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Motivation: Predictions Under Uncertainty

We need to make predictions that incorporate both parametric
and model form uncertainties
◦ Predictions may be interpolatory or extrapolatory
◦ Central to high-consequence model and simulation activities

Here, we focus on non-intrusive methods to support black-box
simulations
◦ Perform predictions under uncertainty with explicit

discrepancy models
◦ Explore challenges from algorithmic and deployment

perspectives



Calibration of Computer Models

Experimental data = Model output + error
d(xi) = M(θ, xi) + εi

◦ θ = variables to be calibrated
◦ x = scenario or configuration variables
◦ Represent different experimental settings at which data is taken

(temperature, pressure, etc)
◦ ε ∼ N (0, σ2) = i.i.d. measurement/observation error

The likelihood over n experiments is
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A surrogate model M̂(θ, x) may be used in place of the
simulation model M(θ, x) for computational efficiency



Calibration of Computer Models
Often, even with calibration, the agreement between the data and the
model is not very close. This can be due to model form error, also
called model discrepancy or structural error

⇒ d(xi) = M(θ, xi) + δ(xi) + εi

Goal: Make predictions in the presence of parametric and model
form uncertainties

Philosophical and implementation issues:
◦ How do we estimate δ?
◦ What model form is appropriate for δ?
◦ Explicit discrepancy may not adhere to physical laws
◦ How can we understand if there is significant confounding or

non-identifiability between our estimates of θ and δ?
◦ How can we appropriately use δ to improve the predictive

capability of the model?
◦ How do we capture and propagate uncertainty?

Kennedy and O’Hagan, “Bayesian calibration of computer models.” J R Stat Soc, B63, pg 425-464



How do we make the answers to our philosophical questions
general?



Automate typical parameter variation studies with advanced
methods and a generic interface to your simulation

-

�

DAKOTA
optimization, sensitivity

analysis, parameter
estimation,

uncertainty quantification

parameters response
metrics

Computational Model



Discrepancy Formulation in Dakota
Given data, we want to calibrate model parameters θ and calculate δ

◦ Response = experimental value at a point in time or space
◦ Field = set of responses for single experiment
◦ Configuration = experimental setting such as temperature or

pressure



Discrepancy Formulation in Dakota

Currently in Dakota
◦ Parameters θ are calibrated to experimental data d(x)
◦ Scalar responses
◦ For each response function

δ(xi) = d(xi)−M(θ, xi)

◦ δ = δ(x) is only a function of the configuration variables
◦ Field responses
◦ For each response in the field

δ(ti, xj) = d(ti, xj)−M(ti, θ, xj)

◦ δ = δ(t, x) is a function of the configuration variables and
independent field coordinates

◦ Prediction variance can also be computed
Σtotal(t, x) = ΣM(t, x) + Σδ(t, x)



Example: Thermal Battery Calibration
We wish to use a single model for temperature calculations for any
initial condition

◦ t = time
◦ θ = {θ1, . . . θ7} = parameters to be calibrated
◦ x = configuration parameter (initial condition)



Example: Thermal Battery Calibration
Step 1: Parameters θ are calibrated to experimental data d
using Bayes’ Rule

π(θ|d) ∝ π(d|θ)π(θ)

◦ Model is an emulator with 7 parameters
◦ Three cases of “leave one out” calibration
◦ Calibrate to low and medium, extrapolate to high
◦ Calibrate to low and high, interpolate to medium
◦ Calibrate to medium and high, extrapolate to low

◦ Choose one experiment of each type, 3 data points
◦ π(θ) ∼ U
◦ π(d|θ) ∼ N



Example: Thermal Battery Calibration
Step 1: Parameters θ are calibrated to experimental data d
using Bayes’ Rule
◦ Using θ̄, the model is inadequate



Example: Thermal Battery Calibration
Step 1: Parameters θ are calibrated to experimental data d
using Bayes’ Rule

Step 2: Calculate discrepancies
δ(ti, xj) = d(ti, xj)−M(ti, θ̄, xj)



