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ABSTRACT
Multi-objective optimization methods can be criticized for lacking a statistically valid 
measure of the quality and representativeness of a solution.  This stance is especially 
relevant to metaheuristic optimization approaches but can also apply to other methods 
that typically might only report a small representative subset of a Pareto frontier.  Here we 
present a method to address this deficiency based on random sampling of a solution space 
to determine, with a specified level of confidence, the fraction of the solution space that 
is surpassed by an optimization.  The Superiority of Multi-Objective Optimization to 
Random Sampling, or SMORS method, can evaluate quality and representativeness using 
dominance or other measures, e.g., a spacing measure for high-dimensional spaces.  
SMORS has been tested in a combinatorial optimization context using a genetic algorithm 
but could be useful for other optimization methods.  
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DEFINITIONS
Term Definition

Confidence

Probability that an estimated value is unlikely to be wrong (here with reference 
to the estimate of superiority to randomness being exaggerated or 
overestimated) 

Dimension 

An axis in a multi-objective optimization defined by one objective or 
combination of objectives, here with reference to a low-dimension or high-
dimension problem   

Dominated

A solution in an optimization solution set or during the progression of an 
optimization computation for which some other solution in the solution set or 
intermediate set is equal to or better than the first solution in all objectives and 
strictly better than it in at least one objective; often applied to determine 
solutions that should be omitted from further consideration during the 
progression of an evolutionary algorithm

Expanse
Distance between the minimum and maximum points in an optimization 
dimension  

High-dimension 
problem

Multi-objective optimization problem typically encompassing greater than eight 
dimensions

Low-dimension 
problem

Multi-objective optimization problem typically encompassing less than about 
four dimensions

MILP Mixed-integer linear program; a mathematical optimization problem

Non-dominated 

A solution in an optimization solution set or during the progression of an 
optimization computation for which no other solution in the solution set or 
intermediate set is better in all values calculated for every optimization 
dimension; often applied transiently to determine what solutions should be used 
during the progression of an evolutionary algorithm

Pareto frontier 
The exact solution set to a multi-objective optimization; the set of non-
dominated solutions 

Point An individual solution within the optimization solution space 

Representative Pareto 
frontier 

Approximation of a Pareto frontier, typically not necessarily optimal and 
involving a subset of actual Pareto frontier (also sometimes called a 
representative solution set) 

Search space 
Domain of the function to be optimized; the feasible region of the set of all 
possible solutions 

SMORS Superiority of Multi-Objective Optimization to Random Sampling 

Spacing 

Distance between points in a representative multi-objective optimization 
solution set; often applied transiently to determine what points should be used 
during the progression of an evolutionary algorithm (e.g., niching) 

Solution set 
The result of optimization; for a single-objective optimization, a single solution; 
for a multi-objective optimization, a collection of solutions 

Solution space Search space  

Superiority to 
randomness 

The distance, in units of probability, of a computed, representative Pareto 
frontier from a random sampling of the solution space 
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Term Definition
Very high-dimension 
problem 

Multi-objective optimization problem encompassing significantly more 
dimensions than a high-dimension problem, e.g., 20 dimensions 
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1. MOTIVATION
A trend in stakeholder-driven optimizations is toward higher-dimensional, multi-objective analyses 
that often require demanding evaluations.  (See Definitions for High-dimension problem.  
Demanding evaluations are here defined as computation times of all required evaluations exceeding 
a day.)  The reason is that these stakeholders are interested in understanding the space of the best 
decisions more than simply knowing the single optimal, and perhaps brittle, solution.  In this 
environment, adequacy of an analysis must be assured:  was a statistically valid, representative set of 
the best solutions identified?  The assurance is especially necessary for metaheuristic optimization 
methods (evolutionary algorithms) but could also apply to mathematical optimization approaches 
(e.g., mixed-integer linear programming).  Consider, for example:  

1. multi-objective optimizations based on a grid of optimization points:  are we missing 
significant behavior between the grid nodes, perhaps behavior that dominates the solutions 
at the grid nodes?  

2. high-dimensional, multi-objective optimization with expensive evaluations:  how much effort 
should be spent in computing each solution and when are the results adequate?  

3. very high-dimensional, multi-objective optimizations where the goal of the optimization is 
not to find optimal solutions (virtually any randomly chosen solution is non-dominated), but 
rather to find representative coverage of the solution space:  is the solution set well-spaced, 
does it contain the diversity of possibilities, and does it reflect the density of solutions in the 
Pareto frontier? 

