer Degradation and Stability

DOI to publisher's version: 10.1016/j.polymdegradstab.2019.109024

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-21-23055>


Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Journal Pre-proof

Determination of chemical decay mechanisms of Parylene-C during X-ray irradiation using two-dimensional correlation FTIR

Matthew J. Herman, Michael W. Blair

PII: S0141-3910(19)30352-0

DOI: <https://doi.org/10.1016/j.polymdegradstab.2019.109024>

Reference: PDST 109024

To appear in: *Polymer Degradation and Stability*

Received Date: 29 May 2019

Revised Date: 31 October 2019

Accepted Date: 10 November 2019

Please cite this article as: Herman MJ, Blair MW, Determination of chemical decay mechanisms of Parylene-C during X-ray irradiation using two-dimensional correlation FTIR, *Polymer Degradation and Stability* (2019), doi: <https://doi.org/10.1016/j.polymdegradstab.2019.109024>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

1 Determination of Chemical Decay Mechanisms of Parylene-C during X-ray Irradiation

2 using Two-Dimensional Correlation FTIR

3 Matthew J. Herman, Michael W. Blair

6 Abstract:

7 Parylene (poly-p-xylylene), and its family of halogenated variants, have a long history for
8 application as protective coatings and dielectric barriers. Among them, Parylene-C is the most
9 popular due to its high impermeability to moisture, resistance to corrosive environments, and its
10 vapor deposition polymerization, which is self-initiated and unterminated creating an extremely
11 pure polymer coating. In order to apply these advantageous material characteristics in an
12 environment containing ionizing radiation the effects of irradiation on the chemical stability of
13 the polymer throughout the lifetime of the material needs to be further understood.

14 In this work, Fourier-transform infrared (FTIR) and two-dimensional correlation (2D-COS)
15 spectroscopies were used to monitor the structural changes in a ~25 μ m freestanding film of
16 Parylene-C after subjection to X-ray irradiation. Samples were exposed to X-ray doses up to
17 100,000 Gy in atmospheric conditions, and IR spectra were measured after each 500Gy dose.
18 Using 2D-COS it was possible to gain insight into the chemical stability and temporal
19 mechanisms of the chemical reactions accompanying X-ray radiation of Parylene-C. Oxidation
20 was observed by the production of a new species absorbing in the IR at 1697 and 1740 cm⁻¹.
21 Additionally, skeletal stretching of the aliphatic back bone were positively correlated to C-O
22 oxidation products found in the region of 1425-1100 cm⁻¹. The present work is confirmation that

23 Parylene-C does experience chemical degradation from x-ray dose caused by oxidation of the
24 polymer structure.

25 *Corresponding author: mherman@lanl.gov, 505-695-3428

26 **Keywords: 2D-COS, FTIR, Parylene-C**

27 **Introduction**

28 Parylene-C is the generic name of a chlorinated member of the poly-para-xylylene family of
29 thermoplastic, semi-crystalline polymers. It is a vapor deposited polymer created by the vacuum
30 pyrolysis of di-para-xylylene via the Gorham process.¹ By heating di-para-xylylene above 550
31 °C at pressures less than 1 torr, the dimer is cleaved into two monomers which are adsorbed onto
32 a surface at room temperature. The monomers then polymerize, forming a high molecular
33 weight, linear polymer thin film. Aromatic chlorination of the standard poly-para-xylylene gives
34 rise to Parylene-C with one chlorine atom on average per repeat unit. The chemical structure of
35 Parylene-C can be seen in Figure 1. The polymers of the Parylene family have been used
36 extensively as protective coatings in the electronics and medical industries due to their chemical
37 inertness, excellent moisture barrier properties, and ease of creating thick, pinhole free
38 coatings.^{2,3,4,5} Parylene is vapor deposited and requires no additional materials for initiation or
39 termination, resulting in films that are extremely pure and of high quality. Among the members
40 of the Parylene polymer group, Parylene-C is the most resistant to moisture.⁶ Both oxidative
41 degradation^{7,8,9} and degradation caused by photooxidation^{10,11,12,13,14} have been studied
42 extensively in the literature. The proposed oxidative mechanism is that external stimulus such
43 as UV light causes chain scission at a chain C-H site, leaving a radical capable of interaction with
44 atmospheric molecular oxygen. This oxidation process first forms aldehydes at low doses of light

45 exposure and, as dose is increased the formation of carboxylic acids is observed within the thin
46 films of the polymer. However, little has been published on the radiolytic degradation of the
47 polymer when exposed to X-ray in ambient air.

48 In this work Two-Dimensional Infrared Spectroscopy (2D-IR) was applied to study the radiolytic
49 chemical decay in Parylene-C. 2D-IR was originally proposed by Isao Noda in 1986, as a novel
50 technique to increase the resolution and clarity of a series of infrared spectra by spreading the
51 information over a second independent wavenumber axis.¹⁵ This was later generalized (2D-COS)
52 by Noda to include any time-dependent variable, not just an oscillating mechanical disturbance,
53 that can generate change in the intensity, location, or shape of IR peaks.¹⁶ This technique
54 eliminates many problems encountered in traditional spectroscopy such as overlapping bands
55 and, weak signal-to-noise ratios by increasing the spectral resolution by distributing the data over
56 a second wavenumber axis. The objective of this work was to determine the effectiveness of 2D-
57 COS as a characterization method for understanding the chemical degradation that occurs within
58 a sample of Parylene-C as it is exposed to ionizing radiation. Determination of the different
59 oxidation products created by exposure to x-ray in an air atmosphere, as well as the nature of
60 chain scission products, are of prime importance as these factors will effect the material's
61 mechanical properties and service life. In this work, Parylene-C films were exposed to X-ray
62 radiation and FTIR spectra were collected between dose applications. 2D-COS was then applied
63 to analyze the new chemical structures being formed as a result of the X-ray dose applied.

64 **Materials and Methods**

65 *Material and Irradiation*

66 The Parylene-C dimer was purchased from Specialty Coating Systems and vapor deposited via
67 the Gorham process onto a glass substrate to a thickness of ~25 μm based on the deposition rate.¹
68 The films were removed from the substrate by submerging in water for 30 minutes and peeling
69 the Parylene free from the glass, while still submerged and without distorting the material. This
70 resulted in ~25 μm free standing films that were allowed to dry in air for 24 hours before further
71 use. Each film was installed into an IR card with a 9.5mm aperture for ease of handling. Samples
72 were irradiated, in the IR card, using a PANalytical PW3830 X-ray generator at a dose rate of 2
73 Gy/s under atmospheric conditions. The Parylene-C film was additively dosed with 500 Gy
74 between spectra collection to a maximum dose of 100,000 Gy. After each dose the sample was
75 removed from the X-ray generator and installed into the Bruker Vertex 80v spectrometer to
76 performed IR analysis before being reinstalled into the X-ray generator for additional dose
77 applications.

