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I. Executive Summary

To leverage the fast-ramping capability of resources to provide great value to the grid,
electricity system operators such as the Midcontinent Independent System Operator (MISO)
continue to evolve their approaches for integrating energy storage resources, including pumped-
storage hydro (PSH), into the electricity markets. However, new challenges arise in modeling and
optimizing these energy-limited resources across multiple market clearing processes and planning
studies with uncertainties and imperfect information. For instance, current market practices of PSH
owners specifying pumping/generating hours can result in sub-optimal generation dispatch.
Letting grid operators optimize PSH with the consideration of multiple operating modes and
energy limitation constraints can potentially bring economic benefits to both the system and the
PSH owners. However, in multi-stage clearing process of electricity markets, utilizing the PSH
flexibility to deal with realized uncertainties can cause deviation in the multi-stage scheduling
processes. The resulting financial risks from the schedule deviation may not be acceptable to PSH
owners. In addition, to effectively utilize this energy limited resource, the state of charge (SOC)
constraints of PSH needs to be continuously optimized and the marginal cost of deviation need to
reflect the expected cost to purchase or sell energy at future times to compensate for deviations.

This project aims to develop a prototype enhanced PSH model and improved price signals in
the multi-stage market clearing process with proper consideration of the unique characteristics of
PSH, in order to better align underlying PSH capabilities with evolving grid needs, particularly
including the needs for more frequent and larger cycling to manage variability and uncertainty
from renewables.

The project is carried out in collaboration with industry partners representing all PSH owners
in MISO footprint. The project uses realistic tools, models, and data that allow the research team
to study, evaluate and quantify opportunities to improve the market design. For example, the
prototype PSH models have been developed and implemented in High-Performance Power-Grid
Optimization tool (HIPPO?) software and tested with MISO Day-ahead cases with realistic data
from PSH plant operators.

The project has resulted in the following major accomplishments:

e A prototype deterministic day-ahead (DA) security constrained unit commitment (SCUC)
model with PSH optimization has been developed and implemented using HIPPO. It meets
MISO’s solution quality and performance requirement. Studies on actual MISO system
showed 0.04%-0.67% reduction in system total cost and mostly positive with up to 97%
increase in PSH profit. The benefits are expected to be higher with more penetration of
PSH and renewable generation.

e A “tighter” formulation of the state-of-charge constraints with binary variables has been
proposed and implemented to improve the computational performance of the proposed
deterministic DA SCUC model. Statistical data based on repeated tests using MISO cases
show that the tightened constraints typically have approximately neutral or positive impact
(e.g., up to 34% reduction in studied cases) on average computational time.

LHIPPO is High-Performance Power-Grid Optimization tool developed by MISO, GE, GUROBI, and PNNL
under ARPA-E funding. It is currently used by MISO for R&D prototyping, and MISO will consider implementing
some of the HIPPO technology in production system in the future.
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e An energy reserve (or MWh reserve) concept has been proposed to deal with the SOC
deviation in real-time. Head room and floor room are derived using statistical models. Two
methods including the rolling based stochastic approach and the approximate dynamic
programming (ADP) approach have been employed to evaluate the value of water of PSHs
outside a finite time horizon. Studies show that both approaches can lead to a better
utilization of available water with higher profits for PSHs in real-time (RT) markets, than
exactly staying with the DA solutions. In addition, no approach consistently outperforms
the other, and their performances depend on the quality of RT price forecasts as well as
similarities between price patterns in RT and those used for ADP training.

e Arolling window simulation platform has been developed in HIPPO, which closely mimics
the look-ahead commitment (LAC) of MISO. It is a valuable tool for investigation of the
intra-day clearing process.

e An Autoregressive Integrated Moving Average with Exogenous Variable (ARIMAX)-
based deterministic price forecast and a scenario generation-based stochastic price forecast
have been developed to predict RT prices. The price forecasts can be used in the developed
deterministic and stochastic PSHU models respectively to guide intra-day dispatch. Studies
using MISO data show the developed ARIMAX model can capture the trend, the peaks
and the turning points of the actual RT-LMP significantly better than the Facebook Prophet
model.

e A risk-averse formulation has been developed to address the concern of profit loss in the
RT market. Studies demonstrate the effect of the risk management formulation in reducing
system total cost and avoiding negative real time profits for the PSHU.

e A planning model with improved realistic characteristics of PSH and the incorporation of
market optimization enhancement has been developed. Studies using actual PSH plant
parameters and MISO planning models reveal the SOC error from inaccurate PSH input-
output curve modeling will accumulate quickly in chronological production cost
simulation, and consequently requires periodical adjustment of SOC or the adoption of
proposed improved input-output curve modeling.

e A novel disjunctive convex hull model for input-output curve approximation has been
developed to improve the computational performance, and studies show an order of
magnitude speedup over the common piece-wise linear approximation methods.

e Studies using MISO planning models show using DA storage shadow price as an indicator
for future value of water can exploit the flexibility of PSH in RT and reduce RT system
total cost (with a monthly average of 0.22% reduction in studied cases).

e A linear program based approximated model is used to approximate the nonconvex unit
commitment model to accelerate the solution of stochastic production cost simulation
models. Studies using a MISO planning model show the proposed method can produce
acceptable accuracy in results (with 0.35% difference in system total cost) and significant
solution time improvement (with 71.6% reduction in solution time).

By optimizing PSH operations with consideration of multiple operating modes and energy
limitation constraints to mitigate uncertainties, the above project findings will enable greater
utilization of PSH flexibility in multi-stage clearing process and facilitate a deeper market
penetration of renewable and/or distributed energy resources. MISO considers incorporating the
developed models from this project into production in the future, pending further extensive tests,
stakeholder process and prioritization.



This aforementioned project accomplishments have been achieved through research
investigations in the following three areas.
e Area 1: PSH optimization in DA large-scale SCUC with uncertainty;
e Area 2: PSH optimization within the operating day through establishing a near term price
forecasting methodology and incorporating that price forecast into LAC and RT dispatch;
e Area 3. PSH optimization in longer-term economic planning study: reflect market
optimization in a planning model and explore stochastic optimization.

The research in Area 1 enables deeper participation of PSHs through offering their characteristics
into the DA market, instead of letting them specify a schedule of hourly generation and pumping
levels to be submitted to MISO. Also, the proposed withholding of energy (energy reserve or MWh
reserve) from energy-limited resources as well as the stochastically determined SOC headroom
can mitigate increased uncertainties from a changing portfolio. The research in Area 2 creates a
framework to optimize PSH in intra-day operation (including LAC and RT) and utilizes
probabilistic price forecast to incorporate RT uncertainties. It also provides a risk management
model that can consider PSH owners’ risk aversion preference when deviating RT from DA
schedule. The research in Area 3 demonstrates the value of enhanced market optimizations from
Area 1 and Area 2 using long-term planning studies. In addition, the proposed PSH modeling for
planning analyses provides both necessary model enhancements and correction to the existing
modeling inaccuracy.

The detailed work accomplishments for each of the three research areas are further elaborated as
follows.

Area 1 — Day-ahead Market Optimization

First, the team established prototype DA SCUC model with PSH optimization that can meet
solution quality and performance requirement. The prototype PSH model has been developed and
implemented in HIPPO software and tested with MISO Day-ahead cases. Through discussion with
the industry advisors? about state-of-charge (SOC) parameter settings, the team updated the
mathematical model to better characterize the operation details of the PSHs in the MISO system®,
The deterministic PSH DA SCUC model has been further enhanced with a “tighter” formulation
of the state-of-charge constraints with binary variables. Statistical data collected based on repeated
tests using MISO cases show that the tightened constraints typically have approximately neutral
or positive impact on the computational time.

Second, the team has developed the energy reserve modeling of pumped storage hydro units
(PSHUSs). A reserve secure constraint of PSH in day-ahead SCUC model is developed to address
the potential SOC boundary violation issue in real-time economic dispatch (ED). The team used
MISO’s historical data to assess energy reserve secure requirements of PSHs in the day-ahead
SCUC model. Studies using actual MISO data have shown that energy reserve secure constraints
can improve system security against uncertainties and contingencies, while not necessarily
reducing the profits of PSH units.

2 DTE Electric, Consumers Energy, and Ameren Missouri
3 MISO system includes two large-scale PSH plants: 2,172MW Ludington station (jointly owned and
operated by DTE Electric and Consumers Energy) and 450MW Taum Sauk station (owned and operated by Ameren
Missouri).
8



Third, the team has developed a stochastic model to calculate the MWh headroom reserve
requirement in the day-ahead Forward Reliability Assessment Commitment (FRAC) model, to
handle potential SOC discrepancies between day-ahead market clearing and real-time operation.
The team introduced new parameters to define scenarios describing DA to RT discrepancy by
exploring MISO’s historical data, and thereby generated multiple scenarios to cast the stochastic
model. Numerical simulations are conducted to verify the effectiveness and impacts of the
proposed stochastic SOC headroom. In addition, the team has used both the rolling based
stochastic approach and the ADP approach to evaluate the value of water of PSHs outside a finite
time horizon. The rolling based stochastic approach relies on the availability and accuracy of
explicitly simulated/forecasted uncertain RT prices of future time periods; the ADP learns SOC-
price curves based on historical RT price data, and can derive good-enough solutions if RT price
patterns are close to the historical RT price data used in ADP training. The learned SOC-price
curves could be used in the FRAC and LAC models to optimize the SOC levels at the end of the
finite time horizon, without explicitly simulating uncertainties of future time periods. Numerical
results on a real-time one-hour look-ahead PSH profit maximization problem show that both
approaches can lead to a better utilization of available water with higher profits for PSHs in RT
markets, than exactly staying with the DA solutions, while no approach consistently outperforms
the other as their performances depends on the quality of RT price forecasts as well as similarities
between price patterns in RT and those used for ADP training.

Area 2 - Intra-day Market Optimization

First, the team established mathematical formulations to incorporate price forecasts beyond the
end of the study window for PSH optimization purpose. After investigating the challenges in PSH
optimization within the operating day that result from the rolling short lookahead window, the
team has developed LAC rolling window simulation platform in HIPPO, and MISO case studies
have shown high consistency between LAC rolling windows solution and DA solutions. Then, a
single point price forecast is developed and used in the model to provide guidance to the PSH in
the series of LAC simulation. The formulation sets the foundation for the development of a
stochastic PSHU model in LAC considering the uncertainty.

Second, to capture price forecast uncertainty in persistent deviation model of RT dispatch, a
probabilistic price forecast method is developed using scenario generation method. Based on the
developed deterministic PSHU model, the team developed stochastic PSHU models in LAC.
Probabilistic price forecast is used to incorporate RT uncertainties. Based on the discussion with
and feedback from the industry advisors, a risk averse formulation is developed to address the
concern of the profit loss in the RT market. The team prototyped the proposed stochastic PSHU
model and the risk management formulation. The preliminary results on developed case studies
show the value of capturing uncertainties in the stochastic PSHU model and the improvement in
the system objective (namely, system production cost). The results demonstrate the effect of the
risk management formulation in improving system objective and avoiding negative profits for the
PSHU.

Area 3 - Planning Horizon Optimization
First, the team has proposed an improved PSH model with more realistic input-output curves and
detailed water balance constraints for PSH units, and validated the feasibility of interleaving DA
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and RT market in planning models. The team also implemented the proposed detailed PSH model
and DA/RT interleaved simulation method in PLEXOS. The value of accurate PSH modeling in
long-term chronological production cost simulation model is illustrated using a MISO planning
system, and the value of DA/RT interleaved simulation in MISO planning is also investigated. The
team further enhanced the input-output curve modeling with a hypograph relaxation-based
approach. Numerical studies on Ludington PSH station show the computational advantages of the
proposed modeling enhancement.

Second, the team established a deterministic PSH optimization model for economic planning while
reflecting enhanced market optimizations (from Area 1 and Area 2) in a MISO planning system
via PLEXOS. A MWh reserve modeling is included and a value-of-water based approach is used
for the RT operation of PSH units to exploit the flexibility of storage resources. Through value-of-
water based rolling horizon framework, the benefit of withholding energy is demonstrated using
MISO planning system. Test results show the enhanced modeling can enable the flexibility of PSH
and reduce the overall system cost in the RT market.

Third, the team developed a stochastic optimization approach for economic planning studies with
a unit commitment approximation strategy to accelerate the solution process. Test results on a
MISO planning model show acceptable accuracy and significant solution time reduction from the
proposed approach. The team further explored a stochastic transmission expansion planning
method with the same approximation strategy together with a decomposition framework. In
addition, long-term production cost simulation performed on MISO planning cases showed
enhanced PSH optimization can reduce load cost and in some cases increase carbon dioxide
(CO2) emission.

I1. Introduction

This project aims to analyze potential approaches to maximize the value of PSH resources for
the reliability and efficiency of electricity market planning and operations.

Large system operators such as MISO continue to evolve their approaches for integrating
energy storage resources into the markets. Such resources, including PSH resources, present
unique characteristics such as fast-ramping capability that can provide great value to the grid.
Indeed, conversations with stakeholders have indicated a desire for enhanced optimization of
energy storage resources like PSHs. However, modeling and optimizing these energy-limited
resources present new challenges. In particular, key research questions include developing the best
approaches to optimize across multiple market clearing processes (e.g., from 7-day FRAC to 5-
minute RT markets) and deciding what optimization approach is best suited to address
uncertainties and imperfect information across the multi-stage clearing processes. Furthermore,
the implications for MISO’s large-scale optimization software performance must also be
investigated to ensure that proposals can be practically implemented.

Under the current rules as well as the proposed rules in response to the FERC Order 841, a
PSH unit could offer into MISO market but would need to specify bids for either charging or
discharging across the day. MISO’s unit commitment software only optimizes for the hours offered
as generators (i.e., discharging) in the Day Ahead Reliability Assessment Commitment (RAC) and
LAC processes, on the basis of a maximum daily energy constraint. The pumping (or charging)
status needs to be self scheduled. That is, participants need to determine which hours to pump and
which hours to generate in the offers. Currently, they make this decision through price forecasting,
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while also considering efficiency losses in order to determine the maximum daily energy to be
offered for generation and the energy to be utilized for pumping. However, price is an outcome of
the market clearing and thus not very easy to predict accurately ahead of time. This process can
result in sub-optimal scheduling of the resource: the region may not receive the best value, and the
participants may not get the best profit from these resources. Thus, optimizing PSHs with
consideration of multiple operating modes and energy limitation constraints can potentially bring
additional benefit to the market, especially under large renewable penetration.

Furthermore, current market clearing is a multi-stage process. Specifically, MISO market
clearing processes include 7-day Forward RAC, Day Ahead Market, 2-day Forward RAC, Intra-
day RAC, 3-hour LAC, and 5-minute RT Market. A multi-day optimization horizon may be
necessary to best utilize a large PSH with multi-day storage. Typical planning by PSH operators
for daily or weekly scheduling seeks to return the SOC at the end of the horizon to be the same as
at the beginning of the horizon—this is accomplished implicitly through the maximum daily
energy constraints for generation as mentioned above. Explicitly requiring SOCs at the end and
beginning of the planning horizon to be the same is called the “SOC target constraint”. On the
other hand, it is desirable to allow for some deviation between day ahead planned use of the PSH
and the actual dispatch in RT markets, since as with all other dispatchable generation resources,
deviations of real time generation from day ahead schedule allow recourse to respond to
realizations of uncertainties. That is, a significant part of the potential value of PSH is in its ability
to quickly ramp to balance for deviations between RT and day ahead schedules; however, current
scheduling practice tends to limit deviations from day ahead or longer-term decisions. Thus,
representation of energy limited resources in the cascaded scheduling and pricing model needs to
be addressed in order to best utilize these resources and to provide fair compensation to them. A
key representational issue is the effective marginal cost in one market of deviating from a value
scheduled from a previous market. The simplest example of this is the valuation of marginal
deviation costs in real-time from the day-ahead scheduled pumping or generation. Intuitively, the
marginal cost of deviating should be related to the expected cost to purchase or sell energy at future
times to compensate for deviations.

An additional issue is that, in real time, the transition between pumping and generating can
happen in a short time window. It can provide flexibility if managed well. However, if it is not
properly managed, a large change of output in a short time window may cause system ramping
issues because other resources may not be able to pick up the sudden changes in output from PSHs.
MISO developed processes outside of the market to coordinate with participants in providing
efficient pumping schedules and avoiding negative impacts from the transition. However, it would
be valuable for the MISO market to explore the potential to incorporate transition constraints
within the clearing engine itself as part of the optimization enhancements. The model could
represent the delivery of such ramp products during transitions from pumping to generation or vice
versa, building on analogous models of ramping during transition of combined-cycle gas turbines
(CCGT) that have been explored by the project team, and therefore facilitating enhanced
management and utilization of the transition of PSHs.

The operation of PSH has implications for long-term, capital planning which is becoming
increasingly dependent on assumptions about resource operating profiles and utilization. The team
also worked with the MISO planning groups to understand how optimization models might impact
planning processes, and to conduct an initial assessment of how optimization models might be
reflected in the production cost and transmission planning processes.
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I11.  Accomplishments and Milestone Summary

As detailed in the Statement of Project Objectives (SOPO), all milestones and deliverables are
listed in the below table, with completion status indicated.

Number Milestone Description Status

Milestone 1.1 Establish prototype DA SCUC model with | Completed
PSH optimization that can meet solution
quality and performance requirement.

Milestone 2.1 Establish mathematical formulations to | Completed
incorporate price forecasts beyond the end
of the study window for PSH optimization
purpose

Milestone 3.1 Establish interleaved DA/RT simulation | Completed
method for economic planning

Milestone 4.1 Establish prototype of enhanced PSH model | Completed
within the SCUC framework

Deliverable 5.1 A prototype representation of price forecast | Completed
uncertainty in persistent deviation model of
RT dispatch

Milestone 6.1 Establish deterministic PSH optimization | Completed

model for economic planning while
reflecting market optimization

Critical Design Review | After Milestone 6.1 is finished, prototype | Completed
DA SCUC model, new MWh reserve
requirement and price forecast, and
improved deterministic planning model will
be established.

Milestone 8.1 Establish prototype stochastic SCUC tool | Completed
equipped with fast computation capability
that can accurately determine MW and
MWh reserve requirements of systems
against uncertainties.

Deliverable 9.1 A detailed report on long-term value of | Completed
enhanced PSH model through planning
analyses.
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It should be noted that the Critical Design Review was conducted on April 7, 2021. Review
comments were addressed and incorporated into the Critical Design Review report. After further
review, on May 5, 2021, DOE determined the Critical Design Review criteria have been satisfied
and the research team can proceed with the rest of the project.

Detailed accomplishments on each of the milestones and deliverables will be elaborated in
Section IV.

IV. Detailed Accomplishments toward Milestones

The project team has made significant accomplishments toward each milestone or deliverable,
which are detailed in the following sections IV.A through IV.H respectively.

IV.A. Accomplishments Toward Milestone 1.1

Milestone 1.1: Establish prototype DA SCUC model with PSH optimization that can meet
solution quality and performance requirement.

Accomplishments Summary: There are two main accomplishments in this Milestone. (1) The
team has prototyped a PSH optimization model for DA SCUC. The model has been implemented
using HIPPO software. Tests were carried out with several of the MISO day-ahead cases, which
were solved with less than 1% Mixed Integer Programming (MIP) gap at 1200 seconds. These
results meet MISO solution quality and performance requirements. The team discussed with the
industry advisors about state of charge (SOC) parameter settings and case study assumptions and
performed computational and benefit studies on MISO test cases, showing that the model is able
to not only reduce the total system dispatch cost but also increase the profit for optimized PSH
units. (2) An enhanced formulation of SOC constraints was proposed and tested using MISO day-
ahead cases and results demonstrated the benefit in computational performance, which suggests
the tighter SOC constraints help to build a tighter model with a smaller feasible region and increase
the computational efficiency.

In some of the results presented below, a 0.1% MIP relative gap (i.e., the absolute gap divided
by the upper bound) is used as a stopping criterion. It should be pointed out 0.1% MIP relative gap
is for well-behaved cases that present less challenges to the solution process. By the MISO
operating guide, solutions with MIP relative gap limit lower than 1% will be accepted. For difficult
cases, if the relative gap is below 3% or absolute gap is below $24000 at 1200 seconds (i.e., 20
minutes), it is also acceptable. If the gap is above 3%, the time limit will be extended from 1200
seconds to 1800 seconds.

IV.A. 1 Developed deterministic PSH model in SCUC

Pumped storage hydro units (PSHUSs) can provide flexibility to the system and facilitate
renewable energy resources integration. However, these important and valuable services that are
available from PSHUs have not been utilized largely due to the fact that PSHUs have not been
fully optimized in the market. In the current MISO day ahead market, PSHUs offer opportunity
costs and bid prices for their generation and pump mode, respectively. State of charge limits for
their reservoirs are not enforced explicitly by the system operator. Instead, a maximum daily
electricity generation limit is submitted and applied to PSHUs for their generation modes. The
PSHU owner determines the pump/generate window. To fully leverage the storage services from
a PSHU and enhance the market efficiency, we believe it is important to introduce a PSHU model
that can be fully optimized in the MISO day-ahead unit commitment problem.
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The proposed configuration-based modeling of PSHU represents all feasible operation modes
and the state-of-charge (SOC) of a PSHU. A pumped storage hydro plant can contain multiple
units and each of them will be modeled individually; however, there are only three operation modes
in a PSHU, namely generating, pumping, and offline, which are mutually exclusive as shown in
Fig. A.1.1. Transitions are allowed between each pair of these modes as shown in Fig. A.1.1 by
the double-headed arrows.

.url

P hs
psh

h 1 2§ S
us,q u*, q

Fig. A.1.1 Mode Transition Diagram of a PSHU in Two Consecutive Time Intervals. There are
three operation modes in a PSHU, namely generating, pumping, and offline. Transitions are
allowed between each pair of these modes.

Model A.1 describes the proposed deterministic SCUC model that optimizes PSH. It focuses
on PSH related modeling, and the specific modeling of other generation plants are not detailed
here. The model closely represents the current MISO unit commitment model, and is actually built
upon the existing MISO unit commitment model using HIPPO tool.

The objective of the unit commitment problem is to minimize the system operating costs,
subject to operational constraints such as system energy balance constraints, state and transition
logic constraints, storage energy balance and state of charge (SOC) Constraints, etc. The detailed
mathematical model is included in the Appendix for section IV.A.1.

MISO Case Study

In this study we use a MISO case that includes 1,085 generators. Reserve requirements and
transmission security constraints are included for all studies. Constraints on individual generators
such as, minimum up/down time, maximum start up time, and ramp constraints are included for
all units including PSHUs with proposed model.

Computational Analysis: Table A.1.1 shows the computational results of different models*:

e HIPPO: A High-Performance Power-Grid Optimization (HIPPO) tool. MISO current
pumped storage hydro model is applied (in which model PSHUs offer opportunity costs
and bid prices for their specified generation and pump windows);

e HIPPO + PSHU: MISO current model is replaced by proposed pumped storage hydro
model in HIPPO described in (A.1.1)-(A.1.14) in the Appendix for section IV.A.1;

4 All tests were performed on a 2.2-GHz quad-core Intel Xeon CPU E5-2699 with 32 GB RAM (which has
similar hardware specifications as the computers used in MISO market clearing process). All optimization problems
are solved with Gurobi 8.0.
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Table A.1.1. Computational Comparison. Each row shows either the MIP relative gap in
percent at 1200s of run time or the time to achieve a 0.1% MIP relative gap.

Case  HIPPO  HIPPO + PSHU

#1 0.11 % 0.16 %
#2 325 sec 400 sec
#3 527 sec 391 sec
#4 519 sec 699 sec
#5 0.13% 0.67%
#6 144 sec 140 sec

The test case and load scenario with the HIPPO model has been benchmarked with MISO
production day-ahead market engine. Therefore, HIPPO is used as a benchmark for this study. The
PSHU currently provides offer costs and bid prices for their generation and pump modes,
respectively. The state of charge of the reservoirs are not enforced by the system operator; instead,
the parameter of maximum daily generation is applied. Also, the pump/generate window for the
unit are submitted and fixed by the unit owner. In HIPPO + PSH model, the PSHUs are represented
by the proposed configuration-based model, the SOC of the units are represented and the PSHUs
are fully optimized.

The computational time in both models for six cases are listed in Table A.1.1. If the model can
not be solved to the target MIP relative gap at 0.1% within the MISO day ahead market cutoff time
at 1200 sec, the MIP relative gap at the cutoff time is listed instead (only for cases #1 and #5). As
shown in Table 111, compared to the HIPPO model, the MIP relative gap at the cutoff time for the
HIPPO+PSHU model slightly increases in case #1 and #5, whereas the computational time for the
HIPPO+PSHU model increases only moderately in case #2 and #4.

Benefit Analysis: In this section, the proposed model is benchmarked with the current model
in examples based on real data in an actual day in MISO system.

Table A.1.2. System and PSHU Benefit Analysis of HIPPO+PSHU. Positive percentages
represent improvement compared to the HIPPO model.

System PSHU 1 PSHU 2 PSHU 3
Objective [$]  Profit [$]  Profit [§]  Profit [$]
#1 0.4% 1% 10.8% 6%
#2 0.042% 0% 5.92% —6.04%
#3 0.18% 0.57% 0% NA
#4 0.188% 0.17% 97% 0.3%
#5 0.67% 2.45% * 13%
#6 0.107% 0.84% 10.8% NA

To make a fair comparison between the proposed model and the current model, given a start
state of a reservoir and round-trip efficiency of each of the PSHUs in the study, the realized state
of the reservoir at the last hour of the day from the results of the current model is applied to the
proposed model. That is, the total energy charged to or discharged from the reservoir in each day
in the simulation are the same for both models. To lay out a more realistic benefit analysis, the
minimum SOC is calculated as the start state of the reservoir minus the effect of the generation
cleared by the current model considering the efficiency. Similarly, the maximum SOC is the start
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state of the reservoir plus pumping cleared by the current model considering the efficiency. The
PSHU parameters in the proposed model are summarized below.
e The SOC of a reservoir at the beginning of the day hour 0 is given.
e The SOC of a reservoir at the end of the day at hour 24 is calculated from the results of the
current model and is fixed for the proposed model.
e The SOC min and max are calculated from the results of the current model and are fixed
for the proposed model.
e All the other unit parameters (such as min up/ down time, ramp rate etc.) in the proposed
model are copied from the production offer in the current model.

The benefits of the proposed model are quantified and summarized in Table A.1.2. Shown in
the table, the system objective has been reduced for every case when the proposed model is applied.
Notice that the bid and cost from a PSHU indicated by the first term in (1) is excluded from the
objective solved under the current model.

The unit commitment solutions of the rest of the generation units in the system other than the
three PSHUs in MISO?® are fixed to the same values as obtained in the current model, such that the
results shown in Table A.1.2 mainly reflects the impacts of the proposed model on the PSHUS.
The reduction in system objective from the proposed model is shown as the percentage of the
system objective of the current model. At the same time, the profit increment for the PSHU owners
from the proposed model are shown as percentages of their profits result from current model. The
profit reduction for PSHU 3 in case #2, as shown in Table A.1.2, results from the existence of
multiple optimal solutions within the MIP relative gap. Similar situations happened in the
operation of MISO day-ahead market, a market procedure is developed to detect such condition
and fetch alternative solutions for the unit [A.1]. PSHU 3 is not cleared from both models in case
#3 and case #6. The profits for PSHU 2 in case #5 from the proposed model is several times the
profit from the current model as indicated by * in Table A.1.2. However, this is likely due to the
challenges in constructing the bids and offers under uncertainties and it is not a general benefit
introduced by the proposed model.

Overall, compared to the current model, the proposed model only increases the computational
burden moderately but improves both the system objective and the unit profits. In addition, the
scenarios used in the study are from historical data library and have less renewable capacity than
currently installed in MISO. According to the current MISO generation interconnection queue
[A.2], significant additional amounts of renewable units are likely to be interconnected in the near
future. In a system with more variation and intermittency, the value of the flexibility from a PSHU
is expected to be further increased with the proposed model. The study described in this subsection
has been published in the IEEE Transactions in Power Systems [A.3].

