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I. Executive Summary 

To leverage the fast-ramping capability of resources to provide great value to the grid, 

electricity system operators such as the Midcontinent Independent System Operator (MISO) 

continue to evolve their approaches for integrating energy storage resources, including pumped-

storage hydro (PSH), into the electricity markets. However, new challenges arise in modeling and 

optimizing these energy-limited resources across multiple market clearing processes and planning 

studies with uncertainties and imperfect information. For instance, current market practices of PSH 

owners specifying pumping/generating hours can result in sub-optimal generation dispatch. 

Letting grid operators optimize PSH with the consideration of multiple operating modes and 

energy limitation constraints can potentially bring economic benefits to both the system and the 

PSH owners. However, in multi-stage clearing process of electricity markets, utilizing the PSH 

flexibility to deal with realized uncertainties can cause deviation in the multi-stage scheduling 

processes. The resulting financial risks from the schedule deviation may not be acceptable to PSH 

owners. In addition, to effectively utilize this energy limited resource, the state of charge (SOC) 

constraints of PSH needs to be continuously optimized and the marginal cost of deviation need to 

reflect the expected cost to purchase or sell energy at future times to compensate for deviations. 

This project aims to develop a prototype enhanced PSH model and improved price signals in 

the multi-stage market clearing process with proper consideration of the unique characteristics of 

PSH, in order to better align underlying PSH capabilities with evolving grid needs, particularly 

including the needs for more frequent and larger cycling to manage variability and uncertainty 

from renewables. 

The project is carried out in collaboration with industry partners representing all PSH owners 

in MISO footprint. The project uses realistic tools, models, and data that allow the research team 

to study, evaluate and quantify opportunities to improve the market design. For example, the 

prototype PSH models have been developed and implemented in High-Performance Power-Grid 

Optimization tool (HIPPO1) software and tested with MISO Day-ahead cases with realistic data 

from PSH plant operators. 

The project has resulted in the following major accomplishments: 

• A prototype deterministic day-ahead (DA) security constrained unit commitment (SCUC) 

model with PSH optimization has been developed and implemented using HIPPO. It meets 

MISO’s solution quality and performance requirement. Studies on actual MISO system 

showed 0.04%-0.67% reduction in system total cost and mostly positive with up to 97% 

increase in PSH profit. The benefits are expected to be higher with more penetration of 

PSH and renewable generation. 

• A “tighter” formulation of the state-of-charge constraints with binary variables has been 

proposed and implemented to improve the computational performance of the proposed 

deterministic DA SCUC model. Statistical data based on repeated tests using MISO cases 

show that the tightened constraints typically have approximately neutral or positive impact 

(e.g., up to 34% reduction in studied cases) on average computational time. 

 
1 HIPPO is High-Performance Power-Grid Optimization tool developed by MISO, GE, GUROBI, and PNNL 

under ARPA-E funding. It is currently used by MISO for R&D prototyping, and MISO will consider implementing 

some of the HIPPO technology in production system in the future. 
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• An energy reserve (or MWh reserve) concept has been proposed to deal with the SOC 

deviation in real-time. Head room and floor room are derived using statistical models. Two 

methods including the rolling based stochastic approach and the approximate dynamic 

programming (ADP) approach have been employed to evaluate the value of water of PSHs 

outside a finite time horizon. Studies show that both approaches can lead to a better 

utilization of available water with higher profits for PSHs in real-time (RT) markets, than 

exactly staying with the DA solutions. In addition, no approach consistently outperforms 

the other, and their performances depend on the quality of RT price forecasts as well as 

similarities between price patterns in RT and those used for ADP training. 

• A rolling window simulation platform has been developed in HIPPO, which closely mimics 

the look-ahead commitment (LAC) of MISO. It is a valuable tool for investigation of the 

intra-day clearing process.  

• An Autoregressive Integrated Moving Average with Exogenous Variable (ARIMAX)-

based deterministic price forecast and a scenario generation-based stochastic price forecast 

have been developed to predict RT prices. The price forecasts can be used in the developed 

deterministic and stochastic PSHU models respectively to guide intra-day dispatch. Studies 

using MISO data show the developed ARIMAX model can capture the trend, the peaks 

and the turning points of the actual RT-LMP significantly better than the Facebook Prophet 

model. 

• A risk-averse formulation has been developed to address the concern of profit loss in the 

RT market. Studies demonstrate the effect of the risk management formulation in reducing 

system total cost and avoiding negative real time profits for the PSHU. 

• A planning model with improved realistic characteristics of PSH and the incorporation of 

market optimization enhancement has been developed. Studies using actual PSH plant 

parameters and MISO planning models reveal the SOC error from inaccurate PSH input-

output curve modeling will accumulate quickly in chronological production cost 

simulation, and consequently requires periodical adjustment of SOC or the adoption of 

proposed improved input-output curve modeling. 

• A novel disjunctive convex hull model for input-output curve approximation has been 

developed to improve the computational performance, and studies show an order of 

magnitude speedup over the common piece-wise linear approximation methods. 

• Studies using MISO planning models show using DA storage shadow price as an indicator 

for future value of water can exploit the flexibility of PSH in RT and reduce RT system 

total cost (with a monthly average of 0.22% reduction in studied cases). 

• A linear program based approximated model is used to approximate the nonconvex unit 

commitment model to accelerate the solution of stochastic production cost simulation 

models. Studies using a MISO planning model show the proposed method can produce 

acceptable accuracy in results (with 0.35% difference in system total cost) and significant 

solution time improvement (with 71.6% reduction in solution time). 

By optimizing PSH operations with consideration of multiple operating modes and energy 

limitation constraints to mitigate uncertainties, the above project findings will enable greater 

utilization of PSH flexibility in multi-stage clearing process and facilitate a deeper market 

penetration of renewable and/or distributed energy resources. MISO considers incorporating the 

developed models from this project into production in the future, pending further extensive tests, 

stakeholder process and prioritization. 
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This aforementioned project accomplishments have been achieved through research 

investigations in the following three areas. 

• Area 1: PSH optimization in DA large-scale SCUC with uncertainty; 

• Area 2: PSH optimization within the operating day through establishing a near term price 

forecasting methodology and incorporating that price forecast into LAC and RT dispatch; 

• Area 3: PSH optimization in longer-term economic planning study: reflect market 

optimization in a planning model and explore stochastic optimization. 

 

The research in Area 1 enables deeper participation of PSHs through offering their characteristics 

into the DA market, instead of letting them specify a schedule of hourly generation and pumping 

levels to be submitted to MISO. Also, the proposed withholding of energy (energy reserve or MWh 

reserve) from energy-limited resources as well as the stochastically determined SOC headroom 

can mitigate increased uncertainties from a changing portfolio. The research in Area 2 creates a 

framework to optimize PSH in intra-day operation (including LAC and RT) and utilizes 

probabilistic price forecast to incorporate RT uncertainties. It also provides a risk management 

model that can consider PSH owners’ risk aversion preference when deviating RT from DA 

schedule. The research in Area 3 demonstrates the value of enhanced market optimizations from 

Area 1 and Area 2 using long-term planning studies. In addition, the proposed PSH modeling for 

planning analyses provides both necessary model enhancements and correction to the existing 

modeling inaccuracy. 

The detailed work accomplishments for each of the three research areas are further elaborated as 

follows. 

 

Area 1 – Day-ahead Market Optimization 

First, the team established prototype DA SCUC model with PSH optimization that can meet 

solution quality and performance requirement. The prototype PSH model has been developed and 

implemented in HIPPO software and tested with MISO Day-ahead cases. Through discussion with 

the industry advisors 2  about state-of-charge (SOC) parameter settings, the team updated the 

mathematical model to better characterize the operation details of the PSHs in the MISO system3. 

The deterministic PSH DA SCUC model has been further enhanced with a “tighter” formulation 

of the state-of-charge constraints with binary variables. Statistical data collected based on repeated 

tests using MISO cases show that the tightened constraints typically have approximately neutral 

or positive impact on the computational time. 

Second, the team has developed the energy reserve modeling of pumped storage hydro units 

(PSHUs). A reserve secure constraint of PSH in day-ahead SCUC model is developed to address 

the potential SOC boundary violation issue in real-time economic dispatch (ED). The team used 

MISO’s historical data to assess energy reserve secure requirements of PSHs in the day-ahead 

SCUC model. Studies using actual MISO data have shown that energy reserve secure constraints 

can improve system security against uncertainties and contingencies, while not necessarily 

reducing the profits of PSH units. 

 
2 DTE Electric, Consumers Energy, and Ameren Missouri 
3  MISO system includes two large-scale PSH plants: 2,172MW Ludington station (jointly owned and 

operated by DTE Electric and Consumers Energy) and 450MW Taum Sauk station (owned and operated by Ameren 

Missouri). 
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Third, the team has developed a stochastic model to calculate the MWh headroom reserve 

requirement in the day-ahead Forward Reliability Assessment Commitment (FRAC) model, to 

handle potential SOC discrepancies between day-ahead market clearing and real-time operation. 