78 *Infrared Spectroscopy and Data Preprocessing*

79 All spectra for the Parylene samples were collected under vacuum in transmission mode using a
80 Bruker Vertex 80v spectrometer with a liquid nitrogen cooled MCT D316 detector. Data was
81 collected between 400 and 4000 wavenumbers (cm^{-1}) at a resolution of 2 cm^{-1} and a total of 200
82 scans per spectra. An initial background spectra was taken for all samples which was ultimately
83 subtracted from the collected spectra. All 201 collected spectra were baselined using OMNIC
84 software (Thermo Fisher Scientific).

85 In order to normalize the data, the selective and non-selective effects within the data set must be
86 understood. A selective effect is defined as a change in the spectra created by a perturbation
87 variable that directly and selectively modifies an area of the IR spectra. An example of a

88 selective effect is the increase in concentration of a new chemical species as a result of radiolytic
89 dose application. Alternatively, a non-selective effect is a change that modifies all features
90 within an IR spectra, such as a decrease in total intensity caused by the application of a
91 perturbation variable. If not corrected, non-selective effects will cause erroneous features in the
92 two-dimensional correlation spectra.¹⁷ If possible, non-selective effects are eliminated from the
93 data set by normalizing the spectra relative to an internal IR band not affected by the perturbation
94 variable. In the case of Parylene-C, a doublet is observed at 1608 and 1557 cm⁻¹ representing the
95 asymmetric, C-C stretching of the substituted aromatic ring found within the polymer
96 backbone.¹⁸ It was determined that these skeletal ring vibrations are the least sensitive to X-ray
97 dose and the medium strength peak at 1557 cm⁻¹ was selected to normalize the spectra. This peak
98 was selected based on the fact that the radical site formed which interacts with molecular oxygen
99 due to photolytic scission is most likely a chain C-H bond, according to Pruden et al.¹⁴ Therefor,
100 the spectra were normalized using OMNIC software to the skeletal ring vibration peak at 1557
101 cm⁻¹ to correct for non-selective effects found in the data set due to the fact that oxidation was
102 least likely to occure at these sites.

103 *2D Correlation Analysis*

104 After all spectra were baseline corrected and normalized to remove non-selective effects, 2D
105 correlation analysis was performed using the methodology developed by Noda. Dynamic spectra
106 were generated using the Biodata toolbox for MATLAB, a free toolbox developed by De
107 Gussem used to store and process large spectral libraries.¹⁹ The dynamic spectra where then used
108 to generate the synchronous and asynchronous correlation spectra contour maps using the
109 discrete Hilbert transform algorithm.²⁰ The Synchronous contour map shows the coherence of
110 dynamic fluctuations. Correlation squares can be created by connecting on diagonal autopeaks to

111 off diagonal peaks to show whether the autopeaks are changing in the same (positive off
112 diagonal peaks) or opposite direction (negative off diagonal peaks). The Asynchronous contour
113 map shows the independent fluctuation in the dynamic spectra. This map is read by generating
114 correlation squares by connecting off diagonal peaks to the center diagonal of the plot. Both the
115 synchronous and asynchronous correlation spectra use red to indicate positive values and blue to
116 indicate negative values of autopeaks and cross peaks.

117 **Results and Discussion**

118 *Fingerprint Region of Untreated Parylene-C*

119 The fingerprint region of the IR spectra for Parylene-C has been well documented in the
120 literature.^{6, 18, 21} All spectral band assignments are based on the repeat unit of Parylene-C shown
121 in Figure 1 with an average of one Chlorine atom per repeat unit. A typical experimental FTIR
122 spectrum of the fingerprint region for Parylene-C can be seen in Figure 2. Notable bands within
123 this region are presented in Table 1. It is important to note the absence of an absorption band in
124 the region of $\sim 1700 \text{ cm}^{-1}$ indicating that there are no carbonyl or carboxylic bonds in the as-
125 deposited film.

126 *The IR spectra of X-ray Irradiated Parylene C*

127 Figure 3 shows the entire collected spectral region, while Figure 4 shows the fingerprint region
128 of X-ray irradiated Parylene-C. Formation of a new band at 1697 cm^{-1} and a general intensity
129 increase in the $1100\text{--}1425 \text{ cm}^{-1}$ region was observed as the polymer yellowed during X-ray
130 irradiation. These changes were attributed to the formation of new aldehyde and carboxylic acid
131 groups.¹⁴ Atmospheric O₂ is thought to bond to radicals created via aliphatic chain scission
132 triggered by X-ray interaction. Additionally, an intensity decrease at both 827 and 1051 cm^{-1} was

133 observed. This indicates a decrease in the movement of single hydrogen atoms bonded to an
134 aromatic ring with neighboring chlorine and ethyl groups (827 cm^{-1}) as well as a decrease in the
135 movement of chlorine atoms bonded to the aromatic backbone of the polymer. While the high
136 frequency region of the spectra, Figure 3, specifically around 3100 cm^{-1} is useful in the
137 determination of the formation of carboxylic acid as a decay product, this band is broad in nature
138 and is characteristic of the existence of O-H bonds. The low intensity and broad nature of this
139 area of the spectra resulted in it being excluded from the final 2D correlation analysis. Due to the
140 fact that peaks associated with water are also found in the high frequency region of the spectra
141 that can obscure the data in this region making it difficult to interpret. The IR peaks needed to
142 draw the conclusion that carboxylic acid groups form as a degradation product of the radiolitic
143 decay are included in the region analyzed; a new peak at 1696 cm^{-1} (C=O group) and a new
144 peak at 1266 cm^{-1} in the region of the characteristic (C-O) bond.¹⁴

145 *2D Correlation Analysis of Irradiated Parylene-C films*

146 When generalized 2D correlation analysis is applied to the IR data set, both synchronous and
147 asynchronous correlation spectra are generated. The synchronous spectra gives information
148 pertaining to how similar the response in the spectra is to the applied perturbation, in this case
149 radiation dose. The asynchronous spectra gives information pertaining to alteration in the spectra
150 which are not synchronous correlated, meaning changes occurring at different dose application
151 levels. The 2D correlation spectra for the entire fingerprint region can be seen in Figure 5. The
152 fingerprint region is subsequently divided into three wavenumber regions for ease of analysis.
153 The 2D correlation maps of the irradiated Parylene-C in the region of $1800\text{-}1450\text{ cm}^{-1}$ are shown
154 in Figure 6. In the synchronous spectrum (Fig. 5a) autopeaks and cross peaks can be observed at
155 1697 , 1607 , and 1495 cm^{-1} . The peak at 1697 cm^{-1} is assigned to newly formed C=O bonds