4. metaheuristic multi-objective optimization that uses a discretization of the decision-variable 
values:  is the discretization used adequate?  

To address these issues, we require a general, statistically valid approach to measure our confidence 
in the quality of an optimization and thus the quality of the decisions supported by the optimization.   
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2. BACKGROUND
The absence of optimality conditions and the absence of quantitative confidence measures in 
metaheuristic-derived solutions have been addressed by various methods.  One technique is to 
quantify the quality with which an algorithm explores the feasible search space.  See, for example,

 the one-dimensional search space visualization tool (Mach and Zetakova 2002),
 the two-dimensional “coverage maps” used to visualize search space coverage and 

convergence behavior (Shine and Eick 1997), and
 the clustering-based “coverage of the relevant search space” metric (Wehrens et al. 1998).

Another approach in the literature has been to assert the quality of a metaheuristic for a specific 
application by comparing the final solution to that obtained by a random search algorithm (see, for 
instance, Marrison and Stengel 1994, Godefroid and Khurshid 2004).  For a related problem, 
Alyahya and Rowe (2016), use random sampling to estimate the number of local optima, to aid in 
commenting on the quality of found local optima or the assurance that a global optimum has been 
seen.  

The SMORS method, presented in this report, combines these two previously disconnected 
approaches by comparing optimization-generated solution sets to randomly generated solutions.  
The goal of the SMORS method is not simply to claim the optimization’s superiority, but to 
additionally provide a quantitative statistical bound on the quality of the exploration and coverage of 
the feasible search space.
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3. THE SMORS METHOD
The motivation for the SMORS method comes from an analogy to the Monte Carlo method, as 
applied to integration (see, for instance, Caflisch 1998).  As shown in Figure 1a, the Monte Carlo 
method can be used to generate random points on a bounded plane, and the ratio of the number of 
points falling below a curve to the total number of points generated, times the area of the bounded 
region, is an estimate of the area under the curve.  Similarly, a Pareto frontier calculated by a multi-
objective optimization can be considered to act like a curve within a solution space.  In Figure 1b, 
points (individual solutions to an optimization problem) are randomly generated within the feasible 
solution space.  Every random point is deemed to be either inferior or superior to the multi-
objective solution set.  In Section 3.2, we will discuss this designation in greater detail, but for now, 
we can think of a superior random point as one that dominates at least one solution in the multi-
objective solution set.  An inferior random point is simply one that is not superior to the multi-
objective solution set.

Figure 1  (a) Estimate of π/4 using the Monte Carlo method.  (b) Analogous method for estimating 
the "superiority to randomness" of a multi-objective solution set.

The ratio between the number of randomly generated points that are inferior to the multi-objective 
solution set and the total number of randomly generated points is calculated. This ratio is an 
estimate of the probability that a randomly selected solution will be inferior to the multi-objective 
solution set. For example, we could use the random sample pictured in Figure 1b to estimate this 
probability to be about 84%. We will refer to this ratio as the multi-objective solution set’s estimated 
“superiority to randomness.” 

We would, of course, like this “superiority to randomness” ratio to be as large as possible. In fact, 
the SMORS method is based on the special case where the random sample results in a ratio that is 
equal to 1.  In other words, the SMORS method involves taking random samples, and drawing 
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statistical conclusions when none of these random points are superior to the multi-objective solution 
set. 

The key insight is that each randomly sampled point can be thought of as a trial from a binomial 
experiment with an unknown probability of success 𝜃, where a trial is successful if the random point 
is inferior to the multi-objective solution set. In this sense, 𝜃 represents the true proportion of the 
entire search space that is inferior to the multi-objective solution set (i.e., the multi-objective 
solution set’s true superiority to randomness).  We can use the Clopper-Pearson confidence interval 
for binomial distributions (Clopper and Pearson 1934) to compute a confidence interval for 𝜃.  

For the special case where every observed trial is a success (i.e., all sampled points are inferior to the 
multi-objective solution set), the 1-𝛼 one-sided Clopper-Pearson confidence interval for the 
population proportion of successes 𝜃 is given by  

(𝛼1/𝑛,1),

as described in (Thulin 2014), where n is the number of trials.

Suppose we would like to claim that a given proportion, say 𝜃, of the search space is inferior to the 
multi-objective solution set. We can use the confidence interval to calculate the number of random 
samples without seeing a superior point that are necessary to assert (with confidence 1 ― 𝛼) that the 
true proportion of the search space that is inferior to our multi-objective solution set is at least 𝜃. 
Specifically, the number of trials necessary is given by

𝑛 =  ⌈ln(𝛼)/ln 𝜃 ⌉,
which results in a 1 ― 𝛼 confidence interval of (𝜃,1) for the true proportion of the search space that 
is inferior to the multi-objective solution set.