IV.A. 2 Tighter formulation of constraints in PSH model.

There are typically many choices for formulating the linear constraints in a model such as the
SOC limit constraints described in (A.1.11) in the Appendix for section IV.A.1, but for
computational efficiency it is best to seek constraints that, as closely as possible, match the so-
called “convex hull” of the feasible region. The convex hull of the feasible region is defined to be
the smallest convex set that contains the feasible region. To consider the convex hull, first define

5 The three PSHUSs include the Ludington station owned and operated by Detroit Edison and Consumers
Energy respectively, and Taum Sauk station owned by Ameren.
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the “continuous relaxation” to be the region obtained by replacing the binary variables with
continuous variables. The continuous relaxation involves linear constraints on continuous
variables and is convex. Therefore, the convex hull is contained in the continuous relaxation, but
the convex hull can be strictly contained in the continuous relaxation. Using a representation of
the linear constraints that is as “tight” as possible, ideally the convex hull, will generally improve
the computational efficiency of solving such problems compared to a formulation with a
continuous relaxation that strictly contains the convex hull. Further, we proposed a tighter version
of the state of charge (SOC) constraints for the PSH as follows, using the notation introduced in
section A.1. The previous constraint (A.1.11) in the Appendix for section IV.A.1 is now replaced
with constraints (A.2.1) and (A.2.2).

s+ Sanay G S Eovnve e [ w2
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We have confirmed that (A.2.1)-(A.2.2) are valid and proved that these tightened constraints
are moderately beneficial numerically based on the test cases considered. In particular, the
continuous relaxation of the problem (that allows the commitment variables to range continuously
between 0 and 1 instead of being binary) will typically have a solution that is binary-valued when
using (A.2.1)-(A.2.2). This property suggests improvement of the peformance of unit commitment
software using the tightened constraints, which is demosntrated through numerical results
discussed in the next subsection. Further analysis clarified that computational difficulty of the PSH
model is driven by a combination of two factors: mutual exclusivity of generation and pumping
modes, and SOC constraints.

Empirical results for tightened state-of-charge constraints in PSH model

We implemented and tested several MISO cases and we ran each case with each model for
multiple times to collect statistical results on computational time. All the system reserve
requirements and transmission security constraints are included. We perform all tests on the same
2.2-GHz quad-core Intel Xeon CPU E5-2699 with 32 GB Ram that was used for the previous
MISO case studies; all optimization problems are again solved with Gurobi 8.0.

Seven 36-hour MISO day-ahead market cases with different load and generator scenarios are
solved. Ideally the cases are expected to be solved within 1200 seconds and with a 1% or lower
MIP relative gap. Each case is solved with three different variant models:

1. “Without SOC,” without SOC explicilty represented (PSH submits an offer and bid for
their unit and PSH is in charge of their own SOC),

2. “Standard SOC,” with the conventional SOC formulation constraint (A.1.11), and

3. “Tightened SOC Constraints,” with the newly proposed tighter SOC in (A.2.1)-(A.2.2).

Due to the intrinsic randomness built into a Mixed Integer Programming solver like Gurobi,
we test each model for each case five times to have more robust results. A parameter named
Random Seed Number in Gurobi is designed to introduce a perturbation that typically leads to
different solution paths. Therefore the Random Seed Number is set to a different number (from
one to five) every time a model is tested with the same case. For each model and case, the average
wall clock MIP stopping times and its sample standard deviation over the five tests are listed in
Table A.2.1.
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Table A.2.1. Average stopping time and sample standard deviation of Tighter SOC Constraints
for Model Variants.

Without SOC Standard SOC Tightened SOC Stand.-Tight.
Case Stopping LP Stopping || Tight.-Stand. | Stopping Stopping
Time Objective Time LP Obj. Time Time
[s] (STD) 5] [s] (STD) ($] 5] (STD) [s] (STD)
1 333(16) 9.5 x 10° 409(14) 11 425(27) —16(21)
2 234(9) 17.5 % 106 262(9) 3,447 285(10) —23(14)
3 353(23) 14.2 x 106 409(22) 572 382(13) 27(20)
4 302(16) 6.2 x 10% | 1835(1312) 952 1201(1070) 634(2100)
5 3709(24) 1.4 % 105 | 3420(569) 0 3663(11) —243(565)
6 513(252) 16.4 x 10° T61(275) 770 660(199) 101(303)
7 219(14) 10.9 x 106 224(45) 18 241(34) 3(57)

The MIP relative gap is set to 1% for cases 1 to 5. The MIP relative gap is set to 0.1% for cases
6 and 7. The MISO production MIP relative gap target is 0.1%; however, cases 1 to 5 are very
hard cases and the solver cannot get a solution close to the MIP relative gap of 0.1% within the
cutoff time of 3600 seconds. Therefore, a 1% gap is set for those cases instead in order that the
solver could get a solution in a reasonable time and the results can be used to compare between
models.

A higher LP objective indicates a tighter model and a smaller stopping time indicates that the
MIP solver could find a feasible solution within the relative gap in less time. The LP objective and
the time taken to get a feasible solution within the relative gap for both models varies with different
cases. The fifth column in Table A.2.1 shows the differences between the Tightened SOC model
optimal LP objective minus the Standard SOC model optimal LP objective. The results empirically
verify that the LP objective of the model with the tightened SOC constraints is always equal to or
higher than the LP objective of the model with the standard SOC constraints.

The MIP stopping times shown in Table A.2.1 show that the tightened model has a moderate
effect on computational burden, mostly either maintaining roughly the same or somewhat reducing
the computational burden, with the exception of case 5. In four out of the seven cases (cases 1 to
3 and case 7), the average stopping time for the standard model and the tightened model are within
50 seconds of each other. For cases 4 and 6, the tightened model is solved faster than the standard
model by more than 100 seconds on average. For these two cases, it is observed that the LP
objective of the tightened model is signifcantly higher than the standard model indicating that the
tightened model provides a better lower bound when the MIP starts. That is likely to contribute to
the tightened model's better MIP stopping time performance for cases 4 and 6.
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Table A.2.2. Numerical comparison for standard and tightened SOC constraints in MISO case 5.

Standard SOC Tightened - Standard

Case || Objective [$] | Lower Bound [$] || Objective [$] | Lower Bound [$]

5 1.4 x 10° 1.4 x 106 22 992 1,841

For case 5, the tightened model is solved slower than the standard model on average. Notice
that the LP objectives are the same for both the standard model and the tightened model in case 5.
That means the tightened model is not as helpful in case 5 as it is for the other cases, at least at the
root node.

To assess the consistency between the result for each run, the average and the sample standard
deviation (listed in the paranthesis in each cell) of the stopping time differences (the result of the
standard model minus the result of the tightened model) are listed in the last column in Table A.2.1.
Except for case 4, the sample standard deviations (STD) are relatively low. That indicates that,
except for case 4, the conclusion from the average stopping time does not come from a single or a
few runs with extreme results. For case 4, the large STD comes from the fact that the tightened
model is solved much slower (more than 2000 seconds) than the standard model in one particular
run, while the tightened model is consistently solved faster than the standard model in the other
four runs.

Case 5 is an extremely hard case and the solver could not get a solution close to even the 1%
MIP relative gap for most of the runs for both the standard and the tightened model. Therefore, the
average of the objective and the best lower bound for each model at the cutoff time, or at the time
a solution with a less than 1% MIP relative gap was found before the cutoff time (only occurs in
one run with the standard model) are listed in Table A.2.2 for a further comparison. Notice that
the differences on objective and lower bound between the two models (the result of the tightened
SOC minus the result of the Standard SOC model) are listed in the last two columns of the table.
The objective of this case is relatively small (about one tenth of most of the other cases). The lower
objective is due to the presence of virtual bids/offers and due to violation penalties. In this case it
is observed that although the tightened SOC model provides a better (higher) lower bound, it does
not help the solver to find a better (lower) objective.

The MIP solver explores the solutions in an iterative process. The way this iterative process is
designed and applied in the MIP solver may affect the outcome. However, it is difficult to address
that without access to the solver. To summarize, the numerical results of the tested cases in Table
A.2.1 show that, with one exception in the seven cases considered, the tightened SOC constraints
typically have approximately neutral or improved impact on the computation time. The study
results described in this subsection has been summarized in a journal paper and it is submitted and
currently under review [A.4].
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IVV.B. Accomplishments Toward Milestone 2.1

Milestone 2.1: Establish mathematical formulations to incorporate price forecasts beyond the
end of the study window for PSH optimization purpose.

Accomplishments Summary: There are two main accomplishments in this Milestone. (1) The
team has prototyped a Look-ahead Commitment (LAC) simulation in HIPPO software. (2) A
deterministic PSH optimization model is developed in the LAC formulation. A single point price
forecast is used in the model to provide guidance to the PSH in the series of LAC simulation.

1V.B.1 The LAC Rolling Window Simulation in HIPPO

In an operating day, uncertainties on system demand and generation balance arise due to load
and generation variations. Those uncertainties are reflected in the uncertainties of LMP. We
propose to incorporate a locational marginal price (LMP) forecast into the look-ahead commitment
(LAC) problem. A LAC rolling window simulation platform is essential for such implementation
and case studies.

A high-performance unit commitment software, HIPPO, is used and further developed to
perform the LAC simulations. HIPPO is co-developed by Pacific Northwest National Laboratory
(PNNL), MISO and a MIP solver vendor Gurobi to solve large-scale security constrained unit
commitment (SCUC) and economic dispatch (SCED) problem for a day ahead (DA) market. The
software is built to solve large SCUC and SCED problems for the DA window that includes up to
36 hourly intervals. However, the function to solve a series of rolling LAC windows in a real-time
(RT) frame during the day is not available. Based on the original HIPPO code, we have developed
the module for the LAC rolling window simulations in HIPPO. The framework of the LAC
simulation and the validation results using MISO system data is included in this subsection.

The framework of the LAC rolling window simulation in HIPPO

The framework of the LAC rolling window simulation in HIPPO is illustrated in Fig. B.1.1.
To keep minimum modifications to the model structures in HIPPO, each of the LAC rolling
window is defined as follows: fix each of the variables outside the LAC window to a previously
determined value and allow the variables inside the LAC window to be optimized. In this way, the
SCUC or SCED problem is solved with every interval of the entire horizon T for each rolling LAC
window so that the constraints remain mostly unchanged. Although variables in every interval are
included in the problem for each LAC window, the LAC problem can be solved fast since the only
“free” variables are the ones inside the LAC window. Only the unit commitment variables after
the LAC window are fixed to the DA solution such that the long lead units can satisfy all binary
constraints. At the same time, some of the time-coupled constraints that link the variables after the
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LAC to the variables inside LAC such as ramping constraints are disabled to prevent major impacts
from the fixed variables after the LAC.

Fixed to DA solution
LAC length = 3,(,,4 = 3

N e e o = e = = = /
PRy v =TT e T T T - -~
t
-~ —_ |
L - /

Fixed to solution from
previous LAC windows.

Fig. B.1.1. LAC Rolling Window Simulation Framework in HIPPO. A LAC window is marked
by a blue dashed rectangle. The LAC window is moving forward one interval at a time indicated
by its position in each time indexed row.

The system variables are indicated in the boxes in Fig. B.1.1. The system variables include the
unit commitment and dispatch variables for generators Py, Ugen, and for PSH units P, Upsp,
which are defined for each interval for the entire horizon in study: v, €
{Pyen» Ugen, Ppsn Upsh - }, vt € T. The LAC windows are highlighted by the dashed blue lines in
Fig. B.1.1. As an example, there are three intervals included in each LAC window in the figure
but the number of intervals in a LAC window is a parameter and can be changed to any integer
value between 1 and the total number of intervals T. Notice that the problem is solved with every
interval of the entire horizon T represented. However, the intervals after the LAC window
highlighted by the dashed orange lines are fixed to a DA solution that is available before the LAC
rolling simulation starts.

Although LAC has sub-hour intervals in practice, we first solve a LAC formulation with hourly
intervals as a simplification. The hourly intervals allow straightforward comparison of results with
DA solutions and it is easier to validate. We can apply sub-hour intervals to the LAC simulation
later. The first LAC problem starts at t; = 1 and it is indicated by the first row of the boxes
representing variables in each of the intervals in Fig. B.1.1. Assuming the length of the LAC
window is 3 hours, the unit commitment variables after the LAC window is t € [4, T] and they are
fixed to the DA solutions V*. The LAC window is highlighted by the dashed rectangle and the
intervals after the LAC where the solutions are fixed to DA solutions are highlighted in the dotted
rectangle in the first row in Fig.B.1.1. After the first LAC problem is solved, the solutions to the
variables of the first interval inside the LAC window, that is v; written in white font and

highlighted in the box filled with blue background, is saved and set as the fixed value Vlt1 to the
variables in interval 1 in the next and following LAC problems shown in the dot dashed black
circle. Then the second LAC window starts at t; = 2, with the variables in the first interval v,
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fixed to the solution from the previous window V,"* and the commitment variables after the LAC
window fixed to the DA solutions V;*,t € [5,T] . The variables in the second LAC window are
v, t € [2,4]. Notice that as the LAC window slides forward at each step, the solution in the first
interval inside the previous LAC window is fixed to the variables in the same interval of the current
LAC problem and the first interval after the previous LAC window is included in the current LAC
window and is “free” to be optimized. After the second LAC window is solved, similarly, the
solutions to the variables of the first interval inside the LAC window, that is v, written in white

font and highlighted in the box filled with the blue background, is saved as Vzt2 . Along with the

solution of the first interval from the first LAC window V;"*, V,* and V,"2 are set as the fixed values
for the variables in intervals 1 and 2 in the next and following LAC problems shown in the dot
dashed black ellipse. The LAC simulation rolls forward one interval at a time in a similar way until
the last interval inside the LAC window reaches the last interval of the entire horizon T.

HIPPO LAC Simulation Validation Results

The framework of the LAC rolling window in HIPPO is first tested and validated with a MISO
case with identical case data in DA and LAC cases. Later, the implementation of a deterministic
LAC PSH model will be described in section 1VV.B.2 of this report. The stochastic LAC PSH model
and the RT system information update in the LAC simulation is introduced in section IV.E.

The details of the validation results are included in the Appendix for section IV.B.1. The
simulation results confirmed that the unit dispatch results from the LAC rolling windows repeat
the DA solutions. Once the real-time information such as RT demand is introduced to the LAC
rolling window, the case data will differ between the DA and LAC and consequently the solution
from LAC would be expected to be different from DA solution. It would be harder to detect if
there are any mistakes made in the rolling window program with multiple moving pieces such as
changing data. Therefore, it is prudent to test in this middle step to confirm the rolling window
structure works correctly.

1V.B.2 A Deterministic PSH Optimization Models in LAC Using Single Point Price
Forecast

The research team has explored several model options for the PSH optimization in a LAC
problem. The approach of using locational marginal price (LMP) forecast to provide guidance to
the PSHU in a LAC is used. The critical question to answer is how to manage the SOC at the end
of a LAC window. The end of LAC SOC is important because, as an inter-temporal variable, it
determines how much energy is left in the reservoir for the future intervals. The key is to find the
best way to effectively reflect the system information from the future (after the LAC window) to
the present (inside the current LAC window) so that the LAC could optimize the SOC of the PSHU
while being cognizant of the conditions in the future intervals.

Given the availability of historical LMP data in MISO system, a methodology is developed to
forecast the LMP at a particular node and it is discussed in details in section IV.E. in this report.
In this section, we assume a deterministic single point LMP forecast is available, and we propose
a modification based on the PSHU model described in (A.1.1-A.1.14) and a typical LAC
formulation to leverage the LMP forecast to optimize the PSHU in a LAC.

tend T
Objective: Min Z Ce(ge,up) — Z Z LMPgt,%(qgin _ qump) (B.2.1)
t=t, t=tend+t1 g€Gpsh
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K
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k=1

(A.1.3) — (A.1.11), (A. 1.13), (A. 1.14), V¢ € [t,,T],

The first term in (B.2.1) is the objective function for a LAC problem. The production cost
C¢ (g ue) is minimized in a LAC window in intervals that start at t; and end at t,,4. Assume the
operation and maintanence cost is neglectable for a PSHU, and that the net cost of dispatching a
PSHU within the LAC intervals is from the net costs of sale or purchase of energy in the intervals
post to a LAC. Such cost is represented in the second term in (B.2.1) as the negative arbitrage
profit of the PSHU in the intervals after the LAC starts at t,,4 + 1 and stops at the end of the
operating day T. The generation of the PSHU at interval t is indicated by qJ;" and the pump

demand of the unit is indicated by g};"". The LMP at the node where the PSHU is connected is

forecasted for the intervals after the LAC window and it is noted as LMPJ"; Vt € [tena + 1,T].

The LMP forecast is made and updated at t, that is one interval before the start of the every LAC
window t;.

The private constraints for a PSHU model are the same as the DA model described in
(A.1.3) — (A.1.11),(A. 1.13),(A. 1.14) in the Appendix for section IV.A.1l, except those
constraints are modeled in the intervals from the start of the LAC window t; until the end of the
operating day T. Since we currently solve the problem in hourly intervals and the constraint on the
number of pump starts (A.1.12) is typically effective in sub-hour timeframe, (A.1.12) is less
relevant and therefore it is not included in the model.

The PSHU is fully optimized within the LAC window. In the power balance constraint within

the LAC window Vt € [ty, tenq], the generation of the PSHU, 75", is included on the left hand

side of power balance constraint (B.2.2) and the pumping of te PSHU, ¢J;™, is considered as
demand on the right hand side of the power balance constraint (B.2.2). The dispatch of the PSHU
in the intervals after the LAC relies on the LMP forecast and are not optimized with the rest of the
system. Therefore, the generation and pumping of the PSHU in the intervals post to the LAC
window Vt € [t.,q + 1, T] are not included in the power balance constraint as shown in (B.2.3).
It is observed that the proposed PSHU LAC model (B.2.1) — (B.2.3) heavily relies on the
quality of the single point forecast LMPgt_‘;. In practice when the price forecast is not perfect, the

formulation will easily lead to a suboptimal solution to the system and reduce the PSHU profit.
For brevity, the simulation results of the model using single point forecast (B.2.1) — (B.2.3) are not
included in this section, but will be presented in comparison with the stochastic PSH models in
section IV.E.

IV.C. Accomplishments Toward Milestone 3.1

Milestone 3.1: Establish interleaved DA/RT simulation method for economic planning.
Accomplishments Summary: (1) The team developed an improved PSH model by including
detailed water balance constraints, a more realistic piece-wise linear input-output curve, and
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transition time between generating and pumping modes for PSH units. (2) We implemented the
proposed detailed PSH model and DA/RT interleaved simulation method in PLEXOS. The value
of accurate PSH modeling in long-term chronological production cost simulation model is
illustrated using a MISO planning system. Our planning studies show, without head-dependent
power bounds modeling, the generate power might exceed physical limits, and the head-dependent
power bounds modeling is especially important for low-SOC scenarios. In addition, in
chronological production cost simulation, SOC error will accumulate day by day and become
unacceptable, demonstrating the need of detailed water-power efficiency modeling for long-term
planning studies. (3) Further, we proposes a novel disjunctive convex hull model for input-output
curve approximation and numeric studies showed an order of magnitude speedup than the common
piece-wise linear approximation methods. (4) The team established a deterministic PSH
optimization model for economic planning while reflecting the interactions between day-ahead
and real-time markets.

1V.C.1 Improved deterministic PSH model for planning

A realistic PSH input-output curve and the efficiency curve

For the generating mode of PSH, Fig. C.1.1 and Fig. C.1.2 shows the input-output curve and
the efficiency curve, respectively, based on plant data provided by industry partners. The
maximum power output increases with a higher head and generation efficiency varies in ~5% for
different net head levels and flow rates.

For the pumping mode of PSH, Fig. C.1.3 and Fig. C.1.4 shows the input-output curve and the
efficiency curve, respectively. Pumping efficiency varies in ~6-7% for different net head levels.
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Fig. C.1.1. Input-output Curve for Generating Mode. It describes a generation output function of
net head and flow rate. As shown, generation increases as head and flow rate increase. The
increasing rate with respect to flow rate first goes up and then comes down.
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Fig. C.1.4. Efficiency Curve for Pumping Mode. Pumping efficiency varies in ~6-7% for
different net head levels.

Zig-zag based piece-wise linear modeling method of input-output curve

In addition to modeling detailed water volume dynamics, bounds and final level, we also
modeled the relationship between generating/pumping power, flow rate, and net-head (or water
volume). A typical example is shown in Fig. C.1.5, while previously Fig. C.1.1 shows a realistic
case. This curve is referred to as an input-output curve, or production function, water-power
conversion in the literature. Modeling input-output curve can accurately reflect the efficiency of
PSH unit, while it will also bring additional computational burdens since it’s nonconvex in general.

We used a zig-zag formulation based piece-wise linear approximation method to model the
input-output curve. Compared with the existing piece-wise linear approximation methods for
input-output curves in the literature, this Zig-zag based method is compact and strong, thus
computational effective.

Efficiency

Net head H @ Flow rate

Fig. C.1.5. A typical example of Input Output Curve

In order to test the computational time for zig-zag formulation based piece-wise linear
approximation, we performed numerical simulations with different number of pieces, time
intervals and operational horizon. The results are shown in Table C.1.1, Table C.1.2, and Table
C.1.3, respectively. Compared with the exiting piecewise linear approximation method, zig-zag
formulation based input-output curve approximation method can significantly reduce the
computational time.

Table C.1.1. Simulation Results for Different Number of Pieces

. Zig-zag Existing
e —
Time (s) Cost (10%§$) Time (s) Cost (10%§)
2 3.6 46.15 3.9 46.15
4 4.4 46.12 9.1 46.12
8 25.0 46.12 42.0 46.12
16 52.8 46.12 663.0 46.12

Table C.1.2. Simulation Results for Different Time Intervals
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Zig-zag Existing

AT
Time (s) Cost (10*$) Time (s) Cost (107%)
1 hour 4.1 46.12 7.5 46.12
30 min 22.3 46.02 41.0 46.03
15 min 46.1 45.93 170.0 46.01
5 min 693.3 45.97 = 3600 46.09%

* found a feasible solution that doesn't reach a gap of (0,1% in 3600 seconds.

Table C.1.3. Simulation Results for Different Operational Horizon

. Zig-zag Existing
Tx (h)
Time (s) Cost (108) Time (s) Cost (10%§)
24 %1 4.4 16.12 9.3 46.12
24 %3 G67.2 138.18 T81.3 138.20
24 x 7 3378.1 322.42 > 3600 323.297
24 x 15 = 3600 691.36" = 3600 —**

* found a feasible solution that doesn’t reach a gap of 0.1% in 3600 seconds.

** no feasible solution found in 3600 seconds.

State transition time and trajectory

Increasing share of renewable energy requires shorter-time-interval and more accurate
operation and planning PSH models. Including transition time among different states can improve
the flexibility quantification for PSH units. Based on the configuration-based deterministic PSH
modeling method mentioned earlier, we modeled the state transition time and trajectory for PSH
units.

For illustration, we show the simulation results for short-term dispatch problem with ramp
event on a 6-bus system, where the time horizon and the time interval are set as 3 hours and 5
minutes, respectively. We also set a target minimum terminal water level for the upper reservoir.

The load/generation levels, PSH injection power, and PSH status results when state transition
times are modeled are shown in (a), (c), (€) subplots of Fig. C.1.6. The corresponding results when
state transition times are not considered are shown in (b), (d), (f) subplots of Fig. C.1.6. Coping
with the same ramp event, we find PSH unit can switch from generating mode to pumping mode
in 5 minutes if state transition times are ignored, which may overestimate the flexibility of PSH
units. Considering the state transition time and trajectory, our proposed model can more
realistically quantify the flexibility of PSH. Specifically, in subplots (d), (f) of Fig. C.1.6, the PSH
unit transits from pump to generate and than from generate to pump, both of which happen in 5
minutes (please see 15" min-30" min, i.e., blocks 4-6°). This is unrealistic in practice due to mode
transition time requirements of PSH. After modeling the transition process, in subplots (c), (e) of
Fig. C.1.6, the unrealitic PSH flexibility through violating the transition time requirement is
corrected, thus leading to a more realistic quantification of PSH flexibility.

& Note that the resolution of Fig. C.1.6 subplots is 5 minutes. There are 12 blocks in each hour. The 1st block
represents 0-5 minutes. Thus, the blocks 4-6 represent 15"-30™ minutes.
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Fig. C.1.6. Results Comparison. For transition time considered case: (a) system load and
generation, (c) PSH generating/pumping/idle status, () PSH dispatch power. For transition time
ignored case: (b) system load and generation, (d) PSH generating/pumping/idle status, (f) PSH
dispatch power.

1V.C.2 Impact of enhanced PSH modeling in planning

In our PSH modeling enhancement, there are two important aspects: one is head-dependent
power bounds modeling, which quantifies pump power and available generation capacity at each
head level, thus avoids the simulation result from violating physical limits; another is variable
efficiency modeling, which accurately describes the SOC change given generate or pump power,
thus tries to mitigate significant cumulative error in long-term simulations.

Head-dependent power bounds modeling
Based on the real measurement from a realistic PSH unit, the head-dependent maximum

generate power and pump power are modeled by off-the-shelf piece-wise linear modeling methods
for two-dimensional cases. For maximum generate power, linear constraints are created for the
convex feasible region. For pump power, as the fixed pump power for each water head level forms
a non-convex feasible region, mixed-integer linear constraints are created due to the non-
convexity. We use the zig-zag approximation approach for the mixed-integer piece-wise linear
modeling. With an enabling tool we developed, the head-dependent modeling enhancement is
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implemented as PLEXOS custom constraints in a MISO planning model (called Eastern
Interconnection Seams model).

A comparison analysis was conducted for a realistic PSH with and without head-dependent
power bounds modeling. Power bound errors for generate and pump modes are calculated in
(C.2.1) and (C.2.2), respectively.

— +
gtg = Zhe?-[’” [p;it - Pﬁ(er,t)] (C.Z.l)

8? = Yhenr (pfrl),t - Php (er,t)) (C.2.2)

where, £ and ;” are power bound errors for generate and pump modes, respectively. p , and p, .
are generate and pump power from simulations for unit h at time period t, respectively. e, ,

represents SOC of reservoir r at time period t. Given an SOC level e, ?,gl(em) and PP (ey..)
denote maximum generate power and fixed pump power from the original head-dependent power
bounds data (in which piecewise linear approximation is not applied), respectively.

As indicated in Fig. C.2.1 (a), without head-dependent power bounds modeling, the generate
power might exceed physical limits. The pump power could also have significant errors
sometimes. However, with piece-wise linear head-dependent power bounds modeling, the power
bound error for the whole 6-unit PSH station can be less than ~5 MW. A low-SOC test is also
conducted, which aims to reflect the error for low-SOC operation points, although this scenario is
unrealistic to keep for two weeks in practice. The initial SOC is set at a relatively low level (~4
GWh), and the SOC of the upper reservoir follows a daily recycle. As shown in Fig. C.2.1 (b), in
the low-SOC test, the amount that PSH generation exceeds its physical limit is larger. Thus, head-
dependent power bounds modeling is especially important for low-SOC scenarios.

100 —

maximum generate power error (w/o head dependent power bounds)
77777 pump power error (w/o head dependent power bounds)

80 — maximum generate power error (w/ head dependent power bounds)
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maximum generate power error (w/o head dependent power bounds)
————— pump power error (w/o head dependent power bounds)

maximum generate power error (w/ head dependent power bounds)
————— pump power error (w/ head dependent power bounds)

200 —

150 —

100 —

power bound error - Ludington PSH / MW

Fig. C.2.1. Errors with and without head-dependent power bounds modeling. Without head-
dependent power bounds modeling, the generate power might exceed physical limits. The pump
power could also have significant errors sometimes

Variable efficiency modeling

The constant efficiency modeling serves as the current practice for PSH modeling in MISO
planning studies. The variable efficiency modeling would bring additional computational burdens,
however, can accurately quantify the relation of water-power conversions. Variable efficiency
modeling and its acceleration method have been investigated in previus quarters, the value of
variable efficiency modeling is presented here.