156 caused by X-ray exposure. The growth of the peak at 1607 cm^{-1} is correlated with the growing
157 peak at 1697 cm^{-1} with positive cross peaks, meaning that they are both increasing with
158 increasing dose. In the case of the peak at 1495 cm^{-1} , it was found that there is a negative
159 correlation between both the 1697 and 1607 cm^{-1} peaks, meaning that the 1495 cm^{-1} peak is
160 decreasing in intensity with increasing radiation exposure. As the peak at 1495 cm^{-1} has been
161 previously associated with C-C stretching in an aromatic ring, it can be concluded that as new
162 oxidation products are forming the stretching mode intensity decreases, possibly indicating
163 aromatic groups being cleaved by irradiation or, more likely, added oxygen containing groups
164 being added to the chain sections of the polymer dampening this stretching mode. It can be seen
165 in the asynchronous spectra for this same region (Figure 6b) that there are positive cross peaks
166 correlating the bands at (1697 cm^{-1} , 1513 cm^{-1}) and (1697 cm^{-1} , 1595 cm^{-1}). It can be seen that
167 there are negative cross peaks correlation the bands at (1697 cm^{-1} , 1495 cm^{-1}), (1595 cm^{-1} , 1495
168 cm^{-1}), (1697 cm^{-1} , 1607 cm^{-1}), (1718 cm^{-1} , 1697 cm^{-1}), and (1740 cm^{-1} , 1697 cm^{-1}). Applying
169 Noda's rules to regions of the 2D asynchronous correlation spectra it is possible to determine the
170 order of damaging events through the comparison of increasing versus decreasing intensity of the
171 bands of interest that occur during X-ray irradiation of the sample film¹⁵. However, this analysis
172 is outside of the scope of the current work.

173 The 2D correlation maps for the irradiated films in the region of 1500 - 1000 cm^{-1} can be seen in
174 Figure 7. In this region (Figure 7a) autopeaks and cross peaks can be observed at 1421 , 1266 ,
175 1209 , 1190 , and 1051 cm^{-1} . As stated previously, the peak at 1051 cm^{-1} is representative of
176 chlorine bonded to an aromatic ring. It is observed that this peak is negatively correlated with all
177 other peaks in this region of the correlation spectrum, meaning that it decreases in intensity with
178 respect to the other bands. Intensity decreases in this peak show that there is a decrease in the

179 mobility of the stretching mode assigned to the chlorine atoms bonded to aromatic rings.
180 Therefore, the stretching mode associated with this bond is apparently being hindered by the
181 newly observed oxidation products. All other autopeaks found in this region are positively
182 correlated and appear in the area of C-O stretch and C-O-H bend vibrations, suggesting the
183 formation of carboxylic acids, esters and alcohols.¹¹ The asynchronous plot for this region (Fig.
184 7b) shows positive cross peaks correlating the bands at (1421 cm⁻¹, 1048 cm⁻¹) and (1266 cm⁻¹,
185 1048 cm⁻¹). Additionally, Negative cross peaks can be observed correlating bands at (1421 cm⁻¹,
186 1051 cm⁻¹), (1375 cm⁻¹, 1051 cm⁻¹), and (1266 cm⁻¹, 1051 cm⁻¹).
187 The 1100-600 cm⁻¹ region of the 2D correlation spectra can be seen in Figure 8. Autopeaks in
188 this region (Fig. 8a) are related to the C-H out-of-plane vibrations of aromatic compounds.
189 Autopeaks in this region for mono-substituted benzene are negatively correlated while peaks
190 representative of new benzene species are positively correlated. In the asynchronous spectra
191 (Figure 8b), negative cross peaks can be seen correlating to bands at (1051 cm⁻¹, 877 cm⁻¹),
192 (1051 cm⁻¹, 827 cm⁻¹), and (1051 cm⁻¹, 688 cm⁻¹).

193 **Conclusions**

194 It is evident that X-ray irradiation up to 100,000 Gy causes oxidation and molecular changes in
195 Parylene-C thin films. A new peak at 1697 cm⁻¹ in the region of C=O stretching was observed,
196 correlating to changes in the skeletal stretching of the aromatic back bone as well as other
197 positive synchronous correlations to C-O oxidation products found in the 1425-1000 cm⁻¹ region.
198 This is evidence that the primary oxidation occurs after a chain scission event forming a terminal
199 carboxylic acid. Parylene-C, in air, is expected to suffer the same oxidative degradation,
200 formation of initial aldehyde degradation products and formation of carboxylic acids at higher

201 exposure doses, in a radiolictic environment as it would when exposed to UV light as previously
 202 studied in the literature.¹³ In short, X-ray irradiation of Parylene-C in air has been shown to cause
 203 both chemical and conformational changes within the thin film.

204 **Acknowledgements**

205 The authors wish to acknowledge support for this work from Los Alamos National Laboratory.

206 **References**

- 207 1. Gorham, W. F., A NEW GENERAL SYNTHETIC METHOD FOR PREPARATION OF
 208 LINEAR POLY-P-XYLYLENES. *Journal of Polymer Science Part a-1-Polymer Chemistry*
 209 **1966**, *4* (12PA), 3027-&.
- 210 2. Jakabovic, J.; Kovac, J.; Weis, M.; Hasko, D.; Srnanek, R.; Valent, P.; Resel, R.,
 211 Preparation and properties of thin parylene layers as the gate dielectrics for organic field effect
 212 transistors. *Microelectronics Journal* **2009**, *40* (3), 595-597.
- 213 3. Mitu, B.; Bauer-Gogonea, S.; Leonhartsberger, H.; Lindner, M.; Bauer, S.; Dinescu,
 214 G., Plasma-deposited parylene-like thin films: process and material properties. *Surface &*
 215 *Coatings Technology* **2003**, *174*, 124-130.
- 216 4. Miwa, J.; Suzuki, Y.; Kasagi, N., Adhesion-based cell sorter with antibody-coated
 217 amino-functionalized-parylene surface. *Journal of Microelectromechanical Systems* **2008**, *17*
 218 (3), 611-622.
- 219 5. Jeon, B. J.; Kim, M. H.; Pyun, J. C., Application of a functionalized parylene film as a
 220 linker layer of SPR biosensor. *Sensors and Actuators B-Chemical* **2011**, *154* (2), 89-95.
- 221 6. Chao, X.; Jun, S.; Bin, Z.; Guangming, W.; Xiang, X., Study on parylene/SiO₂
 222 composite films for protection of KDP crystals. *Journal of Sol-Gel Science and Technology*
 223 **2008**, *45* (3), 319-324.
- 224 7. Monk, D. J.; Toh, H. S.; Wertz, J., Oxidative degradation of parylene C
 225 (poly(monochloro-para-xylylene)) thin films on bulk micromachined piezoresistive silicon
 226 pressure sensors. *Sensors and Materials* **1997**, *9* (5), 307-319.
- 227 8. Szwarc, M., POLY-PARA-XYLENE - ITS CHEMISTRY AND APPLICATION IN
 228 COATING TECHNOLOGY. *Polymer Engineering and Science* **1976**, *16* (7), 473-479.
- 229 9. Joesten, B. L., THERMOGRAVIMETRY AND DIFFERENTIAL SCANNING
 230 CALORIMETRY OF SOME POLY-P-XYLYLENES CONTAINING HALOGEN ATOMS.
 231 *Journal of Applied Polymer Science* **1974**, *18* (2), 439-448.
- 232 10. Bera, M.; Rivaton, A.; Gandon, C.; Gardette, J. L., Comparison of the photodegradation
 233 of parylene C and parylene N. *European Polymer Journal* **2000**, *36* (9), 1765-1777.
- 234 11. Bera, M.; Rivaton, A.; Gandon, C.; Gardette, J. L., Photooxidation of poly(para-
 235 xylylene). *European Polymer Journal* **2000**, *36* (9), 1753-1764.
- 236 12. Pruden, K. G.; Sinclair, K.; Beaudoin, S., Characterization of parylene-N and parylene-C
 237 photooxidation. *Journal of Polymer Science Part a-Polymer Chemistry* **2003**, *41* (10), 1486-
 238 1496.