For example, we would need to sample n = 298 random points without seeing a point superior to 
the multi-objective solution set to be 95% confident that the multi-objective solution set’s true 
superiority to randomness is at least 0.99.  In other words, we would be 95% confident that at least 
99% of the points in the search space are inferior to the multi-objective solution set.  Put another 
way, we would be 95% confident that at most 1% of the of the points in the search space are superior 
to the multi-objective solution set.

Table 1 offers numbers of random samples needed—without finding a superior point—to achieve 
various confidence levels of various lower bounds on the multi-objective solution set’s true 
superiority to randomness.  

Table 1  Number of random trials (𝒏), without seeing a superior point, required to achieve various 
confidence levels (𝟏 ― 𝜶) for several lower bounds (𝜽) on the superiority to randomness of a multi-

objective solution set.
Superiority-to-
Randomness 

Fraction
Confidence = 95% Confidence = 99% Confidence = 99.9%

0.99 298 458 687

0.999 2,994 4,603 6,904

0.9999 29,956 46,049 69,074
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3.1. Using the SMORS method on a real-world problem
The U.S. Army is considering development of the Squad Multi-purpose Equipment Transport 
(SMET), a semi-autonomous mobile platform for carrying gear for an infantry squad during 
operations, i.e., a robotic pack mule.   SMET has a number of performance objectives in addition to 
carrying cargo:  rapid battery recharge, mission payload hosting, reliable, survivable, etc.  SMET 
must also be cost effective to buy, to operate, and to sustain.  

Before the Army requested proposals for SMET, a trade-space study was conducted to determine 
what such vehicles might look like.  The basic component areas of SMET included powertrain, 
chassis and body, communications and control, and sensors.  Each of these areas had dozens of 
possible technology options, which when combined gave an approximate solution space size of 
2.638×1022 (dependencies between some components, e.g., power supply and motor type, reduces 
this number somewhat).  A multi-objective optimization using the Whole System Trades Analysis 
Tool (WSTAT) selected the best trade space to consider.  (For more information about WSTAT and 
one of its applications, see Henry et al. 2016.)  The genetic algorithm evaluated 1,063,323 
configurations—fewer than 10-15 of all possible solutions.   To build confidence in the solution, 
convergence was monitored, and statistics were kept on how often each technology option was 
tried.  Although reasonable, these measures only indirectly indicated the quality of the SMET 
solution.  

The SMORS method was applied to the SMET solution to determine, with 95% confidence, that 
the solution is at least in the upper 99.9% of the possible solutions.  In other words, the method was 
used to provide 95% confidence that 0.999*2.638×1022 = 2.635×1022 solutions in the possible 
solution space were inferior to the WSTAT-computed SMET solution.  (Two caveats:  first, the 
2.638×1019 solutions that comprise the remaining 0.1% of the solution space is still an enormous 
number of solutions; second, SMORS does not indicate how much better the SMET solution is to 
the 2.635×1022 inferior solutions, simply that it is better.)  SMORS requires 2,994 random samples 
to determine the desired quality specification.  In WSTAT, SMORS takes slightly over 7 minutes to 
build the random configurations and compare each for dominance against the SMET Pareto 
solutions.  As no non-dominated random configurations were generated, it was possible to report to 
the Army customer that the SMET solution meets the desired 99.9% superiority with 95% 
confidence.  

3.2. Determining the superiority of random points
Determination of random-solution superiority to the multi-objective solution set should typically use 
the same criteria that were used in the original generation of the multi-objective solution set.  One 
way is to observe whether the point dominates (in the Pareto sense) any solutions in the multi-
objective solution set.  A solution dominates another if it performs better than or equal to that 
solution in all objectives and is strictly better in at least one objective.  (As mentioned below, the 
dominance measure works best for problems with relatively few objectives.)  

