

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-816783

A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage

X. Ju, P. Fu, R. Settegast, J. Morris

November 16, 2020

International journal of greenhouse gas control

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage

Xin Ju, Pengcheng Fu*, Randolph Settegast, Joseph Morris

Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA.

*Corresponding author: fu4@llnl.gov

11 Abstract: A potential risk of injecting CO₂ into storage reservoirs with marginal permeability
12 ($\lesssim 10$ mD (1 mD = 10^{-15} m²)) is that commercial injection rates could induce fracturing of the
13 reservoir and/or the caprock. Such fracturing is essentially fluid-driven fracturing in the leakoff-
14 dominated regime. Recent studies suggested that fracturing, if contained within the lower portion
15 of the caprock complex, could substantially improve the injectivity without compromising the
16 overall seal integrity. Modeling this phenomenon entails complex coupled interactions among the
17 fluids, the fracture, the reservoir, and the caprock. We develop a simple method to capture all
18 these interplays in high fidelity by sequentially coupling a hydraulic fracturing module with a
19 coupled thermal-hydrological-mechanical (THM) model for nonisothermal multiphase flow. The
20 model was made numerically tractable by taking advantage of self-stabilizing features of leakoff-
21 dominated fracturing. The model is validated against the PKN solution in the leakoff-dominated
22 regime. Moreover, we employ the model to study thermo-poromechanical responses of a fluid-
23 driven fracture in a field-scale carbon storage reservoir that is loosely based on the In Salah

24 project's Krechba reservoir. The model reveals complex yet intriguing behaviors of the
25 reservoir-caprock-fluid system with fracturing induced by cold CO₂ injection. We also study the
26 effects of the *in situ* stress contrast between the reservoir and caprock and thermal contraction on
27 the vertical containment of the fracture. The proposed model proves effective in simulating
28 practical problems on length and time scales relevant to geological carbon storage.

29

30 Keywords: Geologic carbon storage, CO₂ fracturing, THM coupled modeling, multiphase
31 multicomponent fluid flow, supercritical CO₂

32 **1 Introduction**

33

34 Geological carbon storage (GCS) is a promising measure to mitigate the effect of anthropogenic
35 greenhouse gas emissions on climate change (Pacala and Socolow, 2004; International Energy
36 Agency, 2010). To have a meaningful impact on the net CO₂ emission through GCS requires
37 injecting a large quantity of CO₂ into subsurface geological reservoirs (Orr, 2009; Haszeldine,
38 2009). Existing pilot and experimental GCS projects mainly focus on storage reservoirs with
39 ideal conditions, such as high porosity and high permeability (typically in the range of hundreds
40 to thousands of millidarcy (1 mD = 10⁻¹⁵ m²)). Considering that high quality reservoirs do not
41 necessarily exist near CO₂ sources, the utilization of less favorable reservoirs, such as those with
42 marginal permeabilities (i.e. low tens of mD), can significantly improve the commercial viability
43 of GCS. In particular, recent commercial-scale field tests demonstrate that many such low
44 permeability reservoirs have enormous CO₂ sources nearby and also enjoy easy access to drilling
45 and comprehensive monitoring systems (Mito et al., 2008, Rinaldi et al, 2013). One good
46 example of such sites is In Salah, Algeria, where a large amount of CO₂ source from nearby

47 natural gas production was injected into several storage reservoirs with marginal permeabilities
48 (around 10 mD) (Iding and Ringrose, 2010; Rinaldi et al., 2013). Therefore, understanding GCS
49 in reservoirs with marginal permeability is of great significance.

50 The main challenge facing injection into marginal-permeability reservoirs is the low injectivity
51 under the pressure constraints that prevent fluid-driven fractures, namely, hydraulic fractures,
52 from occurring in storage reservoirs. Previous studies showed that using a low injection rate that
53 complies with the pressure constraint cannot achieve even a moderate commercial-level injection
54 rate, i.e. a million-metric ton per year per well (Fu et al., 2017). However, recent studies
55 postulated that the issue of low injectivity in marginal-permeability reservoirs might be
56 effectively and safely mitigated if injection-triggered hydraulic fractures can be contained within
57 reservoir rocks or the lower portion of the caprock without jeopardizing the overall seal integrity
58 of the caprock complex (White et al., 2014; Fu et al., 2017). Circumstantial field data and
59 observations from the In Salah site also suggest the possible existence of such postulated
60 scenarios (Bohloli et al., 2017; Oye et al., 2013; White et al., 2014).

61 Modeling hydraulic fracturing in marginal-permeability GCS reservoirs entails the simulation of
62 many complex processes: multiphase multicomponent fluid flow and heat transfer within
63 fractures and matrix, mass and heat exchanges between fracture and matrix flows, poro/thermo-
64 elastic deformation of solid rocks, and fracture propagation. Although many numerical studies
65 have tackled this challenging task, significant simplifications had been made to mitigate various
66 numerical challenges. These simplifications could be broadly divided into two groups: (1)
67 treating hydraulic fractures as a highly permeable porous zone and (2) simplifying multiphase
68 and nonisothermal flow behaviors of injected CO₂.

69 The first group of works typically simplify the dynamic interactions between fracture
70 propagation and matrix flows and also neglect some key characteristics of hydraulic fractures
71 (e.g. Morris et al., 2011; Pan et al., 2012; Raziperchikolaee et al., 2013; Sun et al., 2016). In
72 other words, these are not designed to accurately predict the coupled thermo-hydro-mechanical
73 (THM) responses of reservoir and caprocks once fluid-driven fractures are created. Many models
74 in this category employ a continuum-based method, such as the dual porosity models and dual
75 permeability models (e.g. Guo et al., 2017; Li and Elsworth 2019; Fan et al., 2019), neither of
76 which could represent the complex flow behaviors associated with a propagating fracture.
77 Moreover, works that attempt to capture geomechanical responses of hydraulic fractures often do
78 not address complexities caused by an evolving fracture tip (e.g. Gor et al. 2014; Eshiet and
79 Sheng 2014; Vilarrasa et al., 2014). In other words, they cannot explicitly depict the evolution of
80 fracture extents and shapes which is critical to evaluating fracture containment (Rutqvist et al.,
81 2016; Ren et al., 2017; Vilarrasa et al., 2017; Sun et al., 2017).
82 The second group of works, on the other hand, strive to capture essential features associated with
83 hydraulic fracturing, such as fracturing propagation, seepage (leakoff) of fluid through fractures
84 into reservoirs, and strong nonlinearity of the coupling between fracture permeability and
85 hydraulic aperture (Fu et al., 2017; Culp et al., 2017; Salimzadeh et al., 2017; Salimzadeh et al.,
86 2018; Gheibi et al. 2018; Mollaali et al., 2019; Yan et al., 2020), but substantially simplify fluid
87 flow characteristics unique to supercritical CO₂ flow in a saline reservoir. The works of Fu et al.
88 (2017) and Yan et al. (2020) focused on modeling isothermal fluid flow in porous media and
89 ignored the thermal responses of fractures in the storage reservoir. However, these responses
90 have a great impact on caprock integrity (Vilarrasa et al., 2014; Kim and Hosseini, 2014; Kim
91 and Hosseini, 2015; Salimzadeh et al., 2018). The simulations conducted by Salimzadeh et al.

92 (2018) used a surrogate flow model—single-phase flow model— for simulating two-phase CO₂
93 flow, neglecting the pressure- and temperature- dependency of the PVT (pressure, volume,
94 temperature) properties and multiphase flow of supercritical CO₂. In addition to discrete fracture
95 models used by the above studies, smeared fracture models, such as the phase field method
96 (Francfort and Marigo, 1998; Francfort et al., 2008), have also been adapted to address hydraulic
97 fracturing related to CO₂ injection. Although it is straightforward to integrate the mass and
98 energy conservations of CO₂ into the general formulation of the phase field method and to
99 consider complex fracture processes (e.g. Culp et al., 2017; Mollaali et al., 2019), the smearing
100 nature of this approach, nonetheless, poses stringent requirements on mesh refinement and
101 adaptivity to accurately reconstruct the displacement discontinuities across the fracture surface
102 (Lecampion et al., 2017). This numerical challenge has limited the application of the phase field
103 to small-scale simulations (Mollaali et al., 2019). According to the latest review on the modeling
104 of caprock integrity (Paluszny et al. 2020), a fully coupled 3D model that can capture the
105 complex interplay among CO₂ injection, reservoir responses, and the propagation of hydraulic
106 fractures at the field-scale is not currently available. The scarcity of such models is likely owing
107 to the lack of a modeling scheme that can effectively and efficiently simulate the inherent
108 complexity of hydraulic fracturing in marginal-permeability GCS reservoirs.

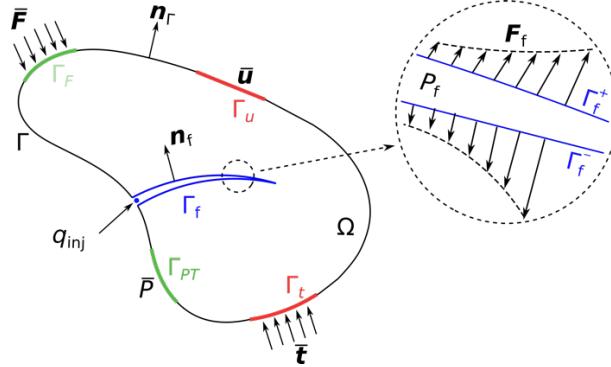
109 The objective of this study is to develop a modeling scheme that effectively and efficiently
110 simulates hydraulic fracturing in GCS reservoirs and to study the mechanisms of fracture
111 containment within the caprock formations. The proposed scheme is particularly designed to
112 simulate the interactions between coupled THM processes in a CO₂ storage system (reservoir
113 and caprock) and the propagation of a fluid-driven fracture in the so-called “leakoff-dominated”
114 regime (Bunger et al., 2005; Detournay, 2016). As revealed by Fu et al. (2017), hydraulic

115 fracture propagation driven by CO₂ injection into a storage reservoir is expected to be in this
116 regime, in which the majority of the injected fluid leaks from the hydraulic fracture and is stored
117 in the storage reservoir. The propagation rate of the fracture is dominated by the leakoff rate into
118 the reservoir. Mechanical responses of the fracture do not strongly affect the propagation rate, in
119 sharp contrast to fracture behavior in the so-called storage-dominated and toughness-dominated
120 regimes. This particular feature enables us to couple hydraulic fracturing and the associated rock
121 deformation with reservoir flow in a simple yet sufficiently accurate way.

122 This paper proceeds as follows. Section 2 describes the mathematical formulations of a coupled
123 THM model and the proposed modeling scheme that couples the THM model with a fracture
124 mechanics module. The underlying rationale of this scheme is also discussed in this section.
125 Section 3 validates the proposed scheme by comparing numerical results against the PKN
126 solution in the leakoff-dominated regime. In Section 4 we build a 3D field-scale model, loosely
127 based on the In Salah Project and reveal complex interplays between hydraulic fracturing and
128 thermo-poroelastic effects induced by cold CO₂ injection. Section 5 discusses the effects of
129 various reservoir conditions in the context of GCS, on the controlling mechanisms of the growth
130 of caprock fracture. In the concluding section, we suggest possible implications of the proposed
131 method and findings for GCS site characterization and operation.

132 **2 Methodology**

133 In this section, we briefly describe the governing equations of the coupled THM processes taking
134 discrete hydraulic fractures into account. Next, we introduce the coupling scheme that links the
135 coupled THM model to a fracture mechanics module in a simple yet accurate fashion. Note that
136 the THM model used here is an extension of the continuum based THM model as described in
137 Fu et al. (2020). More details related to that THM model, such as derivation of governing


138 equations of multiphase multicomponent flow and heat transfer, numerical discretization, and
139 fixed-stress iterative scheme, can be found in Fu et al. (2020). Moreover, the detailed
140 implementation of the fracturing module used in this study can be found in Fu et al. (2013) and
141 Settgast et al. (2017).

142

143 2.1 Governing equations of the THM model

144 As presented in Fig.1, we consider a permeable body Ω bounded by the external boundary Γ that
145 contains Dirichlet and Neumann boundary conditions for geomechanical (traction boundary Γ_t
146 and displacement boundary Γ_u) and flow problems (prescribed pressure/temperature boundary
147 Γ_{PT} and flux boundary Γ_F), respectively. Specifically, for the geomechanical problem, Γ is
148 subjected to the prescribed traction $\bar{\mathbf{t}}$ and displacement $\bar{\mathbf{u}}$ applied on Γ_t and Γ_u , respectively. For
149 the flow problem, prescribed thermodynamic conditions such as pressure \bar{P} , and fluxes of mass
150 or heat ($\bar{\mathbf{F}}$) are applied on Γ_{PT} and Γ_F , respectively.

151 Domain Ω also contains an internal boundary Γ_f , where boundary conditions corresponding to a
152 growing fluid-driven fracture in response to the injected mass q_{inj} are applied. Γ_f describes the
153 fracture whose unit direction vector \mathbf{n}_f is orthogonal to Γ_f and consists of two opposing surfaces
154 Γ_f^+ and Γ_f^- as shown in Fig.1. The body is assumed to be permeable so that leakage \mathbf{F}_f can occur
155 from the fracture to the surrounding body through Γ_f if a positive pressure difference from the
156 fracture to the body is present or vice versa. Note that the process of leakoff is illustrated in the
157 enlarged inset in Fig.1.

158

159 Fig. 1. Conceptual schema for modeling the evolution of a fluid-driven fracture in a permeable medium. Ω is a
 160 permeable body with an external boundary Γ that contains Dirichlet and Neumann boundary conditions for both
 161 geomechanical and flow problems. The evolving fracture in response to the injection fluid of q_{inj} is represented as an
 162 internal boundary Γ_f , highlighted in blue. The enlarged inset illustrates the leakoff of fluids F_f in the fracture through
 163 Γ_f .

164 The reservoir rock and the overlaying/underlying rocks (both caprock and basement) are treated
 165 as porous media subjected to fluid/heat flow as well as poromechanical deformation. The
 166 mathematical formulations and discretization strategy of the THM model are based on the
 167 following set of assumptions and treatments.