239 13. Fortin, J. B.; Lu, T. M., Ultraviolet radiation induced degradation of poly-para-xylylene
240 (parylene) thin films. *Thin Solid Films* **2001**, *397* (1-2), 223-228.

241 14. Pruden, K. G.; Sinclair, K.; Beaudoin, S., Characterization of parylene-N and parylene-C
242 photooxidation. *Journal of Polymer Science Part A: Polymer Chemistry* **2003**, *41* (10), 1486-
243 1496.

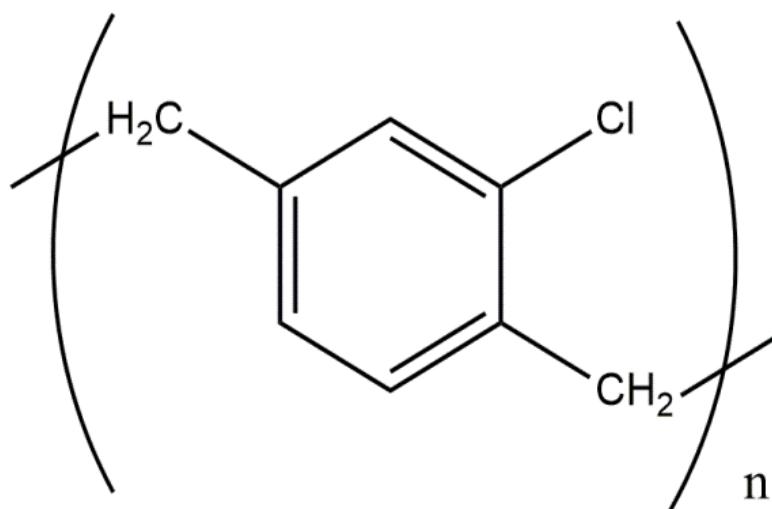
244 15. Noda, I., TWO-DIMENSIONAL INFRARED-SPECTROSCOPY. *Journal of the
245 American Chemical Society* **1989**, *111* (21), 8116-8118.

246 16. Noda, I., GENERALIZED 2-DIMENSIONAL CORRELATION METHOD
247 APPLICABLE TO INFRARED, RAMAN, AND OTHER TYPES OF SPECTROSCOPY.
248 *Applied Spectroscopy* **1993**, *47* (9), 1329-1336.

249 17. Czarnecki, M. A., Two-dimensional correlation spectroscopy: Effect of normalization of
250 the dynamic spectra. *Applied Spectroscopy* **1999**, *53* (11), 1392-1397.

251 18. Ionescu, M. A.; Ionescu, C.; Ciuca, I., Polymer Vapour Deposition of Parylene-N and
252 Parylene-C on Si(111) Thin film characterization by FTIR and ellipsometry. *Revista De Chimie*
253 **2014**, *65* (10), 1242-1244.

254 19. De Gussem, K.; De Gelder, J.; Vandenabeele, P.; Moens, L., The Biodata toolbox for
255 MATLAB. *Chemometrics and Intelligent Laboratory Systems* **2009**, *95* (1), 49-52.


256 20. Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M.; Ozaki, Y., Generalized two-
257 dimensional correlation spectroscopy. *Applied Spectroscopy* **2000**, *54* (7), 236A-248A.

258 21. Kahouli, A.; Sylvestre, A.; Pairis, S.; Laithier, J. F., Effect of Cl-H aromatic substitution
259 on structural and dielectric properties of poly(p-xylylene). *Polymer* **2012**, *53* (14), 3001-3007.