The numerical test is conducted as follows, 1) run a production cost simulation using the
constant efficiency PSH model, and get the resulting SOC and MW-output; 2) with the same MW-
output, re-simulate an SOC curve using the variable efficiency PSH data. As shown in Fig. C.2.2
(@), the SOC difference becomes larger with time in the long-term simulation, and the two SOC
curves vary significantly after one week.

In the current practice of PSH plant operations, the water level of the upper reservior is
measured and adjusted every day at midnight. To participate in the market, PSH owners will adjust
SOC every day; however, this process is difficult to consider in long-term planning models. In
order to analyze the impact of efficiency modeling in both operation and planning models, in our
numerical simulation, cumulative SOC error is cleared daily for a DA dispatch simulation. As
indicated in Fig. C.2.2 (b), for the operation model, SOC error is relatively under control in most
days, as the SOC will be adjusted daily. For the chronological production cost simulation model,
SOC error will be accumulated. Therefore, detailed water-power efficiency modeling is more
important in long-term simulations.

As introduced before, a low-SOC test is also conducted to observe the SOC error for low-SOC
operation points. In Fig. C.2.3, SOC error from the low-SOC test is much larger than that from the
normal-SOC test. Thus, variable efficiency modeling is more important for low-SOC scenarios. In
addition, one real PSH schedule from MISO state estimation during a 15-day period is used for
validation. Cumulative SOC error curves are calculated using both constant and variable efficiency

models. As shown in Fig. C.2.4, the same conclusion can be obtained as that from the simulation
data.
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SOC from production cost simulation (using constant efficiency model)

re-simulate SOC (using the same MW-output and detailed input-output curve model)
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(b) SOC cumulative error comparison

Fig. C.2.2. SOC and cumulative SOC error. SOC difference becomes larger with time in the
long-term simulation. In operations, SOC error is relatively under control in most days, as the
SOC will be adjusted daily. For the chronological production cost simulation model, SOC error
will keep accumulating over time.
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Fig. C.2.4. cumulative SOC error comparison (realistic data)

1V.C.3 Further improved PSH input-output curve modeling with approximate
convex decomposition method

To further improve the computational performance, the team proposed a novel disjunctive
convex hull model for input-output curve approximation in conjunction with approximate convex
decomposition method. In contrast to direct piece-wise linear approximation methods, the
proposed method exploit the partial convex properties of the input-output curve. At the same time,
we take advantage of the integer variable modeling to preserve approximating accuracy for non-
convex part of the curve, which can appropriately address the accuracy issue from the convex hull
approximation method. Detailed modeling can be found in the 2020 Q4 Quarterly Report.

To facilitate a numerical performance comparison, the input-output curve is approximated by
three methods: piece-wise linear approximation method (PWL), convex hull approximation

method (CH), and the proposed disjunctive convex hull approximation method with approximate
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convex decomposition (DCH). In Fig. C.3.1, (a), (b), and (c) shows how our proposed disjunctive
convex hull approach models the input-output curve under different tolerance settings. Note our
disjunctive convex hull approach with tol® = 10, as shown in Fig. C.3.1 (a), is equivalent to the
traditional convex hull approximation method. As a matter of fact, different parameter settings,
such as the number of pieces in PWL and the tolerance in CH, affect the number of binary
variables, thus the solution time. On the other hand, they also have impacts on the approximation
accuracy. So, the estimation error and computation time for the aforementioned approximation
methods are needed to be compared for different parameter settings.

On the accuracy side, a summary of maximum estimation errors for these methods is shown
in Table C.3.1. As indicated, the estimation error for both DCH and PWL methods can be reduced
with larger tolerance and a larger number of pieces, respectively. The CH approach, i.e. DCH
approach with tol® = 10, has a relatively large error. Taking the solution time into account, the
PWL method didn’t converge in 2 hours even fora 5 x 5-piece case, as shown in Table C.3.1. Our
proposed DCH method has better performance in solution time than the PWL method under similar
estimation error settings. For example, the DCH method with tol® = 2.5 has similar accuracy in
comparison to the PWL method with 15 x 15 or 20 X 20 pieces, however, it can be solved much
faster.

(a) (b) (c)

Fig. C.3.1. Input-output curve modeling: subplots (a), (b), and (c) are disjunctive convex
modeling for tol® = 10,2.5,0.5, respectively.

Table C.3.1. Performance Comparison.

DCH PWL
tol & max error # of comp. time (s) n max error time (s)
(MW) (MW)
10(CH) 5.878 1 122.8 5 9.510 > 7200
2.5 2.496 4 1636.9 10 4.625 > 7200
1.5 1.267 7 4371.0 15 2.804 > 7200
0.5 0.487 24 > 7200 20 2.296 > 7200

1V.C.4 Establish interleaved DA/RT simulation for economic planning

Synthesize RT load

Both DA hourly load variation trend and randomness are considered in synthesizing RT load.
The procedure is as follows: First, generate trends from DA data, i.e., using linear interpolation or
other methods to generate a 5-min resolution RT load trend curve DRT Trend  Second, generate
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randomness via inverse sampling of a particular distribution, e.g., for normal distribution the RT
load with randomness can be generated by (C.4.1).

DET = (1 + cdf;;3(3)) DRT Trend (C4.1)

where, cdf,;(}(-) is the inverse cumulative distribution function with mean value u and standard
deviation o, variable ¢ follows a uniform distribution in [0, 1].

The proposed RT load synthesizing method is validated using the authentic RT load and the
synthesized RT load from DA load. As shown in Fig. C.4.1, for a company level RT load, the
proposed method can well capture the trend of RT load, and generate a certain degree of
randomness.

6000

5000

4000 Ay

3000

Load (MW)

2000

1000

Index of 5-minute interval

——Synthesized RT Load based on DA load =Actual RT Load

Fig. C.4.1 validation with a company-level load

Procedure of DA/RT interleaved simulation

To capture the interaction between DA and RT markets, an interleaved simulation method is
established for the MISO planning model. As shown in Fig. C.4.2, DA and RT market
optimizations are run sequentially with information exchanges.

The information passed from the DA market to the RT market includes DA unit commitment
for traditional generators and PSH DA information (can be generate/pump commitment, MW-
output, upper reservoir shadow price depending on the employed PSH RT operation strategy).
From the RT market to the DA market, the RT end state is automatically passed by PLEXOS
(including but not limited to MW-output, SOC, and on/off hours). Note currently the model
assumes the RT end state is fully known by the DA model.

Detailed MISO planning case study and benefit analysis are presented in section IV.F with an
enhaced PSH modeling included.
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DA to RT

Fig. C.4.2 procedure of DA/RT interleaved simulation

IVV.D. Accomplishments Toward Milestone 4.1

Milestone 4.1: Establish prototype of enhanced PSH model within the SCUC framework. The
SCUC framework including the key proposed functionalities will be ready for further testing and
evaluation on the MISO system.

Accomplishments Summary: (1) The team proposed the MWh reserve constraint concept for
PSH units in the day-ahead SCUC model to address the potential SOC boundary violation issue in
real-time ED, as a result of RT uncertainties. (2) We developed the energy reserve secure
constraints of PSHs in the day-ahead SCUC model. Using MISO’s historical data, we developed
energy reserve requirement for modeling the secure reserve constraints. (3) Based on the uniform
hourly SOC deviation method, we use a PSH profit maximization model with price forecasts to
evaluate the impacts of energy reserve secure constraints on profits of PSH owners. Numerical
results show that the inclusion of energy reserve secure constraints can improve system security
against uncertainties and contingencies, and meanwhile does not necessarily reduce profits of PSH
units.

IV.D. 1 The need for energy reserve

Please note: in this document, energy reserve and MWh reserve are used interchangeably. To
illustrate a possible scenario when the PSH SOC boundary may be violated due to deviation in RT
from DA schedule, we took an actual PSH station data on a winter day of 2019 as an example, as
shown in Fig. D.1.1. Because currently MISO does not monitor/record the SOC information and
thus the initial SOC value on this day is unavailable, we assume the initial SOC is 9,313 MWh in
both DA and RT. The red lines in Fig. D.1.1 represent SOC information in DA, and blue lines are
SOC in RT. From this figure, we can see that more energy and reserve are cleared in RT than in
DA. If the initial SOC in RT is less than (9,313 — 5,497) MWh, the terminal SOC will be lower
than 0 MWh, violating the SOC lower limit (assuming it is OMWh) at the end of the operating day.
Indeed, if spinning reserve is called in one hour of RT (for example, the maximum hourly spinning
reserve in this day is 120MW) and initial SOC < (9,313 — 5,497 — 120) MWh, the SOC violation
will occur. If spinning reserve in all 24 hours are fully called for deployment and the initial SOC
< (9,313 - 5,136) MWh, the SOC violation would occur.
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Fig. D.1.1 A hypothetical scenario to illutrate possible SOC boundary violation

Indeed, large SOC deviations between MISO’s DA and RT markets are observed in the
historical data. To understand the possible cause of the SOC deviation, we tried to understand the
consistency between the DA and RT commitment statuses. The historical data in 2019 for this PSH
owner with six PSH units was processed for statistical analysis. The hourly commitment results of
PSH units in DA and RT are presented in Fig. D.1.2, as an overview of consistent and inconsistent
commitments in DA and RT. Three kinds of commitment situations in DA and RT are shown in
this figure. The orange dots represent that PSH units are operated in generating mode in both DA
and RT, i.e., the commitments in DA and RT are consistent. The green and blue dots stand for
inconsistent commitments in DA and RT. Specifically, the green dots mean PSH units are operated
in the generating mode in DA, while in RT they are either in pumping or idle mode. The blue ones
describe the opposite situation. When there is inconsistent commitment status between DA and
RT, a large deviation in SOC is likely to be observed. Such SOC deviations need to be considered
in developing the MWh reserve constraints in order to avoid potential SOC boundary violations.
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Fig. D.1.2 DA and RT commitment status of the studied PSH in 2019. Legend represents the
PSH commitment status in RT and DA. For instance, “DA not in GEN mode; RT in GEN mode"
legend means the PSH is not in generation mode in DA market, and it is in generation mode in
RT market.

From Fig. D.1.2, we can see that the inconsistent commitments did occur significantly,
especially during the beginning and ending hours of a generation period, which could result in
large MWh deviations between DA SOC and RT SOC. It should also be noted that, even when the
commitment statuses between DA and RT are consistent, the SOC deviation may still occur due
to different dispatch levels in DA and RT. Due to the market complications, it is hard to tell
whether a SOC deviation is caused by renewable forecast errors, load forecast errors, or
interchange and generation uncertainties. To this end, we designed several statistical methods to
directly process historical PSH data, and performed scenario selection and reduction approaches
to obtain the statistical results of MWh deviation caused by uncertainties, whose details were
included in 2020 Q3 Quarterly Report and not included in this final report for conciseness. Besides,
it could be observed that, in warm monthes PSH has one continuous generating period in each day
and the commitments in DA and RT are mostly consistent, while in cold monthes PSH may have
multiple inconsecutive generating periods in a single day and the commitments in DA and RT are
usually inconsistent.

1V.D. 2 Formulate secure enerqgy reserve requirement

The energy reserve secure constraints can be represented as follows:

E'8 + EM* < E, <EUB + EM~ (D.2.1)
where E, is the scheduled SOC of time t; EY~ and EM* respectively are the head room and floor
room to be held in advance for securing the real-time operations. The values of head room and
floor room for each time interval will be evaluated via the historical data.

If the values of head room and floor room will be evaluated via the historical data of
generation and pumping modes separately, (D.2.1) becomes
E'® + F¢ <E, < EYB —Ff} (D.2.2)
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where F¢ is the floor room at time t, which is valued by the MISO historical SOC deviation data
of the generation mode, and the head room F/ at time t is calculated by the MISO historical SOC
deviation data of the pumping mode.

From formula (D.2.2), two different methods are developed to calculate FE and FF.
Initially a uniform hourly SOC deviation constraint (Method 1) was developed. Later on, based
on observations from MISO historical data that the levels of SOC deviation can be quite different
during different periods of the PSH operation modes, a three-section hourly SOC deviation
constraint (Method 2) was developed to describe the hourly deviation during beginning/
intermediate/ending periods of the generation/pumping mode. Method 2 is expected to be more
accurate and less conservative.

The Method 1 is

Ff= Y Ff & Ff=3Y Fl (D.233)
where FE/ FF is the hourly reserve for generation/ pumping mode at time t.

The Method 2 is

FE=SL(FC7 + B 4 PRy & FE=SRLEPP+FPU PR (D24)
where FtG'B/FtG"/FtG'E is the hourly reserve for beginning hour/intermiate hours/ending hour of the
generation mode, and F® /EPIEPF is the hourly reserve for beginning hour/intermiate hours/
ending hour of the pumping mode. We can consider (D.2.4) as a general representation of (D.2.3).
That is, if the hourly deviations of the beginning, intermediate, and ending hours of
generation/pumping mode are the same, (D.2.4) is degradaded to (D.2.3).

We proposed two different sets of deviation constraint formulations based on the above
two methods. The formulation for Method 1 “uniform hourly SOC deviation constraints” is
described as follow (Note: Details of the formulation, illustrative example, and statistical analysis
for Method 2 “three-section hourly SOC deviation constraints” were included in 2020 Q4
Quarterly Report, and not included in this final report for conciseness.).

Uniform hourly SOC deviation constraint formulation for Method 1

In this subsection, we present the uniform hourly SOC deviation constraint formulation for
Method 1, which shows that when the PSH is on the generation/ pumping mode, a uniformly
hourly deviation boundary can be constructed at each time:

Floor Room for Generation Mode:

Fi = A% - urf, (D.2.5)
Head Room for Pumping Mode:

FEy = AL -urf, (D.2.6)
Final Floor/[Head Room Formulation:

Ef? + Y FG < E, < E/P =YL ER (D.2.7)

Here we define ur¥, and ur;?; as continuous variables, which indeed can only take binary
values as restricted by other constraints for PSHs. It is 1 if reservoir r is in generation/pumping
mode at time t. A% /AP is the unique hourly deviation value for generation/pumping mode. FEl
FF, is the hourly reserve for generation/pumping mode at time t. E,. , is the scheduled SOC of time
t for reservoir r.

Variable urf, /urf, describes whether the reservoir is operated in generation/pumping
mode. The unique hourly deviation values for generation/pumping mode AS /AP are evaluated by
the historical data with a certain confidence level.
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Statistical Analysis

The head/floor room value for each time interval is calculated based on historical data in
the pumping/generation period. Specifically, for the headroom, we collect and evaluate historical
SOC deviation for each time interval in the pumping period; For the floor room, it is from the
generation period. The unique hourly deviation values for generation/pumping mode AS /AL are
evaluated by the historical data with a certain confidence level. The statistical results presented
below are obtained with a 95% confidence level.

Fig. 1.D.4.1 shows the data analysis of SOC deviation for generation/pumping mode during
the historical PSH DA and RT data in 2019. The left subfigure is the histogram of the historical
SOC deviation of the generation mode, and the right subfigure is the histogram of the historical
SOC deviation of the pumping mode.

mean 60.333180 mean 14.436623

count 1414.000000 count 1102.000000

std 179.143915 std 207.084638

Name: SOC_together, dtype: floaté64 Name: SOC_together, dtype: float64
mean 60.3332 mean 14.4366
count 1414 count 1102
std 179.144 std 207.085
ci95_hi [411.4552528888061) ci95_hi [420.3225135849308]
ci95_lo [-290.7888926813568] ci95_lo [-391.4492679708957]
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Fig. D.2.1. Histgram for historical SOC deviation of generation/pumping mode

Tables D.1.1 and D.1.11 show the statistical results of the floor and head rooms. The floor
room is calculated by the 95% lower confidence bound of the histogram of generation mode in the
left subfigure of Fig. D.2.1. The head room is calculated by the 95% higher confidence bound of
the histogram of pumping mode in the right subfigure of Fig D.2.1. For instance, we can see from
Tables D.1.1 that if in the DA schedule the generation duration is 4 hours, the floor room will hold
1,163.2MWh. When the PSH is on the pumping mode for 1-4 hours, the floor rooms range from
420.3MWh to 1,681.2 WMh. As will be illustrated in the following subections, the model with
energy reserve secure constraints will not necessarily reduce profits of PSH owners. Indeed, the
profit could be the same or even higher than the one without energy reserve secure constraints.

Table. D.1.1. Statistical results of floor room

GEN period duration (hours) | Floor Room (MWh)

1 290.8 1.6%
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1,163.2, 872.4, 581.6,
4 and 290.8 for GEN 6.2%, 4.7%, 3.1%, 1.6%
hours 1-4

Table. D.1.11. Statistical results of head room

PUMP period duration (hours)| Head Room (MWh) Conservative Ratio_Pump

1 420.3 2.3%
1,681.2, 1,260.9,
4 840.6, and 420.3 for 9%, 6.8%, 4.5%, 2.3%

PUMP hours 1-4

Besides the above uniform hourly SOC deviation constraint formulation for Method 1, we
also explored a refined Method 2: three-section hourly SOC deviation constraints. This is
motivated by the observations from MISO historical data that the levels of SOC deviation can be
quite different during different periods of the PSH operation modes. The three-section hourly SOC
deviation constraints describe the variant hourly deviation boundaries during beginning/
intermiate/ending periods of the generation/ pumping mode. Details of the formulation, illustrative
example, and statistical analysis were included in 2020 Q4 Quarterly Report, and not included in
this report for conciseness. The Method 2 “three-section hourly SOC deviation constraint” could
provide better solutions, in terms of smaller conservative ratio, than the Method 1 “uniform hourly
SOC deviation constraint”.

1VV.D. 3 Impact of modeling reserve secure constraint

We use the PSH profit maximization problem with price forecasts as an example to
understand the potential financial impacts of energy security constraints to PSH owners. We add
the uniform hourly SOC deviation constraints, i.e., constraints (D.2.1)-(D.2.3) and (D.2.5)-(D.2.7),
as well as additional binary variables, to the profit maximization model, which leads to an MILP
formulation. LM P, is forecasted LMP for hour t in scenario s conducted at hour t,, which are

described in section IV.E.
The PSH profit maximization mode is detailed as follows:

max Zzgso Zg psLMPto,s,to pShg,to + Zzﬁso z:=t0+1 Zg psLMPtO,s,tPShg,s,t

pump gen
s.t. Epumpug_to + Egenug_to

pump gen
PrumpUyse Thjenllgs:

ety T Z pShg,to — Estare = 0,Y7  (¥o)
g
€rsto+l T Zg pShg,s,t0+1 — Clrty = 0,Vs, V7 (Vts)
er,s,t + Zg pShg,s,t - er,s,t—l = O: vt € [tO + 2: T],VS, vr (yt,s)

Er,T ~Crsr = 0, Vvs,vr. (yT,s)
LB NT G UB NT P
Er + Zr:to Fr,s,‘r < €rto < Er T dTt=ty Fr,s,r , Vs, VT, (90,5)

E‘rLB + Z¥=Tt FT(,;S,T S er,s,t S Erl‘]B - ![V;I't Fr},)s,‘r vVt € [tl,T],VS, VT', 6 ,S? H,t,s)

) pump ) gen
< pShg,to < Ppumpu + Pgenug,tol (ZO)

g.to
5 pump gen —
< pShg,s,t < Ppumpug_s_t + genug_s_tVt € [t1: T],VS, (gt,sr at,s)

Binary Constraints:
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Yimemy Uge, = 1, ZmeMg ugse =1, Vg €GVtET\ty, Vs
m = —
Ugty = ZneMgm Ug to ZneMgm Ug to
Ugise = Ugist—1 = Znemgmvgst ZnEMgmngt’ Vs, Vt € T\t,
mmn
ZmEMg ZnEMFm vg tO S 1 ZmeMg ZnEMFm ngt S 1 ) VS, Vt E T\to
urf i+ urge” <1 VreR
pump gen
ur. g Furg, <1 Vr € RVt € T\t,, Vs
Ug, < urfly, Vr € R,V g € Gpep,r, VM € {gen, pump}

Ug'se S U, V1 € R, VG € Gpspr, VM E {gen, pump}, Vt € T\t,, Vs

Energy Reserve Secure Constraints
Ff = AS -urf, ,EP

P
Tty = rtoﬂ o = A urrto
For = NG -urf,, Vs, Vt € [t;,T]

Ffse = A7 ~urfs ., Vs, Vt € [t;,T]

Case Study

We use actual MISO data to evaluate the potential financial impacts of new energy security
constraints to PSH owners. It should be noted that this study takes real-time price forecasting
results from section 1V.E as input, and tests for 5 different typical days have been conducted to
provide insights and confirmations. The total DA+RT realized profits on a sample day in spring
2020 are reported in Table D.3.1, calculated as ».7_, LMPPA - (gP4 — pP4) + LMPET - [(gFT

pRTY — (gP4 — pP4)], where gk and pRT are generating and pumping dlspatches of the unit in
RT optimized from the above mode and LMPP4 /LM PET represnets the actual DA/RT LMP. In
this test, PSHs are considered as price takers (i.e., the inclusion of the above energy reserve secure
constraints will not impact the actual DA/RT LMPs. The price making case will be further explored
in milestone 8.1.

From Table D.3.1, we can see that including energy reserve secure constraints does not
necessarily reduce the profit of PSH owners. For instance, with the head/floor room of 50/70MWh,
the profit is $11,335 for this PSH from the real-time market on this day, which is the same as the
one without energy reserve secure constraints. Moreover, when the head/floor room raises to
250MWh, the profits from our proposed model is $12,392, higher than $11,335 without these
constraints. This clearly shows the PSH’s potential in increasing their profits by holding some
energy through the proposed energy reserve secure constraints. That is, including energy reserve
secure constraints potentially could not only improve system security against uncertainties and
contingencies, but also in some cases increase profits of PSH units.

We consider there may be circumstances when PSH profit decreases. Presumably, when
future price is lower than current price, it should be more profitable to generate now than in the
future. In this case, when the PSH is dispatched at lower level in DA market due to MWh reserve
requirement, it may result in reduced profit as some generation is dispatched at a lower price in
the future instead of being dispatched at a higher price now.

Table. D.3.1. Profit maximization case study

After | Rolling Window | Rolling Window | Stay with
PR ) b T the Fact| (50 scenarios) (single prediction) [ DA LMP




Profits ($) 17,017 11,335 12,456 10,977

After | Rolling Window | Rolling Window | Stay with
SRS D), the Fact| (50 scenarios) (single prediction) | DA LMP

Profits (%) 17,017 11,335 12,456 10,977
After | Rolling Window | Rolling Window | Stay with
Ab{gE ALl the Fact| (50 scenarios) (single prediction) | DA LMP
Profits (%) 16,678 12,392 12,447 11,369

Table D.3.1. shows the impact of MWh on PSH’s profit via Method 1 Uniform hourly
SOC deviation constraints. We use three MWh reserve withheld values (0/0, 50/70, and 250/250
MWh), and compare with the baseline (stay with DA LMP, i.e., do. not deviate from the DA
positions) as well as the perfect simulation (after the fact, i.e., the best profit PSH owner can get if
it can fully foresee the actual RT price ahead of time). We conducted two rolling window tests,
one with 1 scenario, one with 50 scenarios. In both tests, the results are higher than the profits of
baseline (“stay with DA LMP”), and comes closer to the ideal profit (“after the fact”). The full
explanation of this table, together with other test results, can be found in the 2020 Q4 Quarterly
Report.

IV.E. Accomplishments Toward Deliverable 5.1

Deliverable 5.1: A prototype representation of price forecast uncertainty in persistent deviation
model of RT dispatch.

Accomplishments Summary: There are a few accomplishments achieved for this Milestone. (1)
Based on the deterministic PSHU model achieved in Milestone 2.1, the team developed stochastic
PSHU models in LAC, where probabilistic price forecast is used to incorporate RT uncertainties.
(2) An ARIMAX based forecast model has been developed for real-time (RT) LMP single point
forecast. Next, the methodology for probabilistic LMP forecast is introduced. We innovatively
applied scenario generation methods to generate a series of trajectory lines, which collectively
represent a range of potential RT-LMP predictions over the forecast horizon, with associated
probabilities. Further, based on the single point and probabilistic LMP forecast, an intra hour LMP
forecast has been developed. (3) Based on the discussion with industry advisors, a risk
management formulation is developed to address the concern of the profit lost in the RT market.
Based on the LAC simulation in HIPPO that is achieved in Milestone 2.1, the team prototyped the
proposed stochastic PSHU model and the risk management formulation. Case studies are
developed, the preliminary results show the value of capturing uncertainties in the stochastic
PSHU model and improvement in the system objective. The results demonstrate the effect of the
risk management formulation in improving system objective and avoiding negative profits for the
PSHU.

IV.E.1 A Stochastic PSH Model in LAC Using Probabilistic Price Forecast

In section 1V.B, a deterministic PSH model is proposed in LAC using the single point price

forecast. In this section, we propose a stochastic PSH model to incorporate the uncertainty in the
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RT market for intervals occurring after the LAC intervals. The methdology to generate the
probabilistic price forecast is summarized in subsection IV.E.3 in this report. Therefore, in this
subsection we assume a probabilistic LMP forecast is given.

The formulation of the stochastic PSH model in LAC is listed below (E.1.1)-(E.1.18).

tend

Objective: Min Z Ce(goue) — Z 2 2 psLMP)S (a5 — qber?) (E.1.1)
5=81 t=tenqd+1 g€Gpsh

Similar to the determlnlstlc PSH model in a LAC, the first term in (E.1.1) is the objective
function for a LAC problem. The production cost C;(g;, u;) is minimized in a LAC window in
intervals that start at t; and end at t,,,4. Assume the operation and maintanence cost is negligable
for a PSHU, and that the net cost of dispatching a PSHU in the LAC intervals due to the net costs
of sale or purchase of energy in the intervals post to the LAC intervals. This net cost is represented
in the second term in (E.1.1) as the negative arbitrage profit of the PSHU in the intervals after the
LAC that starts at t,,4 + 1 and stops at the end of the operating day T. Notice that the second term
in (E.1.1) now includes the cost/negative profit of the PSHU for multiple scenarios that are
weighted by the probability of each scenario pg. Different PSHU generation and pumping values
are allowed in each scenario. It is acknowledged that, strictly speaking, causality is violated by the
implicit assumption that the generation and pumping values can be chosen for all intervals in a
given scenario.

The generation and pump demand of the PSHU during the intervals after the LAC are defined

for each scenario qJ¢;, g% ”. The probabilistic LMP forecast LMP,3, is provided for each
interval after the LAC and the forecast is updated at t, that is one interval before the start of each

LAC window t;.

Power Balance Constraints:

Z Giee Z 4g: =De+ z Gge +» Yt € [ty tenal (E.1.2)
9EGpsh 9EGpsh
Z Git =Dy, Vt € [teng + 1,T] (E.1.2%)
k=1

Similar to the deterministic PSHU model, the PSHU is fully optimized within the LAC window
given a deterministic forecast of the demand within the LAC window. In the power balance
constraint within the LAC window Vt € [ty, t.nq], the deterministic generation of the PSHU, ¢ %",
is included on the left hand side of power balance constraint (B.2.2) and the determinstic pumping
load of the PSHU, g ;"™ , is considered as demand on the right hand side of the power balance
constraint (B.2.2). The dispatch of the PSHU in the intervals after the LAC relies on the LMP
forecast and are not optimized with the rest of the system. Therefore, the generation and pumping
of the PSHU in the intervals post to the LAC window Vt € [t,.,q + 1,T] are not included in the
power balance constraint (B.2.3).

The Private Constraints for a PSHU within a LAC:
(A.1.3) — (A.1.11), (A. 1.13), (A. 1.14), Vt € [t1,tongl,
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The private constraints for a PSHU model are the same as the DA model described in
(A.1.3) — (A.1.11),(A. 1.13),(A.1.14) in the Appendix for section IV.A.l, except those
constraints are modeled in the intervals from the start of the LAC window t; until the end of the
operating day T. Since we currently solve the problem in hourly intervals and the constraint on the
number of pump starts (A.1.12) is typically only binding in the sub-hour timeframe, (A.1.12) is
less relevant and therefore it is not included in the model.