The team introduced new parameters to define scenarios describing DA to RT discrepancy by 

exploring MISO’s historical data, and thereby generated multiple scenarios to cast the stochastic 

model. Numerical simulations are conducted to verify the effectiveness and impacts of the 

proposed stochastic SOC headroom. In addition, the team has used both the rolling based 

stochastic approach and the ADP approach to evaluate the value of water of PSHs outside a finite 

time horizon. The rolling based stochastic approach relies on the availability and accuracy of 

explicitly simulated/forecasted uncertain RT prices of future time periods; the ADP learns SOC-

price curves based on historical RT price data, and can derive good-enough solutions if RT price 

patterns are close to the historical RT price data used in ADP training. The learned SOC-price 

curves could be used in the FRAC and LAC models to optimize the SOC levels at the end of the 

finite time horizon, without explicitly simulating uncertainties of future time periods. Numerical 

results on a real-time one-hour look-ahead PSH profit maximization problem show that both 

approaches can lead to a better utilization of available water with higher profits for PSHs in RT 

markets, than exactly staying with the DA solutions, while no approach consistently outperforms 

the other as their performances depends on the quality of RT price forecasts as well as similarities 

between price patterns in RT and those used for ADP training. 

 

Area 2 - Intra-day Market Optimization 

First, the team established mathematical formulations to incorporate price forecasts beyond the 

end of the study window for PSH optimization purpose. After investigating the challenges in PSH 

optimization within the operating day that result from the rolling short lookahead window, the 

team has developed LAC rolling window simulation platform in HIPPO, and MISO case studies 

have shown high consistency between LAC rolling windows solution and DA solutions. Then, a 

single point price forecast is developed and used in the model to provide guidance to the PSH in 

the series of LAC simulation. The formulation sets the foundation for the development of a 

stochastic PSHU model in LAC considering the uncertainty.  

 

Second, to capture price forecast uncertainty in persistent deviation model of RT dispatch, a 

probabilistic price forecast method is developed using scenario generation method. Based on the 

developed deterministic PSHU model, the team developed stochastic PSHU models in LAC. 

Probabilistic price forecast is used to incorporate RT uncertainties. Based on the discussion with 

and feedback from the industry advisors, a risk averse formulation is developed to address the 

concern of the profit loss in the RT market. The team prototyped the proposed stochastic PSHU 

model and the risk management formulation. The preliminary results on developed case studies 

show the value of capturing uncertainties in the stochastic PSHU model and the improvement in 

the system objective (namely, system production cost). The results demonstrate the effect of the 

risk management formulation in improving system objective and avoiding negative profits for the 

PSHU.  

 

Area 3 - Planning Horizon Optimization 

First, the team has proposed an improved PSH model with more realistic input-output curves and 

detailed water balance constraints for PSH units, and validated the feasibility of interleaving DA 
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and RT market in planning models. The team also implemented the proposed detailed PSH model 

and DA/RT interleaved simulation method in PLEXOS. The value of accurate PSH modeling in 

long-term chronological production cost simulation model is illustrated using a MISO planning 

system, and the value of DA/RT interleaved simulation in MISO planning is also investigated. The 

team further enhanced the input-output curve modeling with a hypograph relaxation-based 

approach. Numerical studies on Ludington PSH station show the computational advantages of the 

proposed modeling enhancement. 

 

Second, the team established a deterministic PSH optimization model for economic planning while 

reflecting enhanced market optimizations (from Area 1 and Area 2) in a MISO planning system 

via PLEXOS. A MWh reserve modeling is included and a value-of-water based approach is used 

for the RT operation of PSH units to exploit the flexibility of storage resources. Through value-of-

water based rolling horizon framework, the benefit of withholding energy is demonstrated using 

MISO planning system. Test results show the enhanced modeling can enable the flexibility of PSH 

and reduce the overall system cost in the RT market. 

 

Third, the team developed a stochastic optimization approach for economic planning studies with 

a unit commitment approximation strategy to accelerate the solution process. Test results on a 

MISO planning model show acceptable accuracy and significant solution time reduction from the 

proposed approach. The team further explored a stochastic transmission expansion planning 

method with the same approximation strategy together with a decomposition framework. In 

addition, long-term production cost simulation performed on MISO planning cases showed 

enhanced PSH optimization can reduce load cost and in some cases increase carbon dioxide 

(CO2) emission. 

II. Introduction 

This project aims to analyze potential approaches to maximize the value of PSH resources for 

the reliability and efficiency of electricity market planning and operations.  

Large system operators such as MISO continue to evolve their approaches for integrating 

energy storage resources into the markets. Such resources, including PSH resources, present 

unique characteristics such as fast-ramping capability that can provide great value to the grid. 

Indeed, conversations with stakeholders have indicated a desire for enhanced optimization of 

energy storage resources like PSHs. However, modeling and optimizing these energy-limited 

resources present new challenges. In particular, key research questions include developing the best 

approaches to optimize across multiple market clearing processes (e.g., from 7-day FRAC to 5-

minute RT markets) and deciding what optimization approach is best suited to address 

uncertainties and imperfect information across the multi-stage clearing processes. Furthermore, 

the implications for MISO’s large-scale optimization software performance must also be 

investigated to ensure that proposals can be practically implemented. 

Under the current rules as well as the proposed rules in response to the FERC Order 841, a 

PSH unit could offer into MISO market but would need to specify bids for either charging or 

discharging across the day. MISO’s unit commitment software only optimizes for the hours offered 

as generators (i.e., discharging) in the Day Ahead Reliability Assessment Commitment (RAC) and 

LAC processes, on the basis of a maximum daily energy constraint. The pumping (or charging) 

status needs to be self scheduled. That is, participants need to determine which hours to pump and 

which hours to generate in the offers. Currently, they make this decision through price forecasting, 
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while also considering efficiency losses in order to determine the maximum daily energy to be 

offered for generation and the energy to be utilized for pumping. However, price is an outcome of 

the market clearing and thus not very easy to predict accurately ahead of time. This process can 

result in sub-optimal scheduling of the resource: the region may not receive the best value, and the 

participants may not get the best profit from these resources. Thus, optimizing PSHs with 

consideration of multiple operating modes and energy limitation constraints can potentially bring 

additional benefit to the market, especially under large renewable penetration. 

Furthermore, current market clearing is a multi-stage process. Specifically, MISO market 

clearing processes include 7-day Forward RAC, Day Ahead Market, 2-day Forward RAC, Intra-

day RAC, 3-hour LAC, and 5-minute RT Market. A multi-day optimization horizon may be 

necessary to best utilize a large PSH with multi-day storage. Typical planning by PSH operators 

for daily or weekly scheduling seeks to return the SOC at the end of the horizon to be the same as 

at the beginning of the horizon—this is accomplished implicitly through the maximum daily 

energy constraints for generation as mentioned above. Explicitly requiring SOCs at the end and 

beginning of the planning horizon to be the same is called the “SOC target constraint”. On the 

other hand, it is desirable to allow for some deviation between day ahead planned use of the PSH 

and the actual dispatch in RT markets, since as with all other dispatchable generation resources, 

deviations of real time generation from day ahead schedule allow recourse to respond to 

realizations of uncertainties. That is, a significant part of the potential value of PSH is in its ability 

to quickly ramp to balance for deviations between RT and day ahead schedules; however, current 

scheduling practice tends to limit deviations from day ahead or longer-term decisions. Thus, 

representation of energy limited resources in the cascaded scheduling and pricing model needs to 

be addressed in order to best utilize these resources and to provide fair compensation to them. A 

key representational issue is the effective marginal cost in one market of deviating from a value 

scheduled from a previous market. The simplest example of this is the valuation of marginal 

deviation costs in real-time from the day-ahead scheduled pumping or generation. Intuitively, the 

marginal cost of deviating should be related to the expected cost to purchase or sell energy at future 

times to compensate for deviations.  

An additional issue is that, in real time, the transition between pumping and generating can 

happen in a short time window. It can provide flexibility if managed well. However, if it is not 

properly managed, a large change of output in a short time window may cause system ramping 

issues because other resources may not be able to pick up the sudden changes in output from PSHs. 

MISO developed processes outside of the market to coordinate with participants in providing 

efficient pumping schedules and avoiding negative impacts from the transition. However, it would 

be valuable for the MISO market to explore the potential to incorporate transition constraints 

within the clearing engine itself as part of the optimization enhancements. The model could 

represent the delivery of such ramp products during transitions from pumping to generation or vice 

versa, building on analogous models of ramping during transition of combined-cycle gas turbines 

(CCGT) that have been explored by the project team, and therefore facilitating enhanced 

management and utilization of the transition of PSHs. 

The operation of PSH has implications for long-term, capital planning which is becoming 

increasingly dependent on assumptions about resource operating profiles and utilization. The team 

also worked with the MISO planning groups to understand how optimization models might impact 

planning processes, and to conduct an initial assessment of how optimization models might be 

reflected in the production cost and transmission planning processes. 
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III. Accomplishments and Milestone Summary 

As detailed in the Statement of Project Objectives (SOPO), all milestones and deliverables are 

listed in the below table, with completion status indicated. 

Number Milestone Description Status 

Milestone 1.1 Establish prototype DA SCUC model with 

PSH optimization that can meet solution 

quality and performance requirement. 