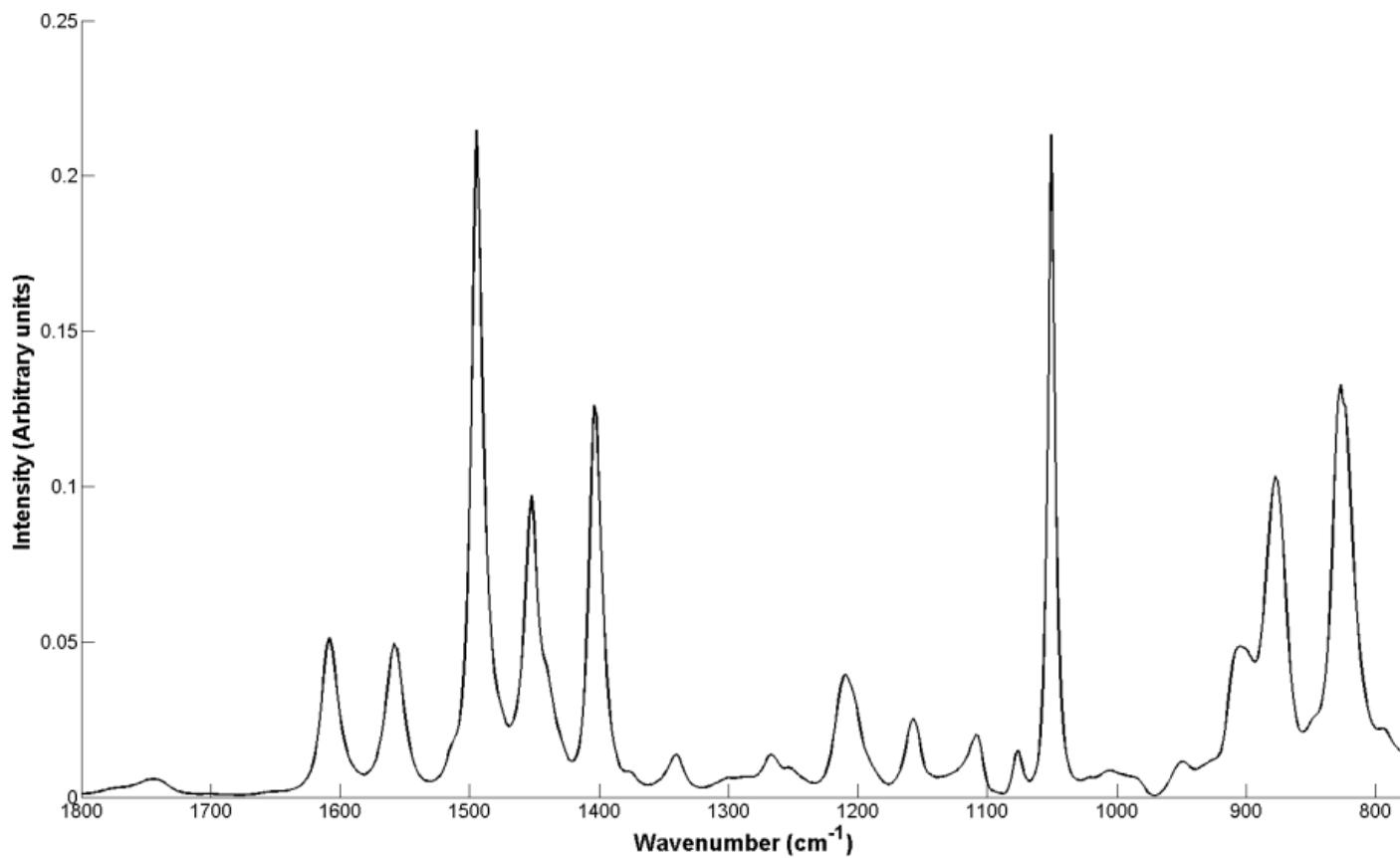
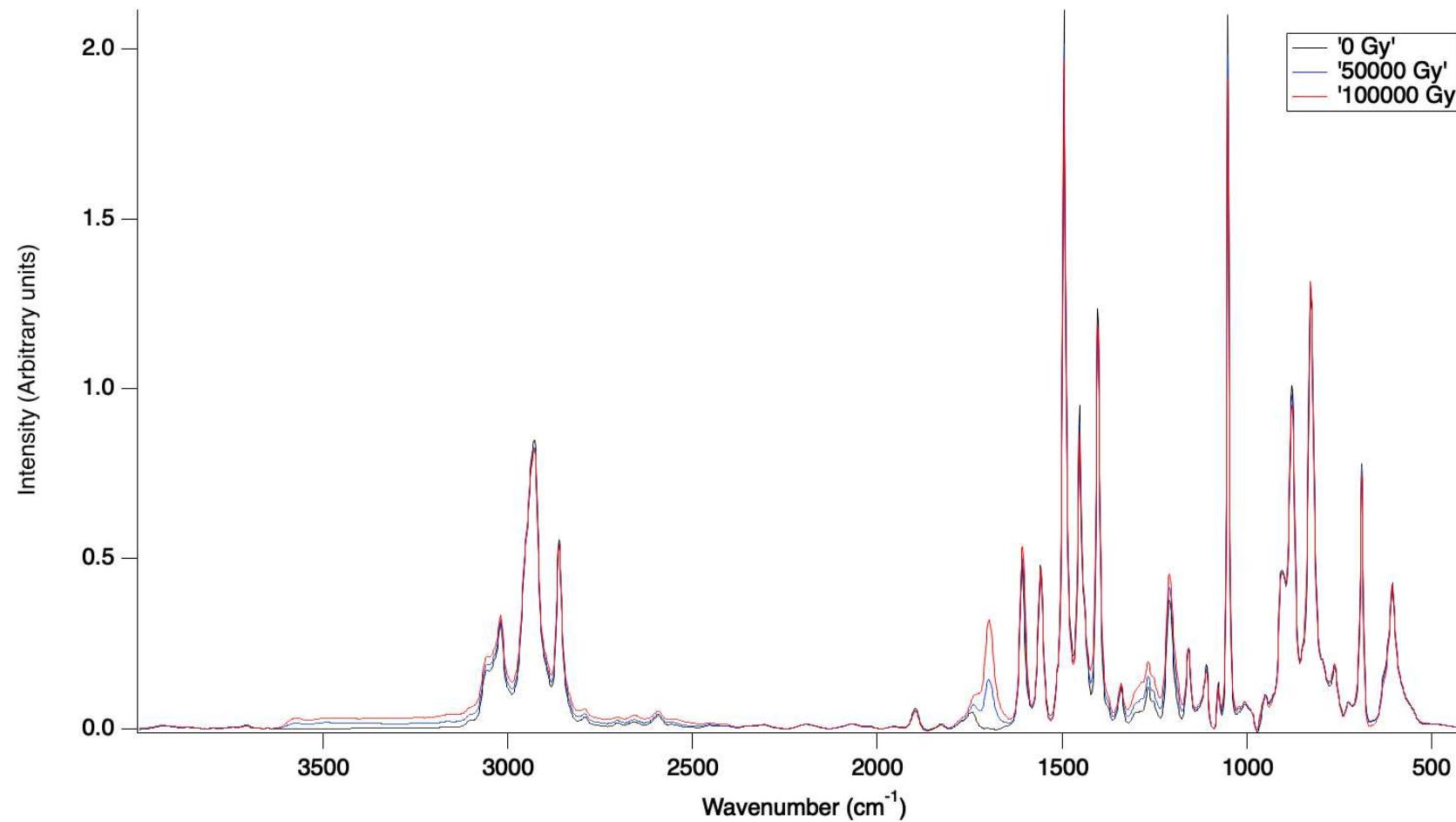
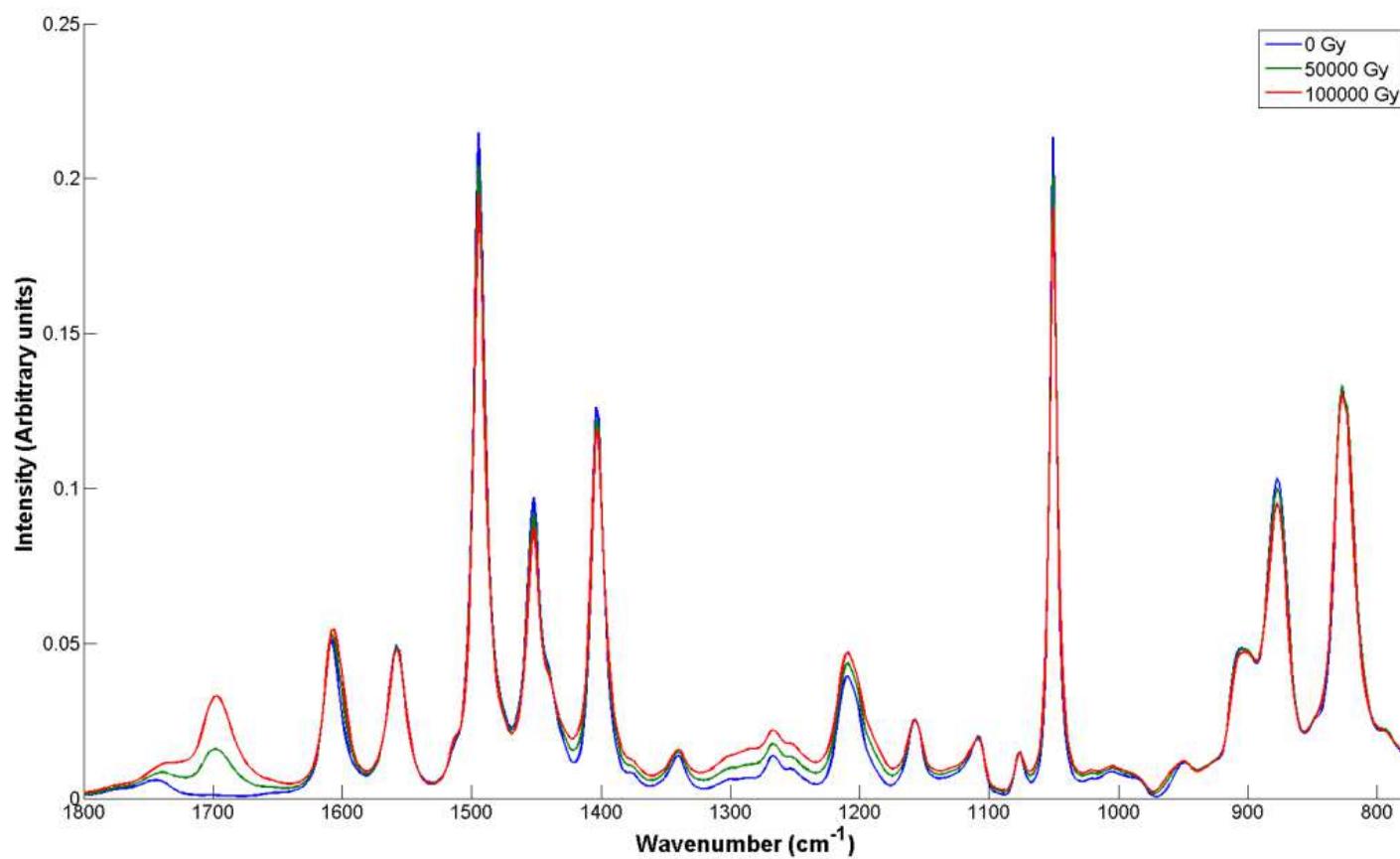