- 168 • For the fluid flow and heat transfer model, the movements of mobile phases through
 169 fractures and matrix are assumed to follow lubrication theory (Witherspoon et al., 1980)
 170 and Darcy's law, respectively.
- 171 • For the geomechanical model, the deformation of porous rock matrix is assumed to be
 172 quasi-static and linearly elastic. We use the small deformation assumption for the stress-
 173 strain relationship.
- 174 • Fractures and porous matrix are represented using separate but associated meshes:
 175 Fractures are represented with planar elements in the 3D space while the matrix is

represented with solid elements. A mapping between the two meshes is generated as the solid mesh is split to create the fracture mesh.

Additional assumptions and treatments associated with multiphase flow and heat transport model are identical to ones adopted in Fu et al. (2020).

2.1.1 Geomechanical model

The governing equations for quasi-static solid deformation of a permeable body Ω can be expressed as

$$\nabla \cdot \boldsymbol{\sigma} + \rho_m \mathbf{g} = \mathbf{0} \quad (1)$$

where $\nabla \cdot$ is the divergence operator; σ is the second-order total stress tensor; \mathbf{g} is the gravity vector; and $\rho_m = \phi \sum_{J=A,G} S_J \rho_J + (1 - \phi) \rho_s$ is the bulk density of matrix, in which subscript J denotes a phase of component in porous media (i.e., the aqueous (A) or gaseous (G) phase), S_J is the saturation of phase J , ρ_s is the grain density, and ϕ is the true porosity, defined as the ratio of the pore volume to the bulk volume in the deformed configuration (Kim et al., 2011).

Based on the thermo-poroelasticity theory (Biot 1941; Coussy 2004) and the assumptions of linearly elastic and small deformation, σ can be related to the temperature field and displacement field:

$$\boldsymbol{\sigma} = \mathbf{C}_{dr} : \nabla \mathbf{u} - b P_E \mathbf{1} - 3 \alpha_L K_{dr} d T \mathbf{1} \quad (2)$$

196 where \mathbf{C}_{dr} is a fourth-order elastic tensor, associated with the drained-isothermal elastic moduli;
197 ∇ is the gradient operator; \mathbf{u} is the solid displacement vector, also the primary unknown of the
198 geomechanical model; b is Biot's coefficient; $\mathbf{1}$ is a second-order identity tensor; α_L is the linear
199 coefficient of thermal expansion; K_{dr} is the drained-isothermal bulk modulus; $P_E = \sum_J S_J P_J -$
200 $\int_{S_A}^1 P_c(S) dS$ is the equivalent pore pressure (Coussy 2004), in which P_J is the fluid pressure of
201 phase J and P_c is the gas-water capillary pressure as a function of aqueous saturation; and $dT =$
202 $T - T_{ref}$ is the temperature difference, in which T is the current temperature and T_{ref} is a
203 reference temperature.

204 In the geomechanical model, we consider the fluid pressure in the fracture, P_f , as a normal
205 traction exerted on the fracture faces, Γ_f , while we neglect the shearing traction of the fluid on
206 solid matrix. Therefore, the traction balance across the fracture surface can be written as

$$207 \quad \mathbf{t}_f = -P_f \mathbf{n}_f \text{ on } \Gamma_f \quad (3)$$

208 The external boundary conditions, traction and kinematic, are governed by

$$209 \quad \bar{\mathbf{t}} = \boldsymbol{\sigma} \mathbf{n}_t \text{ on } \Gamma_t, \quad (4)$$

$$210 \quad \bar{\mathbf{u}} = \mathbf{u} \text{ on } \Gamma_u, \quad (5)$$

211 Where \mathbf{n}_f and \mathbf{n}_t are the normal unit vectors on Γ_f and Γ_t , respectively; $\bar{\mathbf{u}}$ is the prescribed
212 displacement on Γ_u .

213

214 2.1.2 Multiphase multicomponent flow and heat transfer model

215 The formulations of mass-and-energy conservation can be expressed in a unified
216 integrodifferential form as:

217
$$\frac{d}{dt} \int_{\Omega_\alpha} M_\alpha^\kappa d\Omega_\alpha + \int_{\Gamma_\alpha} \mathbf{F}_\alpha^\kappa \cdot \mathbf{n} d\Gamma_\alpha = \int_{\Omega_\alpha} q_\alpha^\kappa d\Omega_\alpha, \quad \kappa \equiv c, w, \theta; \quad \alpha \equiv m, f$$

218 (6)

219 where subscript α denotes a type of flow model (i.e., matrix flow model when $\alpha = m$, and
 220 fracture flow model when $\alpha = f$); superscript κ denotes a component (i.e., CO_2 when $\kappa = c$, and
 221 water when $\kappa = w$) or heat (when $\kappa = \theta$) in porous media, respectively.

222 For the matrix flow model ($\alpha = m$), the formulation is identical to the one given by Fu et al.
 223 (2020). For the fracture flow model ($\alpha = f$), the mass-and-heat accumulation term M_f^κ integrating
 224 over an arbitrary volume of a fracture is given by:

225
$$M_f^\kappa = \begin{cases} \int_{\Gamma_f} \sum_{J=A,G} S_J \rho_J X_J^\kappa w^h d\Gamma_f & \kappa \equiv c, w \\ \int_{\Gamma_f} \sum_{J=A,G} S_J \rho_J U_J d\Gamma_f & \kappa \equiv \theta \end{cases}$$

226 (7)

227 where X_J^κ , ρ_J , and U_J denote the mass fraction of component κ , the density, the specific internal
 228 energy of phase J , respectively. The volume of a fracture Ω_f is assumed to be the integral of the
 229 product between its surface area Γ_f and hydraulic aperture w^h , represented by the gray volume in
 230 Fig. 2(a), which can be expressed as:

232
$$w^h = (\mathbf{u}^+ - \mathbf{u}^-) \cdot \mathbf{n}_f$$

231 (8)

233 where $\mathbf{u}^+ - \mathbf{u}^-$ is the discontinuity in the displacement field across Γ_f . Eq. (8) provides a direct
 234 coupling between the displacement field and the fracture flow.

235 Employing the assumption of the lubrication theory and accounting heat advection for fluid flow
 236 in fractures, yields the mass-and-heat fluxes term of different components, \mathbf{F}_f^κ , written as

$$237 \quad \mathbf{F}_f^\kappa = \begin{cases} - \sum_{J=A,G} \rho_J X_J^\kappa \frac{(w^h)^2}{12\mu_J} \nabla P_J & \kappa \equiv c, w \\ - \sum_{J=A,G} h_J \rho_J \frac{(w^h)^2}{12\mu_J} \nabla P_J & \kappa \equiv \theta \end{cases}$$

238 (9)

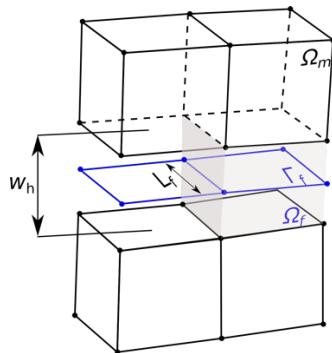
239 where μ_J , ∇P_J , and h_J denote the dynamic viscosity of fluid, the fracture pressure gradient, the
 240 specific enthalpy of phase J , respectively. All mass-and-heat fluxes through a fracture surface are
 241 determined via looping through its edges and summing fluxes from its neighboring surfaces. The
 242 transmissivity between fracture surfaces of different aperture is computed following the
 243 treatment given in Pruess and Tsang (1990).

244 The mass-and-heat fluxes due to leakoff processes (as illustrated in the inset of Fig.1) can be
 245 written, using Darcy's law by assuming a Newtonian flow, as:

$$246 \quad \mathbf{F}_\alpha^\kappa = \begin{cases} - \sum_{J=A,G} \rho_J X_J^\kappa \frac{k_J^r}{\mu_J} \mathbf{k}(\nabla P_J - \rho_J \mathbf{g}) & \kappa \equiv c, w \\ - \mathbf{k}_\theta \nabla T - \sum_{J=A,G} h_J \rho_J \frac{k_J^r}{\mu_J} \mathbf{k}(\nabla P_J - \rho_J \mathbf{g}) & \kappa \equiv \theta \end{cases}$$

247 (10)

248 where \mathbf{k} and \mathbf{k}_θ denote the intrinsic permeability and the thermal conductivity of matrix elements
 249 adjacent to a fracture face, respectively. Eq. (10) shows the transmissivity of the leakoff term
 250 principally depends on the hydraulic properties of the matrix elements and the corresponding


251 leak-off area is equal to Γ_f . Eq. (10) also manifests that the fluid-and-heat leakoff in the matrix-
252 fracture flow is treated implicitly and 3D in nature.

253 For the component of water in the aqueous phase, the Dirichlet (in terms of fluid pressure \bar{P}) and
254 Neumann boundary conditions (in terms of mass flux \bar{F}) for the coupled thermo-hydro problem
255 can be expressed as follow:

256 $\bar{F} = \mathbf{F}_\alpha^W \mathbf{n}_F$ on Γ_F , (11)

257 $\bar{P} = P_A$ on Γ_{PT} , (12)

258 where \mathbf{n}_F is the normal unit vectors exerted onto Γ_F ; Γ_F and Γ_{PT} are the fixed mass flux and fluid
259 pressure boundaries in the matrix, respectively.

260

261 Fig. 2 Illustration of spatial discretization for coupled fracture-matrix flow model. Simulation domains of fracture
262 are displayed in blue, matrix domains in gray.

263

264 2.1.3 Thermo-poromechanics

265 We employ the fixed-stress iterative scheme to solve thermo-poromechanics in rock matrix (Kim
266 et al., 2011). In this scheme, the coupled THM problem splits into two subproblems, i.e. a fluid-
267 heat flow problem and a geomechanical problem. During each iteration, the subproblems are
268 solved in an iterative sequence until the convergence of both problems. Particularly, in solving
269 the fluid-heat flow problem, the current true porosity is estimated from its previous state with the

270 following equation and assuming the rate of total volumetric stress remain unchanged throughout
271 the current time step.

273

$$d\phi = \frac{b - \phi}{K_{dr}} (dP_E + d\sigma_v) + 3\alpha_L b dT \quad (13)$$

274 where σ_v is volumetric total stress.

275 The numerical treatment of implementing the fixed-stress iterative scheme follows the same
276 procedure described in Fu et al. (2020).

277

278 **2.1.4 Fracture mechanics module**

279 We adopt the fracture mechanics module of GEOS, a high-performance computing simulation
280 code (Fu et al. 2013; Settgast et al. 2016; Ju et al., 2020), to simulate fracture propagation. This
281 module uses linear elastic fracture mechanics and a modified virtual crack closure technique
282 (MVCCT) to calculate energy release rate G at the fracture tip (Huang et al., 2019). The fracture
283 extends from the tip into intact rock when G exceeds the critical value G_c , which can be related
284 to the critical stress intensity factor K_{Ic} , also known as fracture toughness, through

286

$$G_c = K_{Ic}^2 \left(\frac{1 - \nu^2}{E} \right) \quad (14)$$

287 When fracturing occurs, new fracture faces are created by splitting the nodes between the two
288 solid elements adjacent to the tip faces. As mentioned in the previous section, the fluid pressure
289 along the fracture is applied to the solid elements that are connected with those faces via a
290 normal traction force. Properly implementing this traction boundary condition is essential for

291 satisfying the momentum balance of solid elements in the updated mesh topology. Moreover, the
292 fluid-heat flow in newly created faces is automatically integrated into the matrix-fracture flow
293 system, ensuring mass-and-energy balance across the entire domain.

294 **2.2 The coupling scheme between the THM model and fracture mechanics module**

295 The three main components of our model, (1) the multiphase multi-component solver for porous
296 medium and fracture flow, (2) the hydraulic fracturing module, and (3) the poromechanics
297 solver, are all known to face their own numerical challenges (Kim and Mordini 2013; Settgast et
298 al., 2016; White et al., 2016). These modules are challenging even under less challenging
299 conditions, namely without the complication of fracturing for the first component and when the
300 latter two only deal with single-phase flow. In prior works, we have developed relatively robust
301 individual modules on a common platform, GEOS, for these three components (Settgast et al.,
302 2016; Fu et al., 2020). Still, coupling these three components together is a challenging task.

303 It is widely acknowledged that an implicit coupling strategy theoretically provides
304 unconditionally convergent numerical solutions and enables large timesteps for the preceding
305 coupled problem (Kim et al., 2012; Girault et al., 2016). However, the actual implementation to
306 implicitly couple the three aforementioned modules faces practically insurmountable numerical
307 difficulties, exacerbated by challenges associated with the parallel computing environment.

308 Specifically, the fully coupled scheme simultaneously solves a massive global nonlinear system
309 that rigorously represents all complex processes and strong discontinuities associated with
310 multiphase flow and fracture propagation. This paradigm requires a unified high-fidelity flow-
311 geomechanics simulator with powerful linear solver systems, which results in massive software
312 development efforts and computational costs.