Completed 

Milestone 2.1 Establish mathematical formulations to 

incorporate price forecasts beyond the end 

of the study window for PSH optimization 

purpose 

Completed 

Milestone 3.1 Establish interleaved DA/RT simulation 

method for economic planning 

Completed 

Milestone 4.1 Establish prototype of enhanced PSH model 

within the SCUC framework 

Completed 

Deliverable 5.1 A prototype representation of price forecast 

uncertainty in persistent deviation model of 

RT dispatch 

Completed 

Milestone 6.1 Establish deterministic PSH optimization 

model for economic planning while 

reflecting market optimization 

Completed 

Critical Design Review After Milestone 6.1 is finished, prototype 

DA SCUC model, new MWh reserve 

requirement and price forecast, and 

improved deterministic planning model will 

be established. 

Completed 

Milestone 8.1 Establish prototype stochastic SCUC tool 

equipped with fast computation capability 

that can accurately determine MW and 

MWh reserve requirements of systems 

against uncertainties. 

Completed 

Deliverable 9.1 A detailed report on long-term value of 

enhanced PSH model through planning 

analyses. 

Completed 
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It should be noted that the Critical Design Review was conducted on April 7, 2021. Review 

comments were addressed and incorporated into the Critical Design Review report. After further 

review, on May 5, 2021, DOE determined the Critical Design Review criteria have been satisfied 

and the research team can proceed with the rest of the project. 

Detailed accomplishments on each of the milestones and deliverables will be elaborated in 

Section IV. 

IV. Detailed Accomplishments toward Milestones 

The project team has made significant accomplishments toward each milestone or deliverable, 

which are detailed in the following sections IV.A through IV.H respectively. 

IV.A. Accomplishments Toward Milestone 1.1  

Milestone 1.1: Establish prototype DA SCUC model with PSH optimization that can meet 

solution quality and performance requirement. 

Accomplishments Summary: There are two main accomplishments in this Milestone. (1) The 

team has prototyped a PSH optimization model for DA SCUC. The model has been implemented 

using HIPPO software. Tests were carried out with several of the MISO day-ahead cases, which 

were solved with less than 1% Mixed Integer Programming (MIP) gap at 1200 seconds. These 

results meet MISO solution quality and performance requirements. The team discussed with the 

industry advisors about state of charge (SOC) parameter settings and case study assumptions and 

performed computational and benefit studies on MISO test cases, showing that the model is able 

to not only reduce the total system dispatch cost but also increase the profit for optimized PSH 

units. (2) An enhanced formulation of SOC constraints was proposed and tested using MISO day-

ahead cases and results demonstrated the benefit in computational performance, which suggests 

the tighter SOC constraints help to build a tighter model with a smaller feasible region and increase 

the computational efficiency. 

In some of the results presented below, a 0.1% MIP relative gap (i.e., the absolute gap divided 

by the upper bound) is used as a stopping criterion. It should be pointed out 0.1% MIP relative gap 

is for well-behaved cases that present less challenges to the solution process. By the MISO 

operating guide, solutions with MIP relative gap limit lower than 1% will be accepted. For difficult 

cases, if the relative gap is below 3% or absolute gap is below $24000 at 1200 seconds (i.e., 20 

minutes), it is also acceptable. If the gap is above 3%, the time limit will be extended from 1200 

seconds to 1800 seconds. 

 

IV.A. 1 Developed deterministic PSH model in SCUC 

Pumped storage hydro units (PSHUs) can provide flexibility to the system and facilitate 

renewable energy resources integration. However, these important and valuable services that are 

available from PSHUs have not been utilized largely due to the fact that PSHUs have not been 

fully optimized in the market. In the current MISO day ahead market, PSHUs offer opportunity 

costs and bid prices for their generation and pump mode, respectively. State of charge limits for 

their reservoirs are not enforced explicitly by the system operator. Instead, a maximum daily 

electricity generation limit is submitted and applied to PSHUs for their generation modes. The 

PSHU owner determines the pump/generate window. To fully leverage the storage services from 

a PSHU and enhance the market efficiency, we believe it is important to introduce a PSHU model 

that can be fully optimized in the MISO day-ahead unit commitment problem.  



 

14 

 

The proposed configuration-based modeling of PSHU represents all feasible operation modes 

and the state-of-charge (SOC) of a PSHU. A pumped storage hydro plant can contain multiple 

units and each of them will be modeled individually; however, there are only three operation modes 

in a PSHU, namely generating, pumping, and offline, which are mutually exclusive as shown in 

Fig. A.1.1. Transitions are allowed between each pair of these modes as shown in Fig. A.1.1 by 

the double-headed arrows.  

 
Fig. A.1.1 Mode Transition Diagram of a PSHU in Two Consecutive Time Intervals. There are 

three operation modes in a PSHU, namely generating, pumping, and offline. Transitions are 

allowed between each pair of these modes. 

Model A.1 describes the proposed deterministic SCUC model that optimizes PSH. It focuses 

on PSH related modeling, and the specific modeling of other generation plants are not detailed 

here. The model closely represents the current MISO unit commitment model, and is actually built 

upon the existing MISO unit commitment model using HIPPO tool.  

The objective of the unit commitment problem is to minimize the system operating costs, 

subject to operational constraints such as system energy balance constraints, state and transition 

logic constraints, storage energy balance and state of charge (SOC) Constraints, etc. The detailed 

mathematical model is included in the Appendix for section IV.A.1. 

 

MISO Case Study 

In this study we use a MISO case that includes 1,085 generators. Reserve requirements and 

transmission security constraints are included for all studies. Constraints on individual generators 

such as, minimum up/down time, maximum start up time, and ramp constraints are included for 

all units including PSHUs with proposed model.  

Computational Analysis: Table A.1.1 shows the computational results of different models4: 

• HIPPO: A High-Performance Power-Grid Optimization (HIPPO) tool. MISO current 

pumped storage hydro model is applied (in which model PSHUs offer opportunity costs 

and bid prices for their specified generation and pump windows); 

• HIPPO + PSHU: MISO current model is replaced by proposed pumped storage hydro 

model in HIPPO described in (A.1.1)-(A.1.14) in the Appendix for section IV.A.1; 

 
4 All tests were performed on a 2.2-GHz quad-core Intel Xeon CPU E5-2699 with 32 GB RAM (which has 

similar hardware specifications as the computers used in MISO market clearing process). All optimization problems 

are solved with Gurobi 8.0. 
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Table A.1.1. Computational Comparison. Each row shows either the MIP relative gap in 

percent at 1200s of run time or the time to achieve a 0.1% MIP relative gap. 

 
The test case and load scenario with the HIPPO model has been benchmarked with MISO 

production day-ahead market engine. Therefore, HIPPO is used as a benchmark for this study. The 

PSHU currently provides offer costs and bid prices for their generation and pump modes, 

respectively. The state of charge of the reservoirs are not enforced by the system operator; instead, 

the parameter of maximum daily generation is applied. Also, the pump/generate window for the 

unit are submitted and fixed by the unit owner. In HIPPO + PSH model, the PSHUs are represented 

by the proposed configuration-based model, the SOC of the units are represented and the PSHUs 

are fully optimized. 

The computational time in both models for six cases are listed in Table A.1.1. If the model can 

not be solved to the target MIP relative gap at 0.1% within the MISO day ahead market cutoff time 

at 1200 sec, the MIP relative gap at the cutoff time is listed instead (only for cases #1 and #5). As 

shown in Table III, compared to the HIPPO model, the MIP relative gap at the cutoff time for the 

HIPPO+PSHU model slightly increases in case #1 and #5, whereas the computational time for the 

HIPPO+PSHU model increases only moderately in case #2 and #4. 

Benefit Analysis: In this section, the proposed model is benchmarked with the current model 

in examples based on real data in an actual day in MISO system. 

Table A.1.2. System and PSHU Benefit Analysis of HIPPO+PSHU. Positive percentages 

represent improvement compared to the HIPPO model. 

 
To make a fair comparison between the proposed model and the current model, given a start 

state of a reservoir and round-trip efficiency of each of the PSHUs in the study, the realized state 

of the reservoir at the last hour of the day from the results of the current model is applied to the 

proposed model. That is, the total energy charged to or discharged from the reservoir in each day 

in the simulation are the same for both models. To lay out a more realistic benefit analysis, the 

minimum SOC is calculated as the start state of the reservoir minus the effect of the generation 

cleared by the current model considering the efficiency. Similarly, the maximum SOC is the start 
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state of the reservoir plus pumping cleared by the current model considering the efficiency. The 

PSHU parameters in the proposed model are summarized below. 

• The SOC of a reservoir at the beginning of the day hour 0 is given. 

• The SOC of a reservoir at the end of the day at hour 24 is calculated from the results of the 

current model and is fixed for the proposed model. 

• The SOC min and max are calculated from the results of the current model and are fixed 

for the proposed model. 

• All the other unit parameters (such as min up/ down time, ramp rate etc.) in the proposed 

model are copied from the production offer in the current model. 

The benefits of the proposed model are quantified and summarized in Table A.1.2. Shown in 

the table, the system objective has been reduced for every case when the proposed model is applied. 

Notice that the bid and cost from a PSHU indicated by the first term in (1) is excluded from the 

objective solved under the current model.  