The private constraints for a PSHU model are defined for each scenario in the intervals after
the LAC and they are described in the rest of this subsection. In the following, we would focus on
the explanation related to the stochastic scenarios, the detailed description of each of the
constraints can be found in (A.1.3) — (A.1.11), (A.1.13) and (A. 1.14) in this report.

PSH Unit Commitment and Transition Mutual Exclusivity Constraints After a LAC Window:

z W =1,Yg € Gpop, Vs € S,Vt € [tong + 1,T], (E.1.3)

mEMg

Z Z Ve < 1,Vg € Gpsp, VS € S,Vt € [teng + 1,T], (E. 1.4)

meM neMg'm

Different to the deterministic model, in the intervals after the LAC window, starting at t,,,4 +
1 until the end of the operating day T, the private constraints for the PSHU are modeled for each
scenario s. Mutual exclusivity constraints on the unit commitment variables and transition
variables are presented in (E.1.3) and (E.1.4) respectively.

PSH Transition Logic After a LAC Window:

m _,m — nm _ mn
ug:s:tend+1 ug.tend - Z vg,S,tend‘l-l z vg,S,tend+1 Ivg € Gpshr Vm € Mg, VS € S,

nEMg‘m neMg’m
(E.1.5%)
Ul —Ugspq = z vgﬁ - Z v‘;fls’ﬁ,v‘g € Gpsn, YM € M,Vs € S,Vt € [teng +2,T],
nGMF'm nEMF'm
g g
(E.1.5)

In the intervals after the LAC window, from t,,; + 2 until the end of the operating day T, the
PSH transition logic constraints are modeled for each scenario s in (E. 1.5). Since the transition
logic constraint is inter-temporal, we need to specifically address the constraint when it crosses
between the interval within a LAC window and the interval after the LAC w.indow. In (E. 1.5%),
the transition between modes from the last interval of the LAC, t., 4, and the first interval after the
LAC, t.,q + 1, are defined for each scenario s. Notice that the commitment variable within LAC

Ugt,,, 1S deterministic and both the unit commitment and transition variables after the LAC are
defined for each scenario, ug', .1, v;'s’,’iend +1- Therefore, using (E. 1.5), every stochastic unit
commitment variable in the intervals after LAC is linked to the last deterministic unit commitment

variable within the LAC by the corresponding stochastic transition variables.
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PSH Output Box Constraints:

——pump
up it QY < qp P <ultPQg T, Vr €R,Vs € S,Vg € Gpepy, VS € S,VE

[ end + 1, T],
(E. 1.6)
giﬁQgen g‘;’i < gi’ng , Vr € R,Vs € S,Yg € Gpspr, VS € S,Vt € [tena + 1, T],
(E.1.7)

In the intervals after the LAC window starts at t,,4 + 1 until the end of the operating day T,
the upper and lower limit for pumping and generating in a PSHU are modeled for each scenario s
in (E.1.6) and (E.1.7).

PSH Reservoir State-of-charge (SOC) Constraints:

gen

qgt d pump
erStend+1+ z gZ:L z qgtend*npump_er,tend =0,Vr e R VsES,
9E€GpshT 9E€GpshT
(E.1.8%)
qgen
t
erst+1 T Z nZZ” 2 qSZ’"’“ *nPUmP —e . =0,Vr €ERVSES, Vt
9EGpsh,r gEGpsh,T
€ [tena + 1,T1,
(E.1.8)

In the intervals after the LAC window, starting at t,,,4 + 1 until the end of the operating day
T, the SOC constraints are modeled for each scenario s in (E. 1.8). For the inter-temporal SOC
constraint, similar to the transition logic constraint, we need to specifically address the constraint
when it crosses between the interval within a LAC window and the interval after the LAC window.
In (E. 1.8%), the SOC changes from the last interval of the LAC, t,,4, and the first interval after
the LAC, t.,q + 1, are defined for each scenario s. Notice that the SOC variable and generation
and pumping variables at the last interval of LAC (ey.,.... 45¢..» Qy¢. ) are deterministic and
the SOC in the first interval after LAC is defined for each scenario, e, s .. Therefore, using
(E. 1.8"), every stochastic SOC variable in the intervals after LAC is linked to the last deterministic
SOC variable within the LAC.

Erri1—€rs741 =0,Vr €R,Vs €S, (E.1.9)
E<e. ;< E, Vr €R,Vs € S,Vt € [tong + 1,T], (E. 1.10)
The SOC variable at the end of the day T + 1, e, s 744, IS fixed to the given target E; 7, ,that
is the SOC at the end of the day in the DA solution, in each scenario in (E.1.9). In the intervals

after the LAC window, the upper and lower limit is enforced to each SOC variable for each
scenario in (E.1.10).

PSH Ramp Up/Down Constraints:

gen

gt — qgt 1 < RRupg,Vg € Gpsp, Vt € [0, tengl, (E.1.11)
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gen

qgey —qge < RRdowng.,Vg € Gpgy, Vt € [0, tengl, (E.1.12)

gen gen
qg;é;endﬂ _gf,{"tend < RRupg:, .+1, V9 € Gpsp, Vs €S, (E.1.13)

Do tong — Dgsitong+1 = RRAOWNG ¢ 111,V g € Gpsp, Vs €S, (E.1.14)

gen gen

Qgst — gsi-1 < RRUDg ., Vs € S,Vt € [teng +2,T], (E.1.15)
q0%i-1 — dges < RRdowng Vs € S,Vt € [tenq + 2,T], (E. 1.16)

Ramp up/down constraints within the LAC window are deterministc and they are listed in
(E.1.11) and (E. 1.12). The ramp up/down constraints at the boundary between the last interval of
LAC t.,q and the first interval after LAC t,,; + 1 are listed in (E.1.13) and (E. 1.14) (these
ramping constraints are not enforced for the non-PSH units in the system). The Ramp up/down
constraints after the LAC window are defined for each scenario in (E. 1.15) and (E. 1.16).

Plant Level Mutual Exclusivity Constraints:

urP P +ur?’ < 1,Vr € R,Vs € S,Vt € [teng + 1,T], (E. 1.17)
Uglst S U5, VT €E R,V € Gpspr, VS € S,V € [tong + 1,T],Vm € {gen, pump}, (E. 1.18)
In the intervals after the LAC window, the plant level mutual exclusivity constraints are

defined for each scenario in (E.1.17) and (E.1.18).
IV.E.2 Single Point Forecast Methodology for Locational Marginal Price (LMP)

We analyzed historical LMP data from 2017 to 2019 for the locational nodes of the PSHU in
the study. In the dataset we have historical real-time and day-ahead prices on hourly basis.

IV.E.2.1 Time Series Analysis

For this problem, we are dealing with time series forecasting. Because data points in time series
are collected at sequential time periods, there is potential for correlation between observations.
This is one of the main properties that distinguishes time series data from cross-sectional data.

Components of Time Series

Time series data typically includes a level, trend, seasonality, residual or noise. Before we illustrate
each of those components, it’s important to note that not all time series data will include every one
of these components.

Level: Assuming if there were a straight line, baseline value of timeseries is called its level which
refers to the mean of data.

Trend: The increasing or decreasing behavior of the series over time shows its trend. If the data
has no trend, then it is called a Stationary dataset. In other words, it has constant mean and variance,
and covariance is independent of time.

Seasonality: The presence of variations that occur at specific regular intervals that are correlated
with the calendar, which could be quarterly, monthly, weekly, daily, hourly and so on. Not all time
series have a seasonal component.

Residual: The variability in the observations that cannot be explained by the model.
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When the fluctuation and variation of time series increase or decrease over time and shows
dependency to the Level of time series, then we are dealing with a Multiplicative time series:
Multiplicative Model: Time series = (Trend) * (Seasonality) * (Noise).
On the other hand, Additive models are the ones in which variation in the time series stay almost
constant over time, and can be interpreted as following:
Additive Model: Time series = (Trend) + (Seasonality) + (Noise)
Since our time series data does not increase or decrease over time it fits in the category of additive
model for data decomposition. We can calculate the correlation for time series observations with
observations from previous lags. Because the correlation of the time series observations is
calculated with values of the same series at previous times, this is called an autocorrelation. Auto
Correlation Function (ACF) considers all the above components while finding correlations and
describes how well the present value of the series is related with its past values.

IV.E.2.2. Methodology for Single Point LMP Forecasting

The main objective is forecasting the price deviation between real-time and day-ahead
Locational Marginal Price (LMP). For that purpose, if we are able to provide a good point forecast
for real-time-LMP then we can readily calculate the expected deviation of the forecasted real-time
from the given day-ahead-LMP.

As described above, in this context we are dealing with a times series forecasting problem.
There are a lot of methods and techniques to analyze and forecast time series. One of the most
used is a methodology based on Autoregressive Integrated Moving Average (ARIMA) model. In
this method, the historical data of univariate time series are used to analyze its own trend and
forecast future cycle. The ARIMA model is one of the most used methodologies for analyzing
time series. This is mostly because it offers great flexibility in analyzing various time series and
because it can achieve accurate forecasts, too. The other advantage is that for analyzing single time
series it uses its own historical data. Applying ARIMA(p,d,q) methods and finding the right
parameters for autoregressive lags (p), moving average lags (q), and order of differencing (d) was
studied. When an ARIMA model includes other time series as input variables, the model is
sometimes referred to as an ARIMAX model. Usually including extra independent variable
(covariant) X into the model brings much better results than simple ARIMA model. Here the
choices for exogenous variable could be the Load forecast, and day-ahead-LMP, or both.

Given time series data y,(RT-LMP) and exogeneous data x,(DA-LMP and Load), where p is
the number of auto-regressive lags, d is the degree of differencing, and g is the number of
moving average lags.

p

q M
V. = Z Qi Vi—i + z 0; € + Z Pm Xme + €, €~R(0, a?), (E.2.1)
i=1 j=1 m=1

 Here ¢, is the residual which is assumed to be normally distributed, with (0, 02) defined
to be the normal distribution with mean zero and variance o2.

» The partial auto correlation function (PACF) and ACF plots can be used to estimate the
AR-part, i.e. p-value, and the MA-part, i.e. g-value, respectively.

* Here the choices for exogenous variable could be the Load forecast, and Day-Ahead LMP.

We initially explored the three alternatives of including both exogenous variables of Load and
DA-LMP together, and also including each one individually. The empirical result is that DA-LMP
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plays the main role as a predictive variable. Moreover, including just the one exogenous variable
of DA-LMP provides as good a prediction result as including both Load and DA-LMP. As a result,
our final choice for covariate X-variable in the ARIMAX model is the DA-LMP.

For each daily price prediction, we consider the past 6 days as our training data to fit the right
ARIMAX(p,d,q) model and predict RT-LMP for the following day. In order to evaluate the model,
we compare the predicted results versus the data unseen by the prediction model, namely the test
set for RT-LMPs for intervals in the following day.

In general, a perfect forecast is the one which fits exactly on the test set. However, the problem
is that in reality this is not achivable. The main distinction of forecasting is that the future is
unknown and the best a forecasting model could do is learning the most from the given historical
data and do the prediction for future based on that. The result of prediction model is shown as the
red curve of Fig. E.2.1. It demonstrates that the forecasted RT-LMP is tracing the path of the
actual RT-LMP shown in blue which is called the test set. In the current time series analysis we
captured the performance of our Seasonal-ARIMAX methodologies by computing some metrics
such as, Mean-Absolute-Error (MAE), and Root-Mean-Square-Error (RMSE). The errors of our
daily forecating analysis show an acceptable range which we can rely on ARIMAX as our point
forecast methodology to predict RT-LMP. It should be pointed out that, for PSH, the key is to
determine the hours of charging and discharging. Price forecast needs to properly capture the peak
and valley within a day with enough spread to cover round trip efficiency. RMSE was used to
evaluate the performance of ARIMAX as our choice to forecast the RT-LMP. We tried to fit two
models, namely ARIMA and ARIMAX, on more than 200 days of study year 2019, and computed
RMSE for both models. It was observed that in 82% of test days, the RMSE for ARIMAX was
smaller than ARIMA. Moreover, it is notable that in the other 12% of days the performance of
ARIMAX compared to ARIMA was not significantly worse. Consequently, we chose ARIMAX
in all subsequent forecasts.

== Predicted =~ Test Train

80

|

20

Mar 01 Mar 02 Mar 03 Mar 04 Mar 05 Mar 06 Mar 07 Mar 08
Days

Fig. E.2.1. Time Series Forecast of RT-LMP for day of March 7th, 2019 using ARIMAX method
with X being DA-LMP. In total, six days of RT LMP data is used as training data and the
prediction is made on the last day shown in the figure. The forecasted RT-LMP is tracing the
path of the actual RT-LMP.

1VV.E.3 Probabilistic LMP Forecasting Methodology
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Probablistic forecasts are used to reflect the uncertainty range for the existing
deterministic/point forecast approach. The issue is that usually the general form of probabilistic
forecasts, such as quantile regression, neglect the interdependence structure of forecast errors in
look ahead times. Creating statistical scenarios based on the transformed prediction errors in
Normal space and capturing the interdependence structure of these prediction errors by their
associated covariance matrix is the probabilistic methodology that we used to capture the
uncertainty associated with the point forecasts. The steps to generate statistical scenarios based
on the given deterministic point forecasted LMP are included in the Appendix for section IV.E.3.

As a result, the interdependent structure of errors can be summarized in a unique covariance
matrix. Following steps of generating statistical scenarios proposed in [E.1], we will generate a
series of trajectory lines, which collectively represent a range of potential RT-LMP predictions
over the forecast horizon, with associated probabilities. Fig. E.3.1 shows the associated scenarios
reflecting both the prediction uncertainty and the interdependence structure of predictions errors.
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Fig. E.3.1. Real-Time LMP point prediction with 50 alternative statistical scenarios for March
71 2019. The RT LMP single point forecast of three days and the probabilistic forecast of the
last day are plotted.

IV.E.4 Intra-hour Single Point Price Forecast:

For each daily price prediction, we consider the past 6 days as our training data to fit the right
ARIMAX(p,d,q) model and predict RT-LMP for the following day. Now that the point forecast
for RT-LMP in each forecast horizon, 24 hours, is available. We need to up-sample and interpolate
the results and get the values of RT-LMP forecast for intra-hour points in every 15 minutes time
interval. Detailed methodology is included in the Appendix for section IV.E.4.

Table E.4.1 demonstrates a quick look on how our final results for intra-hour RT-LMP would
look like. As Table E.4.1 shows, the first column is the original hourly RT-LMP forecast values
as a result of applying ARIMAX approach. Then, in the next columnm, we use the linear
interpolation on the hourly forecasted RT-LMP values to get the intra-hour LMP values for all
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those intra-hours. However, since the hourly average constraint is not yet considered in these 15-
minute RT-LMP values, we make sure to derive the intra-hour values which meet the averaging
constraint. Finally, the last column demonstrates a new profile for 15-min intra-hour RT-LMP
which the average of each four intra-hour values is equal to value of the corresponding beginning

hour RT-LMP.

Table. E.4.1. RT-LMP Point Forecast and its associated 50 scenarios based on 15-minute time

TIME_EST
4/15/2019 0:00
4/15/2019 0:15
4/15/2019 0:30
4/15/2019 0:45
4/15/2019 1:00
4/15/2019 1:15
4/15/2019 1:30
4/15/2019 1:45
4/15/2019 2:00
4/15/2019 2:15
4/15/2019 2:30
4/15/2019 2:45
4/15/2019 3:00
4/15/2019 3:15
4/15/2019 3:30
4/15/2019 3:45
4/15/2019 4:00

RT-LMP Forecast (hourly)

21.81834601

21.22478237

21.71033968

22.00629366

23.48284617

intervals

21.6699551
21.52156419
21.37317328

21.3461717
21.46756103
21.58895035

21.78432818
21.85831667
21.93230517

22.37543179
22.74456992
23.11370804

Interpolated Intrah-hour Forecast  Intrahhr Forecast, meet the hourly Avg constraint

22.04093237
21.89254146
21.74415055
21,59575965
21.04269838
21.16408771
21.28547704
21.40686636
21,59935694
21.67334543
21.74733393
21.82132242
21.45258647

21.8217246
22.19086273
22.56000085

Final hourly & Intra-hr Forecast
21.81834601
22.04093237
21.89254146
21.74415055
21.22478237
21.04269838
21.16408771
21.28547704
21.71033968
21.59935694
21.67334543
21.74733393
22.00629366
21.45258647

21.8217246
22.19086273
23.48284617

Fig. E.4.1 presents RT-LMP single point forecast and its associated statistical scenarios to capture
uncertainties for 15-minues time intervals.
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Fig. E.4.1 RT-LMP Point Forecast and its associated 50 scenarios based on 15-minute time

intervals

50



1V.E.5 Deterministic Forecasting for Multi-Day Ahead Forecasting

Problem Description: The effort of forecasting Day-Ahead LMP in a forecast horizon of multiple
days ahead, is helpful in identifying end of state of charge (SOC) values to faciliate multi-day
ahead scheduling. Having access for DA-LMP forecast beyond day-ahead (24-36 hours), will help
to decide the best schedule in day-ahead.

The goal is to learn the below function W from the data and obtain forecasts of day ahead prices
for t+h, where h € {1, 2, ..., H}.

Y{t+h} = W(ytr ey y{t—n+1}) + €

ARIMAX method is used to model multi-day ahead LMP single point forecasting and results are
compared with those from another method of time-series analysis named Facebook Prophet. The
details of the ARIMAX-based multi-day ahead LMP single point forecasting method and
Facebook Prophet are included in the Appendix for section IV.E.5.

To compare the performance of our existing ARIMAX model with Facebook Prophet, we ran
an analysis using both approaches. Moreover, we generated a new set of outputs by taking their
weighted average given % weight to the ARIMAX and Y2 weight to the outputs of Facebook
Prophet. Fig. E.5.1. shows the results of all three aforementioned single point forecasting along
with the realized LMP values.

Multi-Days Ahead LMP Forecasts

40
—_— Realized
—=—- Predicted (Prophet)
35 | — - Predicted (ARIMAX)
Weighted_mean
3{] -
)
=
= 25
20
154

2019-10-15 2019-10-16 2019-10-17 2019-10-18 2019-10-19 2019-10-20 2019-10-21 2019-10-22
Time
Fig. E.5.1. The realized LMP along with three forecasted results, namely ARIMAX, Prophet, and
the weighted average of both.

From Fig. E.5.1, it can be seen that ARIMAX captures the trend and also the peaks and turning

points of the realized RT-LMP much better than Facebook Prophet. And the output as a result of

taking the average mean of these two approaches shows even better results than the ARIMAX.

This observation was consistent in running the above comparison analysis for many random days
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in all four seasons. We also measured the observed performance of these methodologies using
Root-Mean-Square-Error. The numbers out of RMSE are also confirming our visual observations
as described:

RMSE_Facebook Prophet: 3.5011
RMSE_ARIMAX: 3.0121
RMSE_Weighted Avg: 2.8479

1V.E.6 Probabilistic Forecasting for Multi-Day Ahead Forecasting

The scenarios associated to the weighted average single point forecast, as described in previous
section, are shown in Fig E.6.1 with 50 colors along with the point forecast shown in solid red and
the realized LMP in solid blue. These statistical scenarios reflect the prediction uncertainty.

Observed, Predicted and Scenarios for Price on October 15 2019
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Fig. E.6.1. Statistical scenarios associated to the single point forecast for multi-days ahead
prediction. These statistical scenarios reflect the prediction uncertainty.

IV.E.7 A Robust Risk-management Formulation

In our discussion with industry advisors, some PSHUs are reluctant to participate in the real-
time market. One of the major concerns is the exposure to the uncertain RT LMP may cause the
unit to lose profit in the RT market. To address this risk-averse concern, after discussion with the
industry advisors, we have developed a robust risk-management formulation that can be applied
to the stochastic PSHU model in LAC as we described in section IV.E.1.

tend
Objective: Min Z Ce(geyup) + Z w;, (E.7.1)
t=ty TER
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(E.7.2)

Subject to (E.1.2)-(E.1.18)

In the risk-management formulation, the objective is updated in (E.7.1). Notice that the first
term is the system production costs and that is the same compared to the stochastic model in (E.1.1).
The difference is in the second term in the objective function. In (E.1.1), the cost/negative profit
of the PSHU in the intervals after the LAC is weighted by the probability of each scenario.
Therefore, the model presented in (E.1.1) is a risk-neutral formulation. However, in (E.7.1), the
cost of each PSH plant r is represented by variables w,.. The cost variable is then constrained in
(E.7.2). The right-hand side of (E.7.2) is the negative profit of the PSHU in the RT market after
the LAC intervals in each scenario. The RT profit is calculated as RT LMP forecast at each

scenario LMPgtf;,'t times with gen/pump difference between its solution in RT market in a scenario

(a5 — qb'r?) and the solution in the DA market (qJ™"* — gby™""*). Constraint (E.7.2)

limits each cost variable w, to be the cumulative cost of the PSHU from the first interval after
LAC t,,q + 1 to the end of the day T in the worst-case scenario (that is the largest cost to the
system or the lowest profits to the PSHU) based on the probabilistic LMP forecast. Therefore,
since the worst-case PSHU cost is minimized in the objective, it is a robust or risk averse
formulation. The rest of the stochastic PSHU model remained unchanged from (E.1.2)-(E.1.18).

With the proposed risk-management formulation in (E.7.1) and (E.7.2), the solution for a
PSHU will only deviate from the DA solution if it is profitable indicated by every post-LAC price
scenario. Therefore, (E.7.1) and (E.7.2) address the concern of profit loss in the RT market from
the industry advisors. As in Section IV.E.1, it is acknowledged that, strictly speaking, causality is
violated by the implicit assumption that the generation and pumping values can be chosen for all
intervals in a given scenario.

IV.E.8 LAC simulation Case Studies and Preliminary Results

The HIPPO based LAC simulation platform is introduced in section IV.B.1. In this section, we
first introduce the input data preparation for the LAC simulation. Then, a case study with four
models will be presented. The four models include the deterministic PSHLAC model described in
section 1V.B.2, the stochastic PSH LAC model described in section IV.E.1, the risk management
formulation described in section IV.E.7, and a perfect case benchmark model that we will
introduce in this section.

Simulation Setup

It is necessary to update the real-time (RT) system condition in the LAC rolling window
simulation. However, there were only day-ahead (DA) market cases available to HIPPO since it
was initially developed for studies in a DA market. Therefore, a first task is to prepare the real-
time system condition data as input to the LAC simulation.

To ensure that the RT data is valid and consistent with the DA system, we develop the real-

time system condition data in steps. For a large system like the MISO system with a large set of
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input data, the security constrained unit commitment (SCUC) model is very large, and the model
can easily become infeasible due to inconsistent input data. Because the real-time system data we
are collecting hasn’t been used either in the HIPPO software or for the purpose of LAC rolling
window simulation, it could be very difficult to detect the cause of model infeasibility and to
troubleshoot if we update all different system input data at once. In contrast, taking a step at a time
to update the real-time system data allows us to collect feedback from the model and make
adjustment if it is necessary.

Since RT demand is one of the data sets that distinctly represents a RT case, we first prepared
RT demand data as input to the LAC rolling window simulation. We took advantage of existing
software named ODC that is internally used in MISO for RT market benchmark purpose. Because
ODC also takes RT MISO system data as input, we can take the RT system input data from a report
that is generated by ODC and translate the data into a form that HIPPO can read. After a successful
simulation run with the RT demand, we prepared and input the RT generator data to the LAC
simulation. The RT generator data is another set of input that is important to represent the system
conditions. In a similar way, the existing software ODC is used to prepare the RT generator input
for our HIPPO based LAC simulation. It is noted that some approximations are made to clean the
input data and resolve some inconsistency and to attain feasible solutions. As a result, only a part
of the generator data has been successfully passed to feed in the HIPPO based LAC simulation.

A day in the existing DA case library is first picked, and then the RT demand and generator
data for the same day are taken from the report from ODC and they are prepared for input to HIPPO.
At the current stage of the study, we decide to first keep the hourly interval study to keep the
simulation simpler and we can extend to 15-minute intervals later. Therefore, the RT demand and
generator data are both prepared in hourly intervals. So far, we have updated the RT demand and
generator data and kept the rest of the DA input data in the LAC simulation. Similarly, the other
system settings are kept consistent with the way it is designed for the DA market. For example,
the virtual bids and dispatchable demand are kept in the current LAC simulation to keep the
problem feasible. We continue to refine and update the RT data on generators and other system
conditions to bring the simulation closer to a realistic LAC.

Two PSH plants are included in this study. The parameters of the units are matched with
production data.

Case Studies

First, a day is picked from the HIPPO DA case library and the DA case is solved in HIPPO.
Then the RT demand and generator input data for the same day is prepared for the LAC rolling
window simulation in HIPPO. Finally, the historical RT LMP data for the same day is attained and
both the single point and probability LMP forecast is generated by the methodology described in
sections IV.E.2 and 1V.E.3. Notice that only the most important but partial of the RT system data
is prepared and read into the LAC while the LMP forecasts are made based on realistic historical
LMP data. Therefore, there is a gap between the partial RT system represented in the LAC and the
RT LMP forecast that is made from the realistic RT system data. This gap will be reduced as we
continue to refine the RT input data for the LAC simulation.

Case studies are developed with in total four models. Three models were described in the
previous sections, and they are the deterministic PSH LAC model (in section 1V.B.2), the risk-
neutral stochastic PSH LAC model (in section IV.E.1) and the risk-averse stochastic PSH LAC
model (in section IV.E.7). In addition, a perfect forecast model is developed to set the benchmark
and gauge the maximum benefits of incorporating a PSHU in the LAC problem.
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DA Solution and Profit
The DA case is solved before the LAC simulation starts. The DA solutions are used in the risk
averse stochastic PSH LAC model (E.7.2). The DA profits can be calculated in (E.8.1)

Profitsg* = X LMPof + (qg¢ """ — qg¢™™"") Vg € Gysn (E8.1)

where LMPP# is the DA locational marginal price (LMP) for the PSHU at interval ¢, 7™ and

g,t
q’g’fémp'DA are the generation and the pump load of the PSHU g at interval ¢ in the DA solutions.

Perfect Model

In the perfect model, the LAC is solved in a series of rolling windows such that each of them
contains three hourly intervals. The generators other than the PSHUs are optimized within the
LAC three-hour window. The LAC window is solved and slides forward one hour at a time. The
solution of the first interval inside each LAC is implemented and saved to be fixed in the following
windows.

The PSHU is fully optimized in the horizon that starts at the beginning of each LAC window
and ends at the last interval of the day. That the PSHU is fully optimized means all the unit
constraints are fully represented in the system wide optimization including the unit output limits,
ramp limits and limits on the state of charge (SOC) etc. The end of the day SOC is set to meet the
end of the day target in the DA solution. Notice that we don’t incorporate the price forecast in this
perfect case, instead, we assume the after the fact RT system conditions (the RT demand and
generator conditions) are known to PSHUs when each LAC is solved. With the full awareness to
the real time market system condition, the PSHU can be put to the best position by the optimization.
Therefore, in comparison to cases where price forecast is used to guide the PSHU’s output in a
LAC, the solution from a perfect case should guarantee the lowest system objective value and the
highest profits for a PSHU.

The system objective value is stored after the last LAC window has been solved. If the PSHU
deviates from its DA position in LAC, the PSHU would gain (or lose) profits from the RT market.
Therefore, the profits for the benchmark are composed by a DA component and a RT component
as follows.

. ,DA ,DA ,LAC ,LAC
Profits}\® = T1, LMPR « (a3 = g™ + LMPJT « [(qf4° - qpim %) -
,DA ,DA
(qg,in - qump )] ,Vg € Gpsh
(E.8.2)

where LMPRT is the realized RT LMP for the PSHU at interval ¢, ¢J¢™*"“and ¢b'y™*“¢ are the

generation and pump load of the PSHU at interval ¢ in the LAC solution, respectively. Notice that
the first term on the right-hand side of (E.8.2) is the same as the right-hand side of (E.8.1) that
represents the DA profits for the unit. The second term on the right-hand side of (E.8.2) is the RT
profits for the PSHU and that is the RT LMP times with the dispatch difference between the unit
net output in the LAC and the unit net output in the DA.