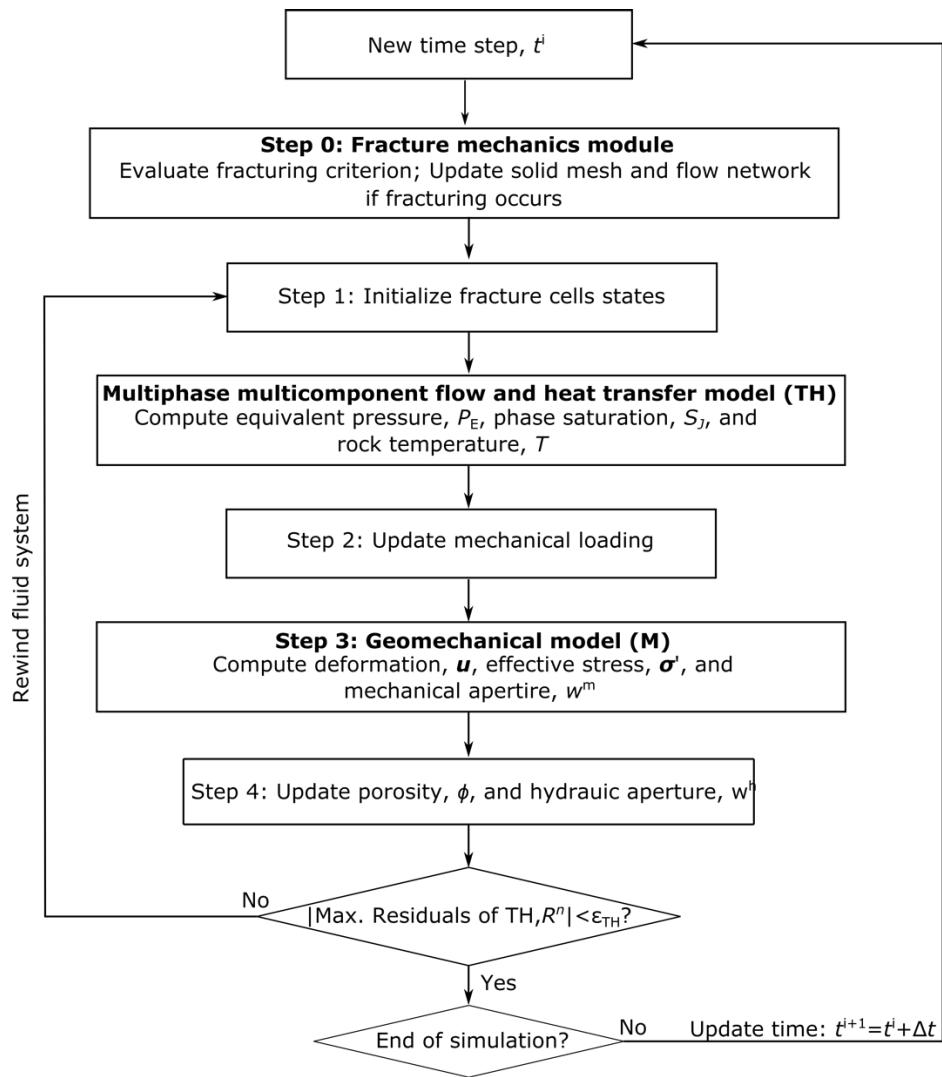
313 We therefore develop a sequential coupling scheme to take full advantage of existing modules in
314 GEOS. Meanwhile, as sequential coupling often suffers from poor convergence, we capitalize on
315 the inherent self-stabilizing features of leakoff-dominated fracturing to simplify the coupling
316 scheme.

317 In this scheme, we use a compositional reservoir simulator for the fluid-heat flow problem and a
318 standard Galerkin finite element method for geomechanics. As mentioned in section 2.1.4, the
319 fracture mechanics module evaluates the fracturing criterion as well as updates the solid mesh
320 and flow network once new fracture surfaces are generated. The sequential communication
321 between the THM model and fracture mechanics module is achieved by sharing key information,
322 such as fluid pressure in fractures and displacement fields, at every timestep (see Fig. 3). This
323 procedure can be performed without compromising the modularity of the code because only
324 minor modifications are required for existing individual modules.

325 The relationships among the physical processes involved in the problem are summarized in
326 Table 1. Several interactions have been implicitly handled in existing modules. For instance, the
327 fracture flow and matrix flow are solved together by unifying the fracture flow network and the
328 matrix flow mesh in a combined flow topology as shown in Fig. 2. In other words, in the cell-
329 centered finite volume framework, both the flow “faces” for fracture flow and the solid
330 “elements” for matrix flow are considered “cells” interconnected together. Also, the solid
331 deformation and matrix flow are already coupled using the “fixed-stress” scheme in the
332 poromechanics solver. The remaining relationships are enforced sequentially as shown in Fig. 3.

333 As we will now explain, an inconsistency and thereby an error are introduced in the coupled
334 solution flow. In the n^{th} iteration of each time step, the mechanical aperture, w_m , is computed in
335 Steps 3 (see Fig. 3) based on the geomechanical module’s results. Step 4 then updates the

336 hydraulic aperture, w_h , which is defined as the arithmetic average of w_m by assuming that the
 337 viscous loss along the fracture is negligible. In iteration $n+1$'s Step 1, a newton method is
 338 employed to update w_h with solved fluid fields from previous timestep being the initial
 339 guess. The derivative of w_h with respect to w_m is computed numerically by adding a small
 340 perturbation to the initial guess of w_m . After each iteration, the fluid system will be reversed as a
 341 new guess with updated w_h and solved fluid fields for next newton iteration. Therefore, the
 342 aperture update in iteration n would introduce a small extra (positive or negative) fluid mass to
 343 the system. We found this treatment is greatly beneficial for the convergence of the solution for
 344 the following reason. An open fracture's aperture is extremely sensitive to fluid pressure. If we
 345 use the fluid mass in each fracture cell from iteration n 's Step 1 while using the updated aperture,
 346 the initial "guess" of the flow system's state in iteration $n+1$ would be highly volatile and usually
 347 far from the "true" solution, resulting in severe convergence difficulties. We hypothesize that the
 348 fluid mass inconsistency is inconsequential for the overall accuracy of the solved system because
 349 only a very small fraction of the injection fluid is stored in the fracture, a salient feature of the
 350 leakoff-dominated regime. In the verification solution in Section 3 and simulation results in
 351 Section 4, we compare the total masses of CO₂ in the numerical models with the total injected
 352 quantities to quantify the induced error. Note that rock porosity is not very sensitive to pressure
 353 change, so this treatment is unnecessary for the rock matrix cells.


354 Table 1. Coupling relationships between individual modules. The "step" in each cell refers to an "operation" in the
 355 flow diagram in Fig. 3 where the interaction is embodied.

Modules providing information	Modules receiving information			
	Fracture Flow	Matrix flow	Solid deformation	Fracture mechanics

Fracture Flow	Self	Pressure boundary condition along fracture faces; solved together.	Traction boundary condition along fracture faces. Step 2.	Indirect influence, through solid deformation
Matrix flow	Fluid leakoff; solved together	Self	Solved together in poromechanics	Indirect influence, through solid deformation
Solid deformation	Hydraulic aperture and fluid storage. Step 4.	Solved together in poromechanics	Self	Compute energy release rate. Step 0.
Fracture mechanics	New fracture flow elements. Step 0.	Indirect influence, through fracture flow	Updated mesh. Step 0.	Self

356 We found the sequential coupling scheme to have satisfactory numerical performance: Most time
 357 steps converge within several iterations; The scheme is stable provided the time step is
 358 significantly smaller than the time that it takes the fracture to propagate the distance of one-
 359 element length. This is again largely owing to the self-stabilizing features of fracture
 360 propagation in the leakoff-dominated regime: As the permeability of the reservoir is largely
 361 constant, the leakoff rate is mostly determined by the difference between fluid pressure in the
 362 fracture and the far-field fluid pressure in the reservoir. In a propagating fracture, the fluid
 363 pressure is marginally higher than the “fracture propagation pressure” near the fracture front. The
 364 fracture opening pressure is in turn determined by the total stress in the system, which evolves
 365 very slowly. Therefore, a convergent numerical solution can be obtained as long as the effects of
 366 the extending fracture surface area on the flow into the rock matrix are captured.

367 The appropriateness of the simplified coupling scheme only relies on the dominant role of
 368 leakoff in fracture propagation. Both viscous pressure loss and energy dissipation due to rock's
 369 toughness are captured by the numerical formulation. Therefore, the model works in both the
 370 toughness-leakoff regime and viscosity-leakoff regime as well the intermediate scenarios
 371 (Dontsov, 2016).

372

373 Fig. 3. Flowchart of the coupling scheme between coupled THM coupled model and fracture mechanics module.
 374 The coupling convergence criterion of coupled THM model is that the maximum residuals of TH model is smaller
 375 than ϵ , a pre-set small value, say 10^{-5} , after updating perturbed hydraulic variables.

376 **3 Verification**

377 In this section, we compare the new model's results with the PKN solution in the leakoff-
378 dominated regime to verify the numerical implementation of the model and, particularly, to
379 validate the coupling scheme presented in Section 2.2.2. Note that the validation of relevant
380 individual submodules in GEOS has been reported in previous works, in which numerical results
381 are compared with the analytical solutions of poromechanics (Terzaghi's and Mandel's problems
382 (Fu et al., 2019; Fu et al., 2020)), and of fracturing propagation in different regimes (Fu et al.,
383 2013; Settgast et al., 2017).

384

385 **3.1 The PKN solution in the leakoff-dominated regime**

386 We use a standard fracture geometry, the PKN model as illustrated in Fig. 4(a), to test the
387 proposed coupling scheme (Perkins and Kern 1961; Nordgren 1972). The origin of the
388 coordinate system is set at the injection point; the x -direction coincides with the fracture
389 propagation direction, so the y -axis is along the direction of the minimum principal *in situ* stress
390 $S_{h\min}$. Recall that hydraulic fracturing in a storage reservoir with moderate permeability is in the
391 leakoff-dominated regime. We therefore compare the numerical solutions against the PKN model
392 in the so-called leakoff-dominated regime (Nordgren 1972). This solution describes the growth
393 of a fixed-height vertical fracture when the volume of fluid loss into the reservoir is much larger
394 than the volume stored in the fracture.

395 According to the analytical solution (Nordgren 1972), the half fracture length L_f and aperture w_0^h
396 at the wellbore are

397
$$L_f = \frac{qt^{1/2}}{2\pi C_L h_f}$$

400

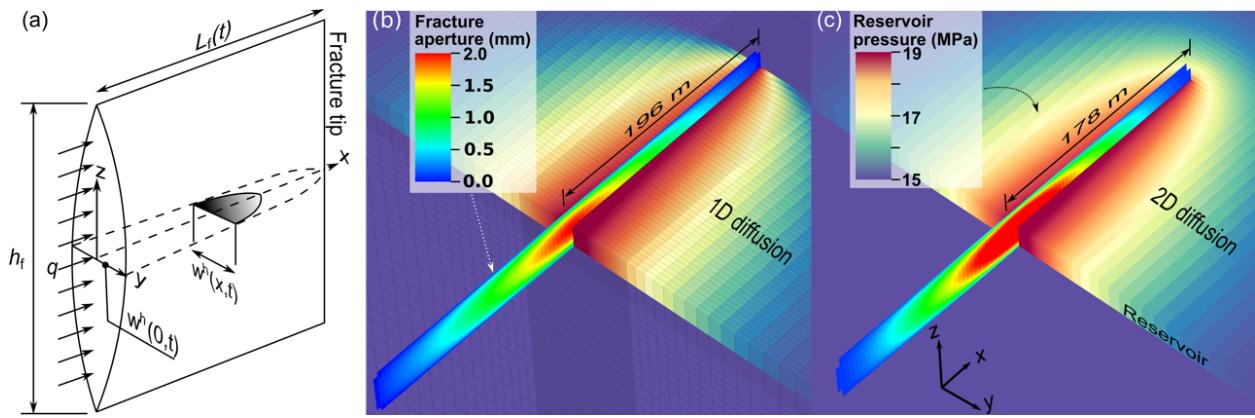
$$w_0^h = 4 \left[\frac{\mu q^2}{\pi^3 E' C_L h_f} \right]^{\frac{1}{4}} t^{1/8}$$

399

(16)

401 where q is the total injection rate; h_f is the fracture height; $E' = E/(1-v^2)$ is the plane-strain
 402 modulus for the formation; and C_L is the Carter's leakoff coefficient. As revealed in Howard and
 403 Fast (1957), C_L can be expressed as:

405


$$C_L = \Delta P \left(\frac{k_r \phi c_t}{\pi \mu} \right)^{1/2}$$

404

(17)

406 where ΔP is the difference between the fracture pressure and the remote reservoir pressure that is
 407 assumed to be constant; k_r is the intrinsic permeability of the reservoir; and $c_t = c_f + c_p$ is the total
 408 compressibility, where c_f is fluid compressibility and c_p is pore compressibility, both of which
 409 are constants in equation (17). However, in a high-fidelity numerical model, c_f and c_p
 410 respectively depend on the nonlinear PVT properties of fluids and the solid deformation in the
 411 coupled THM models. Therefore, when applying the analytical solution, we set c_t to the value
 412 computed from the numerical models for simplicity. Also note that equation (17) assumes 1D
 413 diffusion, which is not necessarily valid in a real reservoir or in a high-fidelity numerical model.
 414 Some additional, special adaptations of the numerical model are needed to be consistent with
 415 assumptions of the analytical solution. The analytical solution intrinsically assumes zero
 416 toughness for the reservoir rock. Accordingly, we set the toughness of reservoir rock to
 417 $100 \text{ Pa} \cdot \text{m}^{0.5}$, a small finite value that prevents small numerical noise from triggering fracturing
 418 artificially. The analytical solution calculates leakoff using Carter's leakoff coefficient, which is

419 based on 1D diffusion. However, the fluid flow in the THM coupled model is 3D in nature. To
 420 match the 1D diffusion assumption, we use a strongly anisotropic permeability ($k_{ty}=10$ mD,
 421 $k_{tx}=k_{rz}=0$ mD). We also run an additional simulation by removing the 1D diffusion restriction for
 422 comparison. Moreover, the Biot coefficient is set to zero in the numerical model, since the PKN
 423 model does not incorporate the poromechanical effects in the reservoir. Note that none of the
 424 above adaptations is used in the 3D simulations in section 4 and beyond.