Example: Thermal Battery Calibration
Step 1: Parameters θ are calibrated to experimental data d
using Bayes’ Rule

Step 2: Calculate discrepancies

Step 3: Calibrate discrepancy model
◦ Discrepancy model corrected some areas better than others
◦ Experimental data is contained within the prediction

intervals of the corrected model



Example: Thermal Battery Calibration
Comparison to Simultaneous Calibration

The original Kennedy and O’Hagan paper proposed
simultaneous estimation of θ and δ parameters

⇒ π(θ, ℓ|d) ∝ π(d|θ, ℓ)π(θ, ℓ)

◦ ℓ = {ℓx, ℓt} = correlation lengths of δ = δ(x, t)
◦ θ = {θ1, . . . , θ7}
◦ π(θ, ℓ) ∼ U
◦ π(d|θ, ℓ) ∼ N



Example: Thermal Battery Calibration
Comparison to Simultaneous Calibration



Example: Thermal Battery Calibration
Comparison to Simultaneous Calibration

Case 1 Case 2 Case 3
Uncorrected Model 3.24% 3.88% 4.22%
Corrected Model 1.74% 2.26% 3.03%
KOH Corrected Model 1.96% 2.32% 4.47%

Calibration times increased by 49%, 39%, and 41% for Cases 1,
2, and 3, respectively
◦ Rejection rate much higher (> 30%)
◦ Need to build new GP for δ for each sample



Example: Material Failure Calibration
We wish to use a single phenomenological model for stress
calculations for any temperature

m(t, θ, x) = θ1
[
log(100t+1)

x0.5 − 1
x0.2(100t−1.05( x

100−6.65)2θ2)2

]
◦ t = strain
◦ θ = {θ1, θ2} = parameters to be calibrated
◦ x = configuration parameter (Temperature)



Example: Material Failure Calibration
Step 1: Parameters θ are calibrated to experimental data d
using Bayes’ Rule
◦ Calibrate against data from x = 373K, 673K, 973K
◦ Calculate mean and variance for each
◦ π(θ) ∼ U
◦ π(d|θ) ∼ N

◦ Using θ̄, the model is
inadequate



Example: Material Failure Calibration
Step 1: Parameters θ are calibrated to experimental data d
using Bayes’ Rule

Step 2: Calculate discrepancies
δ(ti, xj) = d(ti, xj)−M(ti, θ̄, xj)



Example: Material Failure Calibration
Step 1: Parameters θ are calibrated to experimental data d
using Bayes’ Rule

Step 2: Calculate discrepancies

Step 3: Calibrate discrepancy model
◦ δ is able to correct the

model for the calibration
configurations

◦ How well does the
corrected model perform
for the prediction
configurations?



Example: Material Failure Calibration

Interpolation
of δ

Extrapolation
of δ



Example: Material Failure Calibration
Comparison to Simultaneous Calibration

As before,
π(θ, ℓ|d) ∝ π(d|θ, ℓ)π(θ, ℓ)

◦ ℓ = {ℓx, ℓt} = correlation lengths of δ
◦ θ = {θ1, θ2}
◦ π(θ, ℓ) ∼ U
◦ π(d|θ, ℓ) ∼ N



Example: Material Failure Calibration

For each temperature, the original model is inadequate

Sequential calibration approach:
◦ Corrected model captures general shape of experimental data
◦ Point of failure is difficult to predict

Simultaneous calibration approach:
◦ Larger variance along prediction temperatures
◦ Extrapolation predictions yield unphysical shapes
◦ Point of failure is difficult to predict



Summary

Developed a capability to calculate model discrepancy with field
data

Addresses problems with data under different experimental
conditions (configurations)
◦ Example: Calibration of thermal battery model for different

initial temperature conditions
◦ Example: Calibration of material models using stress-strain

data at different temperatures

This capability allows us to investigate tradeoffs between
amount of data, number of parameters, and identifiability to
better assess future R&D needs
◦ How do discrepancy predictions perform with less data and

more parameters?
◦ Plan to add diagnostics, such as test for residuals and model

selection metrics



Thank you