 

 The unit commitment solutions of the rest of the generation units in the system other than the 

three PSHUs in MISO5 are fixed to the same values as obtained in the current model, such that the 

results shown in Table A.1.2 mainly reflects the impacts of the proposed model on the PSHUs. 

The reduction in system objective from the proposed model is shown as the percentage of the 

system objective of the current model. At the same time, the profit increment for the PSHU owners 

from the proposed model are shown as percentages of their profits result from current model. The 

profit reduction for PSHU 3 in case #2, as shown in Table A.1.2, results from the existence of 

multiple optimal solutions within the MIP relative gap. Similar situations happened in the 

operation of MISO day-ahead market, a market procedure is developed to detect such condition 

and fetch alternative solutions for the unit [A.1]. PSHU 3 is not cleared from both models in case 

#3 and case #6. The profits for PSHU 2 in case #5 from the proposed model is several times the 

profit from the current model as indicated by * in Table A.1.2. However, this is likely due to the 

challenges in constructing the bids and offers under uncertainties and it is not a general benefit 

introduced by the proposed model. 

Overall, compared to the current model, the proposed model only increases the computational 

burden moderately but improves both the system objective and the unit profits. In addition, the 

scenarios used in the study are from historical data library and have less renewable capacity than 

currently installed in MISO. According to the current MISO generation interconnection queue 

[A.2], significant additional amounts of renewable units are likely to be interconnected in the near 

future. In a system with more variation and intermittency, the value of the flexibility from a PSHU 

is expected to be further increased with the proposed model. The study described in this subsection 

has been published in the IEEE Transactions in Power Systems [A.3]. 

IV.A. 2 Tighter formulation of constraints in PSH model.  

There are typically many choices for formulating the linear constraints in a model such as the 

SOC limit constraints described in (A.1.11) in the Appendix for section IV.A.1, but for 

computational efficiency it is best to seek constraints that, as closely as possible, match the so-

called “convex hull” of the feasible region.  The convex hull of the feasible region is defined to be 

the smallest convex set that contains the feasible region. To consider the convex hull, first define 

 
5 The three PSHUs include the Ludington station owned and operated by Detroit Edison and Consumers 

Energy respectively, and Taum Sauk station owned by Ameren. 
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the “continuous relaxation” to be the region obtained by replacing the binary variables with 

continuous variables.  The continuous relaxation involves linear constraints on continuous 

variables and is convex. Therefore, the convex hull is contained in the continuous relaxation, but 

the convex hull can be strictly contained in the continuous relaxation. Using a representation of 

the linear constraints that is as “tight” as possible, ideally the convex hull, will generally improve 

the computational efficiency of solving such problems compared to a formulation with a 

continuous relaxation that strictly contains the convex hull. Further, we proposed a tighter version 

of the state of charge (SOC) constraints for the PSH as follows, using the notation introduced in 

section A.1. The previous constraint (A.1.11) in the Appendix for section IV.A.1 is now replaced 

with constraints (A.2.1) and (A.2.2). 

 (A.2.1) 

  (A.2.2) 

 

We have confirmed that (A.2.1)-(A.2.2) are valid and proved that these tightened constraints 

are moderately beneficial numerically based on the test cases considered.  In particular, the 

continuous relaxation of the problem (that allows the commitment variables to range continuously 

between 0 and 1 instead of being binary) will typically have a solution that is binary-valued when 

using (A.2.1)-(A.2.2). This property suggests improvement of the peformance of unit commitment 

software using the tightened constraints, which is demosntrated through numerical results 

discussed in the next subsection. Further analysis clarified that computational difficulty of the PSH 

model is driven by a combination of two factors: mutual exclusivity of generation and pumping 

modes, and SOC constraints.   

 

Empirical results for tightened state-of-charge constraints in PSH model 

We implemented and tested several MISO cases and we ran each case with each model for 

multiple times to collect statistical results on computational time. All the system reserve 

requirements and transmission security constraints are included. We perform all tests on the same 

2.2-GHz quad-core Intel Xeon CPU E5-2699 with 32 GB Ram that was used for the previous 

MISO case studies; all optimization problems are again solved with Gurobi 8.0.  

Seven 36-hour MISO day-ahead market cases with different load and generator scenarios are 

solved. Ideally the cases are expected to be solved within 1200 seconds and with a 1% or lower 

MIP relative gap. Each case is solved with three different variant models:  

1. “Without SOC,” without SOC explicilty represented (PSH submits an offer and bid for 

their unit and PSH is in charge of their own SOC),  

2. “Standard SOC,” with the conventional SOC formulation constraint (A.1.11), and  

3. “Tightened SOC Constraints,” with the newly proposed tighter SOC in (A.2.1)-(A.2.2).  

Due to the intrinsic randomness built into a Mixed Integer Programming solver like Gurobi, 

we test each model for each case five times to have more robust results. A parameter named 

Random Seed Number in Gurobi is designed to introduce a perturbation that typically leads to 

different solution paths. Therefore the Random Seed Number is set to a different number (from 

one to five) every time a model is tested with the same case. For each model and case, the average 

wall clock MIP stopping times and its sample standard deviation over the five tests are listed in 

Table A.2.1. 
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Table A.2.1. Average stopping time and sample standard deviation of Tighter SOC Constraints 

for Model Variants. 

 
 

The MIP relative gap is set to 1% for cases 1 to 5. The MIP relative gap is set to 0.1% for cases 

6 and 7. The MISO production MIP relative gap target is 0.1%; however, cases 1 to 5 are very 

hard cases and the solver cannot get a solution close to the MIP relative gap of 0.1% within the 

cutoff time of 3600 seconds. Therefore, a 1% gap is set for those cases instead in order that the 

solver could get a solution in a reasonable time and the results can be used to compare between 

models. 

A higher LP objective indicates a tighter model and a smaller stopping time indicates that the 

MIP solver could find a feasible solution within the relative gap in less time. The LP objective and 

the time taken to get a feasible solution within the relative gap for both models varies with different 

cases. The fifth column in Table A.2.1 shows the differences between the Tightened SOC model 

optimal LP objective minus the Standard SOC model optimal LP objective. The results empirically 

verify that the LP objective of the model with the tightened SOC constraints is always equal to or 

higher than the LP objective of the model with the standard SOC constraints. 

The MIP stopping times shown in Table A.2.1 show that the tightened model has a moderate 

effect on computational burden, mostly either maintaining roughly the same or somewhat reducing 

the computational burden, with the exception of case 5. In four out of the seven cases (cases 1 to 

3 and case 7), the average stopping time for the standard model and the tightened model are within 

50 seconds of each other. For cases 4 and 6, the tightened model is solved faster than the standard 

model by more than 100 seconds on average. For these two cases, it is observed that the LP 

objective of the tightened model is signifcantly higher than the standard model indicating that the 

tightened model provides a better lower bound when the MIP starts. That is likely to contribute to 

the tightened model's better MIP stopping time performance for cases 4 and 6. 
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Table A.2.2. Numerical comparison for standard and tightened SOC constraints in MISO case 5. 

 
For case 5, the tightened model is solved slower than the standard model on average. Notice 

that the LP objectives are the same for both the standard model and the tightened model in case 5. 

That means the tightened model is not as helpful in case 5 as it is for the other cases, at least at the 

root node. 

To assess the consistency between the result for each run, the average and the sample standard 

deviation (listed in the paranthesis in each cell) of the stopping time differences (the result of the 

standard model minus the result of the tightened model) are listed in the last column in Table A.2.1. 

Except for case 4, the sample standard deviations (STD) are relatively low. That indicates that, 

except for case 4, the conclusion from the average stopping time does not come from a single or a 

few runs with extreme results. For case 4, the large STD comes from the fact that the tightened 

model is solved much slower (more than 2000 seconds) than the standard model in one particular 

run, while the tightened model is consistently solved faster than the standard model in the other 

four runs. 

Case 5 is an extremely hard case and the solver could not get a solution close to even the 1% 

MIP relative gap for most of the runs for both the standard and the tightened model. Therefore, the 

average of the objective and the best lower bound for each model at the cutoff time, or at the time 

a solution with a less than 1% MIP relative gap was found before the cutoff time (only occurs in 

one run with the standard model) are listed in Table A.2.2 for a further comparison. Notice that 

the differences on objective and lower bound between the two models (the result of the tightened 

SOC minus the result of the Standard SOC model) are listed in the last two columns of the table. 

The objective of this case is relatively small (about one tenth of most of the other cases). The lower 

objective is due to the presence of virtual bids/offers and due to violation penalties. In this case it 

is observed that although the tightened SOC model provides a better (higher) lower bound, it does 

not help the solver to find a better (lower) objective. 

The MIP solver explores the solutions in an iterative process. The way this iterative process is 

designed and applied in the MIP solver may affect the outcome. However, it is difficult to address 

that without access to the solver. To summarize, the numerical results of the tested cases in Table 

A.2.1 show that, with one exception in the seven cases considered, the tightened SOC constraints 

typically have approximately neutral or improved impact on the computation time. The study 

results described in this subsection has been summarized in a journal paper and it is submitted and 

currently under review [A.4]. 
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IV.B. Accomplishments Toward Milestone 2.1  

Milestone 2.1: Establish mathematical formulations to incorporate price forecasts beyond the 

end of the study window for PSH optimization purpose. 