425 Fig. 4. Geometrical characteristics (a) and simulation results for a PKN fracture with $q=0.04$ m^3/s in the case of (b)
 426 1D diffusion and (c) 2D diffusion at $t=4\times 10^5$ s. In (a) where only one wing of the fracture is shown due to symmetry,
 427 h_f , q , w^h , and L_f indicate fracture height, injection rate, fracture width (aperture), and fracture length, respectively. In
 428 (b) and (c), a full length/height of the fracture and a quarter of the reservoir pressure field are presented. Note that
 429 fracture color scale indicates fracture aperture, whereas the color scale for the matrix indicates reservoir pressure.
 430

431 3.2 Numerical realization of the PKN model

432 The numerical simulation only models one quarter of the problem owing to the symmetrical
 433 condition of PKN model, as shown in Fig. 4(a). To minimize boundary effects, the dimensions of
 434 the quarter model are 1000 m, 2000 m, and 1000 m in x -, y -, and z -directions, respectively,
 435 where meshing in each dimension contains a refined portion (200 m, 100 m, and 40 m in x -, y -,
 436 and z -directions, respectively) and coarse portion. The refined region uses constant mesh
 437 resolutions in three directions, i.e. 4 m, 1 m, and 2 m, respectively, whereas the coarse region

438 uses a progressively coarser mesh resolution toward the far-field. The model is discretized into
439 1,004,731 hexagonal elements. We simulate fracture propagation and reservoir response for three
440 different injection rates as listed in Table 1. The fourth simulation removes the 1D diffusion
441 restriction for the baseline injection rate and results are denoted by “2D diffusion” in Fig. 4 and
442 5. Parameters adopted in the verification are listed in Table 1.

443

444 Table 1. Parameters employed in the numerical model for the simulation of the PKN model.

Property	Value
Fracture height, H_f	40 m
Injection rate, q	0.02, 0.04 ^a , and 0.06 m^3/s
Dynamic viscosity, fluid, μ	$1 \times 10^{-3} \text{ Pa s}$
Porosity, ϕ	0.2
Pore compressibility, c_t	$1.04 \times 10^{-8} \text{ Pa}^{-1}$
Poisson’s ratio, ν	0.25
Biot’s coefficient, b	0.0
Carter’s leakoff coefficient, C_L	$0.493 \text{ mm}/\sqrt{\text{s}}$
Young’s modulus, E	10 GPa
Critical stress intensity factor (toughness), reservoir	$100.0 \text{ Pa} \cdot \text{m}^{0.5}$

445 ^abaseline case simulation

446

447 3.3 Verification results

448 Fig. 5 shows a comparison of results from the numerical simulation and the PKN solutions. In
449 general, the temporal evolution of fracture length for the three injection rates are in good
450 agreement with the corresponding analytical solutions. The numerically simulated apertures tend


451 to deviate from the analytical solutions early in the injection but gradually converge to the
452 solutions as injection progresses.

453 The disparity between the numerical solution and the PKN solution at the early times is likely
454 caused by the geometric assumptions of the PKN model, i.e. the fracture length being much
455 larger than the fixed fracture height (a rectangular fracture shape). In the early stage of injection,
456 the fracture length simulated by the numerical model, however, is smaller than or similar to the
457 preset fracture height, forming a penny shape and therefore a direct comparison between
458 solutions with different fracture shape assumptions is not appropriate. Note that for all the three
459 injection rates, the numerically predicted apertures become very similar to the analytical
460 solutions when the half fracture length in each case reaches around 200 m, 2.5 times the fracture
461 height. Fig. 5(b) also shows that numerical results of wellbore aperture exhibit a moderate
462 oscillatory behavior. This behavior is expected because the spatial discretization scheme dictates
463 that the fracture has to propagate by the length of an element, yielding numerical
464 overshoot/undershoot.

465 As shown in Fig. 5(c), the percentage of fluid in the fracture compared with the total injection
466 volume, termed “*fracture volume ratio*” in this study, is quite low, generally less than 1%. This
467 confirms that these four simulated hydraulic fractures are indeed in the leakoff-dominated
468 regime. Note that the “fracture volume ratio” is mathematically identical to the “fluid efficiency”
469 used in unconventional reservoir stimulation. However, we avoid using this established term
470 because in carbon storage, retaining more fluid in the fracture, i.e. achieving a “high fluid
471 efficiency”, is not an objective.

472 Fig. 5(d) shows the temporal evolution of “*mass loss ratio*”, defined as the percentage of mass
473 loss induced by the coupling scheme compared with total injection mass in this study. Note that a

474 negative mass loss ratio means extra masses are introduced in the system. A small yet noticeable
 475 error is introduced at early time by the inconsistency in the coupling scheme. However, this
 476 inconsistency rapidly diminishes, and the absolute mass losses converge to near 0.05 % as the
 477 leakoff dominates. The convergence of mass loss ratio for each case validates our hypothesis that
 478 the mass loss induced during the coupling is indeed trivial and proves the accuracy of our
 479 coupling scheme for simulating leakoff-dominated fracturing.
 480 The comparison between Fig. 4(b) and (c) shows the fracture length grows faster in the case of
 481 1D diffusion than that of 2D diffusion where the reservoir pressure plume front goes farther than
 482 the crack tip. Likewise, Fig. 5 (a) and (c) shows that the case of 2D diffusion yields a slightly
 483 higher leakoff compared with the baseline verification (1D diffusion), which includes lower
 484 fracture growth rate and smaller wellbore aperture. Those behaviors are mainly owing to the
 485 overestimation of the actual C_L when 2D diffusion is invoked (Carrier and Grant, 2010; Fu et al.,
 486 2017).



487
 488 Fig. 5. Simulation results for a PKN fracture in the leakoff-dominated regime. (a), (b), (c) and (d) plot the temporal
 489 variations of fracture half-length, wellbore aperture, fracture volume ratio, and mass loss ratio respectively.

490 Analytical solutions for leakoff-dominated fractures are plotted in (a) and (b) for comparison. The fracture volume
 491 ratio in (c) denotes the percentage of the total injected fluid stored in the fracture. The mass loss ratio in (d) denotes
 492 the percentage of the mass loss induced by the coupling scheme compared with the total injection mass.

493 4 Application in simulating fracturing into caprock

494 To demonstrate the capabilities of the proposed scheme and apply it to GCS, we build and
 495 analyze a field-scale 3D numerical model (hereafter referred to as the baseline case) in GEOS in
 496 this section. The baseline model is loosely based on the geological settings of the In Salah
 497 storage site (Rutqvist et al., 2010; Ringrose et al., 2013; White et al., 2014), as shown in Fig. 6
 498 (a), while the analyses generally apply to a GCS reservoir with marginal permeability.

499 Fig. 6. (a) 3D schematic (not to scale) of the configuration, geometry and dimensions of the baseline model showing
 500 one wing of a hydraulic fracture penetrating into the caprock, with cold supercritical CO₂ entering the computational
 501 domain from the injection point, marked as a black dot on the plane 0 ($x=0$). Tip plane tracks the movement of
 502 fracture front. Sub-figure (b) shows internal and external traction boundary conditions, i.e. fracture pressure and
 503 horizontal *in-situ* stress, applied to the 3D model on plane 0. Note that only one wing of the fracture in panel (a) is
 504 shown due to symmetry.

506

507 4.1 Model setup

508 Fig. 6(a) schematically depicts the 3D geometry of the baseline model. The CO₂ storage
509 reservoir of marginal permeability is sandwiched between the caprock and the basement, both of
510 which are much less permeable. The reservoir is 24 m thick with its interface with the caprock
511 located at 1500 m depth (z = -1500 m). We established a 3D coordinate system, in which the x-
512 axis is parallel to the direction of the maximum *in situ* horizontal stress ($S_{H\max}$), the y-axis is
513 parallel to the direction of minimum *in situ* horizontal stress ($S_{h\min}$), the z-axis points upward,
514 and the origin at ground surface resides above the injection point. The injection point is
515 annotated as a black dot in Fig.6 (a) to highlight its position. Note that the vertical location of the
516 injection point should not alter the outcome of fracturing because there is no fracturing barrier
517 inside the reservoir. The initial pore pressure follows the hydrostatic distribution and the initial
518 reservoir temperature is set as 65 °C. The minimum principal *in situ* stress ($S_{h\min}$) follows a
519 segmented-linear distribution along the z direction, as shown in the right portion of Fig. 6(b).
520 $S_{h\min}$ spatial distributions with caprock, reservoir, and basement layers are denoted by S_{Cap} ,
521 S_{Rsv} , and S_{Base} , respectively. We assume that there is a fracturing barrier between the reservoir
522 and basement that prevents downward fracturing as we mainly focus on conditions and
523 mechanisms for fracturing in the reservoir and caprock. As illustrated in Fig. 6(a), the fracture
524 propagation is assumed to only take place within the x-z plane, perpendicular to the direction of
525 $S_{h\min}$. Note that the symmetry of the system with respect to the y-z plane at the injection point
526 allows the use of a half model.

527 Fully-saturated supercritical CO₂ at an injection temperature of 45°C, is injected into the
528 reservoir at a constant rate of 15.0 kg/s (one wing of fracture), approximately a million metric
529 ton per year. We assume that the injection well is cased, and fractures are initiated from
530 perforations, which limits the well only to communicate with the system through the fracture.

531 Thus, the injection well can be simplified as a point source in our 3D computational domain. In
532 the initial state of a simulation, we pre-create a small fracture, usually 2x2 fracture elements in
533 size, to provide an inlet for injection. How a fracture is initiated due to CO₂ injection in a low-
534 permeability formation, with the presence of poro-mechanical effects, has been investigated by
535 Fu et al. (2020).

536 The so-called “roller” boundary condition is applied to all “far-field” boundaries of the
537 geomechanical model. For the fluid flow model, prescribed mass/heat rate conditions for the
538 injection well are applied at $x= 0$, $y=0$ and $z=-1504$ m. We apply the original reservoir pressure
539 and a constant ambient temperature (65°C) at the lateral boundaries as the far-field Dirichlet
540 boundary conditions. No-flow conditions are applied to elements on the top and bottom planes.

541 The computational domain of the baseline case has a core region whose dimensions in x -, y -, and
542 z -directions are 800 m, 200 m, and 240 m, respectively. The core region has a relatively fine
543 mesh resolution of 8.0, 4.0, and 8.0 m in those directions. Surrounding the core region is a
544 coarsely resolved region that extends to 5800 m, ± 9000 m, and ± 400 m in the respect three
545 directions, which mitigates boundary effects while maintaining computational efficiency. The
546 baseline model involving a kilometer-scale reservoir and 3 years of injection time, is discretized
547 into 1,344,000 elements and the simulation is conducted across 252 CPU cores (16 Intel®
548 Xeon® E5-2670 CPUs), which runs for 18 hours on a high-performance computer (4536 core-
549 hours in total).

550 Table 3 summarizes the computational parameters and constitutive models for the baseline
551 model. As for the mobility-related constitutive models in multiphase flow model, we use a
552 Corey-type relative permeability functions (Brooks and Corey, 1964) and a van Genuchten
553 capillary function (Van Genuchten, 1980), respectively written as Eq. (18) and (19).

554 $k_A^r = S_n^4, k_G^r = (1 - S_n)^2(1 - S_n^2)$ (18)

555 $P_C = -P_0[(S^*)^{-1/\lambda} - 1]^{-1/\lambda}, S^* = (S_A - S_{irA})/(1.0 - S_{irA})$ (19)

556 where k_A^r and k_G^r are relative permeabilities in aqueous and gaseous phases; $S_n = (S_A -$
 557 $S_{irA})/(1.0 - S_{irA} - S_{irG})$ is the normalized aqueous saturation; S_{irA} and S_{irG} are the irreducible
 558 aqueous saturations and the residual gas saturations, respectively. λ and P_0 are the exponent that
 559 characterizes the capillary pressure curve and the capillary modulus, respectively. Then, we set
 560 $S_{irA} = 0.12$ and $S_{irG} = 0.01$ for relative permeability, and $S_{irA} = 0.11, P_0 = 12500$ Pa, and $\lambda =$
 561 0.254 for capillarity, where the capillary pressure model employs a slightly smaller S_{irA} than the
 562 model of relative permeability in order to prevent unphysical behavior (Moridis and Freeman,
 563 2014).

564

565 Table 2. Parameters employed in the baseline simulation

Property	Baseline value
Reservoir thickness, H_r	24 m
Minimum principal <i>in situ</i> stress in reservoir, total stress, mid-depth, S_{hmin}^r	25 MPa
Minimum principal <i>in situ</i> stress in caprock, total stress, mid-depth, S_{hmin}^c	30 MPa
Initial pore pressure, mid-depth of reservoir, P_{int} (hydrostatic condition applies)	15 MPa
Biot's coefficient, reservoir rock, b_r	0.5
Biot's coefficient, caprock, b_c	0.25
Intrinsic permeability, reservoir, k_r	15 mD
Intrinsic permeability, other layers, k_c	0.1 μ D