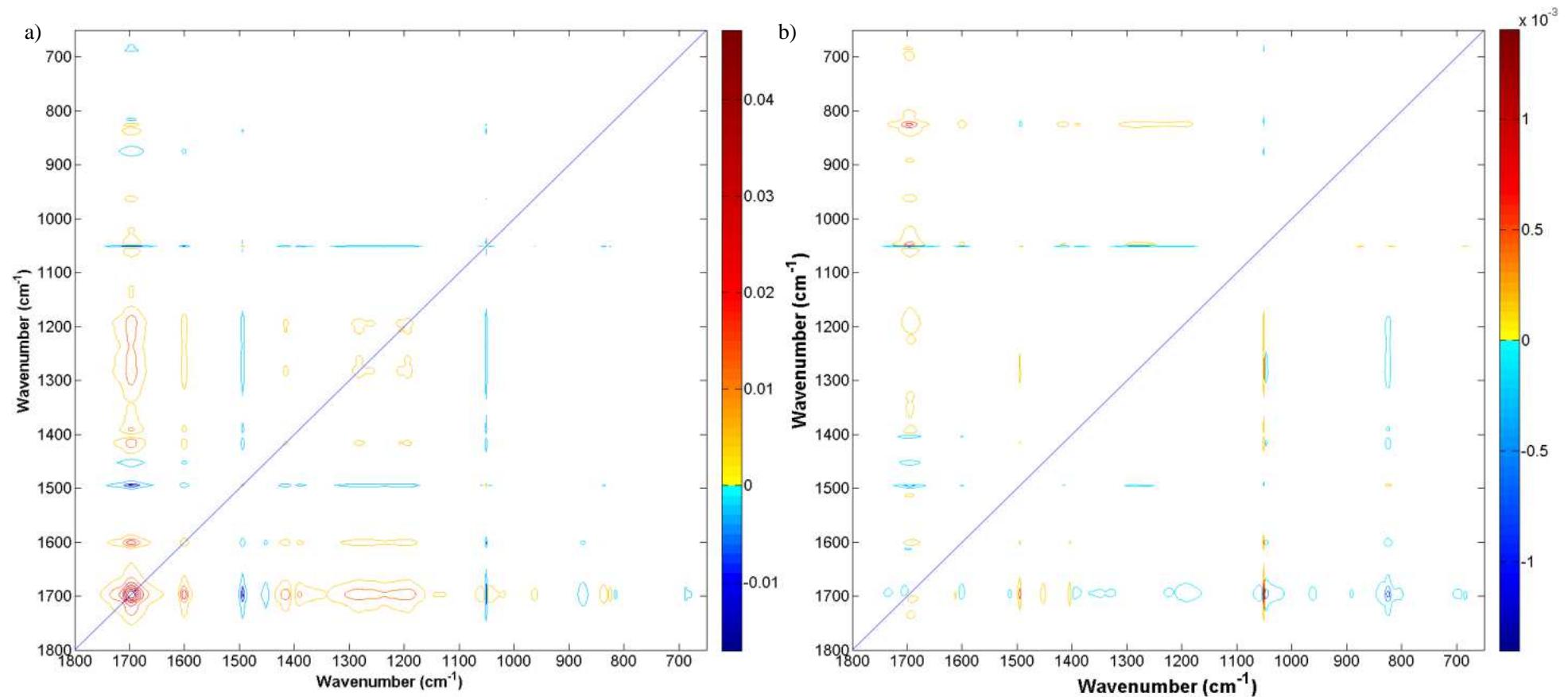
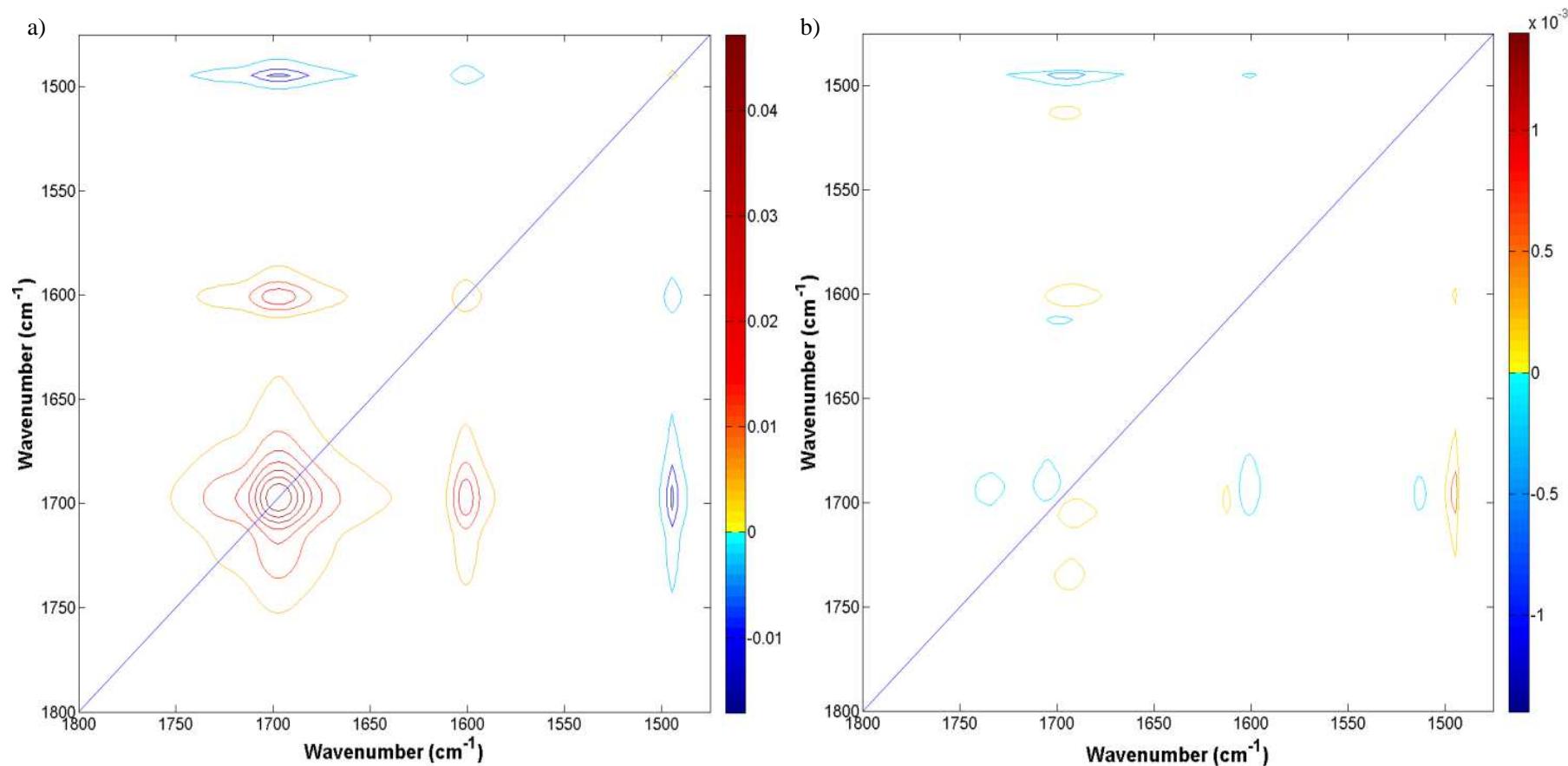