Some Other System Conditions in LAC
Except for a few constraints summarized in Table E.8.1, the unit commitment and economic

dispatch model for the rest of the system remains unchanged in each LAC simulation. The
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transmission constraint is only considered inside each LAC window. Only in the Perfect Case, the
PSHU is included in the power balance constraint for every interval starting from the beginning of
the LAC until the end of the day. For the three models that uses price forecast, the PSHU is
included in the power balance constraint only inside each LAC window. The system reserve
requirement is only considered inside each LAC window. The ramp rate for the rest of the units
(other than the PSHUS) in the system are modeled only inside each LAC window as well.

Table E.8.1. System Conditions Settings in Each Model

Transmission Load Balance Reserve (Reg, Ramp Rate for the
Constraint Spin, Supp) Rest of the Units
Perfect Case Only in LAC PSH is Counted Only in LAC Only in LAC
Tl T
Deterministic PSH | Only in LAC PSH is Counted Only in LAC Only in LAC
Only in LAC
Risk-neutral Only in LAC PSH is Counted Only in LAC Only in LAC
Stochastic PSH Only in LAC
Risk-averse Only in LAC PSH is Counted Only in LAC Only in LAC
Stochastic PSH Only in LAC

Preliminary Simulation Results

A series of three hour LAC windows are solved sequentially. The simulation ends at the last
LAC window that starts from 22" hourly interval and contains the last three hours of the day. (In
actual practice, the LAC would also be performed for the window starting at the 23" and 24™"
hourly interval and would include data relevant to the next day; however, we did not have that next
day DA and RT data available, so we used the LAC window starting at the 22" hour to set the RT
decisions for all three hours.) After in total twenty-two LAC problems been sequentially solved
for all models, the system objective values and the unit profits are collected and compared in Table
E.8.2 and Table E.8.3 respectively.

Table E.8.2. LAC System Objective Results.

Change compared to | Change in Percentage compared to
the Perfect Case the Perfect Case

Deterministic PSH +21959.2 +7.1%

Risk-neutral Stochastic PSH | +10374.9 +3.3%

Risk-averse Stochastic PSH +4221.5 +1.3%

As described earlier, the Perfect Case should give the best system objective. Therefore, the
objective value of the Perfect Case is set as the benchmark. The objective of the other three models
are compared and the difference (increase and percentage) are listed in Table E.8.2. It is observed
that the deterministic PSH model using the single point forecast gives the highest (worst) objective.
With the probabilistic price forecast applied, the risk-neutral stochastic PSH improves the
objective compared to the deterministic PSH model. Furthermore, with the robust risk
management formulation applied to the stochastic PSH model, the objective is improved further
and is close to the result from the Perfect Case. Notice that only part of the RT system data is
represented in the LAC simulation, therefore the LMP forecast that is based on the actual RT
system may differ significantly from the represented RT system in the LAC. It makes sense that
the risk-averse PSH model does better than the risk-neutral model when the LMP forecast is
relatively “off”. However, in the case when the represented RT system is closer to the actual system
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that the LMP forecast is based on, we expect that a good LMP forecast would help the risk-neutral
PSH model to achieve a better objective than the risk-averse PSH model. We will update the results
in more case studies in a later paper.

Table E.8.3. PSHU Profits Results.

| RT Profits [$]

Perfect Case

PSHU1 1484

PSHU?2 -735
Deterministic PSH

PSHU1 -7581

PSHU?2 -10653
Risk-neutral Stochastic PSH

PSHU1 -2387

PSHU?2 -5454
Risk-averse Stochastic PSH

PSHU1 610

PSHU?2 -1894

The profits for the two PSH plants are listed in Table E.8.3, the DA profits are calculated by
(E.8.1) and the RT profits are calculated by (E.8.2). The RT profits for each model are listed in the
second column. In the perfect case, PSHU1 gains some RT profits while PSHU2 loses a small
amount of profit in the RT market. Notice that both PSHU1 and PSHU2 are connected at the same
node, multiple optimal solutions exist, and so it is likely that there is a solution where both units
make a small amount of positive RT profits. It is observed that even in the Perfect Case, the PSH
deviation from the DA solution is not significant and results in a small profit gain in the RT market.
This is largely due to the fact that only part of the RT system data is represented in the LAC
simulation such that the system condition in LAC is not too much different to the DA.

Among the three proposed models, the Risk-averse Stochastic PSH model gives the best RT
profits. The deterministic PSH model results in worse profits due to RT dispatch for both units.
That is partly because the model considers only the single point LMP forecast. When the
probabilistic price forecast with total 50 scenarios is applied in the Risk-neutral Stochastic PSH
model, both units still lose profits in the RT market but the situation is significantly relieved
compared to the result from the deterministic model. In addition, after the robust risk-management
formulation is applied in the risk-averse stochastic PSH model, one of the PSHUs has a small
negative RT profits, and the other PSHU gains a small amount of positive RT profit. Notice that
the margin of the RT profits is very small shown in the results of the Perfect Case, and the results
from the Risk-averse stochastic PSH model is very close to the Perfect Case.

The unit dispatch solutions for plant PSHU1 and PSHU2 from the simulation with the risk-
averse stochastic model are plotted in Fig. E.8.1 and Fig. E.8.2. The PSHU outputs are indicated
by the solid lines and they align with the units on the left of the figure. The LMP are indicated by
the dashed lines and they align with the units on the right of the figure. The DA solutions are in
blue and LAC solutions are in red. For both PSHU plants, most of the LAC solutions are either the
same (where the red lines overlap with the blue lines) or very close to the DA solution.

The most significant differences between the LAC and DA solutions for both PSHU are
highlighted in the dashed rectangles in Figs. E.8.1 and E.8.2 and they can be summarized as
follows. First of all, compared to the DA results, the ramp of the morning peak in the LAC are
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slower and they can be observed by the comparison of LMPs in DA and LAC. This change from
DA to LAC is reflected in the LAC solution. In the LAC solution, the generation of both units at
interval 5 are less than the DA solution as highlighted in the first dashed rectangle from left to
right in both figures. Second, in the LAC solution, both units generate more in the morning peak
hour at interval 6 shown in the second dashed rectangle from left to right in both figures. Third,
both units have some activities in the mid-day (gen and pump for PSHU1 and pump for PSHUZ2)
in the LAC while they are kept offline in the DA solution as highlighted in the third dashed
rectangle from left to right in both figures.
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Fig. E.8.1 DA and LAC Solution for PSHU1. The dispatch differences between the DA and LAC
solution are highlighted in the black dashed rectangles. The changes in LAC dispatch solutions
reflect that the PSHU is adapted to the updated LAC LMP shown in the dashed red lines.
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Fig. E.8.2 DA and LAC Solution for PSHU2. The dispatch differences between the DA and LAC
solution are highlighted in the black dashed rectangles. The changes in LAC dispatch solutions
reflect that the PSHU is adapted to the updated LAC LMP shown in the dashed red lines.
Compared to the DA solution, the first and second deviations at both units in the LAC solution
show cases where the probabilistic price forecast accurately captured the changed system
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conditions in RT and helped to take the right decision for both units; that is, to generate less when
the morning peak ramp is slower and generate more in the peak hour. Those actions would
contribute to the improved system objective and the increased RT profits at the units. Compared
to the DA solution, the third deviations in the LAC solution for both units don’t perfectly align
with the RT system condition indicated by the LAC LMP. That indicates the probabilistic LMP
forecasts in the corresponding LAC windows consistently deviate from the realized LAC LMP or
that another issue, such as the size of the MIP relative gap, drive the outcomes in this case.

In summary, with the risk-neutral stochastic PSH model, the dispatch of the PSHU in the LAC
simulation deviates from the DA solution as designed. The risk-neutral stochastic PSH model helps
to bring the system objective close to the perfect case and avoid large negative RT profits for one
PSHU and achieved a small positive RT profits for the other PSHU. With the current RT system
data in the LAC simulation, the DA system condition and the RT system condition in LAC are
relatively close. Therefore, the value of the adjustment on the PSHU dispatch in LAC is marginal
as indicated by the results from the perfect case. We plan to continuously refine the RT data in
LAC simulations that would reduce the gap between the model in the LAC simulation and the
realistic system condition. In addition, more cases where the DA and RT system conditions are
significantly different will be studied. We will update those results in a later paper that will be
submitted for a journal publication.
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IV.F. Accomplishments Toward Milestone 6.1

Milestone 6.1: Establish deterministic PSH optimization model for economic planning while
reflecting market optimization.

Accomplishments Summary: (1) In section 1V.C, the team established a deterministic PSH
optimization model for economic planning while reflecting DA and RT market optimizations in a
MISO system using PLEXOS. Based on this, the team establishes a PSH optimization model with
market optimizations enhancements (e.g., incorporating price forecast and MWh reserve). Tests
are conducted in revised planning models for a MISO planning case. (2) MWh reserve modeling
was included for MISO system using PLEXOS. Numerical simulation shows the benefit of
modeling MWh reserve in MISO planning model is to make sure the SOC would not violate its
limit given certain reserve deployment assumptions. (3) A value-of-water based approach was
used for the RT operation of PSH units to exploit the flexibility of storage resources. Test results
show defining a value-of-water function for RT can enable the flexibility of PSH and reduce the
overall system cost in the RT market. (4) Furthermore, we explored the benefit of MWh reserve
in real-time rolling horizon optimization. Combining with a value-of-water based rolling horizon
framework, we analyzed the benefit of withholding energy in a test system.
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IV.F.1 Incorporating MWh-reserve for PSH in planning studies

MWh-reserve modeling

Based on the MWh reserve modeling method in section IV.D, a MWh reserve formulation is
implemented in PLEXOS. We assume PSH units can provide both upward and downward reserve
in the generating mode, and zero reserve in the pumping mode due to the fixed-power pump. As
shown in (F.1.1), the lower limit of the upper reservoir is improved with the consideration of
possible reserve deployments. The storage should withhold a certain amount of energy to avoid
SOC lower limit violation in time period t, If reserve was deployed k time periods before.

7 4 0 -h;rrs:'i’;__flii <e., YreR, VLT (F.1.1)

We first evaluate the value of MWh reserve modeling in a small test system. As shown in Fig.
F.1.1, the three bus system consists of three generators and one PSH unit. To test two different
cases, we designed a low load profile for CASE I, and a high load profile for CASE Il in Fig. F.1.2
(@) and Fig. F.1.2 (b), respectively. The SOC schedule results for both cases are shown in Fig.
F.1.3. As indicated, in CASE I, the SOC curve from the test with MWh reserve modeling is higher
than that from the test without MWh reserve modeling. Hense, MWh reserve modeling can
withhold some water to avoid the reservoir from violating its lower limit when there exists reserve
deployment. However, in CASE Il the two SOC curves are exactly the same. As shown in Table
F.1.1, the cleared reserve of PSH turns to zero in CASE Il with MWh reserve. Thus, the SOC
solution satisfies (F.1.1) when the cleared reserve is zero. Note the key feature of CASE | is that
other online conventional generators cannot fully satisfy the system reserve requirement, which is
100 MW. So, the reserve of PSH would be cleared even with the price of withholding more water.
However, as the load increase in CASE I, all three generators are online, and the total available
capacity of them can cover the system reserve requirement. Then the reserves of other generators
are preferred to be deployed than the reserve of PSH.

Through this comparative test, we found when MWh reserve is modeled: 1) PSH might
withhold some extra water if the other generator cannot fully cover the system reserve requirement,
like CASE I. 2) the reserve of PSH might not be cleared if other generators cannot fully cover the
system reserve requirement, like CASE II.

25~100MW (cheap) 25™100MW (medium)
61 —
Line limit 113”:1GDMW
100nW .
(expensive)
E L
5~40MW /5™~ 40MW

Fig. F.1.1. A 3-bus test system
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Fig. F.1.2 load profiles for two test cases
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Fig. F.1.3 Scheduled SOC of PSH. MWHh reserve modeling can withhold some water to avoid the
reservoir from violating its lower limit when there exists reserve deployment.

Table F.1.1 cleared reserve of each unit in CASE Il with MWh reserve

Tir?ﬁopfjer;iod 1 2 3 4 5 6

G(ll\;l‘\*lvsehr;’e 0.00 0.00 0.00 0.00 0.00 0.00
G(Zl\mer:;’e 68.33 25.00 25.00 25.00 25.00 25.00
G?,\mer:;’e 31.67 75.00 75.00 75.00 75.00 75.00
PSE"MKNGSS)”’G 0.00 0.00 0.00 0.00 0.00 0.00

Test on the revised MISO planning model

The MWh reserve is implemented in a MISO planning model, which is a portion of the
interconnection seam study model. The detailed implementation of the MWh reserve is shown in
(F.1.2), wherein a four-interval look-back formulation is employed as an example. In our test, the
SOC is not explicitly daily recycled. As shown in (F.1.3), only the lower bound of SOC is limited
to enable the capability of lifting the SOC curve up.
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The testing results of the cases without and with MWHh reserve are shown in Fig. F.1.4 and Fig.
F.1.5, respectively. In the test with MWh reserve, the MWh reserve constraint for the ending hour
does bind, but the SOC curve doesn’t change, which is similar to CASE Il in the previous
subsection. Also, we noticed that the reserve of PSH at hour 21 changes to 0 after the MWh reserve
modeling is included. As the reserves of other generators are sufficient to cover the system reserve
requirement in hours 21-24, if reserve can be offered by other generators, the optimal solution
tends not to clear PSH’s reserve.

Although the scheduled SOC curve doesn’t change, the inclusion of MWh reserve modeling
does change the cleared reserve of PSH. For the solution from the without MWh reserve test,
suppose the reserve of PSH is deployed in the time period 21, the ending SOC would violate its
lower limit. However, with MWh reserve modeling, it would not happen as the reserve of PSH is
not cleared in the time period 21. The benefit of modeling MWh reserve in MISO planning model
is to make sure the SOC would not violate its limit given certain reserve deployment assumptions.
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Fig. F.1.4 simulation result of a realistic PSH station without MWh reserve modeling
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Fig. F.1.5 simulation result of a realistic PSH station with MWHh reserve modeling

1V.F.2 Incorporating real-time value-of-water for PSH in planning studies

Real-time value-of-water modeling
1) current practice: following the DA schedule

Currently, in RT operations, PSH owners attempt to follow the DA schedule as close as
possible. As shown in Fig. F.2.1, actual DA and RT schedule of a realistic PSH from in a 15-day
period also verifies the aforementioned fact from a long-term perspective. This PSH RT operation
strategy works well for power systems with relatively low renewable energy penetration, however,
restricts the flexibility of PSH in RT operations when the DA forecast error is large. In our
numerical simulations, following the DA generate and pump schedule in RT is regarded as the
current practice of PSH RT operation strategy.
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Fig. F.2.1 Actual DA and RT schedule of a realistic PSH. RT operations. RT schedule largely
follows the DA schedule.

2) proposed approach: define an appropriate value-of-water function

A value-of-water based rolling horizon DA/RT interleaved framework is developed to reflect
the impact of future prices in guiding short-term PSH optimization.

In RT operations, ISOs usually optimize a single time period market clear problem every 5
minutes. Lack of look-ahead ability brings a significant challenge for energy-limited resources if
they don’t follow the DA schedule. The look-ahead schedule is a good option to consider the future
possibilities for the current decision, however, it suffers from heavy computational burdens for
practical large-scale power systems to clear the market in less than 5 minutes.

To this end, value-of-water based approach is a promising technical solution to keep the
optimization time horizon of market clear problem as one period, while considering the forecast
for the future. The value of water (VOW) is an expectation of the water cost in the upper reservoir
of PSH.

As investigated in section IV.B, the DA storage shadow price, i.e. the dual variable for the
SOC constraint of the upper reservoir, can be used to estimate it for perfect DA prediction and
strongly convex cases. In reality, the market model is generally non-convex. In the planning model,
we use the DA storage shadow price as a predictive indicator for the future water price, as shown
in (F.2.1).

VoW, =~ )755“ (F.2.1)

Test the Revised MISO Planning Model

The DA/RT interleaved method and the value-of-water based PSH RT operation strategy are
implemented in the Seams model using PLEXOS. The revised model is tested to compare different
operation strategies and analyze the value of the interleaved simulation method.

1) flexibility advantage of the value-of-water based PSH RT operation strategy

In our simulation for the current practice of RT operation strategy, PSH units follow their DA
generate and pump schedule. As shown in Fig. F.2.2, in RT, MW output and hour-end SOC of
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PSH units cannot deviate from their DA schedules. Suppose RT system net-load is far from the
DA forecasted value, the system needs the flexibility from PSH to follow the RT net-load, and
meanwhile, PSH owner can earn more to follow the price signal and deviate from the DA schedule.
In these scenarios, following DA schedule can restrict the flexibility of PSH.

For the proposed value-of-water based approach, VOW is estimated by DA storage shadow
price. We first apply VOW for the generate mode, and remain pump schedule following that from
DA. As indicated in Fig. F.2.3, PSH can generate even when it is not pre-scheduled in DA. The
flexibility of PSH units can be exploited when it is needed.
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Fig. F.2.2 Simulated DA and RT dispatch of a realistic PSH (RT follows DA schedule approach)
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Fig. F.2.3 Simulated DA and RT dispatch of a realistic PSH (proposed value-of-water based
approach where RT generation uses VOW, RT pump follows DA). PSH can generate in RT even
when it is not pre-scheduled in DA in order to exploit the flexibility of PSH units.

For different PSH RT operation strategies and different fluctuation levels, RT overall system
costs are compared. As indicated in Table F.2.1, in contrast to the current practice (i.e., follow DA
schedule), the preliminary result shows that defining a value-of-water function for RT can enable
the flexibility of PSH. This can reduce the overall system cost for the RT market. Longer term
simulation results are shown later in this report.

Fig. F.2.1 RT cost comparison for different PSH RT operation strategies (2-day result)

] trend only with error 0 = 1% | with error o = 5%
PSH RT operation strategy 3 3 3
(109 (10 %) (10 %)
follows DA schedule 226,388.020 226,313.814 227,718.326
gen uses VOW, pump follows DA 225,816.761 225,936.243 227,122.333
VVOW for both gen and pump 225,794.180 - -

2) value of the proposed interleaved simulation

A case with larger intra-hour prediction errors in DA, i.e., with a 5% standard deviation in
synthesizing the RT load, is also tested. As shown in Fig. F.2.4, PSH units generate more in RT to
flexibly address the uncertainty. The interleaved simulation can reflect DA/RT deviation that is
brought by DA prediction error. In addition, it can be observed that the initial SOC of the second
day starts from the ending SOC of the first day, which indicates the interleaved simulation can
reflect the SOC interaction between the RT market of the current day and the DA market of the
next day.
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Fig. F.2.4 Simulated DA and RT dispatch of a realistic PSH (larger DA load prediction error, RT
generation uses VOW, RT pump follows DA). The interleaved simulation can reflect the SOC
interaction between the RT market of the current day and the DA market of the next day.

3) long term evaluation

We further conducted simulation for longer time periods. With a monthly simulation for each
quarter, RT overall system costs are compared for different PSH RT operation strategies. As
indicated in Table F.2.2, in contrast to the current practice (i.e., follow DA schedule), the test result
shows that defining a value-of-water function for RT can enable the flexibility of PSH. This can
reduce the overall system cost for the RT market, with a monthly average of 0.22% reduction. As
the only difference between the ‘follow DA schedule’ and ‘VOW?’ is the RT dispatch approaches
for PSH, the cost benefits are thus from better utilizations of PSHUs’ flexibility, demonstrating
the value of better optimized PSH.

Table F.2.2. RT cost comparison for different PSH RT operation strategies Using DA/RT
Interleaved Simulation on MISO planning model for 2024 (with error ¢ = 5%)

PSH RT operation | January 2024 | April 2024 | July202% | Ogqober 2024 (10°S)
strategy (10 $) (10 $) (10 $)
Follows DA 4,303,959 3,161,008 6,752,143 3,424,229
schedule
VOW 4,275,751 3,157,345 6,750,693 3,420,509
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Cost Reduction

(€) 28,208 3,663 1,450 3,630
Cost Reduction

(%) 0.66% 0.12% 0.02% 0.11%

IV.F.3 Exploring the benefit of MWh reserve in real-time rolling horizon
optimization
In this subsection, we focus on uncertainties, and try to find the benefits of MWh reserve

modeling in rolling horizon optimization. In addition to physical violations, we aim to investigate
the potential cost increase or revenue decrease that is caused by running out of water.

In RT operation, dualizing the SOC constraint was proposed in previous tasks to decouple the
temporal coupling in the SOC constraints. The value of water can be estimated by the DA storage
shadow price, i.e., VOW;, ~ $22. This works well for perfect prediction and strongly convex
cases. If uncertainties are further considered in RT, the assumption of perfect prediction does not
hold. For testing convenience, we keep the strongly convex assumption (simplified linear
constraints and quadratic objectives for problems with both long and short horizons). The 1SO
clear and PSH owner strategic bid problems that do not consider MWh reserve constraints are
shown in (F.3.1) and (F.3.2), respectively. For perfect prediction, adding MWh reserve constraints
(F.3.3) would have I1SO cost non-decreasing and PSH owners’ profit non-increasing. We then
analyze cases with uncertainties in a small illustrative case.

min S 1)
ieGUH
s.t. P, <pi; <P, YieG, Vte T
PP <p <P, VieH, VeT
Crp=€rt—1— Y Pit, WER VLET (F.3.1)
=
E, <e:<E,, VreR, VLET
Z gip = Dy, Vie T
ieGUH
max  A- Y pie— > f(pit)
iEH” iEH” t

~PP<p <P VieH, W

F.3.2
€rt = €rt—1 — Z Pit, Vi ( )
iEH”
E.<e, <E, WV
I8, < ery, VreR, VieT (F,3,3)

The small illustrative system contains one PSH with 20MW and 40MWh installed capacity,
and three generators as listed in Table F.3.1. The predicted load (or net-load) profile is assumed as
shown in Fig. F.3.1. For a perfect prediction case, the rolling-horizon optimization result matches
that from long-horizon optimization (we don’t elaborate on the result as it has been shown in
previous sections).

Table F.3.1 system parameter

68



unit Pmax (MW) | b ($/MW) | a($/MW?)
Gl 100 8.5 0.002
G2 100 9 0.001
G3 30 16 0.0005
250
. -
§ 150
E 00 —
50
0 ‘
1 2 3 4 5“ Hourﬁ 7 8 9 10

Fig. F.3.1 predicted load profile

We consider the load/net-load uncertainty. Although the load difference is small and LMP
patterns are similar (not perfect but good load/LMP predictions), the PSH rolling-horizon schedule
misses the highest price because of running out of the water, as shown in Fig. F.3.2. In our rolling
horizon dispatch, the value of water from even a very small inaccurate prediction (in our case,
close net-load and very similar LMP pattern) might not always correctly guide the PSH schedule.
Additional floor room might be needed to avoid PSH from running out of the water before the high
price.
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(c) (d)

Fig. F.3.2 load/net-load uncertainty test without MWh reserve (a) load; (b) LMP; (c) SOC price;
(d) SOC. The PSH rolling-horizon schedule misses the highest price because of running out of
the water.

As the LMP patterns are similar, in this case, we used a simple SOC lower bound strategy,
which sets a floor level around the long-horizon SOC solution, as shown in (F.3.4). The main
purpose is to check if modeling floor room makes sense in rolling horizon RT dispatch with VOW
defined. Considering MWh reserve, as shown in Fig. F.3.3, the PSH doesn’t miss the highest price
at hour 7. For rolling horizon RT dispatch, 1ISO cost can be reduced from $10943 to $10801 with
the MWh reserve modeling. As the PSH owner, catches the high price, a profit increase can be
expected.

min { ™" &t — e}

<e (F.3.4)

ideal long horizon (using actual load)
rolling horizon

N
o

SOC / MWh
N w
S S

o
T

t/ Hour

Fig. F.3.3 load/net-load uncertainty test with MWh reserve. The PSH doesn’t miss the highest
price at hour 7.

Although this the benefit analysis conclusion may not necessarily hold for general uncertainty
realizations, it is sufficient to reflect the value of withholding water in particular inaccurate-
prediction scenarios.

IVV.G. Accomplishments Toward Milestone 8.1

Milestone 8.1: Establish prototype stochastic SCUC tool equipped with fast computation
capability that can accurately determine MW and MWh reserve requirements of systems against
uncertainties.

Accomplishments Summary: (1) The team has built a stochastic model to incorporate uncertainty
SOC considerations in the day-ahead FRAC model to address the potential SOC boundary
violation issue in real-time ED, as a result of RT uncertainties. (2) By studying MISO’s historical
data, the team has introduced new parameters to define scenarios describing DA to RT
decrepedancy, which are used to cast a computationally-tractable stochastic model for determining
MWh reserve requirements of systems. Numerical results show that including energy reserve
secure constraints can improve system flexibility against uncertainties and contingencies, and
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meanwhile does not necessarily reduce profits of PSH plants as evaluated by new DA and RT
LMPs after including the uncertainty SOC constraints. (3) The team has used ADP to learn SOC-
price curves for evaluating the value of water of PSHs outside a finite time horizon. The learned
SOC-price curves could be used in the FLAC and LAC models to optimize the SOC levels at the
end of the final time horizon, without explicitly simulating uncertainties of future time periods.
Numerical results on a one-hour look-ahead PSH profit maximization problem show that the SOC-
price curves learned out of the ADP approach could derive better solutions than a rolling based
stochastic model while effectively avoiding the needs to explicitly simulate/forecast uncertainties
of future time periods.

1VV.G.1 Stochastic SOC Headroom and Floor Room of PSHs

This subsection describes the proposed stochastic model to incorporate uncertainty SOC
considerations in the DA FRAC model. Specifically, multiple selective historical scenarios are
incorporated in the DA FRAC model via chance constraints, in order to leverage solution
robustness and economics against potential uncertainties of SOC deployment in the RT market.

A SOC limitation constraint that considers headroom and floor room can be written as:

SOC'B + H}B < soc, < SOCYE — HUB (G.1.1)
where soc, represents the SOC at hour t; SOCLE and SOCUB are respectively its lower and upper
bounds; headroom and floor room HXZ and HY? are given values that are learned from history
data. All variables are denoted by lower case letters and all parameters are denoted by upper case
letters. Our goal is to consider uncertainties within this constraint by adopting a stochastic
formulation. Indeed, is would be computationally challenging if directly considering variable soc;
as stochastic, because it is explicitly related with pumping and generating dispatch variables of the
PSH (denoted as variable p; and g;). If soc; is defined as a stochastic variable, p; and g, will be
stochastic variables as well; and since these variables are involved in the power balance constraint
of FRAC, the uncertainties will finally spread to the entire FRAC model, resulting in extremely
heavy computational burden that is not affordable for the stringent FRAC computational time
requirement. Alternatively, manipulating HX? and HYZ may be a feasible option to consider
uncertainties. In the following, we consider H:Z and HY® as variables and thereafter rewrite them
as htB and hYB.

To begin with, a new parameter named “deviation rate” is introduced, which is defined as the
ratio of the actual SOC deviation to the maximum possible deviation. The maximum possible
deviation will be determined by the PSH’s lower power bound (denoted as PLE for pumping and
GLB for generating) and power upper bound (denoted as PYZ for pumping and G U2 for generating)
as well as its current dispatch. For example, if a PSH is scheduled in DA at 600MW and its power
lower/upper bound is 400MW/800MW, the maximum possible up-deviation (i.e., generating more)
is 200MW (i.e., 800MW-600MW), while the maximum possible down-deviation (i.e., generating
less) is also 200MW (i.e., 600MW-400MW). With this, if the PSH is dispatched at 700MW in RT,
the up-deviation rate can be calculated as (700-600)/200=0.5; While if the PSH is dispatched at
550MW, the down-deviation rate can be calculated as (600-550)/200=0.25.