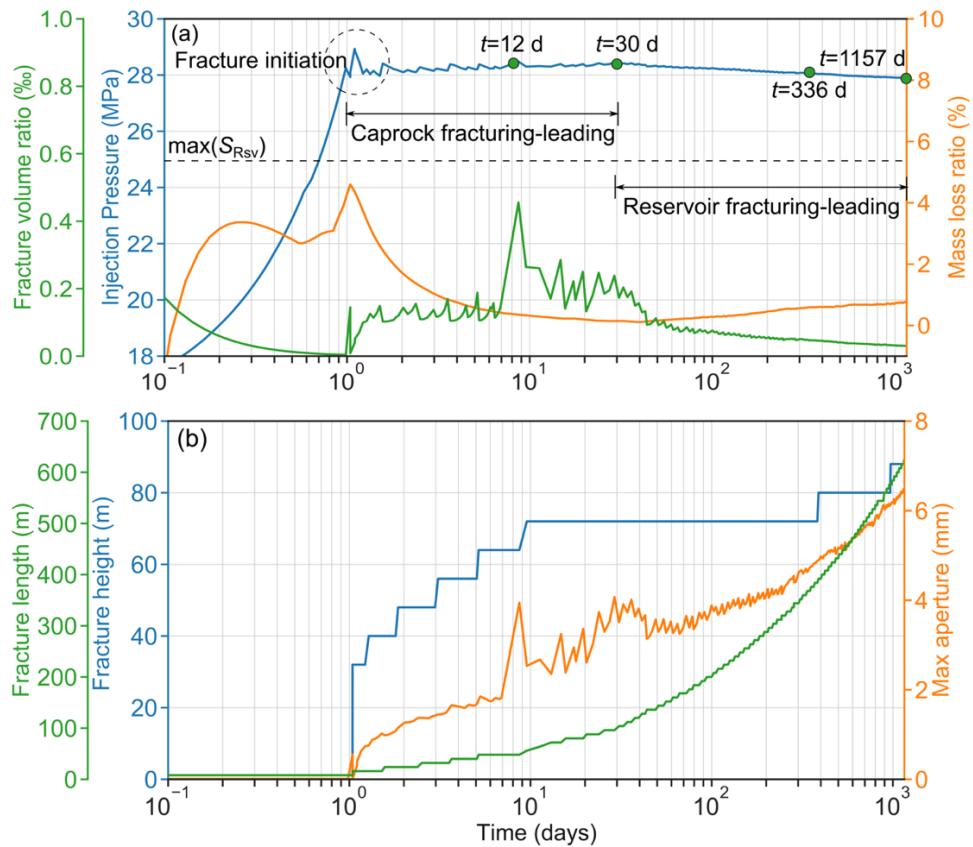
Porosity, reservoir, ϕ	0.15
Porosity, all other layers, ϕ	0.05
Young's modulus, all layers, E	10 GPa
Poisson's ratio, all layers (Armitage et al., 2010), ν	0.25
Initial temperature, all layers, T_{Int}	65 °C
Coefficient of thermal expansion, linear, α_L	10^{-5} /°C
Injection temperature, T_{Inj}	40 °C
Thermal conductivity, all layers, λ	3.0 W/(m·K)
Heat capacity, all layers, C_s	1000 J/(kg·K)
Critical stress intensity factor (toughness), all layers (Senseny and Pfeifle, 1984)	1.0 MPa·m ^{0.5}
Relative permeability model ^a (Brooks and Corey, 1964)	$k_A^r = S_n^4$ $k_G^r = (1 - S_n)^2(1 - S_n^2)$ $S_n = (S_A - S_{irA})/(1.0 - S_{irA} - S_{irG})$ $S_{irA} = 0.12, S_{irG} = 0.01$
Capillary pressure model ^b (Van Genuchten, 1980)	$P_C = -P_0[(S^*)^{-1/\lambda} - 1]^{-1/\lambda}$ $S^* = (S_A - S_{irA})/(1.0 - S_{irA})$ $S_{irA} = 0.11, P_0 = 12500 \text{ Pa}, \lambda = 0.254$

566 a k_A^r and k_G^r are relative permeabilities in aqueous and gaseous phases; S_n is the normalized aqueous saturation; S_{irA}

567 and S_{irG} are the irreducible aqueous saturation and the residual gas saturation, respectively

568 b P_0 is the capillary modulus

569

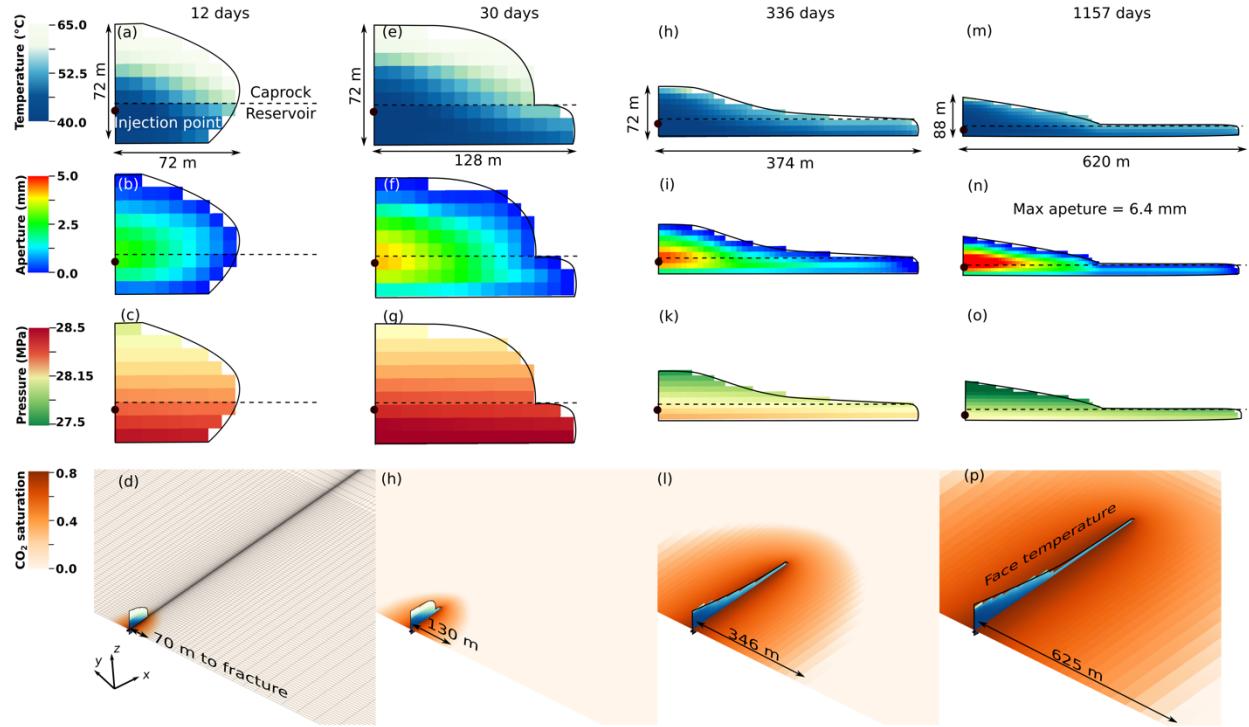

570 **4.2 Results of baseline model**

571 As presented in Fig. 7 and Fig. 8, results of the baseline model clearly show how a leakoff-

572 dominated fracture is driven by injection and provides an evolving interface between injection

573 and reservoir storage. By the end of three years of injection, the fracture has propagated 620 m

574 into the reservoir, providing a growing interface plane for feeding injected CO₂ into the
 575 reservoir. The CO₂ plume advances approximately 625 m in the *y*-direction on each side (Fig.
 576 8(p)), spanning an area of reservoir as large as about 1.24×1.25 kilometers. Note that the rate of
 577 injection employed in the baseline case cannot possibly be achieved if the downhole injection
 578 pressure is strictly limited to below the estimated fracturing pressure of the caprock,
 579 approximately 25 MPa. Meanwhile, the maximum fracture height only reaches 88 m, thereby
 580 being vertically contained in the lower portion of the caprock (Fig. 7(b) and Fig. 8(m)). Note that
 581 the containment mechanism will be elucidated in the subsequent analysis.



582
 583 Fig. 7. Overall responses of the system in the baseline case. (a) Fracture volume ratio, injection pressure, and mass
 584 loss ratio versus time; (b) Fracture length, fracture height, and max aperture versus time. The curve colors in (a) and
 585 (b) correspond to their *y* axes. Fracture volume ratio is the percentage of injected fluid retained in the fracture.
 586 Injection pressure is measured at the injection point at the entrance to the fracture. Mass loss ratio is the percentage

587 of injected CO₂ mass that is “lost” due to the error introduced by the sequential iteration scheme as explained in
588 section 3.3. Note that the highest stress level of S_{Rsv} , $\max(S_{Rsv})$, which is the in situ stress magnitude at the bottom
589 of the reservoir, is indicated by a black dash line in (a).

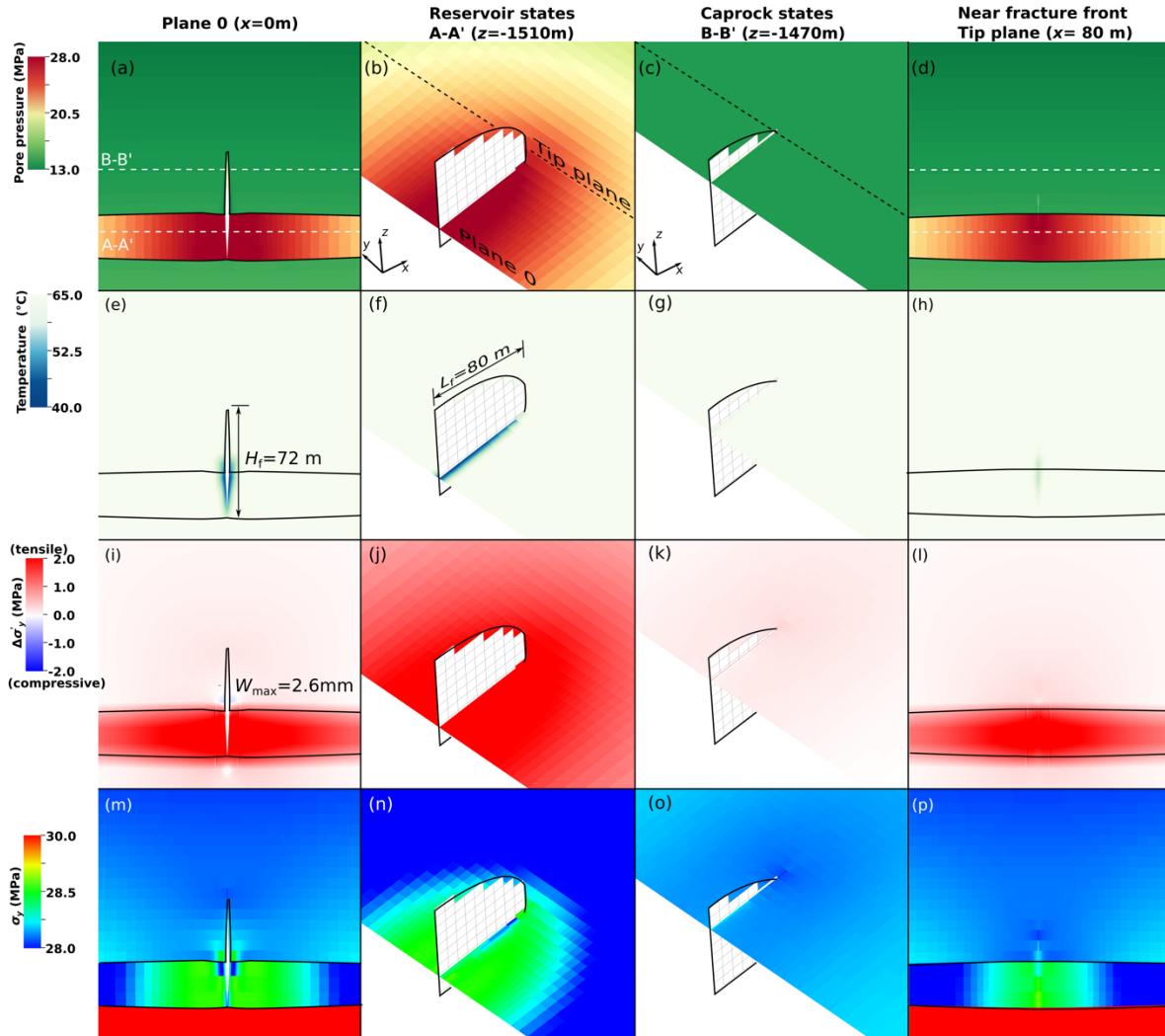
590

591 Another interesting observation is the evolution of injection pressure (the blue line in Fig. 7(a))
592 at the entrance to the fracture over time, which can be divided into three stages: (1) the initially
593 rapid pressure buildup before apparent fracture growth (about 1 day), (2) the pressure plateau as
594 fracture propagates (from 1 day to 30 days), and (3) the subsequent slow pressure decline (after
595 30 days). In the first stage, accommodating the injection rate requires sustaining an open fracture
596 in the reservoir, which in turn requires a continuously increasing injection pressure, much higher
597 than original S_{Rsv} , owing to the effect of back-stresses caused by pressure diffusion into the
598 reservoir (Detournay and Cheng, 1997; Kovalyshen, 2010). Fu et al. (2020) had modeled how
599 this effect causes rapid increase of injection pressure and eventually causes fracturing of the
600 caprock.

601

602 Fig. 8. Four selected states of the hydraulic fracture and the reservoir rock. The first three rows present snapshots of
 603 temperature (first row), aperture (second row), and pressure (third row) on the evolving hydraulic fracture. The last
 604 row shows the spatial-and-temporal evolution of CO₂ (critical state gas phase) in the reservoir ($z=-1510$ m). The
 605 interface between the reservoir and the caprock is denoted by a dark dashed line and the injection point is annotated
 606 as a black dot. Note that scales vary among the columns of the first three rows for clearer visualization, whereas the
 607 four sub-figures in the fourth row use the same scale.