Accomplishments Summary: There are two main accomplishments in this Milestone. (1) The 

team has prototyped a Look-ahead Commitment (LAC) simulation in HIPPO software. (2) A 

deterministic PSH optimization model is developed in the LAC formulation. A single point price 

forecast is used in the model to provide guidance to the PSH in the series of LAC simulation. 

IV.B.1 The LAC Rolling Window Simulation in HIPPO 

In an operating day, uncertainties on system demand and generation balance arise due to load 

and generation variations. Those uncertainties are reflected in the uncertainties of LMP. We 

propose to incorporate a locational marginal price (LMP) forecast into the look-ahead commitment 

(LAC) problem. A LAC rolling window simulation platform is essential for such implementation 

and case studies.  

A high-performance unit commitment software, HIPPO, is used and further developed to 

perform the LAC simulations. HIPPO is co-developed by Pacific Northwest National Laboratory 

(PNNL), MISO and a MIP solver vendor Gurobi to solve large-scale security constrained unit 

commitment (SCUC) and economic dispatch (SCED) problem for a day ahead (DA) market. The 

software is built to solve large SCUC and SCED problems for the DA window that includes up to 

36 hourly intervals. However, the function to solve a series of rolling LAC windows in a real-time 

(RT) frame during the day is not available. Based on the original HIPPO code, we have developed 

the module for the LAC rolling window simulations in HIPPO. The framework of the LAC 

simulation and the validation results using MISO system data is included in this subsection. 

 

The framework of the LAC rolling window simulation in HIPPO 

The framework of the LAC rolling window simulation in HIPPO is illustrated in Fig. B.1.1. 

To keep minimum modifications to the model structures in HIPPO, each of the LAC rolling 

window is defined as follows: fix each of the variables outside the LAC window to a previously 

determined value and allow the variables inside the LAC window to be optimized. In this way, the 

SCUC or SCED problem is solved with every interval of the entire horizon 𝑇 for each rolling LAC 

window so that the constraints remain mostly unchanged. Although variables in every interval are 

included in the problem for each LAC window, the LAC problem can be solved fast since the only 

“free” variables are the ones inside the LAC window. Only the unit commitment variables after 

the LAC window are fixed to the DA solution such that the long lead units can satisfy all binary 

constraints. At the same time, some of the time-coupled constraints that link the variables after the 

http://www.optimization-online.org/DB_FILE/2021/07/8502.pdf
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LAC to the variables inside LAC such as ramping constraints are disabled to prevent major impacts 

from the fixed variables after the LAC. 

 

Fig. B.1.1. LAC Rolling Window Simulation Framework in HIPPO. A LAC window is marked 

by a blue dashed rectangle. The LAC window is moving forward one interval at a time indicated 

by its position in each time indexed row.   

The system variables are indicated in the boxes in Fig. B.1.1. The system variables include the 

unit commitment and dispatch variables for generators 𝒫𝑔𝑒𝑛, 𝒰𝑔𝑒𝑛 and for PSH units 𝒫𝑝𝑠ℎ, 𝒰𝑝𝑠ℎ, 

which are defined for each interval for the entire horizon in study: 𝑣𝑡 ∈

{𝒫𝑔𝑒𝑛, 𝒰𝑔𝑒𝑛, 𝒫𝑝𝑠ℎ, 𝒰𝑝𝑠ℎ … }, ∀𝑡 ∈ 𝑇. The LAC windows are highlighted by the dashed blue lines in 

Fig. B.1.1. As an example, there are three intervals included in each LAC window in the figure 

but the number of intervals in a LAC window is a parameter and can be changed to any integer 

value between 1 and the total number of intervals 𝑇. Notice that the problem is solved with every 

interval of the entire horizon 𝑇  represented. However, the intervals after the LAC window 

highlighted by the dashed orange lines are fixed to a DA solution that is available before the LAC 

rolling simulation starts.  

Although LAC has sub-hour intervals in practice, we first solve a LAC formulation with hourly 

intervals as a simplification. The hourly intervals allow straightforward comparison of results with 

DA solutions and it is easier to validate. We can apply sub-hour intervals to the LAC simulation 

later. The first LAC problem starts at 𝑡1 = 1 and it is indicated by the first row of the boxes 

representing variables in each of the intervals in Fig. B.1.1. Assuming the length of the LAC 

window is 3 hours, the unit commitment variables after the LAC window is 𝑡 ∈ [4, 𝑇] and they are 

fixed to the DA solutions 𝑉∗. The LAC window is highlighted by the dashed rectangle and the 

intervals after the LAC where the solutions are fixed to DA solutions are highlighted in the dotted 

rectangle in the first row in Fig.B.1.1. After the first LAC problem is solved, the solutions to the 

variables of the first interval inside the LAC window, that is 𝑣1  written in white font and 

highlighted in the box filled with blue background, is saved and set as the fixed value 𝑉1
𝑡1  to the 

variables in interval 1 in the next and following LAC problems shown in the dot dashed black 

circle. Then the second LAC window starts at 𝑡1 = 2, with the variables in the first interval 𝑣1 
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fixed to the solution from the previous window 𝑉1
𝑡1 and the commitment variables after the LAC 

window fixed to the DA solutions 𝑉𝑡
∗, 𝑡 ∈ [5, 𝑇] . The variables in the second LAC window are 

𝑣𝑡 , 𝑡 ∈ [2,4]. Notice that as the LAC window slides forward at each step, the solution in the first 

interval inside the previous LAC window is fixed to the variables in the same interval of the current 

LAC problem and the first interval after the previous LAC window is included in the current LAC 

window and is “free” to be optimized. After the second LAC window is solved, similarly, the 

solutions to the variables of the first interval inside the LAC window, that is 𝑣2 written in white 

font and highlighted in the box filled with the blue background, is saved as 𝑉2
𝑡2 . Along with the 

solution of the first interval from the first LAC window 𝑉1
𝑡1, 𝑉1

𝑡1 and 𝑉2
𝑡2 are set as the fixed values 

for the variables in intervals 1 and 2 in the next and following LAC problems shown in the dot 

dashed black ellipse. The LAC simulation rolls forward one interval at a time in a similar way until 

the last interval inside the LAC window reaches the last interval of the entire horizon 𝑇.  

 

HIPPO LAC Simulation Validation Results 

The framework of the LAC rolling window in HIPPO is first tested and validated with a MISO 

case with identical case data in DA and LAC cases. Later, the implementation of a deterministic 

LAC PSH model will be described in section IV.B.2 of this report. The stochastic LAC PSH model 

and the RT system information update in the LAC simulation is introduced in section IV.E. 

The details of the validation results are included in the Appendix for section IV.B.1. The 

simulation results confirmed that the unit dispatch results from the LAC rolling windows repeat 

the DA solutions. Once the real-time information such as RT demand is introduced to the LAC 

rolling window, the case data will differ between the DA and LAC and consequently the solution 

from LAC would be expected to be different from DA solution. It would be harder to detect if 

there are any mistakes made in the rolling window program with multiple moving pieces such as 

changing data. Therefore, it is prudent to test in this middle step to confirm the rolling window 

structure works correctly.  

IV.B.2 A Deterministic PSH Optimization Models in LAC Using Single Point Price 

Forecast 

The research team has explored several model options for the PSH optimization in a LAC 

problem. The approach of using locational marginal price (LMP) forecast to provide guidance to 

the PSHU in a LAC is used. The critical question to answer is how to manage the SOC at the end 

of a LAC window. The end of LAC SOC is important because, as an inter-temporal variable, it 

determines how much energy is left in the reservoir for the future intervals. The key is to find the 

best way to effectively reflect the system information from the future (after the LAC window) to 

the present (inside the current LAC window) so that the LAC could optimize the SOC of the PSHU 

while being cognizant of the conditions in the future intervals. 

Given the availability of historical LMP data in MISO system, a methodology is developed to 

forecast the LMP at a particular node and it is discussed in details in section IV.E. in this report. 