We use four parameters RSP, REPN RPVP, and R”P™ to denote the up-deviation rate under
generating, down-deviation rate under generating, up-deviation rate under pumping, and down-

deviation rate under pumping. We further add a subscript s to these variables, which gives R%,"?

st
RPN REYT and RLP™, to indicate generated deviation rates under a certain historical scenario s,
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In fact, SOC deviations can be induced in two occasions: One is the dispatch discrepancy
between DA and RT, but with the same generating/pumping mode; The other is
generating/pumping mode switching (e.g., the PSH is scheduled Off in DA, but generates in RT
at a certain time interval). The deviation rate is designed to measure first occasion. To deal with
the second occasion, we further define four possible mode switching types from DA to RT:

» pumping to Off (IF~9)

= generating to Off (I¢~9)

= Off to pumping (I7~F)

= Off to generating (I1°2~%)

Mode switching directly from generating to pumping or from pumping to generating has not been
seen in the MISO’s historical operation data, thus, not considered. In the same way, we add a
subscript s to these parameters to indicate generated mode switching under a certain historical
scenario s.

Scenario generation for Stochastic SOC Headroom and Floor Room

We borrow the idea of stochastic production simulation (simulating both unit output and unit
status) and propose a “dual track” scenario generation procedure. On one track, a scenario will
have deviation rates, both up- and down-deviation rates for pumping and generating, generated for
each time interval; On the other track, this scenario may also have mode switching for each hour.
In a scenario, the mode switching at a certain time interval can be none (i.e., no mode switching
happens from DA to RT) or one of the above four possible mode switching types exclusively.

Formulation of Stochastic SOC Constraints

The basic idea of assessing the possible deviation under each scenario is that if a mode
switching exists at a certain time interval and is triggered by the schedule under this scenario, its
resulting SOC deviation will be counted first; otherwise, only dispatch deviation will be counted.
The floor room under a certain scenario s can be formulated as:
hé’}? — GUP(GUB _gt) + RPDN(pt — pLB.. uf) + GUB . Iso,t_G(l _ut _ut) +pg - 151:—0’

(G.1.2)

where u¢ and u! are binary mode indicators for generating and pumping respectively.

The four terms of h% are explained as follows:

e First term: scheduled as generating in both DA and RT, but generates more in RT,;

e Second term: scheduled as pumping in both DA and RT, but pumps less in RT,;

e Third term: scheduled as OFF in DA, but starts to generate in RT;

e Fourth term: scheduled as pumping in DA, but quits pumping in RT.

Equation (G.1.2) can be understood as follows:

e If no mode switching occurs (127 ¢=0 and I °=0) and the PSH is scheduled as generating
at time t, namely uf=1. The first term becomes RZ,”” - (GVE — g,), which calculates the
dispatch up-deviation (extra generation); While all other three terms will be 0.

e If no mode switching occurs (I12; =0 and I£7°=0) and the PSH is scheduled as pumping

at time ¢, namely uf'=1. The second term becomes R.;"™ - (p, — PX®), which calculates
the dispatch down-deviation (short in pumping); While all other three terms will be 0.
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o If1276=1, but the PSH is scheduled as pumping or generating (i.e., not OFF), the mode
switching will not be triggered, and the third term is cancelled out as 0. On the other hand,
when the PSH is scheduled OFF (i.e., uf =0 and u? =0), the third term is triggered and equal
to GYB, indicating that the PSH starts to generate at the max in RT. GY represents the
most conservative situation and it may be set as other values to mitigate the
conservativeness.

e If [270=1, but the PSH is scheduled other than pumping, the mode switching is not
triggered and the fourth term is O, since p, will be 0. When the PSH is scheduled as
pumping, the fourth term is equal to p;, indicating that the PSH quits pumping in RT.

It is worthwhile to emphasize that I2; ¢ and I£;© are given parameters, which are derived
according to the historical scenarios. 197 ¢ and IJ7° can be 0 or 1 depending on the specific
scenario.

Following the same logic, HZZ can be calculated as:
hYE = Rg'tDN(gt — G uf) + Rg'tUP(PUB cul —p) +PYBITP (1 —uf —ul) + g, - 1679

(G.1.3)
The four terms of hJ¢ represent:
e First term: scheduled as generating in DA and RT, but generates less in RT,;
e Second term: scheduled as pumping in DA and RT, but pumps more in RT;
e Third term: scheduled as OFF in DA, but starts to pump in RT;
e Fourth term: scheduled as generating in DA, but quits generating to OFF in RT.
With the above equations, the SOC limitation constraint can be written as:
SOC"B + ¥i_ hi8 — s8 < soc, < SOCYE — ¥f_  hIE + sUP (G.1.4)

Additional auxiliary constraints and final SOC stochastic constraints are included in the Appendix
for section IV.G.1.

IV.G.2 Case Study with Stochastic SOC Headroom and Floor Room

The DA FRAC with stochastic SOC limitation constraint is performed on the MISO cases with
the HIPPO platform. There are three PSH plants in MISO’s system (referred to as PSH-1, PSH-2,
and PSH-3 in this study), in which each of the first two contain 3 units and the last one contains 2
units. One sample day in spring 2019 is selected for the study. The scenarios used to formulate the
stochastic constraints are selected from historical data of the past three years and the total numbers
of scenarios for individual PSHs are listed in Table G.2.1. All scenarios are given on the plant
level. With different RT load profiles and settings on the allowance of recommitment/
decommitment of PSH plants in RT, four cases are studied as shown in Table G.2.2. The DA load
profile and RT load profile with and without extra wind fluctuations are shown in Fig. G.2.1.

Table G.2.1 The number of selected scenarios

Num of Num of Num of
Total Number . . . . ..
PSH Name f Scenari Scenarios in Scenarios in Scenarios in
o1 Scenarios 2017 2018 2019
PSH-1 30 15 10 5
PSH-2 30 15 10 5
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| PSH-3 | 30 | 15 | 10 | 5

Table G.2.2 The four cases and their settings

Case Name Setting
Normal load + Fixed PSH UDS load + fixed unit commitment of PSH plants
High load + Fixed PSH UDS load + wind fluctuation + fixed commitment of
PSH plants
Normal load + Committable PSH | UDS load + re-committable/de-committable PSH plants
High load + Committable PSH UDS load + wind fluctuation + re-committable/de-
committable PSH plants

Load Profiles
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~——DA load RT load RT load + wind fluctuation

Fig. G.2.1. Load profiles in DA and RT for a sample day in spring 2019

Models with different headroom and floor room settings are differentiated with different N
values, and the case without considering headroom and floor room is viewed as the benchmark
model and denoted by w/o. In the simulation, M of each PSH is set as 5 times of the reservoir
capacity. The MILP gap threshold for all cases is set as 0.1% and the solution time limit is 1200s.

The day-ahead revenue of the three PSHs are shown in Table G.2.3. It is worthwhile to mention
that all the above four cases are created for RT, thus all the four cases will share the same DA
result from the same DA case. The DA revenue is calculated as Realized profits =
>I_ LMPPA . (gP4 — pP4), where gP4 and pP4 are generating and pumping dispatches of the
PSH plant and LM PP represnets the DA LMP. It can be seen that even with different settings of
N, all the three PSH plants profit less in the DA comparied with the benchmark model. This is
expected since certain amount of energy has been reserved via the headroom and floor room for
the RT use.

Table. G.2.3 DA revenue with different N settings ($).

N PSH-1 PSH-2 PSH-3 Total
w/o 153,701 96,522 67,273 317,497
40% 150,300 96,474 67,530 314,304
30% 150,021 96,440 67,511 313,973
20% 148,971 94,711 66,584 310,267
10% 149,225 94,189 66,534 309,949
0% 147,772 93,506 63,684 304,963

RT schedule results are derived from two different RT market clearing simulation setups:

hourly security-constrained economic dispatch (SCED) and 15-min SCED. As their names suggest,
74



hourly SCED has 1 hour time interval and 15-min SCED has 15 minutes time interval. That is, the
latter has a high time resolution.

RT Result with hourly SCED

The DA+RT revenue results of the three PSH plants from hourly SCED are shown in Tables G.2.4-
G.2.8, for the four cases under different N settings. The DA+RT revenue is calculated as Realized
Profits = ¥{_, LMPP* - (g0 — pt™) + LMPET - [(gf" — pi™) — (g0 — )], where gf" and
pRT are generating and pumping dispatches of the unit in RT and LM PET represnets the RT LMP.

Table. G.2.4 DA+RT revenue with Normal load + Fixed PSH ($).

N PSH-1 PSH-2 PSH-3 Total
w/o 154,636 96,766 67,273 318,676
40% 150,696 97,114 67,530 315,341
30% 150,146 96,591 67,511 314,249
20% 149,185 95,430 66,584 311,200
10% 149,373 94,366 66,534 310,273
0% 147,772 93,506 63,684 304,963

Table. G.2.5 DA+RT revenue with High load + Fixed PSH ($).

N PSH-1 PSH-2 PSH-3 Total
w/o 153,902 96,849 67,273 318,026
40% 150,810 97,185 67,530 315,525
30% 150,428 97,094 67,511 315,034
20% 149,181 95,574 66,584 311,340
10% 149,412 94,446 66,534 310,393
0% 147,999 94,093 63,764 305,857

Table. G.2.6 DA+RT revenue with Normal load + Committable PSH ($).

N PSH-1 PSH-2 PSH-3 Total
w/o 154,958 98,310 67,353 320,623
40% 154,431 99,270 67,610 321,312
30% 155,151 98,435 68,381 321,968
20% 154,741 97,939 67,289 319,970
10% 154,779 98,430 67,191 320,401
0% 156,149 96,367 67,802 320,319

Table. G.2.7 DA+RT revenue with High load + Committable PSH ($).

N PSH-1 PSH-2 PSH-3 Total
w/o 153,865 94,367 66,856 315,089
40% 156,415 100,186 67,646 324,248
30% 154,974 97,976 68,711 321,662
20% 156,056 100,519 68,027 324,602
10% 156,630 99,274 68,249 324,153
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| 0% | 157962 | 100,723 | 68,503 | 327,189 |

It can be seen that in the first three cases, all three PSH plants are hard to profit more compared
to the benchmark model. In addition, generally, with a higher N, PSH plants are more likely to
profit more. On the other hand, in the last case, all three PSH plants profit more. There are two
main reasons. The headroom and floor room added in DA in fact reflect reserved flexibility of
PSH plants. With the cases that consist of low DA-RT load discrepancy, the need of flexibility in
RT would be limited. In addition, fixing commitment of PSH plants puts a restrict on exploiting
the reserved flexibility. These two limits do not apply in the last case of High load + Committable
PSH, leading to more profit to PSH plants.

Fig. G.2.2 show the DA and RT LMPs of the three PSH plants under the case of Normal load
+ Fixed PSH. Although PSH-1 and PSH-2 are two different plants, they are connected at the same
Cpnode and share the same LMPs. From the profile of DA LMP, it can be seen that the case with
N=0% leads to the highest LMP during hours of 9-12 (i.e., 1IPM-4PM GMT) which are usually
generating hours, while having the lowest LMPs during hours 1-3 (i.e., 5AM-7AM GMT) which
are usually pumping hours. For models with N being 30%, 20%, and 10%, their LMPs at these
time periods are between those of the model with N being 0% and the model without
headroom/floor room. LMPs in RT deviate from those in DA but show the same pattern as
described above. The difference in LMPs from DA to RT partially support the higher profits that
PSH plants can achieve.
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Fig. G.2.2 DA and RT LMPs of the three PSH plants for a sample day in spring 2019.

RT SOC curves of the three PSHs under the case of Normal load + Fixed PSH are respectively
shown in Figs. G.2.3-G.2.5. Their DA SOC curves are also given in those figures. In Fig. G.2.3,
with N going from high to low, PSH-1 in DA becomes more inactive, which agrees to the predicted
impacts of headroom and floor room. This can also be observed on the other PSH plants as in Fig.
G.2.4 and Fig. G.2.5, especially during hours approaching the end of the time horizon. SOC curves
are arranged following the decreasing order of N. Particularly, from Fig. G.2.3, PSH-1with the
case of N=0% is extremely inactive and almost does not pump at the beginning hours compared
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to other models. This is because pumping can also contribute to hZ2, with the term of p, - 1£;°
under some extreme scenarios with I£; °=1. In the case of PSH-1, the terminal SOC is set as a low
value which forces h% to be small; otherwise, infeasibility could occur. With the models of N
being other than 0%, at least some extreme scenarios could be relaxed which allows pumping at
the beginning hours. We can also see that RT SOC curves are very close to the DA ones, this is
because: (i) the DA and RT load profiles are close and (ii) recommitment and decommitment in
RT are not allowed which limits the change of PSH plants in RT. These two factors also contribute
to the reduced profit compared to the benchmark model.

By contrast, as shown in Fig. G.2.6, RT SOC curves of the three PSH plants under the case of
High load + Committable PSH are different from that of DA. One observation can be made here
is that all curves with different N become very close to each other. This is because by allowing
recommitment and decommitment, both dispatch and commitment of PSH plants will be adjusted
in RT so that the system can achieve a lower objective. In RT, N no longer extensively affects the
model of PSH plants, thus the optimal solution of PSH plants, even if unit commitments and
dispatches of units other than PSH plants could still be different with different N. In summary, in
the case of High load + Committable PSH, the extra wind fluctuation added into the RT load profile
aggravates the deviation between DA and RT load profiles and requires more flexibility, while
allowing recommitment and decommitment can fully release the reserved flexibility of PSHs. This
enables a higher profit of PSH plants in the proposed models than the benchmark model.
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Fig. G.2.3 SOC of PSH-1 for a sample day in spring 2019.
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Fig. G.2.4 SOC of PSH-2 for a sample day in spring 2019.
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Fig. G.2.5 SOC of PSH-3 for a sample day in spring 2019.
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Fig. G.2.6 RT SOC of PSH-2 and PSH-1 in High load + Committable PSH for a sample day in

RT Result with 15min SCED

We further show the result with 15-min SCED under the case of Normal load + Fixed PSH and
High load + Committable PSH. Generally, the similar observation as the hourly SCED can be

spring 2019.

N=10% N=0%

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

made.
Table. G.2.8 DA+RT revenue with Normal load + Fixed PSH with 15-min SCED ($).
N PSH-1 PSH-2 PSH-3 Total
w/o 154,447 96,749 67,273 318,471
40% 150,765 96,955 67,530 315,252
30% 150,201 96,662 67,512 314,376
20% 149,292 95,307 66,587 311,186
10% 149,627 94,388 66,535 310,551
0% 148,144 93,845 63,753 305,743

Table. G.2.9 DA+RT revenue with

High load + Comm

ittable PSH with 15-min SCED ($).

N PSH-1 PSH-2 PSH-3 Total
w/0 156,049 94,438 67,356 317,844
40% 156,425 96,042 68,188 320,656
30% 156,989 96,239 68,955 322,184
20% 156,984 97,893 68,894 323,772
10% 155,625 97,527 69,280 322,433
0% 156,973 97,330 68,710 323,014

Fig. G.2.7 compares RT LMPs from the 15-min SCED with DA LMPs and that from hourly
SCED. It can be seen that DA LMP and RT LMP profiles are close except for some peak hours.
RT LMPs from 15-min SCED and hourly SCED are rather close, and the former is smoother that
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the latter because of the smoother load profile. In addition, SOC curves from 15-min SCED and
hourly SCED are also very close, as shown in Fig. G.2.8 and Fig. G.2.9. As a conclusion, with the
tested cases, 15-min SCED and hourly SCED do not show significant differences worth taking

note of.
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Fig. G.2.8 SOC comparison of PSH-1 with 15-min SCED for a sample day in spring 2019.
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Fig. G.2.9 SOC comparison of PSH-2 with 15-min SCED for a sample day in spring 2019.

1VV.G.3 ADP-based approach for evaluating the value of water outside a finite time
horizon

In this section, we discuss an ADP-based approach to generate price-SOC curves which could be
used in FRAC and LAC models while considering the value of water outside the finite time horizon.
Specifically, we formulate an optimization model for PSHs in maximizing its arbitrage profit in
the electricity market. We simulate the energy storage operation as a Markov decision process
(MDP) and generate the reward function/value function, which reflects the profit from real-time
LMPs and generating/pumping actions. We also derive an ADP algorithm to maximize the
cumulative reward.

Dynamic programming/reinforcement learning is a general sequential model to take actions/
decisions and gain the maximum reward for the whole-time horizon. This model can benefit the
exploitation and exploration. In our study, the optimal strategy will balance the profits based on
the decision to generate and pump now and the opportunity profit based on the water stored for
the future. Here we start from the context of classical dynamic programming in our PSH model.

State Space:

The whole model is a dynamic system that evolves in periods t = 1,2,---,T,T + 1 and its
evolution is influenced by actions’. At each time ¢, the system is characterized by state variables.
The state space can also be named as the set of environment or agent states. Since the PSH can be
considered as a particular case of the storage problem, we define the state space as S; = (R;, W;) €
S, where R, is the terminal SOC at time t — 1 and W, is the forecasted real-time price LM P, of
timet, vt = 1,...,T. This means our state has two elements: The first one is the stored amount of
water R;, and the second is the market price W;. We can treat R, as an endogenous variable, which
comes from the system itself (i.e., PSH). Variable WW; is the exogenous variable, which comes from
the outside of this system.

" This section adopts hourly real-time price forecasts from section IV.E of the study, and therefore t takes the
value of 1 to 24 with one-hour time step.
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Action/Decision Space:

At each time t, we decide on some actions (decisions) x;, and these actions must be chosen from
a finite set X;(S;). Here the action is to decide the amount of energy change, i.e., the amount we
generate or pump. We know that the action/decision at time t depends on the current system state,
i.e., the terminal SOC at time t — 1 and the price at current time t. In other words, we choose the
decision based the varying of the current SOC and the current market price. We denote our action
variable as x; = (p;, g;:) € X:(R;, W;), where p./g; is the pump/gen amount at time t, Vt =
1,..,T.

Transition function:

The transition function at time t is to describe the probability of transferring from one state at time
t to another state at time t + 1 under a given action. This process can be considered as a Markov
decision process. Let us denote S, = f;(x;, S;), where the S, = (R, W;) is the current state at
time t, S;1q = (Resq, Wieiq) 1 the state at time ¢t + 1, and x, is the action taken at time ¢t. From
timettot+ 1, Ry, is equals to the terminal SOC at time t, i.e., R41 = Ry — g:/n9 + p; * 1P,
which nP /n9 is the efficiency of pumping/generation. Also, we have W,,, = W, + W,, where W,
is the deviation of the market price from time ¢ to time ¢t + 1.

Reward function:
The reward function is also referred to as cost function, which means the reward/cost based on the
current action. Here we denote C;(x;, S; ) = W:(g: — pe), Vt =1, ...,T. It means that after we
decide the amount of energy generation/pumping based on the price W;, we have the profit
W:(g: — p:). If we consider this system for a whole day, the total reward is represented by G, =
Yitice = X2 Wi(ge — po).
Therefore, we can have the following optimization problem as our goal:
max [C;(S1,%x1) + E[ max C,(S,, x3) + -+ E[ max C+(S7,x7)]]] (G.3.1)
X1€X1 X2EX, xXTEXT

Bellman equation/Value function:

The essential notion in dynamic programming is the value function V,(x;). The value function is

defined as the expected return starting with state S, = S,, and successively following a policy 7.
V(S = H}C?X{Ct(st:xt) + E[Ve41 (St )]} (G.3.2)

It is the maximum profit of operating the system in periods t = 1, ..., T, under the condition that it
starts from state x, at time t. By definition, V., (xr4,) = 0. The value function describes how
good is to be in a specific state if we consider taking one series of policies.

Approximate Dynamic Programming

Based on the Bellman equation we have, we can have a linear approximate to our reward from the
future, which is shown as follows:

Ve(Se) = gg’i E{Ce(St,xe) + Ve (Siy1 W)} = E )gl}:ilxt[Ct(St, Xe) + 2o vr,tyr,t] (G.3.3)

while max[C, (S, x;) + XF_; v, .y, ] equals to the following optimization problem:
Xt YVr,t
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max We(ge = Pe) + Zie1 Vr eV

be.geyte _
0<g:= G
0<p, <P
€t-1 _5_;+pt*77p =€
er = Xr-1 Ire
E<e < E
—(T —ty)PnP < e, —E;r < (T —t,) G/n9 (G.3.4)

This optimization problem aims to maximize the PSH profit by generating when prices are high
and pumping at low prices. The first and the second constraints limit the range of pumping and
generation; The third constraint describes the water storage change from time t — 1 to time t, with
respect to the generation/pumping decisions g, and p, at stage t; The fourth constraint is the
energy at the end of time t by our linear approximation, which leverages how much to
generate/pump in the current time and what SOC level to be held for the future; The fifth constraint
describes the energy storage limit; The last constraint is the terminal boundary constraint, making
g sure we have a feasible result by the end of the scheduling day.
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i e e
'.72 3 — B, \R_‘
vl _,/// \.\\'\ "
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N Y2 .. Yr Yr-1 Yr

Fig. G.3.1 SOC-Value curve trained by ADP.

Here we illustrate the linear approximation curve. Fig. G.3.1 shows the linear approximation V =
YR_. vy, which maps the state space to the value function space. In this linear approximation, we
consider v, as the slope of the curve and y, as the segment values for r = 1, ... R. Based on the
curve parameters, the linear approximation builds the relationship between the SOC = y and the
profit V under this water storage. For example, if we take the segment points as y, =
[0,100,200],r = 1,2,3, and the corresponding curve slopes as v, = [2,1, —3], for a given value
of current SOC y = 150, we can get the value function for this SOC asV = 2 * 100 + 1 * 50 =
250.
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Fig. G.3.2 Transition process for ADP.
Fig. G.3.2 further illustrates how this sequential model works, primarily focusing on time t to time
t + 1. We build the x-axis for the state space, the T-axis for time, and the V-axis for the return of
the value function. For each period t, the amount R, as water storage from the last time period and
the price for time t are inputs. After the algorithm run for this iteration, the optimal decision x; =
{9+, v+ can be used to calculate R;.; = R; — g¢/n9 + p; * nP as input for the next period t + 1.

SPAR Algorithm

We choose the separable, projective approximation routine (SPAR) Algorithm to support us
calculating the parameters of the curves [G.1]. This method turns the previous model from the
dynamic programming problem into a machine learning problem. We use multiple scenarios of
historical market prices to train our model so that we can have a fitted curve. The detail of the
algorithm is as follows:

Initialize the model:
1) Set up the initial segment ending point values S; fort = 0,..,T — 1. We evenly divide

the entire SOC range [E, E] into 100 segments, and take these segment ending points to
initialize each set of S;.
2) Initialize slopes v for t = 0,.., T — 1. These values shall be monotone increasing to
ensure the convexity.
Forn =1, ..., N(N is the total number of scenarios)
1) Observe the information from historical data W, ..., Wf*
2)Fort=0,..,T—1
Step1l: Find the optimal solution x{* and state S/*
Step2: Update slope curve/value function for time t :
* Achieve the current slope curve 97, (r) forr =1,..,R
* Construct the new slope curve by
* zM(r) = (1 - )7 M (r) + adl, (1)
* Observe two slopes/points §4., (S/") and B4, (S/"" + p)
* Update the slopes by concave principle with two points 7 (r) = M (zl')

Fig. G.3.3 Pseudo codes for the SPAR algorithm.

From the algorithm, in each iteration/scenario, the first step is to find the optimal solution of the

optimization model with the given curve v, and the given historical data w; at time t. The second

step is to update our value function- state curve, which represents the relation between the water

storage and the value function (i.e., as shown in Fig. G.3.4). The key for this step is to update the
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current curve based on the future profits calculated out of this iteration. At the same time, we shall
keep the curve’s concavity to ensure convergence. Figure G.3.4 illustrates the iterative updates of
the curve slopes. We can consider the blue as an old curve, and we have the orange curve as the
new one under the update steps in Fig. G.3.3.

* Value 4
Time
vr
vy T e VR-1
U ///f ‘\\ ik
//I// \
State
° >
Yie Yar .. Vrit Yr-1t YRt

Fig. G.3.4 The iteration of SOC-Value Curve trained by ADP.

Numerical result for one-hour look-ahead PSH profit

In this section, we show the numerical result of one-hour-ahead PSH profit. We choose four
different days’ DA prices and forecast prices, one in March 2019 and three in April 2019 (which
are referred to as D1, D2, D3, and D4 in this tudy). The day-ahead and 50 scenarios forecast prices
are used to train in the ADP algorithm. Then we apply the trained SOC-price curve to help predict
the one-hour look-ahead PSH profit based on the RT price.

All the numerical results are compared with the result of the rolling model, the day head, and real-
time’s optimization results.

The first numerical result is based on the D1 data set. This training data set contains the day ahead
price and the 50 scenarios real forecast price only on D1. Table G.3.1 shows the final profit results
of the four days using the trained curve of D1. It shows that the ADP algorithm gives the profit of
$14,385.20 on D1, which is better than the rolling and DA models. The ADP model also shows
better performance on D2 and D4, but gives less profit than the rolling model on D3.

Table G.3.1 Profit Comparison based on the trained curve of March 07%, 2009.

Prediction D1 D2 D3 D4

ADP $14,385.20  $14,530.62 $5,109.75  $13,872.76
RT $17,017.01  $16,270.65 $8,294.46  $18,734.72
Rolling $11,334.57  $10,666.31 $6,784.00  $12,863.84
DA $10,976.77 $9,026.81 $6,743.30  $10,198.84
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The second numerical result is based on the D2 data set. This training data set contains the day
ahead price and the 50 scenarios real forecast price only on D2. Table G.3.2 shows the final profit
results of the four days using the trained curve of D2. We can see from the table that the ADP
algorithm gives a profit of $14,630.49 on D2, which is better than the rolling and DA models. The
ADP model still shows better performance on D1 but gives slightly lower profits on D3 and D4.
When the information of the training day and the testing days are similar, it can provide good
performance; Otherwise, less profit might be expected.

Table G3.2 Profit Comparison based on the trained curve of April 01%, 2009.

Prediction D1 D2 D3 D4

ADP $15,261.03 $14,630.49 $6,395.11 $12,754.24
RT $17,017.01 $16,270.65 $8,294.46 $18,734.72
Rolling $11,334.57  $10,666.31 $6,784.00  $12,863.84
DA $10,976.77 $9,026.81 $6,743.30 $10,198.84

The third numerical result is based on the D3 data set. This training data set contains the day ahead
price and the 50 scenarios real forecast price on D3. Table G.3.3 shows the final profit results of
the four days using the trained curve of D3.We can see the ADP algorithm gives the profit
$7,640.57 on D3, which is higher than the rolling model. When we have the data set of the same
day on D3, this gives a better result in the ADP method.

Table G.3.3 Profit Comparison based on the trained curve of April 15", 2009.

Prediction D1 D2 D3 D4

ADP $15,129.48  $13,877.79 $7,640.57 $788.15
RT $17,017.01  $16,270.65 $8,294.46  $18,734.72
Rolling $11,334.57  $10,666.31 $6,784.00  $12,863.84
DA $10,976.77 $9,026.81 $6,743.30  $10,198.84

The fourth numerical results are based on the D4 data set. This training data set contains the day
ahead price and the 50 scenarios real forecast price on D4. Table G.3.4 shows the final profit results
of the four days using the trained curve of D4. The trained data set from D4 only gives us almost
the same result on DA but less than the profit of the rolling model. This shows the data set only
contains one day may not be sufficient for certain cases and a larger data set might be needed.

Table G.3.4 Profit Comparison based on the trained curve of April 22", 2009.

Prediction D1 D2 D3 D4

ADP $15,143.50  $15,490.90 $6,714.35  $10,162.90
RT $17,017.01  $16,270.65 $8,294.46  $18,734.72
Rolling $11,33457  $10,666.31 $6,784.00  $12,863.84
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DA $10,976.77 $9,026.81 $6,743.30  $10,198.84

The last numerical result is based on the data set including all four days, i.e., this training data set
contains the day ahead price and the 50 scenarios real forecast price on D1-D4. Table G.3.5 shows
the final profit results of the four days using the trained curve from all four-day data. When we
combine the scenarios of all four days, the result becomes more robust (i.e., consistent performance
over multiple testing days). We can have a better result on all these four days than the DA model.
Also, we have a better performance than the rolling model on D1, D2, and D3. This shows when
the training set has more data, the ADP model becomes more robust and accurate.