608


609 Here we mainly focus on the evolution of fracture propagation after caprock fracturing takes
 610 place, which spans the second and third stages as designated in this section. Fig. 8 shows four
 611 representative states of the fluid-driven fracture and CO₂ saturation (supercritical state gas phase)
 612 in the reservoir rock, at 12 days (in second stage), 30 days (transition from second to third stage),
 613 336 days and 1157 days (both in third stage). In the second stage when the pressure is largely
 614 constant, fracturing in caprock seems to lead fracturing in the storage reservoir. The constant
 615 injection pressure in this stage reflects the fracturing pressure of the caprock, which is mainly

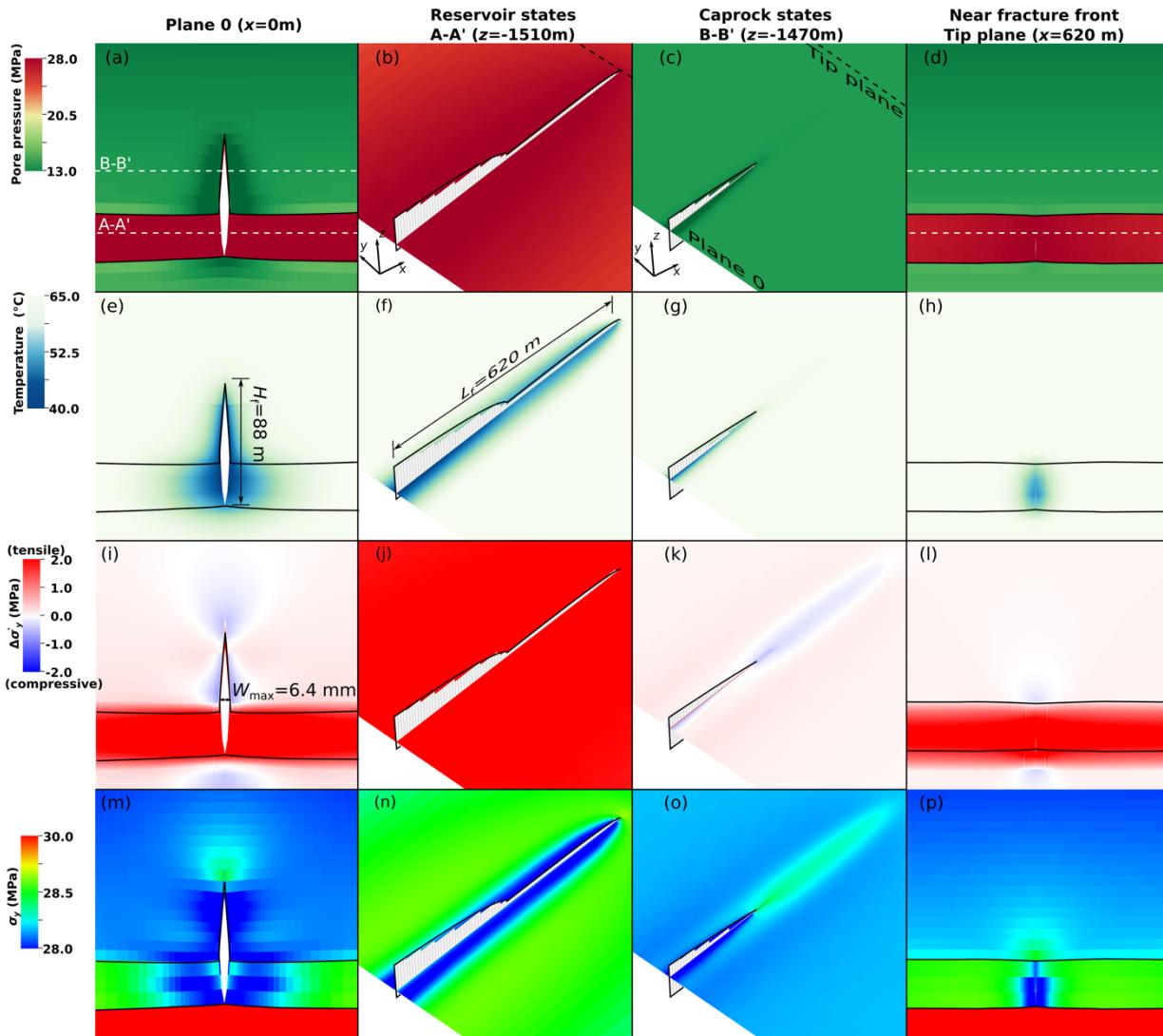
616 influenced by S_{Cap} . Note that the injection pressure is only slightly higher than S_{Cap} near the
617 reservoir-caprock interface. In the third stage, reservoir fracturing leads the fracture length
618 growth and the injection pressure slowly declines as explained in Section 4.2.2. This pattern
619 change suggests an evolution of fundamental physical mechanisms that dominate fracture growth
620 as elucidated in the subsequent sections.

621

622 **4.2.1 Second stage: caprock fracturing-leading**

623 Fig. 9 presents spatial distributions of the fluid pressure, temperature, effective stress, and total
624 stress in two vertical cross-sections (near the injection and near the fracture tip, respectively) and
625 two horizontal cross-sections (in the reservoir rock 10 m below the bottom of the caprock, and in
626 the caprock 30 m above the top of the reservoir rock) after 12 days of injection. Pore pressure
627 propagates in the reservoir much farther than in the caprock, due to the much higher permeability
628 of the reservoir (150,000 times higher than that of the caprock). Significant temperature
629 decreases only take place within a short distance from the fracture in the reservoir (Fig. 9 (e) and
630 (f)), while temperature change in caprock is hardly perceptible (Fig. 9 (g)). Although thermo-
631 mechanical effect tends to reduce the total stress in the cooled region in the reservoir, the effect
632 of poroelasticity on increasing the total stress in this case is much stronger. As a result, the total
633 stress near the fracture in the reservoir even becomes higher than in the caprock, although initial
634 S_{hmin} in the reservoir was on average 3 MPa lower than that of the caprock. This reversed stress
635 contrast tends to hamper fracture propagation in the reservoir, favoring easier propagation in the
636 caprock.

637


638 Fig. 9. States of the reservoir rock and the caprock after 12 days of injection. The four rows of panels show spatial
 639 distributions of pore pressure (first row), temperature (second row), effective stress increment (third row), and
 640 horizontal total stress (fourth row). The first and fourth columns respectively show the distributions of variables on
 641 two vertical planes cutting the injection point and the fracture tip, respectively. The second and third columns show
 642 the distributions of the variables on two horizontal planes A-A' (reservoir) and B-B' (caprock) respectively. The
 643 deformation of first and fourth columns is magnified by 500 times.

644

645 4.2.2 Third stage: reservoir fracture-leading stage

646 The system response in this stage is depicted using spatial distributions of the same variables as
 647 used in the preceding section but for a much later state, 1157 days into the injection (Fig. 10). In

648 general, the most marked difference from the second stage is that the fracture has horizontally
 649 grown much longer, which mostly takes place in the reservoir rock, and that the cooling front in
 650 the reservoir has advanced much farther (i.e. thermal penetration depth is comparable to fracture
 651 height).

652
 653 Fig. 10. States of the reservoir rock and the caprock after 1157 days of injection. The four rows of panels show
 654 spatial distributions of four variables, namely pore pressure ((a) through (c)), temperature ((d) through (f)), effective
 655 stress increment ((g) through (i)), and horizontal total stress ((j) through (l)). The first and fourth columns
 656 respectively show the distributions of variables on two vertical planes cutting the injection point and the fracture tip,

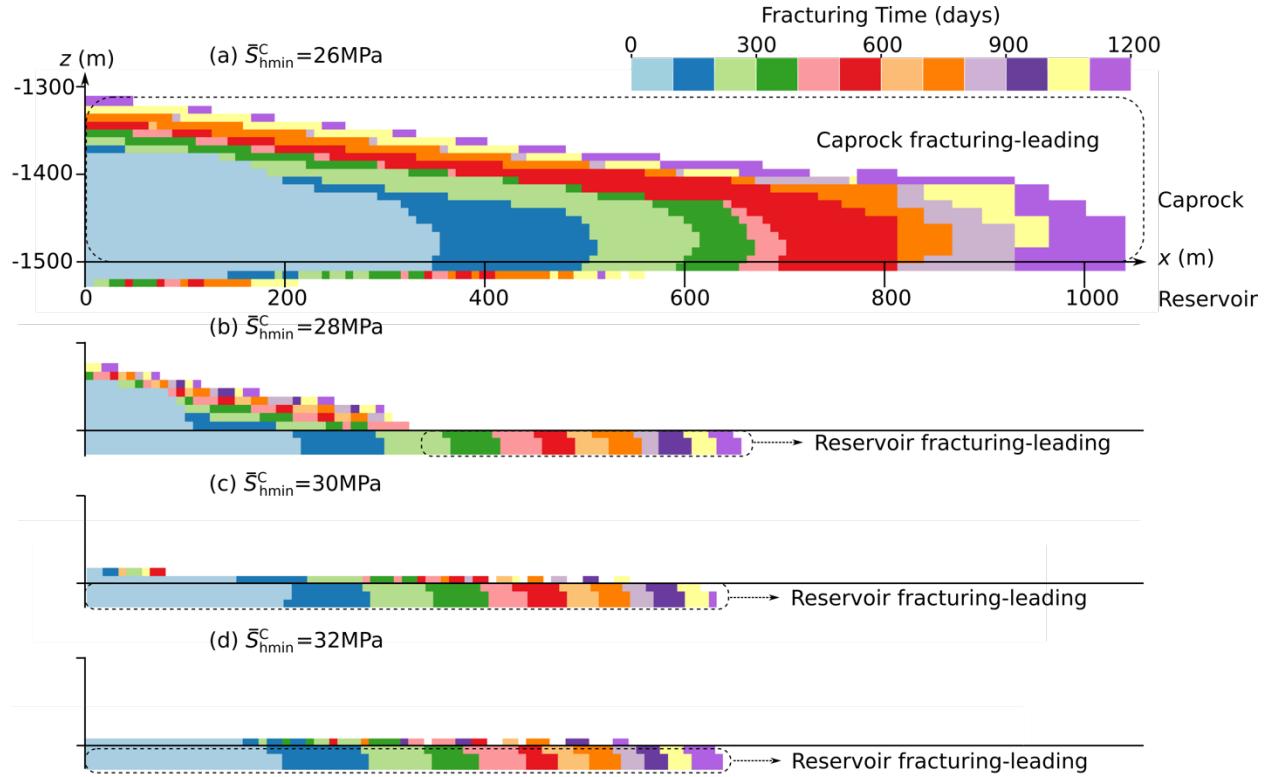
657 respectively. The second and third columns show the distributions of the variables on two horizontal planes A-A'
658 (reservoir) and B-B' (caprock) respectively. The deformation of first and fourth columns is magnified by 500 times.

659

660 Unlike the rapid and continuous horizontal propagation, the vertical propagation is slow and
661 contained, since only an absolute height growth of 16 m takes place throughout this stage (Fig.
662 10 (e) and Fig. 7 (b)). This vertical growth is mainly driven by the thermal contraction near the
663 injection point, which in effect decreases the original in-situ total stress (Fig. 10(o)). The growth
664 is expected to be slow since the dominant heat transfer mechanism in the caprock is heat
665 conduction, which itself is extremely slow. In addition, a favorable stress gradient contributes to
666 the vertical containment of the fracture. The adopted gradient of S_{hmin} such that $-dS_{hmin}/dz <$
667 $\rho_c g$ provides a relatively stable condition that halts the upward propagation. This is because it
668 takes more hydraulic head for the caprock fracture to grow at a higher position (Fu et al. 2017).

669 Fig. 10(e) shows the cooling front in the reservoir rock has advanced a distance equal to
670 approximately half of the fracture height, nearly 40 m. This results in a significant decrease of
671 total stress perpendicular to the fracture, despite the poromechanical effect that tends to increase
672 the total stress (Fig. 10(n)). Meanwhile, the total stress of regions near the fracture front in the
673 caprock is not reduced by the thermo-mechanical effect but rather slightly increases (fig. 10(o)).
674 This stress increase is mostly owing to the additional compression of the caprock to compensate
675 for the cooling contraction of the reservoir. Other studies have also reported this compression of
676 the caprock induced by the injection of cold CO₂ into the reservoir (e.g. Vilarrasa and Laloui,
677 2015; Salimmida et al. 2017). In this state, the cooling of the reservoir tends to have opposite
678 effects on the total stresses of the reservoir and the caprock. Therefore, the net effect of this
679 discrepancy is that it is much easier to fracture the reservoir rock than the caprock.

680 Another key observation in this stage is a gradually decreasing injection pressure (Fig. 7(a)).
681 This pressure decrease is owing to the effect of cooling on the total stress of the fracture tip
682 region. In the second stage, the fracture tip region, located in the caprock, is largely unaffected
683 by the cooling front (Fig. 9(g)). In this stage, however, the cooling front has traversed the
684 fracture entirely and the near tip region has been cooled, which results in a decrease of total
685 stress (Fig. 10(h) and (p)) and therefore the fracturing pressure decreases.


686 Note that in all stages analyzed, the propagation of the fracture is still in the leak-off dominated
687 regime and the mass loss introduced by the coupling scheme is marginal, as clearly shown in
688 Fig.8(a). These results demonstrate that the proposed modeling scheme can be employed to
689 effectively simulate fracture propagation in a leakoff-dominated regime without compromising
690 its accuracy.

691 **5 Effects of the magnitude of *in situ* stresses in the caprock**

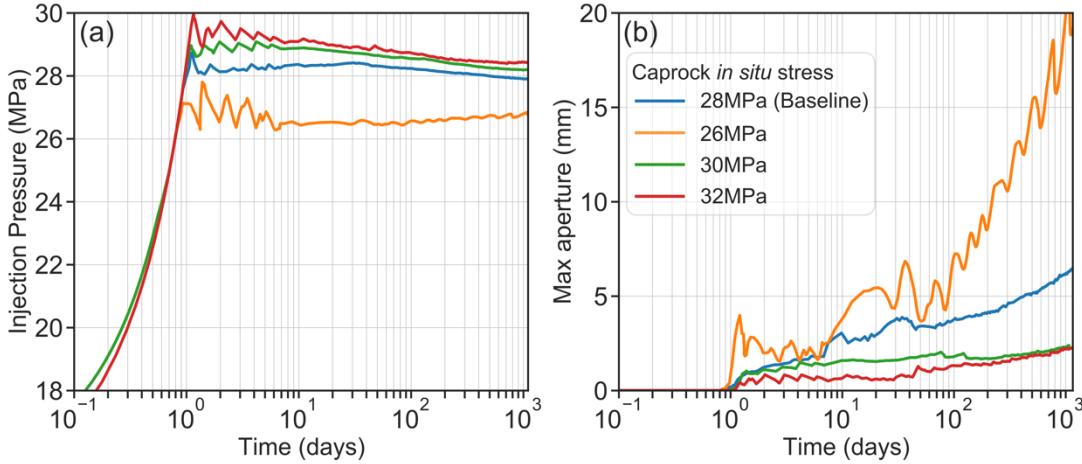
692 As reflected in the baseline simulation, the caprock *in situ* stress S_{Cap} plays significant roles in
693 determining the evolution of pumping pressure and affecting the pattern of fracture propagation.
694 However, to what extent the stress difference between S_{Cap} and S_{RSV} affects the fracture
695 propagation and containment is still unclear. In this section, we evaluate the effects of S_{Cap} on the
696 growth and vertical containment of fluid-driven fractures. Note that $\bar{S}_{\text{hmin}}^{\text{C}}$ presented in this
697 section denotes the greatest horizontal minimum stresses in the caprock, which is the stress level
698 at the interface with the reservoir.