In this section, we assume a deterministic single point LMP forecast is available, and we propose 

a modification based on the PSHU model described in (A.1.1-A.1.14) and a typical LAC 

formulation to leverage the LMP forecast to optimize the PSHU in a LAC. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑀𝑖𝑛 ∑ 𝐶𝑡(𝑔𝑡, 𝑢𝑡)

𝑡𝑒𝑛𝑑

𝑡=𝑡1

− ∑ ∑ 𝐿𝑀𝑃𝑔,𝑡
𝑡0(𝑞𝑔,𝑡

𝑔𝑒𝑛
− 𝑞𝑔,𝑡

𝑝𝑢𝑚𝑝)

𝑔∈𝐺𝑝𝑠ℎ

𝑇

𝑡=𝑡𝑒𝑛𝑑+1

      (B. 2.1) 
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∑ 𝑔𝑘,𝑡

𝐾

𝑘=1

+ ∑ 𝑞𝑔,𝑡
𝑔𝑒𝑛

𝑔∈𝐺𝑝𝑠ℎ

= 𝐷𝑡 + ∑ 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝

𝑔∈𝐺𝑝𝑠ℎ

,  ∀𝑡 ∈ [𝑡1, 𝑡𝑒𝑛𝑑]                            (B. 2.2) 

∑ 𝑔𝑘,𝑡

𝐾

𝑘=1

= 𝐷𝑡 ,   ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇]                                                              (B. 2.3) 

(A. 1.3) − (A. 1.11), (A. 1.13), (A. 1.14),   ∀𝑡 ∈ [𝑡1, 𝑇], 
 

The first term in (B.2.1) is the objective function for a LAC problem. The production cost 

𝐶𝑡(𝑔𝑡, 𝑢𝑡) is minimized in a LAC window in intervals that start at 𝑡1 and end at 𝑡𝑒𝑛𝑑. Assume the 

operation and maintanence cost is neglectable for a PSHU, and that the net cost of dispatching a 

PSHU within the LAC intervals is from the net costs of sale or purchase of energy  in the intervals 

post to a LAC. Such cost is represented in the second term in (B.2.1) as the negative arbitrage 

profit of the PSHU in the intervals after the LAC starts at 𝑡𝑒𝑛𝑑 + 1 and stops at the end of the 

operating day 𝑇. The generation of the PSHU at interval 𝑡 is indicated by 𝑞𝑔,𝑡
𝑔𝑒𝑛

 and the pump 

demand of the unit is indicated by 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝

. The LMP at the node where the PSHU is connected is 

forecasted for the intervals after the LAC window and it is noted as 𝐿𝑀𝑃𝑔,𝑡
𝑡0  ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇]. 

The LMP forecast is made and updated at 𝑡0 that is one interval before the start of the every LAC 

window 𝑡1.  

The private constraints for a PSHU model are the same as the DA model described in 
(A. 1.3) − (A. 1.11), (A. 1.13), (A. 1.14)  in the Appendix for section IV.A.1, except those 

constraints are modeled in the intervals from the start of the LAC window 𝑡1 until the end of the 

operating day 𝑇. Since we currently solve the problem in hourly intervals and the constraint on the 

number of pump starts (A.1.12) is typically effective in sub-hour timeframe, (A.1.12) is less 

relevant and therefore it is not included in the model. 

The PSHU is fully optimized within the LAC window. In the power balance constraint within 

the LAC window ∀𝑡 ∈ [𝑡1, 𝑡𝑒𝑛𝑑], the generation of the PSHU, 𝑞𝑔,𝑡
𝑔𝑒𝑛

, is included on the left hand 

side of power balance constraint (B.2.2) and the pumping of te PSHU, 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝

, is considered as 

demand on the right hand side of the power balance constraint (B.2.2). The dispatch of the PSHU 

in the intervals after the LAC relies on the LMP forecast and are not optimized with the rest of the 

system. Therefore, the generation and pumping of the PSHU in the intervals post to the LAC 

window ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇] are not included in the power balance constraint as shown in (B.2.3).  

It is observed that the proposed PSHU LAC model (B.2.1) – (B.2.3) heavily relies on the 

quality of the single point forecast 𝐿𝑀𝑃𝑔,𝑡
𝑡0 . In practice when the price forecast is not perfect, the 

formulation will easily lead to a suboptimal solution to the system and reduce the PSHU profit. 

For brevity, the simulation results of the model using single point forecast (B.2.1) – (B.2.3) are not 

included in this section, but will be presented in comparison with the stochastic PSH models in 

section IV.E. 

 

IV.C. Accomplishments Toward Milestone 3.1 

Milestone 3.1: Establish interleaved DA/RT simulation method for economic planning. 

Accomplishments Summary: (1) The team developed an improved PSH model by including 

detailed water balance constraints, a more realistic piece-wise linear input-output curve, and 
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transition time between generating and pumping modes for PSH units. (2) We implemented the 

proposed detailed PSH model and DA/RT interleaved simulation method in PLEXOS. The value 

of accurate PSH modeling in long-term chronological production cost simulation model is 

illustrated using a MISO planning system. Our planning studies show, without head-dependent 

power bounds modeling, the generate power might exceed physical limits, and the head-dependent 

power bounds modeling is especially important for low-SOC scenarios. In addition, in 

chronological production cost simulation, SOC error will accumulate day by day and become 

unacceptable, demonstrating the need of detailed water-power efficiency modeling for long-term 

planning studies. (3) Further, we proposes a novel disjunctive convex hull model for input-output 

curve approximation and numeric studies showed an order of magnitude speedup than the common 

piece-wise linear approximation methods. (4) The team established a deterministic PSH 

optimization model for economic planning while reflecting the interactions between day-ahead 

and real-time markets. 

IV.C.1 Improved deterministic PSH model for planning 

A realistic PSH input-output curve and the efficiency curve 

For the generating mode of PSH, Fig. C.1.1 and Fig. C.1.2 shows the input-output curve and 

the efficiency curve, respectively, based on plant data provided by industry partners. The 

maximum power output increases with a higher head and generation efficiency varies in ~5% for 

different net head levels and flow rates. 

For the pumping mode of PSH, Fig. C.1.3 and Fig. C.1.4 shows the input-output curve and the 

efficiency curve, respectively. Pumping efficiency varies in ~6-7% for different net head levels. 

 

Fig. C.1.1. Input-output Curve for Generating Mode. It describes a generation output function of 

net head and flow rate. As shown, generation increases as head and flow rate increase. The 

increasing rate with respect to flow rate first goes up and then comes down. 
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Fig. C.1.2. Efficiency Curve for Generating Mode. Generation efficiency varies in ~5% for 

different net head levels and flow rates. 

 

Fig. C.1.3. Input-output Curve for Pumping Mode 
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Fig. C.1.4. Efficiency Curve for Pumping Mode. Pumping efficiency varies in ~6-7% for 

different net head levels. 

 

Zig-zag based piece-wise linear modeling method of input-output curve 

In addition to modeling detailed water volume dynamics, bounds and final level, we also 

modeled the relationship between generating/pumping power, flow rate, and net-head (or water 

volume). A typical example is shown in Fig. C.1.5, while previously Fig. C.1.1 shows a realistic 

case. This curve is referred to as an input-output curve, or production function, water-power 

conversion in the literature. Modeling input-output curve can accurately reflect the efficiency of 

PSH unit, while it will also bring additional computational burdens since it’s nonconvex in general. 

We used a zig-zag formulation based piece-wise linear approximation method to model the 

input-output curve. Compared with the existing piece-wise linear approximation methods for 

input-output curves in the literature, this Zig-zag based method is compact and strong, thus 

computational effective. 

 
Fig. C.1.5. A typical example of Input Output Curve 

 

In order to test the computational time for zig-zag formulation based piece-wise linear 

approximation, we performed numerical simulations with different number of pieces, time 

intervals and operational horizon. The results are shown in Table C.1.1, Table C.1.2, and Table 

C.1.3, respectively. Compared with the exiting piecewise linear approximation method, zig-zag 

formulation based input-output curve approximation method can significantly reduce the 

computational time. 

Table C.1.1. Simulation Results for Different Number of Pieces 

 
 

Table C.1.2. Simulation Results for Different Time Intervals 
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Table C.1.3. Simulation Results for Different Operational Horizon 

 
 

State transition time and trajectory 

Increasing share of renewable energy requires shorter-time-interval and more accurate 

operation and planning PSH models. Including transition time among different states can improve 

the flexibility quantification for PSH units. Based on the configuration-based deterministic PSH 

modeling method mentioned earlier, we modeled the state transition time and trajectory for PSH 

units. 

For illustration, we show the simulation results for short-term dispatch problem with ramp 

event on a 6-bus system, where the time horizon and the time interval are set as 3 hours and 5 

minutes, respectively. We also set a target minimum terminal water level for the upper reservoir. 

The load/generation levels, PSH injection power, and PSH status results when state transition 

times are modeled are shown in (a), (c), (e) subplots of Fig. C.1.6. The corresponding results when 

state transition times are not considered are shown in (b), (d), (f) subplots of Fig. C.1.6. Coping 

with the same ramp event, we find PSH unit can switch from generating mode to pumping mode 

in 5 minutes if state transition times are ignored, which may overestimate the flexibility of PSH 

units. Considering the state transition time and trajectory, our proposed model can more 

realistically quantify the flexibility of PSH. Specifically, in subplots (d), (f) of Fig. C.1.6, the PSH 

unit transits from pump to generate and than from generate to pump, both of which happen in 5 

minutes (please see 15th min-30th min, i.e., blocks 4-66). This is unrealistic in practice due to mode 

transition time requirements of PSH. After modeling the transition process, in subplots (c), (e) of 

Fig. C.1.6, the unrealitic PSH flexibility through violating the transition time requirement is 

corrected, thus leading to a more realistic quantification of PSH flexibility. 

 
6 Note that the resolution of Fig. C.1.6 subplots is 5 minutes. There are 12 blocks in each hour. The 1st block 

represents 0-5th minutes. Thus, the blocks 4-6 represent 15th-30th minutes. 
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(a)                                                                                          (b) 

  
(c)                                                                                         (d) 

  
(e)                                                                                         (f) 

Fig. C.1.6. Results Comparison. For transition time considered case: (a) system load and 

generation, (c) PSH generating/pumping/idle status, (e) PSH dispatch power. For transition time 

ignored case: (b) system load and generation, (d) PSH generating/pumping/idle status, (f) PSH 

dispatch power.  