Table G.3.5 Profit Comparison based on the trained curve based on all four days

Prediction D1 D2 D3 D4

ADP $15,661.79  $13,197.94 $6,827.14  $12,403.79
RT $17,017.01  $16,270.65 $8,294.46  $18,734.72
Rolling $11,334.57  $10,666.31 $6,784.00  $12,863.84
DA $10,976.77 $9,026.81 $6,743.30  $10,198.84

From previous numerical studies, we can see that the same-day data set significantly impacts the
ADRP result. On D2 and D3, with the same day data set, it gives a better result than the model
without the same day data set. We can also learn that other days’ data set can robust the result. On
D4, the training models without the same-day data set have a good prediction (Table G.3.1, Table
G.3.2, Table G.3.4), while a significant decrease is observed in Table G.3.3. When we have the
four dates’ data set in Table G.3.5, a good result has been preserved. For instance, for March 07th,
2009, the outcomes in Tables G.3.1-G.3.4 show robust performance, nevertheless the outcome
based on all four days in Table G.3.5 has the best performance. In conclusion, the same-day data
set firmly impacts the performance, and the more extensive data set could lead to a more robust
result. Since most calculation burdens are moved to the training stage and the online calculation
with the trained SOC-price curve is rather light, this approach could be applied to solve FRAC and
LAC models while considering the uncertain value of water outside the finite time horizon.
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IV.H. Accomplishments Toward Deliverable 9.1

Deliverable 9.1: A detailed report on long-term value of enhanced PSH model through
planning analyses.

Accomplishments Summary: (1) The team developed a stochastic optimization approach for
economic planning studies. In detail, A linear program based approximated model is first used to
approximate the nonconvex unit commitment model to accelerate the solution of stochastic
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production cost simulation models. Test results using a MISO planning model show acceptable
accuracy and significant solution time improvement from our proposed approach. (2) We also
further explored a stochastic transmission expansion planning method in a test case, with the same
approximation strategy together with a decomposition framework. (3) Long-term production cost
simulation was performed on MISO planning cases and results showed enhanced PSH
optimization can reduce load cost and in some cases increase CO2 emission.

IV.H.1 Explore stochastic unit commitment for planning

Accelerating stochastic production cost simulation

Conventionally, deterministic unit commitment (UC) models have been considered in
economic planning. With the increasing penetration of intermittent resources, deterministic
approaches might cause conservative unit commitment solutions to meet system security
requirements. Stochastic optimization is a promising alternative to hedge against uncertainties.
However, incorporating stochastic unit commitment for planning will bring significant
computational challenges. Furthermore, the time-coupled nature of pumped storage hydro
facilities, which is reflected in state-of-charge evaluation and status switching logic modeling,
complicates the system operation simulations. However, as a critical enabler in the pathway to a
low-carbon sustainable future, to accurately reflect the features of storage and efficiently solve the
resulting stochastic production cost simulation models are urgently needed.

In the current industry practice, typically a large number of production cost simulations run for
a combination of scenarios and candidate planning schemes. However, only limited combinations
can be enumerated given a long computational time for production cost simulations. With
accelerations in solution strategies, we developed a stochastic production cost simulation method
for economic planning with detailed UC constraints, as shown in (H.1.1). y. represents unit

commitment and economic dispatch decision variables in scenario s. b, contains cost coefficients
for production cost simulation. p, is the probability for scenario s. Q°(x) is the feasible region

of UC constraints given planning decisions X. An illustrative figure for our modeling framework
is shown in Fig. H.1.1.

min (b’
25e8p5 ( s ys) (Hll)
st y, e Q(x)
To address the computational complexity of stochastic transmission expansion planning
problem with UC model, solution techniques based on unit commitment approximation will be
evaluated. High-quality convex approximations for the underlying unit commitment models are

expected to preserve the flexibility quantification quality, meanwhile simplify the nonconvex
mixed-integer formulation. Mathematically, we use yseﬁfc(x) to approximate the UC

constraints in (H.1.1), where QY°(x) is a polyhedron approximation of QY°(x).
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Fig. H.1.1. modeling framework for stochastic production cost simulations

As shown in (H.1.2), the generators are modeled using a tight formulation in [H.1, H.2], which
considers a two-time-period convex hull of a UC model. Note the variables in (H.1.2) are
continous.

Vosi 20 Pyss+BaXyer VKk=1..K,VgeG VseS VteT
g,s.t-1 Vgeg,vVseS,VteT

ngs,t—l+ug,s,t <1 Vg € glvs S S,Vt el

Ug st < Xg st VYgeg,vseS VteT

ug|s,t 2 Xg,s(( —X

t
Z X5t < Ug st vgeg,VseS,VvteT
i=t-UT, +1
t

Xg,S,i S]'_l’|g,s,t—DTg Vg e gvseS,vteT

i=t-DTy+1

XgstPg S Pgse SXg5:Py VO EG,VseS VteT

Pyst1 = VeXgsia +(5g -V, )(Xg,s,t —Ug,s,t) VgeG, VseS,VteT

Pgst = PgXg _(ﬁg -V, )Ug,t vVgegG,vVseS,vteT

Pyt = Py SVoXoarn +V, (1-X,.y) VYOG, VseS VteT

Posi = Posts = (_pg Yy )Xg,s.t — Py Xgsia _(Eg +V, =V, )ug,s,t Vgeg,vseS,vteT

pg|s,t—1 - pg,s,t < vgxg,s,t—l _(vg _Vg)xg,s,t _(Eg +Vg —Vg )Ug’slt vg (S g,vs (= S,Vt [= T

(H.1.2)
<1 VgeG,vseS VteT

0 S Xg,s,t ' ug,s,t

where, x, ., and u, ., are commitment and start-up variables for unit g in scenario s and time t.

g,s;t g,s,t

Vg5 1S the cost for unit g, which is piecewise approximated by agk Py +ﬁ£';xgls|t with K pieces.
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Pys Py Yy, V, are capacity, minimum stable level, ramp rate, and start-up/shut-down ramp rate,
respectively. UT, and DT, are minimum online and offline time periods, respectively.

It should be point out that for the formulation in (H.1.2) is a genral formulation for generator
modeling. We did some simplification on (H.1.2) in detailed inplemnetation to reduce the number
of variables and constraints. For example, some hydro genrators with zeros start-up cost, zeros
minimun stable levels, and very quick ramp rates, we can model them with simple economic
dispatch models like 0 < Pyst <Py, Vg eG,VseS VteT.

Pumped storage hydro stations are modeled in (H.1.3). The SOC formulation that we use here
is a tight formulation developed in previous tasks of this project [H.3].

BY-x!, <pl, <PYx,, VheHVseSVteT
BP-xP . <pP <PP-Xx,, VheM,VseSvteT

h,s,t —

Xpo  +Urs <1 VheH,VseS VteT
€ust =Ehsia _77_19 Pl At+7°pl At VheM,VseS,vteT (H.1.3)

igpﬁ’ys’t-At Vhe H,VseS,VteT
n

0<X! i Xpo; <1 VheH,VseS,VteT

E, +1° pr?,s,t At<e, < Eh -

where, x?  and x;, are status variables for generating and pumping statuses of PSH station h in

h,s,t
scenario sand timet. P? and PP are generating and pumping capacities, respectively. P? and P”
are minimum stable levels for generating and pumping modes, respectively. e, ;, is SOC of PSH
upper reservoir of station h in scenario s and time t. E, and E, are upper and lower bounds for
reservoir of station h, respectively.

Given the constraints in (H.1.2) and (H.1.3) are linear, they form set QU°(x). The objective
function is the sum of investment and operation cost, as shown in (H.1.4). Note PSH units are

assumed to be operated by ISOs, thus their bidding and offering curves are not modeled in the
objective function.

3 Z(7g,s,t +CSTgug,s,t) (H.1.4)

VseS VteT geg

where, CST, is the start-up cost for generator g.

A MISO planning model is used to evaluate the performance of approximation quality and
solution time of our proposed stochastic production cost simulation approach. We notice the
problem is naturally decoupled for each scenario. Thus, production cost simulations are run
separately for each scenario first; the expected cost is then evaluated with (H.1.4). The tested
system contains all the generators in the eastern interconnection. We run a simulation with 5
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stochastic scenarios for 7 days in a transmission unconstrainted case. All the optimization
problems are solved by using Gurobi 8.0.1. MILP gap is set as 0.5%.

The overall performance is summarized in Table H.1.1. As indicated, the expected cost values
from MILP unit commitment model (denote as “MILP UC” in tables and figures hereafter) and
LP relaxation model (denote as “LP approximation” in tables and figures hereafter) are very close.
The two expected objective values have only a small difference of 0.35% in percentage. In terms
of the solution time, the LP relaxation model can result in a significant time reduction of 71.6%.
In detail, a performance comparison for each scenario is summarized in Table H.1.2. As indicated,
the expected cost values from MILP unit commitment model and LP relaxation approximation
model are also very close. We also see significant time reductions in all the scenarios.

Table H.1.1. Overall objective value and solution time comparison

Objective Value ($10%) CPU time (sec)
. Time
MILP LP D'ffei:]ence MILP LP Reduction
ucC approx. ucC approx. in
Percentage Percentage
17174.1
Stochastic (or 4873.8
production cost 8.935 8.904 0.35% (or1.354 71.6%
simulation 4.771 hours)
hours)

Table H.1.2. Objective value and solution time comparison for each scenario

Objective Value ($108) CPU time (sec)
Scenario i Time
MILP Lp D'ffei:]ence MILP Lp Reduction
ucC approx. uc approx. in
Percentage Percentage
Base case scenario 8.923 8.892 0.35% 3092.4 961.5 68.9%
Case 1 scenario 11.721 11.687 0.29% 2855.9 731.1 74.4%
Case 2 scenario 10.306 10.271 0.34% 3344.5 711.4 78.7%
Case 3 scenario 6.267 6.241 0.43% 4170.9 1480.0 64.5%
Case 4 scenario 7.574 7.545 0.38% 37104 989.9 73.3%

In Fig. H.1.2 and Fig. H.1.3, detailed generation levels for all types of generators are shown
for MILP unit commitment model and LP relaxation approximation model, respectively. As
indicated, for each type, the patterns of total generation levels in two models are also very close.
SOC levels of all PSH stations for MILP unit commitment model and LP relaxation approximation
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model are shown in Fig. H.1.4 and Fig. H.1.5, respectively. For each PSH station, the patterns of
SOC levels in two models are also similar. Taking one of the PSH station as an example, as shown
in Fig. H.1.6, its SOC levels in two models generally have a similar pattern. Thus, we conclude
the two models have similar performance in terms of the schedule pattern of PSH and other
generators.
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Fig. H.1.2. Generation levels for all types of generators in a week (MILP UC model)
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Fig. H.1.3. Generation levels for all types of generators in a week (LP approximation model)
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Fig. H.1.4. SOC levels of all PSH stations in a week (MILP UC model)
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Fig. H.1.5. SOC levels of all PSH stations in a week (LP approximation model)
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Fig. H.1.6. SOC level of one PSH station in a week (MILP UC model versus relaxed LP
approximation model)

Thus, from the proposed method, we can obtain a solution with a small difference of 0.35% in
comparison to the MILP unit commitment model, as well as a similar schedule pattern. However,
the proposed model can enable a significant time reduction of 71.6% in this test case. Note our test
is based on a transmission unconstrained case, which may mathmaticaly reduce the gap between
MILP and its LP relaxation. Further studies on transmission constrained cases can be investigated
in the future.

Further exploration work on embedding UC constraints in stochastic transmission
expansion planning

In economic planning, unit commitment (UC) modeling can accurately reflect the system
operational flexibility and quantify long-term economic performances. Given the volatility of
renewable energy and thus increased time couplings in the modeling, the need to consider UC-
based production cost simulation in transmission expansion planning formulation is growing. It is
worth mention that the existence of pumped storage hydro unit and the expectation of increasing
storage penetration in the future are also important driving forces for the inclusion of production
cost simulation in transmission expansion planning.

As described, although it is appealing to consider both UC model and stochastic optimization
approach in transmission expansion planning, this would bring great computational challenges for
large-scale practical power systems. In the literature, two-stage or multi-stage stochastic [H.4] or
robust [H.5] transmission expansion planning problems have been widely investigated. However,
economic dispatch models are usually used in the system operation stage under representative day
settings [H.4, H.5], to achieve tractable solutions at the expense of optimality.

We consider a stochastic transmission expansion planning approach considering UC model, as
shown in (H.1.5). X and Yy, represents planning decision variables and unit
commitment/economic dispatch decision variables in scenario s, respectively. a and b, are cost
QPLAN

coefficients for planning and operation, respectively. p, is the probability for scenario s.

is feasible region for planning decisions constructed by planning constraints. Q°(x) is the

feasible region of UC constraints given planning decisions. An illustrative figure for our modeling
framework is shown in Fig. H.1.7.
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Fig. H.1.7. Modeling framework for stochastic transmission expansion planning with UC
constraints

In detail, the planning constraints is (H.1.6), which corresponds to Q" .

z,<7, Vil<i2e /[ andil, i2 have the same parameter

z,e{0,} Viel

(H.1.6)

where, z; is the binary decision variable for transmission line i, i.e., line i is planned to build if

z;=1. L' is the set of candidate lines.

The system balance and transmission constraints are shown in (H.1.7). Candidate lines are
modeled with a disjunctive formulation.

Z f. .- z fio ™+ z Pyt = Z Py VbeB,VseS,vteT
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050 —0
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-F-z,<f  <Rk-z; Viel'\VseS VteT

st —
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where, f;  isthe flow inlineiinscenariosandtimet. p, ., and p,,, are power from unitgand
to load d, respectively. 6, ., is the phase angle of bus b. x; and F; are line admittance and power

95



rating for linei. £ and £ are sets of existing and candidate lines, respectively. G and D are set
of generators and loads, respectively. S is the set of scenarios. 7 is the set of time periods.

To address the computational complexity, we again use y, efng(x) to approximate the UC
constraints in (H.1.5), where QY°(x) is a polyhedron approximation of QY°(x) . In detail, we use
(H.1.2) and (H.1.3) to approximate Q°(x).

The objective function is the sum of investment and operation cost, as shown in (H.1.8).

D CINVZi+ D 3 > (yer +CST U, ) (H.1.8)

iel" VseS VteT geg

where, CINV, is the investment cost for line i, CST, is the start-up cost for generator g.

For this exploration work, we performed a preliminary test to assess the feasibility of the
convex approximation approach for underlying unit commitment models. Garver’s 6 bus system,
which is a classical test system for transmission expansion planning studies is used in our test. We
employ a linear program (LP) relaxation of a tight unit commitment formulation to solve a
deterministic transmission expansion planning problem (noted as ‘LP approximation’ in Table
H.1.3). As a reference for comparison, binary UC variables are kept for in another transmission
expansion planning run (noted as ‘MILP UC’ in Table H.1.3). Given including annual UC model
is computational unmanageable, this test incorporates one-day operation constraints for model
accuracy validation purposes. As indicated in Table H.1.3, the investment costs from the two
models are exactly the same, meanwhile the operation costs are very close, so as the total costs.
This result verifies that approximating unit commitment models in the operation stage of
transmission expansion planning is a promising approach worth further investigation.

Table H.1.3. Accuracy of LP approximation for UC model

model investment operation total
(10%$) (10° $) (10° $)

LP approximation 500.0 312.3 812.3
MILP UC 500.0 316.7 816.7

Already considering both UC characteristics and stochastic optimization approach in
transmission expansion planning, massive scenarios, large practical system size and long study
time horizon would make the decision making more computationally challenging in practice.
Mathematical decomposition approaches can be leveraged to reduce computational burden
together with advanced high-performance computing techniques. A well-designed decomposition
framework can enable the parallel computing capability of high-performance computers in
subproblem solution process to significantly reduce the total solution time.

The optimization problem structure among scenarios can be utilized to facilitate the design of
the decomposition framework. In our proposed stochastic transmission expansion planning model,
given fixed expansion decisions, the production cost simulation models for different scenarios are
naturally decoupled, as shown in Fig. H.1.8. To achieve scenario-based decomposition, techniques
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such as Benders decomposition will be explored to coordinate the master problem for transmission
expansion planning in (H.1.9) and production cost simulation subproblems y, e QY°(%*). In

(H.1.9), ¢ >c,, 'x+d,, is Benders cut from subproblem in scenario s in iteration k .
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st. xe Q™M g >c 'x+d, Vsk

investment decisions

| |

I

3 OLIeUa2S

S| T Olleusds
Ml 7 oueuass

&

Benders cuts

Fig. H.1.8. Illustration for scenario decomposition

We also test stochastic transmission expansion planning with full annual chronological UC
constraints in Garver’s 6 bus system. The feasibility of using scenario decomposition to speed up
is assessed. We use Benders decomposition to decouple the scenarios. In this preliminary test, the
subproblems are solved sequentially. As indicated in Table H.1.4, the solution time significantly
is reduced by using scenario decomposition even without parallel accelerations. Further speed-up
can be expected with fine-grained decomposition and parallel computing techniques.

Table H.1.4. Speed up with scenario decomposition

_ Objective Time
Number of scenarios Method value (10° $) (sec)
w/o scenario . >1200
: decomposition
w/ scenario 104.43 501.3
decomposition
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IV.H.2 Long-term impact of enhanced PSH model through planning analyses

In order to evaluate the long-term impact of enhanced PSH modeling, numerical studies were
performed using MISO planning cases. For each study, two PSH modeling were developed:
Current Practice model and Proposed Practice model. Current Practice model is designed to reflect
the current market rules, where pumping and generating hours are specified by PSH owners. For
study purpose, a generic rule was employed for all PSH units in the study footprint, where
generating hours are 7am-21pm, and pumping hours are 22pm-6am. Proposed Practice model is
designed to capture the enhanced PSH model, where pumping and generating schedule is
optimized by ISO.

Impact on Load Cost

A MISO planning case (referred to as MISO Planning Case 1) was used to evaluate the impact
of enhanced PSH modeling on load cost. In this planning case, the generation of most of the US
Eastern Interconnection and a simplified zonal transmission system were included. The case was
built for year 2024, and therefore a whole year (8784-hour) production cost simulation was
performed for year 2024 using PLEXOS for each of the two models, where 24-hour SCUC and
hourly SCED are simulated in a chronological fashion. MIP solver was used in solving SCUC. A
daily recycling pattern was modeled in this study.

Fig. H.2.1 shows the load cost change in percentage between Current Practice model and
Proposed Practice model. The annual load cost comparison is shown in Table H.2.1. It can be seen
that, generally speaking, the Proposed Practice model can result in a reduction in monthly load
cost. On annual basis, the load cost can be reduced by 1.42%. The reduction in load cost is intuitive
as the Proposed Practice model allows more flexibility in choosing the time of pumping and
generating in comparison to the predetermined pumping/generating times. Specifically, in the
Proposed Practice model, PSH units pump more and generate more due to increased flexibility.
The increased pumping will increase LMP at some locations and therefore increase load cost
during pumping hours. The increased cost reflects the cost of additional generation, typically from
inexpensive generation during the pumping hours. On the other hand, the pumped energy is stored
in the upper reservoir and is used to generate electricity in other times to displace more expensive
generation. The increased PSH generation during generating hours decreases LMP at some
locations and subsequently reduces load cost. The reduced load cost during generating hours is
generally considerably larger than the increased load cost during pumping hours, resulting in a net
reduction of load cost.
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Fig. H.2.1: Monthly load cost difference between Current Practice and Proposed Practice. The
Proposed Practice model can generally bring load cost reduction across the year.

Table H.2.1: The Total Annual Load Cost Comparison Between Current Practice and

Proposed Practice

Total System Load Cost in Year 2024 ($)
Difference
of Total
Study Clg:iiigd Study Current Practice Proposed Practice Model System
Model Load Cost
(%)
MISO Planning Case 1 0
01/01/2024-12/31/2024 453,361,269,181 446,945,866,587 -1.42%

The simulation results further show the increase pumping power in the Proposed Practice
model is provided from inexpensive generation including wind, hydro and nuclear units. The
increased PSH generated power replaces more expensive generation including those from Coal-
ST, and Gas-GT, and combined cycle units. In addition, the increased pumping in Proposed
Practice helps reduce energy curtailment. This is because, for this specific MISO planning case,
load is low during the pumping periods in the Current Practice model and therefore wind and hydro
generation gets curtailed due to transmission congestion. In the Proposed Practice model, the
increased pumping during the pumping periods effectively increase the load, and takes power from
those generating units and therefore leads to less curtailment. The strong correlation between
increased pumping and reduced curtailment (from Current Practice model to Proposed Practice
model) can be seen from Fig. H.2.2, which shows the hourly data of increased pumping and
reduced curtailment for May 2024.
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Fig. H.2.2: Increased pumping and reduced curtailment between Current Practice and Proposed
Practice in May 2024. A strong correlation between increased pumping and reduced curtailment
is observed.

Impact on CO2 emission

Another MISO planning case (referred to as MISO Planning Case 2) was used to evaluate the
impact of enhanced PSH modeling on CO> emission due to the available emission rates in the case.
In this planning case, the generation of most of the US Eastern Interconnection and a full
transmission system were included. The case was built for year 2017, and therefore a whole year
(8760-hour) production cost simulation was performed for year 2017 using PLEXOS, where 24-
hour SCUC and hourly SCED are simulated in a chronological fashion. No recycling pattern was
specifically modeled in this study. The simulation was performed for each of the two models
(Current Practice model and Proposed Practice model) respectively. It should be noted that, due to
the prolonged simulation time, transmission constraints are ignored in this study to speed up the
simulation.

Table H.2.2 compares the simulated annual CO2 emission in 2017 for the two models. It shows
the Proposed Practice results in higher CO2 emission, or 0.07% increase in annual CO2 emission
in comparison to the Current Practice. It may appear surprising at first glance but not
counterintuitive given the SCUC/SCED is based on economics and security of the system, not CO>
emission. Further investigation reveals the CO2 emission in MISO Planning Case 2 increases due
to two major reasons: 1) in the Proposed Practice, the increased flexibility allows for increased
utilization of PSHUSs for economics. That leads to more pumping and generating from the PSHUSs.
Due to 75%-80% cycle efficiency of PSHUSs, the increased pumping is higher than the increase
generation from PSHUSs, which effectively increased the total demand. The increased demand in
turn needs to be served by increased generation from other generating sources, which result in
increased CO2 emission; 2) in the Proposed Practice, more expensive yet lower emission rate
generation is replaced by generation from PSHUSs, while less expensive and higher emission rate
generation serves the pumping load from PSHUSs. It causes a net increase of CO, emission despite
the net decrease in cost.

The second point is further illustrated using data in Table H.2.3 and Table H.2.4. Table H.2.3
shows the pumped storage hydro generation increases significantly (by about 25%) in the Proposed
Practice. Pumping load is not directly shown in this generation table, yet implied by the total
increased generation. The difference between the total increased generation and increased PSH
generation represents the total increased generation from all other generation sources. Among
those, CC and ST Coal provides most of the increased generation, which mostly happen when
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PSHUs pump. ST Gas and ST Oil has most of the decreased generation, which mostly happen
when PSHUs generate. In consequence, the CO2 emission increased for CC and ST Coal, and
decreased for ST Gas and ST Qil, as seen in Table H.2.4. It should be noted that, although ST Coal
generation increased in slightly less amount than the decrease in ST Gas generation, the increased
COz emission from ST Coal is considerably larger than the decreased CO2 emission from ST Gas,
which is due to the emission rate difference between generation categories.

Table H.2.2: The Total CO2 Emission Comparison Between Current Practice and Proposed

Practice
Total CO; emission in Year 2017 (Ib)

Proposed Practice

Difference of Total CO;
emission (%)

0.07%

Study Case and
Study Period
MISO Planning Case 2
01/01/2017-12/31/2017

Current Practice

2,394,514,615,461 | 2,396,280,506,607

Table H.2.3: The Total Generation Comparison Between Current Practice and Proposed
Practice

Generation Category Total Generation in Year 2017 (MWh) | Generation Difference
Current Practice | Proposed Practice (MWh)
CcC 848,927,420 849,932,130 1,004,710
Conventional Hydro 116,905,340 116,904,330 (1,010)
CT Gas 91,629,201 91,946,878 317,677
CT Oil - - -
CT Other 623 363 (260)
CT Renewable - - -
External Transaction (3,180,264) (3,180,264) -
Fuel Cell 182,243 184,097 1,854
Geothermal 330,686 330,686 -
IC Gas 1,686,312 1,783,455 97,143
IC Qil 47,560 51,971 4,411
IC Renewable 868,750 881,128 12,378
IGCC 8,636,717 8,750,485 113,768
Industrial Loads (15,268,680) (15,268,680) -
Interruptible Loads - - -
Nuclear 631,777,810 631,777,810 -
Pumped Storage Hydro 19,220,090 24,029,821 4,809,731
Qualifying Facilities 16,558,612 16,558,612 -
ST Coal 687,597,850 688,023,150 425,300
ST Gas 53,105,837 52,654,518 (451,319)
ST Qil 2,117,801 2,114,578 (3,223)
ST Other 1,599,051 1,626,927 27,876
ST Renewable 17,956,441 18,010,383 53,942
Existing Solar PV 3,745,556 3,745,556 -
Existing Wind 157,572,450 157,572,450 -
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| Total | 2,642,017,406 | 2,648,430,384 | 6,412,978 |

Table H.2.4: The Total CO2 Emission Comparison Between Current Practice and Proposed
Practice By Generation Category

Generation Category Total CO2 emi.ssion in Year 2017 (Ip) CO:2 emission Difference
Current Practice | Proposed Practice (Ib)
CcC 736,365,872,816 | 737,264,258,650 898,385,834
CT Gas 114,170,422,002 | 114,503,836,084 333,414,082
CT Qil - - -
CT Other 336,326 263,990 (72,336)
CT Renewable - - -
IC Gas 1,176,638,303 1,220,404,576 43,766,273
IC Qil 73,125,645 80,909,172 7,783,527
IC Renewable 955,459,768 966,781,955 11,322,187
IGCC 11,111,941,451 11,217,388,009 105,446,558
Qualifying Facilities 17,198,079,795 17,198,079,795 -
ST Coal 1,412,251,741,813 | 1,413,044,652,727 792,910,914
ST Gas 65,379,854,959 64,839,521,300 (540,333,659)
ST Qil 2,672,029,020 2,667,959,691 (4,069,329)
ST Other 3,420,997,828 3,507,670,400 86,672,572
ST Renewable 29,738,115,735 29,768,780,258 30,664,523
Total 2,394,514,615,461 | 2,396,280,506,607 1,765,891,146

Sensitivity Analysis

It should be pointed that the above observations and conclusions are based on simulations of
MISO Planning Case 2. When assumptions in the planning case change, the results may change
and demonstrate a different pattern. For example, when renewable penetration level is set to very
high (for example at 50%), when PSHUs pump, the required energy may require committing more
nuclear generators (which has no CO, emission). Due to the long minimum-up time of nuclear
generators, the newly committed nuclear generators will stay on for a few days, causing other
generation sources such as CC and ST Coal to ramp down, which effectively reduces CO. emission.
In this case, the total CO. emission may reduce in Proposed Practice. A one-week results of the
aforementioned dispatch pattern is illustrated in Fig. H.2.3.
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Fig. H.2.3. The generation difference by generation category between Current
Practice and Proposed Practice in MISO Planning Case 2 with 50% renewable penetration
for simulation period of January 1, 2017 through January 7, 2017
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C. Technical Presentations

R. Baldick, Y. Chen, and B. Huang, "Optimization formulations for storage devices," Presented
at The 4th Georgia Tech Workshop on Energy Systems and Optimization, Atlanta, GA, December
10-11, 2020.

Y. Chen, et al, “Developing Optimization Algorithms and Computational Techniques for
Future Resource Integration”, panel presentation at 2021 IEEE PES General Meeting.