699 Fig. 11 shows the effects of $\bar{S}_{\text{hmin}}^{\text{C}}$ (varying from 26 MPa to 32 MPa) on fracture propagation and
700 fracture geometries (i.e. fracture heights and lengths). A lower $\bar{S}_{\text{hmin}}^{\text{C}}$ is expected to reduce
701 vertical containment of caprock fracturing. Especially in the case with $\bar{S}_{\text{hmin}}^{\text{C}} = 26$ MPa, the

702 maximum fracture height reaches around 192 m, far exceeding the thickness of the reservoir (i.e.,
703 24 m). However, the fracture heights (i.e., 32 and 40 m) in cases with $\bar{S}_{h\min}^C = 30$ and 32 MPa are
704 both slightly larger than 24 m and the fracture height (i.e., 88 m) in the baseline lies in between.
705 Meanwhile, the case with $\bar{S}_{h\min}^C = 26$ MPa where caprock fracturing leads the fracture growth
706 throughout the entire simulation has a long fracture length (i.e. 1053 m after 3 year of CO₂
707 injection (Fig. 11(a))), whereas the rest of the cases ($\bar{S}_{h\min}^C = 28$ MPa, 30 MPa, and 32 MPa) have
708 shorter fracture lengths that are similar to each other (i.e. around 650 m at the end of the
709 simulation (Fig. 11(b), (c) and (d))). This discrepancy is caused by the significantly lower leakoff
710 coefficient for the case with $\bar{S}_{h\min}^C = 26$ MPa. First, the difference between the fracture pressure
711 and the pore pressure in the far field is lower in the case with $\bar{S}_{h\min}^C = 26$ MPa compared with the
712 other cases for which pumping pressures are quite similar (Fig. 12(a)). This pressure difference
713 drives fluid leakoff from the fracture to the reservoir. Second, caprock fracturing leads the
714 fracturing process in the low caprock stress case such that the fracture only penetrates into the
715 reservoir a short distance, despite the larger overall height. In addition, the effective leakoff
716 contact area is only a small fraction of the entire height of the reservoir. The combination of
717 these factors determine that the low stress case has a lower leakoff coefficient and therefore a
718 longer fracture length.

719

720 Fig. 11 Effect of the caprock *in situ* stress ((a) 26 MPa, (b) 28 MPa, (c) 30 MPa, and (d) 32 MPa on the distribution of
721 fracturing time along the fracture. Quantities are projected onto the the x - z plane.


722

723 The magnitude of $\bar{S}_{h\min}^C$ also greatly affects the evolution of injection pressure and maximum
724 aperture (Fig. 12). When $\bar{S}_{h\min}^C$ is sufficiently high to contain fracturing mostly within the
725 reservoir ($\bar{S}_{h\min}^C = 28, 30, 32$ MPa), the injection pressure, as discussed in the previous section,
726 experiences first a plateau and then a gradual decline. However, when caprock fracturing leads
727 the overall fracturing throughout the injection ($\bar{S}_{h\min}^C = 26$ MPa), the injection pressure remains
728 largely constant after the fracture grows into the caprock.

729 Fig. 12(b) shows that maximum apertures in all cases experience continuous increases. Cooling
730 induced by CO₂ injection in the near wellbore region tends to play convoluted roles in affecting
731 maximum apertures under different $\bar{S}_{h\min}^C$ levels. For a caprock fracturing-leading case

732 ($\bar{S}_{h\min}^C = 26$ MPa), the fracture-opening pressure, P_f^o , near the injection point, owing to the
733 thermal-mechanical effect, could drop significantly. However, the fracture propagation pressure,
734 P_p , which is dictated by the caprock *in situ* stress near the fracture front, remains largely
735 unchanged (Fig. 12(a)), thereby causing a high net pressure. This high net pressure, in
736 conjunction with the large overall fracture height, is likely to induce a large fracture aperture in
737 the near-wellbore region. As shown in Fig. 12(b), the maximum aperture in the case with
738 $\bar{S}_{h\min}^C = 26$ MPa reaches around 20 mm. Noticeably, this magnitude of maximum aperture far
739 exceeds the value predicted by isothermal fracture models (McClure and Horne, 2014; Fu et al.,
740 2017). Therefore, employing models that neglect the effects of thermo-elasticity for the
741 simulation of fracturing in GCS will tend to underestimate the magnitude of fracture apertures.

742 For a reservoir fracturing-leading case ($\bar{S}_{h\min}^C = 28, 30, 32$ MPa), however, the fracture opening
743 pressure and the fracture propagation pressure both tend to decrease (Fig. 12(a)). In other words,
744 there might not be a monotonic increase of net pressure at this region as it is in the case with
745 $\bar{S}_{h\min}^C = 26$ MPa, which explains a less remarkable increase of aperture magnitude. Meanwhile,
746 the maximum apertures for cases with $\bar{S}_{h\min}^C = 30$ MPa and 32 MPa approach similar values after
747 300 days of injection. This means in the long run, provided the caprock stress is high enough to
748 prevent fracture propagation into the caprock, the exact magnitude does not play a significant
749 role in affecting the system response.

750

751 Fig. 12. Effect of the caprock *in situ* stress on (a) the injection pressure and (b) the maximum aperture. The
 752 apparent oscillation in the curves is caused by sudden pressure drop when the fracture propagates by the length of an
 753 element: a typical artifact for this type of space discretization scheme.

754

755 6 Concluding remarks

756 This paper develops an efficient and effective modeling scheme for simulating thermo-hydro-
 757 mechanical processes in fluid-driven fracturing. Such a modeling capability is crucial for
 758 studying geologic carbon storage (GCS) in reservoirs with marginal permeability where a
 759 hydraulic fracture could propagate in both the reservoir and caprock with complex
 760 phenomenology. The model captures multiphase multicomponent fluid flow and heat transfer
 761 within fractures and matrix, poro/thermo-mechanical deformation of solid rocks, and fracture
 762 propagation. Each of the physical processes is modeled using a robust individual module, and the
 763 modules are coupled utilizing a common simulation platform. In order to overcome the
 764 numerical challenges posed by coupling many complex processes, we take advantage of some
 765 self-stabilizing features of leakoff-dominated fracturing to simplify the numerical coupling.
 766 These features enable us to develop a sequential coupling scheme without convergence
 767 difficulties. Verification against the PKN solution in the leakoff-dominated regime indicates that

768 the simple scheme does not compromise the accuracy of the results for simulating leakoff-
769 dominated fracturing.

770 In simulating a 3D field-scale injection operation loosely based on the In Salah project, the
771 model reveals complex yet intriguing behaviors of the reservoir-caprock-fluid system. Soon after
772 the injection starts, back-stress caused by pressure diffusion in the reservoir drives a sharp
773 increase in injection pressure to keep the fracture open, until the pressure is high enough to drive
774 fracture propagation into the caprock. The injection pressure then remains largely constant at the
775 caprock's fracturing pressure. Injected fluid continued to be fed into the reservoir through the
776 slowly propagating fracture. Meanwhile, temperature decrease in the reservoir gradually reduces
777 the reservoir's total stress, and eventually the fracturing pressure of the reservoir becomes lower
778 than in the caprock. Thereafter the fracture mainly propagates in the reservoir, and the injection
779 pressure slowly declines accordingly. We also used the model to study the effects of the *in situ*
780 stress contrast between the reservoir and caprock on the vertical containment of the fracture.

781 We found many processes, including thermal, hydraulic, and mechanical processes, are involved
782 in fracturing caused by CO₂ injection. These processes have complex interactions and the
783 relative importance among these processes can evolve as injection progresses. The new model
784 proves effective in simulating these processes and their complex interactions in fidelity that is
785 unattainable for existing simple models. For example, thermal contraction induced by CO₂
786 injection has often been speculated to have a negative impact on fracture containment. Our study
787 shows that cold fluid injection itself could actually benefit the geomechanical containment of
788 fracturing under certain stress conditions within the caprock. Our results indicate that a gradual
789 pumping pressure decline can be used as a practical indicator of fracture growth during injection.

790 Despite the success in revealing the complex interactions among multiple physical processes, all
791 the simulations presented in this paper used simplified stress profiles. More realistic stress
792 profiles with layered fabric (Fisher and Warpinski, 2012) and “rough” in situ stress profiles (Fu
793 et al., 2019), should be considered to further assess the caprock integrity and system responses in
794 the future.

795 **Acknowledge**

796 This manuscript has been authored by Lawrence Livermore National Security, LLC under
797 Contract No. DE-AC52-07NA2 7344 with the US. Department of Energy. The United States
798 Government retains, and the publisher, by accepting the article for publication, acknowledges
799 that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
800 license to publish or reproduce the published form of this manuscript, or allow others to do so,
801 for United States Government purposes. This work is LLNL report LLNL-JRNL-816783.

802

803 **Reference**

804 Bohloli, B., Ringrose, P., Grande, L., Nazarian, B., 2017. Determination of the fracture pressure
805 from CO₂ injection time-series datasets. Int. J. Greenh. Gas Control 61, 85–93.

806 <https://doi.org/10.1016/j.ijggc.2017.03.025>

807 Brooks, R.H., Corey, A.T., 1964. Hydraulic Properties of Porous Media. Hydrology Papers 3.
808 Colorado State University, Fort Collins, CO.

809 Bunger, A.P., Detournay, E., Garagash, D.I., 2005. Toughness-dominated hydraulic fracture with
810 leak-off. Int. J. Fract. 134, 175–190. <https://doi.org/10.1007/s10704-005-0154-0>

811 Eshiet, K.I.I., Sheng, Y., 2014. Carbon dioxide injection and associated hydraulic fracturing of
812 reservoir formations. *Environ. Earth Sci.* 72, 1011–1024. <https://doi.org/10.1007/s12665-013-3018-3>

814 Carrier, B., Granet, S., 2012. Numerical modeling of hydraulic fracture problem in permeable
815 medium using cohesive zone model. *Eng. Fract. Mech.* 79, 312–328.
816 <https://doi.org/10.1016/j.engfracmech.2011.11.012>

817 Coussy, O., 2004. *Poromechanics*. John Wiley and Sons, Chichester, England.

818 Culp, D., Tupek, M.R., Newell, P., Hubler, M.H., 2017. Phase-field modeling of fracture in CO₂
819 sequestration. In: 51st US Rock Mechanics/Geomechanics Symposium. American Rock
820 Mechanics Association ARMA–2017–0644.

821 Detournay, E., Cheng, A.H.D., Roegiers, J.C., McLennan, J.D., 1989. Poroelasticity
822 considerations in In Situ stress determination by hydraulic fracturing. *Int. J. Rock Mech. Min.*
823 *Sci.* 26, 507–513. [https://doi.org/10.1016/0148-9062\(89\)91428-9](https://doi.org/10.1016/0148-9062(89)91428-9)

824 Detournay, E., 2016. Mechanics of Hydraulic Fractures. *Annu. Rev. Fluid Mech.* 48, 311–339.
825 <https://doi.org/10.1146/annurev-fluid-010814-014736>

826 Dontsov, E. V., 2017. An approximate solution for a plane strain hydraulic fracture that accounts
827 for fracture toughness, fluid viscosity, and leak-off. *Int. J. Fract.* 205, 221–237.
828 <https://doi.org/10.1007/s10704-017-0192-4>

829 Fan, C., Elsworth, D., Li, S., Zhou, L., Yang, Z., Song, Y., 2019. Thermo-hydro-mechanical-
830 chemical couplings controlling CH₄ production and CO₂ sequestration in enhanced coalbed
831 methane recovery. Energy 173, 1054–1077. <https://doi.org/10.1016/j.energy.2019.02.126>

832 Fu, P., Johnson, S.M., Carrigan, C.R., 2013. An explicitly coupled hydro-geomechanical model
833 for simulating hydraulic fracturing in arbitrary discrete fracture networks. Int. J. Numer. Anal.
834 Methods Geomech. 37, 2278–2300. <https://doi.org/10.1002/nag.2135>

835 Fu, P., Settgast, R.R., Hao, Y., Morris, J.P., Ryerson, F.J., 2017. The Influence of Hydraulic
836 Fracturing on Carbon Storage Performance. J. Geophys. Res. Solid Earth 122, 9931–9949.
837 <https://doi.org/10.1002/2017JB014942>

838 Fu, P., Huang, J., Settgast, R.R., Morris, J.P., Ryerson, F.J., 2019. Apparent toughness
839 anisotropy induced by “roughness” of in-situ stress: A mechanism that hinders vertical growth of
840 hydraulic fractures and its simplified modeling. SPE J. 24, 2148–2162.
841 <https://doi.org/10.2118/194359-PA>

842 Fu, P., Ju, X., Huang, J., Settgast, R. R., Morris, J. P., 2019. THM Modeling of Poroelastic
843 Sustainability of Hydraulic Fracture in CO₂ Storage Reservoirs. In American Rock Mechanics
844 Association. In *Proceedings of the 44th US Rock Mechanics Symposium*, New York, NY,
845 ARMA-2019-1601, 2019.

846 Fu, P., Ju, X., Huang, J., Settgast, R.R., Liu, F., Morris, J.P., 2020. Thermo-poroelastic responses
847 of a pressure-driven fracture in a carbon storage reservoir and the implications for injectivity and
848 caprock integrity. Int. J. Numer. Anal. Methods. Geomech. 1–19.
849 <https://doi.org/10.1002/nag.3165>

850 Francfort, G.A., Bourdin, B., Marigo, J.J., 2008. The variational approach to fracture, *Journal of*
851 *Elasticity*. <https://doi.org/10.1007/s10659-007-9107-3>

852 Francfort, G.A., Marigo, J.-J., 1998. Revisiting brittle fracture as an energy minimization
853 problem. *J. Mech. Phys. Solids* 46, 1319–1342. [https://doi.org/10.1016/S0022-5096\(98\)00034-9](https://doi.org/10.1016/S0022-5096(98)00034-9)

854 Fisher, K., Warpinski, N., 2012. Hydraulic-fracture-height growth: Real data. *SPE Prod. Oper.*
855 27, 8–19. <https://doi.org/10.2118/145949-pa>

856 Gheibi, S., Vilarrasa, V., Holt, R.M., 2018. Numerical analysis of mixed-mode rupture
857 propagation of faults in reservoir-caprock system in CO₂ storage. *Int. J. Greenh. Gas Control* 71,
858 46–61. <https://doi.org/10.1016/j.ijggc.2018.01.004>

859 Girault, V., Kumar, K., Wheeler, M.F., Wheeler, M.F., 2016. Convergence of iterative coupling
860 of geomechanics with flow in a fractured poroelastic medium. *Comput. Geosci.* 997–1011.
861 <https://doi.org/10.1007/s10596-016-9573-4>

862 Guo, B., Tao, Y., Bandilla, K., Celia, M., 2017. Vertically Integrated Dual-porosity and Dual-
863 permeability Models for CO₂ Sequestration in Fractured Geological Formation. *Energy Procedia*
864 114, 3343–3352. <https://doi.org/10.1016/j.egypro.2017.03.1466>

865 Gor, G.Y., Elliot, T.R., Prevost, J.H., 2013. Effects of thermal stresses on caprock integrity
866 during CO₂ storage. *Int. J. Greenh. Gas Control* 12, 300–309.