 

IV.C.2 Impact of enhanced PSH modeling in planning 

In our PSH modeling enhancement, there are two important aspects: one is head-dependent 

power bounds modeling, which quantifies pump power and available generation capacity at each 

head level, thus avoids the simulation result from violating physical limits; another is variable 

efficiency modeling, which accurately describes the SOC change given generate or pump power, 

thus tries to mitigate significant cumulative error in long-term simulations.  

 

Head-dependent power bounds modeling 

Based on the real measurement from a realistic PSH unit, the head-dependent maximum 

generate power and pump power are modeled by off-the-shelf piece-wise linear modeling methods 

for two-dimensional cases. For maximum generate power, linear constraints are created for the 

convex feasible region. For pump power, as the fixed pump power for each water head level forms 

a non-convex feasible region, mixed-integer linear constraints are created due to the non-

convexity. We use the zig-zag approximation approach for the mixed-integer piece-wise linear 

modeling. With an enabling tool we developed, the head-dependent modeling enhancement is 
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implemented as PLEXOS custom constraints in a MISO planning model (called Eastern 

Interconnection Seams model). 

A comparison analysis was conducted for a realistic PSH with and without head-dependent 

power bounds modeling. Power bound errors for generate and pump modes are calculated in 

(C.2.1) and (C.2.2), respectively. 

 𝜀𝑡
g

= ∑ [𝑝ℎ,𝑡
g

− 𝑃ℎ

g
(𝑒𝑟,𝑡)]

+

ℎ∈ℋ𝑟  (C.2.1) 

 𝜀𝑡
p

= ∑ (𝑝ℎ,𝑡
p

− 𝑃ℎ
p

(𝑒𝑟,𝑡))ℎ∈ℋ𝑟  (C.2.2) 

where, 𝜀𝑡
g
 and 𝜀𝑡

p
 are power bound errors for generate and pump modes, respectively. 𝑝ℎ,𝑡

g
 and 𝑝ℎ,𝑡

p
 

are generate and pump power from simulations for unit ℎ  at time period 𝑡 , respectively. 𝑒𝑟,𝑡 

represents SOC of reservoir 𝑟 at time period 𝑡. Given an SOC level 𝑒𝑟,𝑡, 𝑃ℎ

g
(𝑒𝑟,𝑡) and 𝑃ℎ

p
(𝑒𝑟,𝑡) 

denote maximum generate power and fixed pump power from the original head-dependent power 

bounds data (in which piecewise linear approximation is not applied), respectively. 

As indicated in Fig. C.2.1 (a), without head-dependent power bounds modeling, the generate 

power might exceed physical limits. The pump power could also have significant errors 

sometimes. However, with piece-wise linear head-dependent power bounds modeling, the power 

bound error for the whole 6-unit PSH station can be less than ~5 MW. A low-SOC test is also 

conducted, which aims to reflect the error for low-SOC operation points, although this scenario is 

unrealistic to keep for two weeks in practice. The initial SOC is set at a relatively low level (~4 

GWh), and the SOC of the upper reservoir follows a daily recycle. As shown in Fig. C.2.1 (b), in 

the low-SOC test, the amount that PSH generation exceeds its physical limit is larger. Thus, head-

dependent power bounds modeling is especially important for low-SOC scenarios. 

 

 
(a) normal-SOC case 
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(b) low-SOC case 

Fig. C.2.1. Errors with and without head-dependent power bounds modeling. Without head-

dependent power bounds modeling, the generate power might exceed physical limits. The pump 

power could also have significant errors sometimes 

Variable efficiency modeling 

The constant efficiency modeling serves as the current practice for PSH modeling in MISO 

planning studies. The variable efficiency modeling would bring additional computational burdens, 

however, can accurately quantify the relation of water-power conversions. Variable efficiency 

modeling and its acceleration method have been investigated in previus quarters, the value of 

variable efficiency modeling is presented here. 

The numerical test is conducted as follows, 1) run a production cost simulation using the 

constant efficiency PSH model, and get the resulting SOC and MW-output; 2) with the same MW-

output, re-simulate an SOC curve using the variable efficiency PSH data. As shown in Fig. C.2.2 

(a), the SOC difference becomes larger with time in the long-term simulation, and the  two SOC 

curves vary significantly after one week. 

In the current practice of PSH plant operations, the water level of the upper reservior is 

measured and adjusted every day at midnight. To participate in the market, PSH owners will adjust 

SOC every day; however, this process is difficult to consider in long-term planning models. In 

order to analyze the impact of efficiency modeling in both operation and planning models, in our 

numerical simulation, cumulative SOC error is cleared daily for a DA dispatch simulation. As 

indicated in Fig. C.2.2 (b), for the operation model, SOC error is relatively under control in most 

days, as the SOC will be adjusted daily. For the chronological production cost simulation model,  

SOC error will be accumulated. Therefore, detailed water-power efficiency modeling is more 

important in long-term simulations. 

As introduced before, a low-SOC test is also conducted to observe the SOC error for low-SOC 

operation points. In Fig. C.2.3, SOC error from the low-SOC test is much larger than that from the 

normal-SOC test. Thus, variable efficiency modeling is more important for low-SOC scenarios. In 

addition, one real PSH schedule from MISO state estimation during a 15-day period is used for 

validation. Cumulative SOC error curves are calculated using both constant and variable efficiency 

models. As shown in Fig. C.2.4, the same conclusion can be obtained as that from the simulation 

data. 
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(a) SOC comparison 

 
(b) SOC cumulative error comparison 

Fig. C.2.2. SOC and cumulative SOC error. SOC difference becomes larger with time in the 

long-term simulation. In operations, SOC error is relatively under control in most days, as the 

SOC will be adjusted daily. For the chronological production cost simulation model, SOC error 

will keep accumulating over time. 
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Fig. C.2.3. cumulative SOC error comparison (low SOC case) 

 

Fig. C.2.4. cumulative SOC error comparison (realistic data) 

 

IV.C.3 Further improved PSH input-output curve modeling with approximate 

convex decomposition method 

To further improve the computational performance, the team proposed a novel disjunctive 

convex hull model for input-output curve approximation in conjunction with approximate convex 

decomposition method. In contrast to direct piece-wise linear approximation methods, the 

proposed method exploit the partial convex properties of the input-output curve. At the same time, 

we take advantage of the integer variable modeling to preserve approximating accuracy for non-

convex part of the curve, which can appropriately address the accuracy issue from the convex hull 

approximation method. Detailed modeling can be found in the 2020 Q4 Quarterly Report. 

To facilitate a numerical performance comparison, the input-output curve is approximated by 

three methods: piece-wise linear approximation method (PWL), convex hull approximation 

method (CH), and the proposed disjunctive convex hull approximation method with approximate 
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convex decomposition (DCH). In Fig. C.3.1, (a), (b), and (c) shows how our proposed disjunctive 

convex hull approach models the input-output curve under different tolerance settings. Note our 

disjunctive convex hull approach with tolg = 10, as shown in Fig. C.3.1 (a), is equivalent to the 

traditional convex hull approximation method. As a matter of fact, different parameter settings, 

such as the number of pieces in PWL and the tolerance in CH, affect the number of binary 

variables, thus the solution time. On the other hand, they also have impacts on the approximation 

accuracy. So, the estimation error and computation time for the aforementioned approximation 

methods are needed to be compared for different parameter settings. 

On the accuracy side, a summary of maximum estimation errors for these methods is shown 

in Table C.3.1. As indicated, the estimation error for both DCH and PWL methods can be reduced 

with larger tolerance and a larger number of pieces, respectively. The CH approach, i.e. DCH 

approach with tolg = 10, has a relatively large error. Taking the solution time into account, the 

PWL method didn’t converge in 2 hours even for a 5 × 5-piece case, as shown in Table C.3.1. Our 

proposed DCH method has better performance in solution time than the PWL method under similar 

estimation error settings. For example, the DCH method with tolg = 2.5 has similar accuracy in 

comparison to the PWL method with 15 × 15 or 20 × 20 pieces, however, it can be solved much 

faster. 

 

 

Fig. C.3.1. Input-output curve modeling: subplots (a), (b), and (c) are disjunctive convex 

modeling for tolg = 10,2.5,0.5, respectively. 

Table C.3.1. Performance Comparison. 

DCH PWL 

tol g max error 

(MW) 

# of comp. time (s) n max error 

(MW) 

time (s) 

10(CH) 5.878 1 122.8 5 9.510 > 7200 

2.5 2.496 4 1636.9 10 4.625 > 7200 

1.5 1.267 7 4371.0 15 2.804 > 7200 

0.5 0.487 24 > 7200 20 2.296 > 7200 

 

IV.C.4 Establish interleaved DA/RT simulation for economic planning  

Synthesize RT load 

Both DA hourly load variation trend and randomness are considered in synthesizing RT load. 