B. Huang, A. Ghesmati, Y. Chen, R. Baldick, R. Bo, “Modeling and Optimizing Pumped
Storage in a Multi-stage Large Scale Electricity Market under Portfolio Evolution”, presentation
at 2021 FERC Technical Conference on Increasing Market and Planning Efficiency through
Improved Software.

B. Huang, A. Ghesmati, Y. Chen, R. Baldick, “Pumped Storage Optimization in Day-ahead
and Real-time Market under Uncertainty”, presentation at 2021 INFORMS Annual Meeting.

VII. Conclusions

The project developed a prototype enhanced pumped storage hydro (PSH) model for
incorporation into the multi-stage market clearing process with proper consideration of the unique
characteristics of PSH. In the market clearing process, energy products and ancillary service
products (including capacity-based regulating reserve and energy-based reserve) in energy and
ancillary service market are co-optimized. The enhanced PSH model in the multi-stage market
clearing process can facilitate a deeper participation of PSH resources in organized electricity
markets.

Through the investigation of three research areas (as mentioned in the Executive Summary),
the project delivered the below specific outcomes:

e A prototype deterministic day-ahead (DA) SCUC model with PSH optimization has been

developed and implemented using HIPPO. It meets MISO’s solution quality and
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performance requirement. Studies on actual MISO system showed 0.04%-0.67% reduction
in system total cost and up to 97% increase in PSH profit. The benefits are expected to be
significantly higher with higher penetration of PSH and renewable generation.

A “tighter” formulation of the state-of-charge constraints with binary variables has been
proposed and implemented to improve the computational performance of the proposed
deterministic day-ahead (DA) SCUC model. Statistical data based on repeated tests using
MISO cases show that the tightened constraints typically have approximately neutral or
positive impact (e.g., up to 34% reduction in studied cases) on the computational time.
An energy reserve (or MWh reserve) concept has been proposed to deal with the SOC
deviation in real-time. Head room and floor room are derived using statistical models. Both
the rolling based stochastic approach and the approximate dynamic programming (ADP)
approach have been employed to evaluate the value of water of PSHs outside a finite time
horizon. Studies show that both approaches can lead to a better utilization of available
water with higher profits for PSHs in RT markets, than exactly staying with the DA
solutions. In addition, no approach consistently outperforms the other, and their
performances depend on the quality of RT price forecasts as well as similarities between
price patterns in RT and those used for ADP training.

A rolling window simulation platform has been developed in HIPPO, which closely mimics
the LAC of MISO. It is a valuable tool for investigation of the intra-day clearing process.
An ARIMAX-based deterministic price forecast and a scenario generation-based stochastic
price forecast have been developed to predict RT prices. The price forecasts can be used in
the developed deterministic and stochastic PSHU models respectively to guide intra-day
dispatch. Studies using MISO data show the developed ARIMAX model can capture the
trend, the peaks and the turning points of the actual RT-LMP significantly better than the
Facebook Prophet model.

A risk-averse formulation has been developed to address the concern of profit loss in the
RT market. Studies demonstrate the effect of the risk management formulation in reducing
system total cost and avoiding negative profits for the PSHU.

A planning model with improved realistic characteristics of PSH and the incorporation of
market optimization enhancement has been developed. Studies using actual PSH plant
parameters and MISO planning models reveal the SOC error from inaccurate PSH input-
output curve modeling will accumulate quickly in chronological production cost
simulation, and consequently requires periodical adjustment of SOC or the adoption of
proposed improved input-output curve modeling.

A novel disjunctive convex hull model for input-output curve approximation has been
developed to improve the computational performance, and studies show an order of
magnitude speedup over the common piece-wise linear approximation methods.

Studies using MISO planning models show using DA storage shadow price as an indicator
for future value of water can exploit the flexibility of PSH in RT and reduce RT system
total cost (with a monthly average of 0.22% reduction in studied cases).

A linear program based approximated model is used to approximate the nonconvex unit
commitment model to accelerate the solution of stochastic production cost simulation
models. Studies using a MISO planning model show the proposed method can produce
acceptable accuracy in results (with 0.35% difference in system total cost) and significant
solution time improvement (with 71.6% reduction in solution time).
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Appendix for Section IV.A.1
Deterministic PSH model in SCUC
Nomenclature:
Sets and indices:
teT set of time intervals;
g € Gper set of PSHUs;
g € Gpen » set of PSHUs that share the same reservoir r;
geg set of the rest of the generating units in a system;
m < M, set of configurations, M, = [alloff, gen, pumpl;
ne MQF "Mset of configurations that configuration m can
feasibly transit to;
reR set of reservoirs.
Data [units]:
D, system net load at period ¢ [$/MW];
Q;E“ minimum generation power of PSHU g [MW];

@gen maximum generation power of PSHU g [MW];

QE”’"F minimum pumping power of PSHU g [MW];
ngnp maximum pumping power of PSHU g [MW];
-r}gm generating efficiency of the PSHU g [NA];
nhumE pumping efficiency of the PSHU g [NA];

E., initial energy level of the reservoir r [MWh];
E. 7 final energy level of the reservoir » [MWHh]:
E, maximum energy level of the reservoir r [MWh];
E. minimum energy level of the reservoir r [MWh];

CT™F  the bid price of pump load at unit g during time
interval ¢ [S/MW].

Variables [units]:

€r energy stored in the reservoir r at time £ [MWh];

-u;'ft binary variable, commitment variable of unit g
configuration m during time interval ¢ [NA];

ury’, continuous variable, if ur]", = 1, it represents the

status of reservoir r in mode m € {gen, pump},
at time interval £ [NA];

Vi binary variable, transition variable between con-
figuration m and configuration n of PSHU g
during time interval ¢ [NA];

a5 continuous variable, amount of generation at a
PSHU g during time interval ¢ [MW];

ar continuous variable, amount of pumping load at
a PSHU g during time interval ¢ [MW];

Qg.t continuous variable, amount of generation at unit

g during time interval ¢ [MW].
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Auxiliary Variables [units]:
gen

a.t continuous variable, energy opportunity cost of

gen configuration offered at PSHU g during time
interval ¢ [$ /hr];
C(qgg,)  cost function of generating unit g [$ /hr].

Obijective Function: The objective of the unit commitment problem is to minimize the system
operating costs. Under MISO current practice, the costs related to a PSHU are the offered
production costs of the generating mode minus the virtual bid prices for the pumping mode.
However, assuming that the operating cost of PSH is close to zero due to negligible O&M cost,
the bid and offer from a PSHU are eliminated in the proposed model. That is, in the proposed
model the true opportunity cost of generating and pumping in a PSHU is already reflected in the
cost of other generation plants. That is, the objective is as shown in (A.1.1), representing the piece-
wise linear production costs of the rest of generators in the system:

min C(qq.t)
n 926;? fezf (A.1.1)
System Energy Balance Constraints: The generation has to be balanced with net load in the
system at all times. In (A.1.2), during each interval t, the total generation in the system including
the generation from PSHUs on the left should be balanced with the sum of the net load and the
pumping load from the PSHUs on the right.

Dot D G =D+ Y g™ WeT.
(=1H gEGpan g€0pah (A12)

State and Transition Logic Constraints: Constraints (A.1.3) guarantee that the unit
commitment variables of each mode in a PSHU described in Fig. A.1.1 are mutually exclusive.
The variables representing the modes are shown in Fig. A.1.1.

> up,=1, Vg€ Gpun, Vi€ T,

meM, (A13)
The transition between two modes m, n in a PSHU g at time t is defined as a binary variable

., T
'9,t . These transition variables are shown in Fig. A.1.1 near to the double-headed arrows.
Notice that the start-up and shut-down of a mode are modeled as the transition between the

mode and the alloff mode.

7,1 m _ § n,m § ,m,n
ug_.t - ug,t—l - t!g,t - l'g,t 1

nemMp™ neME™

\'G"IQ‘ = G;psh,v?n = .HM_.\'G"IIC- eT.

(l

(A.1.4)
In addition to the mutual exclusivity constraints on the commitment variable of each
configuration, there should be at most one feasible transition at any time.

Yo > vt YgeGua,VteT.
meMy HE.-‘VT;"'“ (A15)

Box constraints: The amount of pumping load during interval t from the PSHU is constrained
by the capacity of the pump unit in (A.1.6). The pump output of a PSHU will be forced to zero by

pump

(A.1.6) when st =0 indicating the unit is not in @ pumping mode. Symmetrically, the amount
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of generation during interval t from the PSHU is constrained by the capacity of the generation unit

gen
shown in (A.1.7). The generation output of a PSHU will be forced to zero by (A.1.7) when gt
= 0 indicating the unit is not in a generating mode.
Pumepump < qp'ump < upumP S“mp?

\V'? = R»._. \_/!g - g-p__qh_.-]ﬂ._. \V‘t e T

gen gen gen gen ~y .
Q < gy <ug Qg ‘v‘r € R,Vg € Gpshyr, VEET. (A.1.7)

Storage Energy Balance and State of Charge (SOC) Constraints: The energy stored in the PSH

system is linked at each consecutive time interval as shown in (A.1.8). Notice that there can be
?gen Fr.aumir.:l

(A.1.6)

more than one PSHU sharing a reservoir in the model. Parameters and are the
efficiencies of generating and pumping indicating energy loss in both modes. The energy stored in
the reservoir at the beginning and end of the day is given by (A.1.9) and (A.1.10), respectively.
The upper and lower bounds of the SOC are provided by (A.1.11).

en
ert4l = €ry + EE: Py — :i: igélg
g€Gpeh,r gElpah -
VreR, Yte[0,|T]—1]. (AL8)
er0 = Ero, VreR. (A.1.9)
Er|T| = Er.|T|~ vr e 'R. (A.1.10)
E.<e <FE., YreR, vteT. (A.1.11)

The start up and shut down time, transition time, minimum up/down time and security
constraints are not listed here. They can be easily accommodated in the proposed configuration
based model.

Practical Operational Limits: To demonstrate the adaptability of the proposed configuration
based PSH model to industry practice, two additional constraints are presented to reflect some of
the physical limits the PSHUs have in their daily operations.

_n,pump T
E E Uyt <N,

g‘Eg;,S;l_,. neM ;:".pu mp
o e 0 e (A.1.12)

At some PSH plants, due to the physical limits in the start up procedure of pump units, only a

limited number of pump units can be brought online in a given time period. In constraints (A.1.12),
A F.pump . . . . i i .
Mg is the set of modes for which unit g can feasibly transit to a pump mode, bearing in mind

o, pump

that 9 is the transition variable of unit g from mode n to the pump mode. Therefore, without
introducing new variables, constraints (A.1.12) precisely capture the operational feature that no
more than N units sharing reservoir r can transit from any mode to a pumping mode in time interval
t.

For the PSH plant with large reservoirs, there are typically multiple PSH units installed in the
plant and they are jointly operated with the reservoirs. It is usually not economical and physically
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not feasible for the plant to have one unit pumping and another generating at the same time. To
incorporate this feature for a PSH plant with multiple units, constraints (A.1.13) and (A.1.14) are
introduced.

U en \ _ \ -
url " Lurdt <1, VreRVte T.

(A.1.13)
_u_r;f < IE-T’:?F Yr e R.Vg € gp.s‘h.?"-
vm € {gen,pump},Vt € T. (A114)

TIT

2 PUTP . gen
Ury s L UT

A pair of variables rt are introduced for a reservoir or a PSH plant r to represent
the status of the plant as pumping or generating at time interval t. Therefore, constraints (A.1.13)

gy T
are the mutual exclusivity constraints at the plant level with (A.1.14) constraining “9.t which is
the commitment variable of PSHU g in mode m at time interval t. Constraint (A.1.14) indicates if

any unit g of the plant r is in pump mode then the plant status will be in pump mode indicated by
o pump m 2TT1 .
“ri = 1. The same for the gen mode. Notice that since “s.tis binary, “"r.tcan be continuous

and bounded by (A.1.13) and (A.1.14).
Combining (A.1.13) and (A.1.14), if any unit in a reservoir is generating at a time interval, all
the other units sharing the same reservoir would not pump at the same time interval and vice versa.
With the configuration based model, constraint (A.1.13) and (A.1.14) can be easily adapted to
reflect different PSH constraints such as ternary PSH.

Appendix for Section 1V.B.1

HIPPO LAC Simulation Validation Results

The DA problem with the entire horizon is solved before the LAC rolling window starts. The
DA solutions are used to fix the variables after the LAC window in the LAC simulations. The
constraints linking LAC and DA intervals are kept for benchmarking results purpose in this test.
In this simulation validation, the system conditions in LAC rolling window simulations including
demand and generator inputs remain the same as they are in DA. Therefore, we expect that the
solutions from LAC rolling windows would repeat the DA solutions, except where there was
primal degeneracy in the model or because of non-zero MIP relative gaps in the either or both of
the DA and LAC solutions.

Two PSH units are included in the current study namely PSHU1 and PSHU2. Although the
Ludington reservoir is physically shared by PSHU1 and PSHUZ2, based on the reservoir capacity
split agreement, it is modeled as two separate reservoirs and one for each of the PSHUs. The PSH
dispatch results for each of the plants in the LAC rolling windows and its DA solution are shown
in Figs B.1.2 and B.1.3. The generation and pump of the PSH units are illustrated as positive and
negative values, respectively, using the vertical axis on the left of the figures. The LAC solutions
and DA solutions are perfectly overlapped showing that the unit dispatch results from the LAC
rolling windows repeat the DA solutions.
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Fig. B.1.2. LAC Rolling Window Simulation Validation Results PSHU 1
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Appendix for Section IV.E.3

Quantile Regression:

Quantile regression (QR) as a method of non-parametric forecast method is an extension of
linear regression that is used when the conditions for linear regression are not met (i.e., linearity,
homoscedasticity, independence, or normality). The two main assumptions in using QR methods
read as follows:

e No pre-assumption on distribution of data is considered.

e Distribution of data varies over time.

Assuming that residuals are normally distributed, regular linear regression estimates the
conditional mean of the response variable, conditioned on the exogenous variable, using the
following model:

Vi = BO + ,[i'lxl-l + ﬁzxiz + -+ ﬁpxip, = 1,2, v, n (E 3. 1)
with Mean-Square-Error as a “loss function” to measure the performance of fitted model,

1 n
MSE = n Z(Yi — (Bo + Bixix + Boxip + -+ + ﬁpxir)))z' (E.3.2).
i=1

In quantile regression, unlike regular linear regression, for any quantile 0 <a <1, we
estimate the conditional median of the target across different values of the features.

Quyi = Bo(a) + Br(a)xiyy + Br(@)xip + -+ + Bp(@)xyy, i=1,2,...,n (E.3.3)
Median-Absolute-Deviation is used as the loss function in QR , where median is calculated for
for each a of interest, and the loss function is defined as:

MAD == % po (Qa yi — (Bo(@) + Br(@)xiy + Bo(@)xiz + -+ + Byp(@)xip)) (E.3.4)

Where p,(€) = amax(e,0) + (1 — a)max (0,—€) . Here p,(e) gives weights to the error
depending on the given quantile, and the sign of error. This implies if the error is positive then
p.(€) multiples the error by «, and if error is negative multiples the error by (1-a). For example,
for @=0.2 , the median of 20" quantile, means in equation (E.3.4) we want 80% of errors to be
positive and 20% of errors to be negative.

Non-Parametric Probabilistic Forecast:

The following is a summary of the methodology we used to reconstruct the conditional
distributions (PDF and CDF) for the time series values at any given time in look-ahead window:

e Get the dataset for which we wanted to do the forecasting for look-ahead hours.

e Fit Quantile-Regression (QR) curves through the predicted data in look-ahead time window.

To reconstruct the conditional distributions (PDF and CDF) for the time series values at any given
time, we can use quantiles as a result of fitting the Quantile-Regression (QR) which for each time
ahead t+k and each quantile 0 < a; < a; < ... < a; < .. < a,, < 1isshown with ii,(:ﬁ‘,z :

Here we do not assume any shape for the target distription namely LMP, thus a non-parametric
forecast of Cumulative Distribution Function CDF of the variable of interest at any given time
can be produced by gathering a set of m quantile forecasts. For any target time, t+k, in look ahead
horizon, Probability Density Function (PDF) can be derived by taking derivative of the
corresponding CDF.
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Quantiles of Prediction for 2019-03-07
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Fig. E.3.1. quantile regressions for 10%, 20%, ..., 90% quantiles associated with predicted
RT-LMP.

Assumptions to describe the relation between our random variable, the quantiles, the
probability density function (PDF), and its associated cumulative distribution function (CDF):
*  Pisk: random variable; f;,x: PDF; F...: CDF

q%., = Fr.L. (@) quantile with proportion a€ [0,1] or P(P,,, < x) = o.

For our application, we produce a set of quantile regression for the given point forecast
obtained from our statistical predictive model, namely ARIMAX method.

ars
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POF

0I5

) 3 ]
Price

Fig. E.3.2. CDF and PDF for one selected hour in look-ahead window.

Scenario Generation:

In General, the probabilistic forecasts do not reflect the interdependence structure of forecast
errors during look-ahead time, so these methods do not inform about prediction errors. This
interdependence structure of errors is very important for many time dependent decision-making
problems. In the context of PSHU optimization, if LMPs are high in a particular interval, this might
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suggest additional PSHU generation or decreased pumping, with the SOC restored during later
intervals; however, if LMPs are correlated over time, then there is a risk that increased generation
in a high priced interval will necessitate increased pumping in another interval with high prices,
resulting in a net increase in costs.

In order to fulfill this requirement and reflect the prediction errors, we follow the method of
statistical scenario generation for wind production adapted from [E.1]. The method has some
generic value, since the results of any type of forecasting methodology can be used as input.

1) Creating the Gaussian multivariate random variables:

The random variable ¥} whose realization Y at time t is defined by Y = F,, . (pesr), Vt; is
uniformly distributed on the unit interval U[0,1].

A fundamental property of a reliable probabilistic prediction is that the prediction errors can
be made Gaussian by applying a suitable transformation using the Probit function, known as the
quantile function for standard normal distribution. Therefore, we can Transform Uniform
distribution to Normal distribution; using the Probit function

X® = o 1(YY), vt

2) Creating Covariance Matrix:
The random variable X, ~ &(0,1). The transformed random vector X = (X, X5, ..., Xg) T
~ N(uo, 2) uo being a vector of zeros, and K is the max forecast horizon. e.g. 24-hour.

. .. 1 i T
The sample covariance Matrix is formulated as: X, = — LX) XTI

Due to non-stationary characteristics of price, long term variations in the interdependence
structure of prediction errors are tracked by recursively estimating this covariance matrix.

-2 1 T
Y = A(’;Tl) Y1+ (1 + A (t_—1 - 1))th ®° re[0,1).

The covariance matrix is initialized by setting all its off-diagonal elements to 0 and its diagonal
elements to 1. The parameter A is a “forgetting factor” that adjusts how quickly new information,

in the form of XtX (t)T, are incorporated into the estimate ), .

e -
. N
18 ||

e
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P
.

| I i I
3 12 18 24

Fig. E.3.3. Covariance matrix of the multivariate normal random variable- March 7th,2019
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In Error! Reference source not found. E.3.3, the horizontal and vertical axes range over the
window of prediction, k=24 hours. Each pixel gives the covariance between two forecast horizons,
and hence variance values for each forecast horizon on the diagonal.

Now that the covariance matrix containing the whole information on variance and covariance
of the transformed variable X = (X;, X5, ..., Xx) T is calculated. The following are steps to create
statistical scenarios associated with forecasted RT-LMP.

3) Generating Statistical Scenarios [E.1]:
1. In order to have S-realizations® of the random variable X = (X;, X5, ..., Xp4) 7
~ XU, Zt—24), We use a multivariate Gaussian random number generator with zero mean,
and covariance matrix, Z,_,4. The i*" scenario of S-realizations is denoted as X".

2. For each horizon k€ {1,2,..., 24}, S-realizations Y} of the uniform variable Y, are
obtained by applying the inverse probit function ® to each component of X‘as Y=
d(XL),Vi=1{12..5}, k={1,2,..,24}.

3. For each look-ahead time ke {1,2, ..., 24}, the scenarios of RT price, result from the
application of the inverse cdf A;}klt to the S realizations Y} of the uniform variable

Yie: Dtgrge™ At:tlk|t(yki) Vi, k.

Appendix for Section IV.E.4

Up-sampling and Interpolating the RT-LMP Point Forecast Results for intra-hour 15-
min Intervals

To produce the more granular data points, or in other words to increase the frequency of the
samples, we need to derive a new data set from the existing one. In our case, we are interested in
intra-hour, 15 minutes intervals, RT-LMP forecasts, which requires data points to be created at a
4-times higher rate than the forecasted RT-LMP prices. For that purpose, the first thing we do is
create datapoints at higher frequency to report the RT-LMP prediction on those new data points.
Once the data points are created at a more granular level, we start to use the hourly RT-LMP
forecast information from the lower rate data and define an interpolation function to generate the
RT-LMP forecast values for those higher rate missing data points. Given the realized RT-LMP
values are in 5-minute granularity, the existing hourly RT-LMP data are derived by averaging
those realized 5-minute RT-LMP data during each hour. Given the mentioned averaging constraint,
we make sure that the new intra-hour RT-LMP dataset satisfies the averaging constraint as well.
To interpolate those values there is a wide selection of simple and more complex interpolation
functions. However, in most cases a linear interpolation is considered as a good start. In the linear
interpolation, it basically draws a straight line between available data (which in this context is the
forecasted hourly RT-LMP) and then interpolates and fills in values in between (which in this
context is the 5-minute RT-LMP). Figure E.4.2 shows the original hourly RT-LMP Point Forecast
and its associated 50 scenarios.

8 S-realization of multivariate variable X means creating S number of scenarios to represent the potential
values of X.
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Fig. E.4.2. Observed price, point forecast price and probabilistic forecast with 50 scenarios of
RT-LMP for day of April 15", 2019. ARIMAX method is used with X being DA-LMP.

In order to do the Up-Sampling and creating high frequency data points we proceed as follows.
First, we create data points for minutes in between each of consecutive hours.

Given the original hourly data points as follows:

[4/15/2019 0:00 AM, 4/15/2019 1:00 AM, 4/15/2019 2:00 AM, ..., 4/15/2019 23:00]

The intra-hour data points would be as follows:

[4/15/2019 0:00, 4/15/2019 0:15, 4/15/2019 0:30, 4/15/2019 0:45, 4/15/2019 1:00, 4/15/2019
1:15, 4/15/2019 1:30,4/15/2019 1:45,4/15/2019 2:00, ..., 4/15/2019 23:00, 4/15/2019 23:15,
4/15/2019 23:30, 4/15/2019 23:45]

Now that we could derive the higher frequency dataset. We use linear interpolation on the
forecasted hourly RT-LMP to get the velues for these 15-minute intra-hour intervals, considering
the average constraint as described above.

Appendix for Section IV.E.5
ARIMAX formulation to model multi-days ahead LMP single point forecasting:
14 q

[Va=1,Ya=2:Ya=3» Ya=1Ya=5 Yi=6Ya=7] = Z PiYe-it Z 0 € +

i=1 j=1

3
Z Bm Xmt=(a=1234567 + € €~N(0,0%)

m=1
The target value is forecasting the day ahead LMP for the next 7-days. The potential candidates
to include into the model for the exogenous varibles are x,,,={GasPrice, Load, Wind-Solar, Online
Margin, Net Schedule Interchange (NSI)}, and the level of granularity is hourly for each day.
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Figure E.5.2 shows the deterministic point forecast as a result of applying ARIMAX
methodology. As observed from the figure, the red line demonstrates the ARIMAX forecasted
result versus the blue line which shows the realized LMP, for the week of October 15, 2019 for
the nodes where the studied PSHU are connected to.
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Price

25

20
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Days

Fig. E.5.2. LMP point forecast along with the actual realized LMP for the week of Oct15th,
considering the past 30days for the training set for forecasting the price for 7-days ahead look
ahead time horizon.

Facebook Prophet to model multi-days ahead LMP single point forecasting:

The quality of the generated statistical scenarios is directly related to the level of the accuracy
of the method of deterministic point forecast. In this study we tried to run a comparison study
between our statistical ARIMAX based method and another method of time-series analysis named
Facebook Prophet. This method is developed by Facebook as a procedure for forecasting time
series data based on an additive model where non-linear trends are fit with yearly, weekly, and
daily seasonality, plus holiday effects.

Components of Facebook Prophet as an additive model:

Y (t)= G(t) + S(t) + H(t) + Noise
G(t): Growth, piecewise linear curves for modelling non-periodic changes in time series.
S(t): Seasonality, periodic changes (e.g. weekly/yearly seasonality) Seasonal effects S(t) are
approximated by Fourier Series:

N

. 2mnt 2mnt
s(t) = Z (u,, cos ( P ) + b, sin ( [i >)
n=1

H(t): Holiday, effects of holidays (user provided) with irregular schedules.
Noise: error term accounts for any unusual changes not accommodated by the mode.

Figure E.5.3 shows the results of single point forecast applying the Facebook Prophet approach
and evaluates the performance of the results by computing Root-Mean-Square-Error (RMSE).

1 n
RMSE = — Yi — ;)2
o ;(.‘/‘1 .’/_1)
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20 Multi-Days Ahead LMP Prophet Forecast
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Fig. E.5.3. The forecasted LMP using prophet methodology for the week of Oct, 15", 2019
shown in red along with the realized LMP.

Appendix for Section I1V.G.1

Additional auxiliary constraints and final SOC stochastic constraints
Additional auxiliary constraints are included as follows:

st < Moo hiE (G.1.5)
s¥f < Yo RYE; (G.1.6)
0<s5f < M-y (G.1.7)
0<sgf <My (G.1.8)

YsYs SN - A (G.1.9)

It can be seen that the SOC limitation constraint (G.1.4) is not formulated as a hard constraint,
because slack variable s% and sYF are introduced. s:% and s? are limited by the total amount of
added headroom and floor room as in (G.1.5) and (G.1.6), which means the physical limits of PSH
plants will be always respected. Constraints (G.1.7) and (G.1.8) are auxiliary constraints that
enable slack variables or turn them OFF. y; is a binary indicator, describing if the SOC limitation
is violated in scenario s. The total violation Y y. is required to be no larger than a certain threshold,
for example, 95% of the total number of scenarios. This is enforced by (G.1.9), where A is the total

number of scenarios and N is the percentage. In summary, violations are allowed in some extreme

scenarios, but the majority shall be satisfied. The violation is actually caused by the insufficiency

of enforcing headroom and floor room, while the physical limits are always satisfied under all
scenarios, which is guaranteed by limiting the range of slack variables.
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The above constraints are formulated based on the assumption that a PSH has only one unit,
namely the reservoir of the PSH plant has a one-to-one mapping with the unit. In fact, a PSH could
have multiple units, and these units share the same reservoir. We extend the above formulation to
consider this, and the final SOC stochastic constraints are summarized as follows:

SOCLB+Zk 1hst—Sst <SOCt<SOCUB Zk 1h +SSL"
Ss t = Zk 1 hs t
5 = Zk 1 hs t»
0< ss <M -y
0<sif <M.y
YsVs <N -4
hY8 = RGPV (ge — G*P - uf) + Ry (PYB -uf —p) + PU5 - 1977 (1 —uf —uf) + g, - 157°;
ht = RGP (GYE -uf — g) + R"DN@t P8 uf) + GUB - 1876 (1 —uf —uf) +p - 15,

&> ult, (G.l.lO)
ut > ufy; (G.1.11)
uf < ¥iuf; (G.1.12)
uf < Yiuly (G.1.13)
9t = ZiYie; (G.1.14)
Pt = XiDig; (G.1.15)

where g;¢, D¢, uft, and uf . are the counterparts of g., p;, uf, and uf but defined on the
individual unit level for unit i. The stochastic SOC constraints are imposed on the plant level,
which contains multiple units. To this end, auxiliary variables and aggregations constraints are
defined and imposed to aggregate the units onto the plant level. This is done by constraints
(G.1.10)-(G.1.15). The plant is indicated as ON (pumping or generationg) if any of its units is ON.
The output of a PSH plant is equal to the output summationg of all units contained by it.
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