867 Haszeldine, R.S., 2009. Carbon Capture and Storage: How Green Can Black Be? *Science*. 325,
868 1647–1652. <https://doi.org/10.1126/science.1172246>

869 Huang, J., Fu, P., Settgast, R.R., Morris, J.P., Ryerson, F.J., 2019. Evaluating a Simple
870 Fracturing Criterion for a Hydraulic Fracture Crossing Stress and Stiffness Contrasts. Rock
871 Mech. Rock Eng. 52, 1657–1670. <https://doi.org/10.1007/s00603-018-1679-7>

872 Iding, M., Ringrose, P., 2010. Evaluating the impact of fractures on the performance of the In
873 Salah CO₂ storage site. Int. J. Greenh. Gas Control 4, 242–248.
874 <https://doi.org/10.1016/j.ijggc.2009.10.016>

875 International Energy Agency. Energy Technology Perspectives 2010: Scenarios and Strategies to
876 2050; 2010; International Energy Agency, Paris, France.

877 Ju, X., Liu, F., Fu, P., D. White, M., R. Settgast, R., P. Morris, J., 2020. Gas Production from
878 Hot Water Circulation through Hydraulic Fractures in Methane Hydrate-Bearing Sediments:
879 THC-Coupled Simulation of Production Mechanisms. Energy & Fuels 0.
880 <https://doi.org/10.1021/acs.energyfuels.0c00241>

881 Kim, J., Tchelepi, H.A., Juanes, R., 2011. Stability and convergence of sequential methods for
882 coupled flow and geomechanics: Fixed-stress and fixed-strain splits. Comput. Methods Appl.
883 Mech. Eng. 200, 1591–1606. <https://doi.org/10.1016/j.cma.2010.12.022>

884 Kim, J., Moridis, G., Yang, D., Rutqvist, J., 2012. Numerical Studies on Two-Way Coupled
885 Fluid Flow and Geomechanics in Hydrate Deposits. SPE J. 17, 485–501.
886 <https://doi.org/10.2118/141304-PA>

887 Kim, J., Moridis, G.J., 2013. Development of the T+M coupled flow-geomechanical simulator to
888 describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale
889 gas systems. *Comput. Geosci.* 60, 184–198. <https://doi.org/10.1016/j.cageo.2013.04.023>

890 Kim, S., Hosseini, S.A., 2014. Geological CO₂ storage: Incorporation of pore-pressure/stress
891 coupling and thermal effects to determine maximum sustainable pressure limit. *Energy Procedia*
892 63, 3339–3346. <https://doi.org/10.1016/j.egypro.2014.11.362>

893 Kim, S., Hosseini, S.A., 2015. Hydro-thermo-mechanical analysis during injection of cold fluid
894 into a geologic formation. *Int. J. Rock Mech. Min. Sci.* 77, 220–236.
895 <https://doi.org/10.1016/j.ijrmms.2015.04.010>

896 Kovalyshen, Y. , 2010. Fluid-Driven Fracture in Poroelastic Medium. University of Minnesota.

897 Howard, G.C., Fast, C., 1957. Optimumfluid characteristics for fracture extension. *Drill. Prod.*
898 *Prac.* 24, 261–270.

899 Li, Z. and Elsworth, D., 2019. Controls of CO₂–N₂ gas flood ratios on enhanced shale gas
900 recovery and ultimate CO₂ sequestration. *J. Pet. Sci. Eng.* 179, 1037-1045.

901 Lecampion, B., Bunger, A., Zhang, X., 2018. Numerical methods for hydraulic fracture
902 propagation: A review of recent trends. *J. Nat. Gas Sci. Eng.* 49, 66–83.
903 <https://doi.org/10.1016/j.jngse.2017.10.012>

904 McClure, M.W., Horne, R.N., 2014. An investigation of stimulation mechanisms in Enhanced
905 Geothermal Systems. *Int. J. Rock Mech. Min. Sci.* 72, 242–260.
906 <https://doi.org/10.1016/j.ijrmms.2014.07.011>

907 Mito, S., Xue, Z., Ohsumi, T., 2008. Case study of geochemical reactions at the Nagaoka CO₂
908 injection site, Japan. *Int. J. Greenhouse Gas Control* 2, 309–318.

909 Moridis, G.J., Freeman, C.M., 2014. The RealGas and RealGasH₂O options of the TOUGH+
910 code for the simulation of coupled fluid and heat flow in tight/shale gas systems. *Comput.*
911 *Geosci.* 65, 56–71. <https://doi.org/10.1016/j.cageo.2013.09.010>

912 Morris, J.P., Hao, Y., Foxall, W., McNab, W., 2011. A study of injection-induced mechanical
913 deformation at the In Salah CO₂ storage project. *Int. J. Greenh. Gas Control* 5, 270–280.
914 <https://doi.org/10.1016/j.ijggc.2010.10.004>

915 Mollaali, M., Ziae Rad, V., Shen, Y., 2019. Numerical modeling of CO₂ fracturing by the phase
916 field approach. *J. Nat. Gas Sci. Eng.* 70, 102905. <https://doi.org/10.1016/j.jngse.2019.102905>

917 Nordgren, R.P., 1972. Propagation of a Vertical Hydraulic Fracture. *Soc. Pet. Eng. J.* 12, 306–
918 314. <https://doi.org/10.2118/3009-pa>

919 Orr, F.M., 2009. Onshore geologic storage of CO₂. *Science*. 325, 1656–1658.
920 <https://doi.org/10.1126/science.1175677>

921 Oye, V., Aker, E., Daley, T.M., Kühn, D., Bohloli, B., Korneev, V., 2013. Microseismic
922 monitoring and interpretation of injection data from the In Salah CO₂ storage site (Krechba),
923 Algeria. *Energy Procedia* 37, 4191–4198. <https://doi.org/10.1016/j.egypro.2013.06.321>

924 Pacala, S., Socolow, R, 2004. Stabilization Wedges: Solving the Climate Problem for the Next
925 50 Years with Current Technologies. *Science*. 305, 968–972.
926 <https://doi.org/10.1126/science.1100103>

927 Paluszny, A., Graham, C.C., Daniels, K.A., Tsaparli, V., Xenias, D., Salimzadeh, S., Whitmarsh,
928 L., Harrington, J.F., Zimmerman, R.W., 2020. Caprock integrity and public perception studies of
929 carbon storage in depleted hydrocarbon reservoirs. *Int. J. Greenh. Gas Control* 98, 103057.
930 <https://doi.org/10.1016/j.ijggc.2020.103057>

931 Pan, L., Oldenburg, C.M., Pruess, K., Wu, Y.-S., 2011. Transient CO₂ leakage and injection in
932 wellbore-reservoir systems for geologic carbon sequestration. *Greenh. Gases Sci. Technol.* 1,
933 335–350. <https://doi.org/10.1002/ghg.41>

934 Perkins, T.K., Kern, L.R., 1961. Widths of Hydraulic Fractures. *J. Pet. Technol.* 13, 937–949.
935 <https://doi.org/10.2118/89-pa>

936 Raziperchikolaee, S., Alvarado, V., Yin, S., 2013. Effect of hydraulic fracturing on long-term
937 storage of CO₂ in stimulated saline aquifers. *Appl. Energy* 102, 1091–1104.
938 <https://doi.org/10.1016/j.apenergy.2012.06.043>

939 Ren, F., Ma, G., Wang, Y., Fan, L., Zhu, H., 2017. Two-phase flow pipe network method for
940 simulation of CO₂ sequestration in fractured saline aquifers. *Int. J. Rock Mech. Min. Sci.* 98, 39–
941 53. <https://doi.org/10.1016/j.ijrmms.2017.07.010>

942 Rinaldi, A.P., Rutqvist, J., 2013. Modeling of deep fracture zone opening and transient ground
943 surface uplift at KB-502 CO₂ injection well, In Salah, Algeria. *Int. J. Greenh. Gas Control* 12,
944 155–167. <https://doi.org/10.1016/j.ijggc.2012.10.017>

945 Ringrose, P.S., Mathieson, A.S., Wright, I.W., Selama, F., Hansen, O., Bissell, R., Saoula, N.,

946 Midgley, J., 2013. The in salah CO₂ storage project: Lessons learned and knowledge transfer.

947 Energy Procedia 37, 6226–6236. <https://doi.org/10.1016/j.egypro.2013.06.551>

948 Rutqvist, J., Vasco, D.W., Myer, L., 2010. Coupled reservoir-geomechanical analysis of CO₂

949 injection and ground deformations at In Salah, Algeria. Int. J. Greenh. Gas Control 4, 225–230.

950 <https://doi.org/10.1016/j.ijggc.2009.10.017>

951 Pruess, K., Tsang, Y.W., 1990. On two-phase relative permeability and capillary pressure of

952 rough-walled rock fractures. Water Resour. Res. 26, 1915–1926.

953 <https://doi.org/10.1029/WR026i009p01915>

954 Rutqvist, J., Rinaldi, A.P., Cappa, F., Moridis, G.J., 2013. Modeling of fault reactivation and

955 induced seismicity during hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng. 107, 31–

956 44. <https://doi.org/10.1016/j.petrol.2013.04.023>

957 Salimzadeh, S., Paluszny, A., Zimmerman, R.W., 2017. Three-dimensional poroelastic effects

958 during hydraulic fracturing in permeable rocks. Int. J. Solids Struct. 108, 153–163.

959 <https://doi.org/10.1016/j.ijsolstr.2016.12.008>

960 Salimzadeh, S., Paluszny, A., Zimmerman, R.W., 2018. Effect of cold CO₂ injection on fracture

961 apertures and growth. Int. J. Greenh. Gas Control 74, 130–141.

962 <https://doi.org/10.1016/j.ijggc.2018.04.013>

963 Salimzadeh, S., Hagerup, E.D., Kadeethum, T., Nick, H.M., 2019. The effect of stress
964 distribution on the shape and direction of hydraulic fractures in layered media. Eng. Fract. Mech.
965 215, 151–163. <https://doi.org/10.1016/j.engfracmech.2019.04.041>

966 Senseny, P.E., Pfeifle, T.W., 1984. Fracture toughness of sandstones and shales. In: The 25th US
967 Symposium on Rock Mechanics (USRMS). 25–27 June, Evanston Illinois.

968 Settgast, R.R., Fu, P., Walsh, S.D.C., White, J.A., Annavarapu, C., Ryerson, F.J., 2016. A fully
969 coupled method for massively parallel simulation of hydraulically driven fractures in 3-
970 dimensions. Int. J. Numer. Anal. Methods Geomech. <https://doi.org/10.1002/nag.2557>

971 Sun, Z., Espinoza, D.N., Balhoff, M.T., 2016. Discrete element modeling of indentation tests to
972 investigate mechanisms of CO₂-related chemomechanical rock alteration. J. Geophys. Res. Solid
973 Earth 121, 7867–7881. <https://doi.org/10.1002/2016JB013554>

974 Sun, Z., Espinoza, D.N., Balhoff, M.T., Dewers, T.A., 2017. Discrete Element Modeling of
975 Micro-scratch Tests: Investigation of Mechanisms of CO₂ Alteration in Reservoir Rocks. Rock
976 Mech. Rock Eng. 50, 3337–3348. <https://doi.org/10.1007/s00603-017-1306-z>

977 Vilarrasa, V., Olivella, S., Carrera, J., Rutqvist, J., 2014. Long term impacts of cold CO₂
978 injection on the caprock integrity. Int. J. Greenh. Gas Control 24, 1–13.
979 <https://doi.org/10.1016/j.ijggc.2014.02.016>

980 Vilarrasa, V., Laloui, L., 2015. Potential fracture propagation into the caprock induced by cold
981 CO₂ injection in normal faulting stress regimes. Geomech. Energy Environ. 2, 22–31.

982 Vilarrasa, V., Rinaldi, A.P., Rutqvist, J., 2017. Long-term thermal effects on injectivity evolution
983 during CO₂ storage. *Int. J. Greenh. Gas Control* 64, 314–322. DOI: 10.1016/j.ijggc.2017.07.019

984 White, J.A., Chiaramonte, L., Ezzedine, S., Foxall, W., Hao, Y., Ramirez, A., McNab, W., 2014.
985 Geomechanical behavior of the reservoir and caprock system at the In Salah CO₂ storage project.
986 *Proc. Natl. Acad. Sci.* 111, 8747–8752. <https://doi.org/10.1073/pnas.1316465111>

987 White, J.A., Castelletto, N., Tchelepi, H.A., 2016. Block-partitioned solvers for coupled
988 poromechanics: A unified framework. *Comput. Methods Appl. Mech. Eng.* 303, 55–74.
989 <https://doi.org/10.1016/j.cma.2016.01.008>

990 Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980. Validity of Cubic Law for fluid
991 flow in a deformable rock fracture. *Water Resour. Res.* 16, 1016–1024.
992 <https://doi.org/10.1029/WR016i006p01016>

993 Yan, H., Zhang, J., Zhou, N., Li, M., Suo, Y., 2020. Numerical simulation of dynamic
994 interactions between two cracks originating from adjacent boreholes in the opposite directions
995 during supercritical CO₂ fracturing coal mass. *Eng. Fract. Mech.* 223, 106745.
996 <https://doi.org/10.1016/j.engfracmech.2019.106745>

997 Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of
998 unsaturated soils. *Soil Sci. Soc. Am. J.* 44 (5), 892–898.