Other optimization criteria could be considered, such as whether the random point improves the 
spacing of the points in the multi-objective solution set or the expanse of the solution set (Dessanti 
et al. 2016).   Figure 2 shows how a randomly generated point (indicated by “?”) might improve the 
spacing of a multi-objective solution set and thus be considered superior, even though it does not 
dominate any of the solutions in the multi-objective solution set.  In our context, the binomial 
distribution requires exactly two possible outcomes.  Therefore, inferior random solutions are simply 
those that are not superior to the multi-objective solution set.   
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Figure 2  Illustration of a multi-objective solution set with a random inferior point, a random 
superior point, and a random point marked by “?” that, although it does not dominate any 

solutions in the multi-objective solution set, might or might not be considered superior depending 
on whether it improves the solution set’s spacing.  

In high-dimensional multi-objective optimization, where the number of dimensions is greater than 
approximately eight, the solution space is typically so large that most randomly generated points will 
be non-dominated (Ishibuchi 2008).  In these cases, improved spacing and improved expanse could 
again be useful discriminators.  Other techniques have been proposed for comparing points in high-
dimensional spaces and could be considered for determining inferiority/superiority, e.g., prefer 
(Sulflow 2007), favour (Drechsler 2001), or reference-point-based non-dominated sorting (Deb and 
Jain 2014).  

As a matter of course, we are only interested in generating feasible random points—those that 
satisfy all of the constraints of the optimization problem.  Thus, in generating a random sample, 
infeasible points should be discarded or fixed in some unbiased manner—e.g., metaheuristic 
solution “healing” (Henry et al. 2015).  Generating a representative sample from a highly constrained 
region can be challenging and is an active area of current research (see, for instance, Golchi and 
Loeppky 2016).   
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3.3. Using the SMORS method to develop a metaheuristic convergence 
criterion

Convergence criteria—numerical objectives of goodness that a solution must meet before algorithm 
termination—used in metaheuristic computations are often ad hoc, relying on an observed lack of 
progress in solution improvement (overviews of some of the most common metaheuristic stopping 
criteria can be found in Jain et al. 2001 and Saxena et al. 2016).  The SMORS method could be used 
not only to judge the goodness of a metaheuristic solution set, but it could also be used before a 
metaheuristic solution set is computed to set a convergence criterion.  For instance, suppose (as 
above) we want to be 95% confident that our metaheuristic solution set has at least 99% superiority 
to randomness.  Then we could sample 298 random points independently of the metaheuristic 
computation and, as the metaheuristic optimization progresses, we could occasionally check to see if 
all of the random points are inferior to the current metaheuristic solution set.  If so, the computation 
could cease, with the knowledge that the current solution set meets the initial numerical objective.  
This convergence criterion could be especially useful for solving high-dimensional, multi-objective 
optimizations with expensive evaluations.  

3.4. Generality of the SMORS method
While the SMORS method provides the most value for optimization methods that lack formal 
optimality conditions or quantitative measures of solution quality (e.g., genetic algorithms, tabu 
search, simulated annealing), the method is general and could apply to any optimization technique.  
For instance, the SMORS method could also have value in determining, say, the coverage adequacy 
of a multi-objective solution calculated by a mixed integer linear program (MILP) method.  In this 
case, although the adequacy of each individual solution can be assured by measuring the gap, the 
distribution of the solutions across the actual Pareto frontier could be insufficient and important 
regions of the Pareto frontier could be missed.  (Indeed, one can imagine a case where a solution 
along a given MILP ray is dominated by a nearby solution along an untried ray.)  Thus, the SMORS 
method can give quantitative bounds to the quality of MILP multi-objective solutions.  For the 
SMORS method to be applicable, all that is needed is (1) a way to produce random individual 
solutions and (2) a way to determine whether a random solution is superior or inferior to a given 
optimization solution or solution set.  
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4. CONCLUSIONS
The SMORS method provides a quantitative lower bound of the probability that a randomly 
selected point from the search space will be inferior to a multi-objective solution set, along with a 
statistical measure of confidence in this bound.  Although developed in the context of 
metaheuristics, the SMORS method can be applied to any optimization technique.  We envision that 
a major application of the SMORS method will be to inspire confidence in multi-objective solutions 
when presenting results to stakeholders and decision makers.  

If a random point is ever sampled that proves superior to a multi-objective solution set, this point 
can be added to the solution set.  In the case of a metaheuristic optimization method, the 
computation can continue, thus increasing the quality of the metaheuristic solution set.  In the case 
of a MILP optimization, the calculation can be adjusted for finer granularity.  

Future work to be done in relation to the SMORS method includes 1) developing options for 
defining what it means for a random point to be inferior or superior for various classes of 
optimization problems, 2) researching techniques for generating random samples from highly 
constrained spaces, and 3) studying more effective techniques to visualize and present SMORS 
results to stakeholders.
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