260

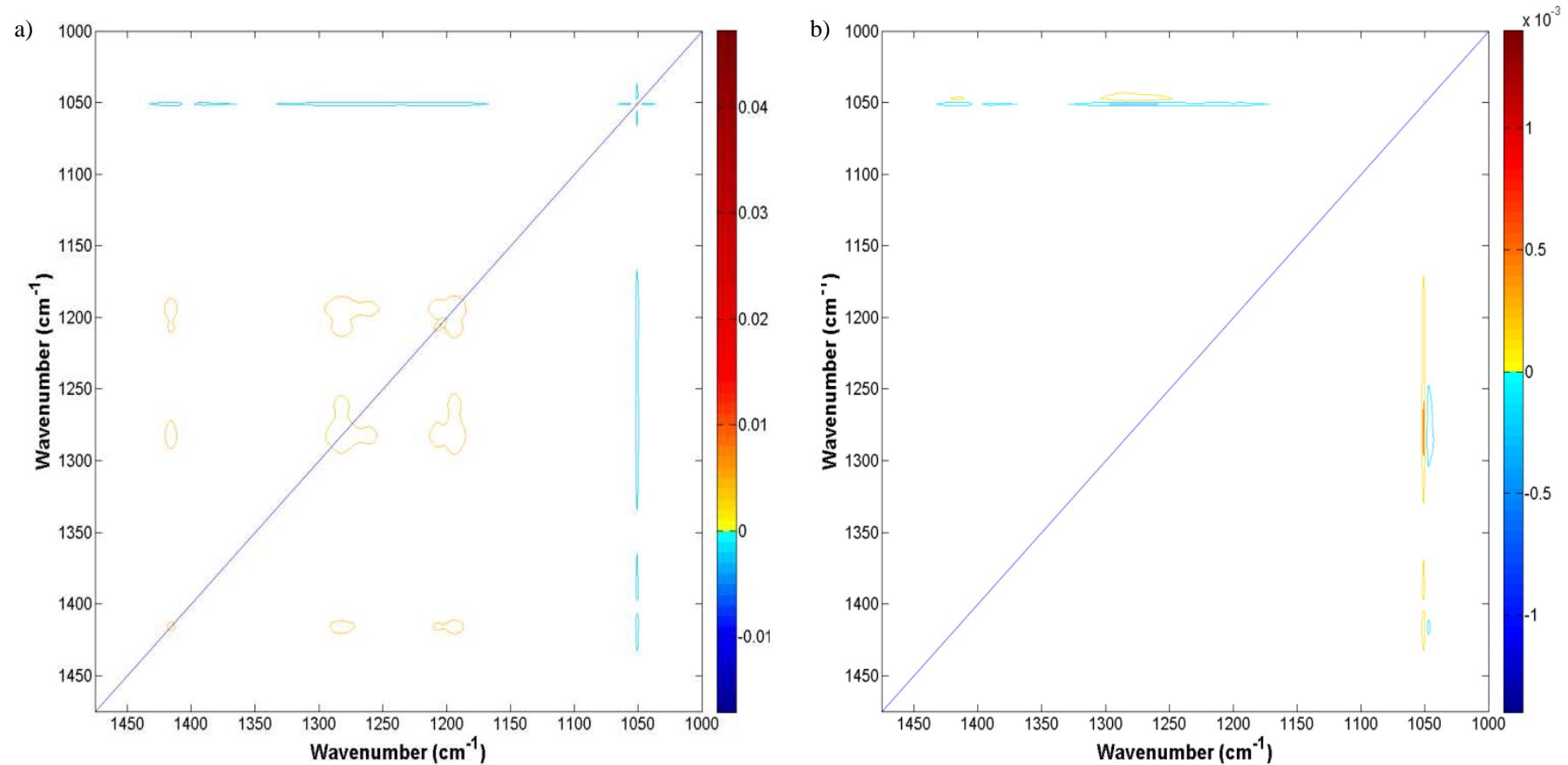
Table 1 Notable spectral bands based on the repeat unit of Parylene-C with an average of one Chlorine atom per repeat unit^{6, 8, 21}


Assignment	Wavenumber (cm ⁻¹)
Two neighboring H atoms bonded to aromatic ring vibrations	827
Cl bonded to aromatic ring vibrations	877
Cl bonded to aromatic ring vibrations	1051
In-plane deformation of C-H bond in aromatic ring vibrations	1200-1000
CH ₃ symmetric bending vibrations	1340
C-C deformation vibrations	1403
CH ₂ rocking vibrations	1452
C-C ring stretching vibrations	1495
Skeletal aromatic C-C vibrations	1557
Skeletal aromatic C-C vibrations	1607


Figure 1 Chemical Structure of Parylene-C Polymer


Figure 2 Finger print region of untreated Parylene-C film


Figure 3 Entire collected spectral region of X-ray irradiated Parylene-C film


Figure 4 Finger print region of X-ray irradiated Parylene-C

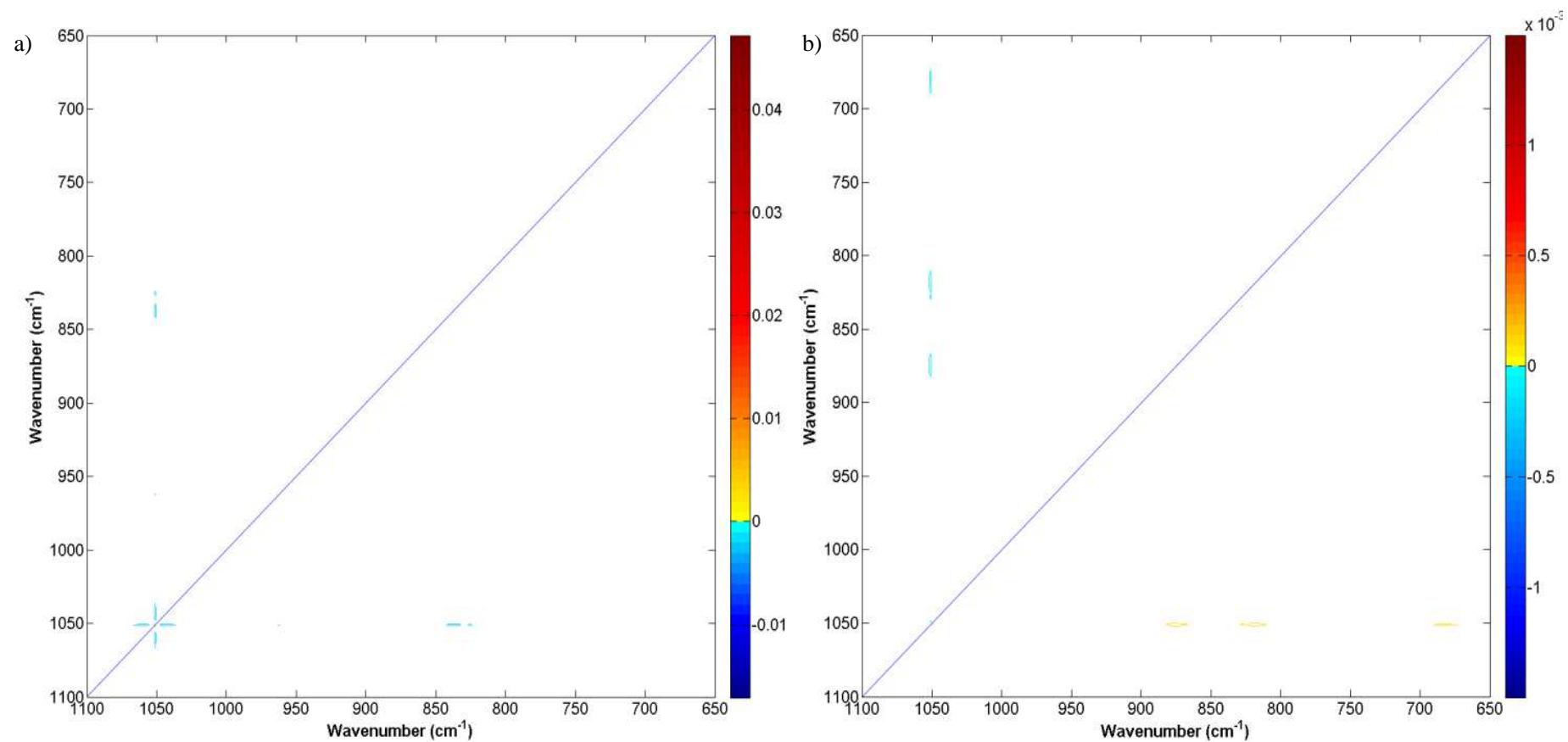

Figure 5 2D correlation spectra of X-ray irradiated Parylene-C in the finger print region a) Synchronous spectra b) Asynchronous spectra

Figure 6 2D correlation spectra of X-ray irradiated Parylene-C in the range of 1800-1450 cm^{-1} a) Synchronous spectra b) Asynchronous spectra

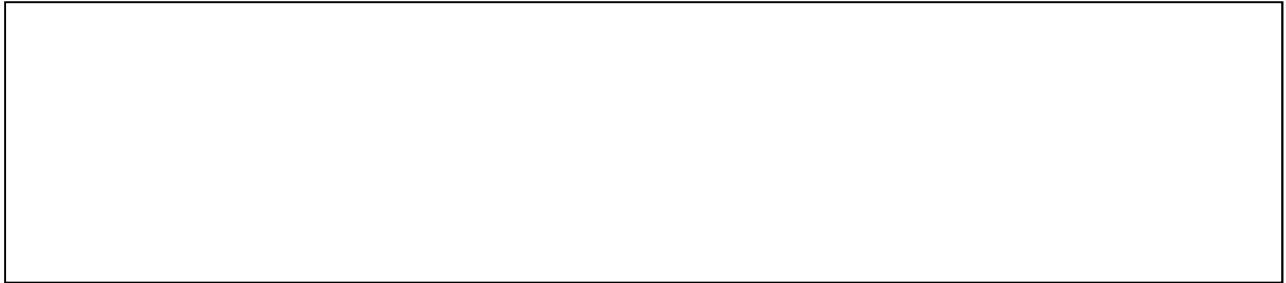
Figure 7 2D correlation spectra of X-ray irradiated Parylene-C in the range of 1500-1000 cm⁻¹ a) Synchronous spectra b) Asynchronous spectra

Figure 8 2D correlation spectra of X-ray irradiated Parylene-C in the range of $1500\text{-}1000\text{ cm}^{-1}$ a) Synchronous spectra b) Asynchronous spectra

Determination of Chemical Decay Mechanisms of Parylene-C during X-ray Irradiation using Two-Dimensional Correlation FTIR

Matthew J. Herman, Michael W. Blair

Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545


Highlights:

- X-ray irradiation of Parylene-C thin films results in oxidative degradation
- 2D correlation provides insight into the temporal nature of degradation
- FTIR spectra can be better understood applying 2D correlation technique

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A large, empty rectangular box with a thin black border, intended for authors to declare any potential competing interests.