The procedure is as follows: First, generate trends from DA data, i.e., using linear interpolation or 

other methods to generate a 5-min resolution RT load trend curve 𝐷𝑡
RT Trend. Second, generate 
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randomness via inverse sampling of a particular distribution, e.g., for normal distribution the RT 

load with randomness can be generated by (C.4.1). 

 𝐷𝑡
RT = (1 + 𝑐𝑑𝑓𝜇,𝜎

−1(𝜁)) 𝐷𝑡
RT Trend (C.4.1) 

where, 𝑐𝑑𝑓𝜇,𝜎
−1(⋅) is the inverse cumulative distribution function with mean value 𝜇 and standard 

deviation 𝜎, variable 𝜁 follows a uniform distribution in [0, 1]. 

The proposed RT load synthesizing method is validated using the authentic RT load and the 

synthesized RT load from DA load. As shown in Fig. C.4.1, for a company level RT load, the 

proposed method can well capture the trend of RT load, and generate a certain degree of 

randomness. 

 

 

Fig. C.4.1 validation with a company-level load 

Procedure of DA/RT interleaved simulation 

To capture the interaction between DA and RT markets, an interleaved simulation method is 

established for the MISO planning model. As shown in Fig. C.4.2, DA and RT market 

optimizations are run sequentially with information exchanges. 

The information passed from the DA market to the RT market includes DA unit commitment 

for traditional generators and PSH DA information (can be generate/pump commitment, MW-

output, upper reservoir shadow price depending on the employed PSH RT operation strategy). 

From the RT market to the DA market, the RT end state is automatically passed by PLEXOS 

(including but not limited to MW-output, SOC, and on/off hours). Note currently the model 

assumes the RT end state is fully known by the DA model. 

Detailed MISO planning case study and benefit analysis are presented in section IV.F with an 

enhaced PSH modeling included. 
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Fig. C.4.2 procedure of DA/RT interleaved simulation 

 

IV.D. Accomplishments Toward Milestone 4.1  

Milestone 4.1: Establish prototype of enhanced PSH model within the SCUC framework. The 

SCUC framework including the key proposed functionalities will be ready for further testing and 

evaluation on the MISO system. 

Accomplishments Summary: (1) The team proposed the MWh reserve constraint concept for 

PSH units in the day-ahead SCUC model to address the potential SOC boundary violation issue in 

real-time ED, as a result of RT uncertainties. (2) We developed the energy reserve secure 

constraints of PSHs in the day-ahead SCUC model. Using MISO’s historical data, we developed 

energy reserve requirement for modeling the secure reserve constraints. (3) Based on the uniform 

hourly SOC deviation method, we use a PSH profit maximization model with price forecasts to 

evaluate the impacts of energy reserve secure constraints on profits of PSH owners. Numerical 

results show that the inclusion of energy reserve secure constraints can improve system security 

against uncertainties and contingencies, and meanwhile does not necessarily reduce profits of PSH 

units.   

IV.D. 1 The need for energy reserve 

Please note: in this document, energy reserve and MWh reserve are used interchangeably. To 

illustrate a possible scenario when the PSH SOC boundary may be violated due to deviation in RT 

from DA schedule, we took an actual PSH station data on a winter day of 2019 as an example, as 

shown in Fig. D.1.1. Because currently MISO does not monitor/record the SOC information and 

thus the initial SOC value on this day is unavailable, we assume the initial SOC is 9,313 MWh in 

both DA and RT. The red lines in Fig. D.1.1 represent SOC information in DA, and blue lines are 

SOC in RT. From this figure, we can see that more energy and reserve are cleared in RT than in 

DA. If the initial SOC in RT is less than (9,313 – 5,497) MWh, the terminal SOC will be lower 

than 0 MWh, violating the SOC lower limit (assuming it is 0MWh) at the end of the operating day. 

Indeed, if spinning reserve is called in one hour of RT (for example, the maximum hourly spinning 

reserve in this day is 120MW) and initial SOC < (9,313 – 5,497 – 120) MWh, the SOC violation 

will occur. If spinning reserve in all 24 hours are fully called for deployment and the initial SOC 

< (9,313 – 5,136) MWh, the SOC violation would occur.  
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Fig. D.1.1  A hypothetical scenario to illutrate possible SOC boundary violation  

 

Indeed, large SOC deviations between MISO’s DA and RT markets are observed in the 

historical data. To understand the possible cause of the SOC deviation, we tried to understand the 

consistency between the DA and RT commitment statuses. The historical data in 2019 for this PSH 

owner with six PSH units was processed for statistical analysis. The hourly commitment results of 

PSH units in DA and RT are presented in Fig. D.1.2, as an overview of consistent and inconsistent 

commitments in DA and RT. Three kinds of commitment situations in DA and RT are shown in 

this figure. The orange dots represent that PSH units are operated in generating mode in both DA 

and RT, i.e., the commitments in DA and RT are consistent. The green and blue dots stand for 

inconsistent commitments in DA and RT. Specifically, the green dots mean PSH units are operated 

in the generating mode in DA, while in RT they are either in pumping or idle mode. The blue ones 

describe the opposite situation. When there is inconsistent commitment status between DA and 

RT, a large deviation in SOC is likely to be observed. Such SOC deviations need to be considered 

in developing the MWh reserve constraints in order to avoid potential SOC boundary violations. 
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Fig. D.1.2  DA and RT commitment status of the studied PSH in 2019. Legend represents the 

PSH commitment status in RT and DA. For instance, “DA not in GEN mode; RT in GEN mode" 

legend means the PSH is not in generation mode in DA market, and it is in generation mode in 

RT market. 

 

From Fig. D.1.2, we can see that the inconsistent commitments did occur significantly, 

especially during the beginning and ending hours of a generation period, which could result in 

large MWh deviations between DA SOC and RT SOC. It should also be noted that, even when the 

commitment statuses between DA and RT are consistent, the SOC deviation may still occur due 

to different dispatch levels in DA and RT. Due to the market complications, it is hard to tell 

whether a SOC deviation is caused by renewable forecast errors, load forecast errors, or 

interchange and generation uncertainties. To this end, we designed several statistical methods to 

directly process historical PSH data, and performed scenario selection and reduction approaches 

to obtain the statistical results of MWh deviation caused by uncertainties, whose details were 

included in 2020 Q3 Quarterly Report and not included in this final report for conciseness. Besides, 

it could be observed that, in warm monthes PSH has one continuous generating period in each day 

and the commitments in DA and RT are mostly consistent, while in cold monthes PSH may have 

multiple inconsecutive generating periods in a single day and the commitments in DA and RT are 

usually inconsistent.  

 

IV.D. 2 Formulate secure energy reserve requirement 

The energy reserve secure constraints can be represented as follows: 

 𝐸𝐿𝐵 + 𝐸𝑡
𝑀+ ≤ 𝐸𝑡 ≤ 𝐸𝑈𝐵 + 𝐸𝑡

𝑀− (D.2.1) 

where 𝐸𝑡 is the scheduled SOC of time 𝑡; 𝐸𝑡
𝑀− and 𝐸𝑡

𝑀+ respectively are the head room and floor 

room to be held in advance for securing the real-time operations. The values of head room and 

floor room for each time interval will be evaluated via the historical data. 

If the values of head room and floor room will be evaluated via the historical data of 

generation and pumping modes separately, (D.2.1) becomes 

                                               𝐸𝐿𝐵 + 𝐹𝑡
𝐺 ≤ 𝐸𝑡 ≤ 𝐸𝑈𝐵 − 𝐹𝑡

𝑃      (D.2.2) 
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where 𝐹𝑡
𝐺  is the floor room at time t, which is valued by the MISO historical SOC deviation data 

of the generation mode, and the head room 𝐹𝑡
𝑃 at time t is calculated by the MISO historical SOC 

deviation data of the pumping mode. 

From formula (D.2.2), two different methods are developed to calculate 𝐹𝑡
𝐺  and 𝐹𝑡

𝑃 . 

Initially a uniform hourly SOC deviation constraint (Method 1) was developed. Later on, based 

on observations from MISO historical data that the levels of SOC deviation can be quite different 

during different periods of the PSH operation modes, a three-section hourly SOC deviation 

constraint (Method 2) was developed to describe the hourly deviation during beginning/ 

intermediate/ending periods of the generation/pumping mode. Method 2 is expected to be more 

accurate and less conservative. 

The Method 1 is 

         𝐹𝑡
𝐺= ∑ 𝐹𝑟,𝑡

𝐺𝑁𝑇
𝜏=𝑡      &  𝐹𝑡

𝑃= ∑ 𝐹𝑟,𝑡
𝑃𝑁𝑇

𝜏=𝑡       (D.2.3) 

where 𝐹𝑡
𝐺/ 𝐹𝑡

𝑃 is the hourly reserve for generation/ pumping mode at time t.  

The Method 2 is 

𝐹𝑡
𝐺=∑ (𝐹𝑡

𝐺,𝐵 + 𝐹𝑡
𝐺,𝐼 + 𝐹𝑡

𝐺,𝐸)𝑁𝑇
𝜏=𝑡   &  𝐹𝑡

𝑃= ∑ (𝐹𝑡
𝑃,𝐵 + 𝐹𝑡

𝑃,𝐼 + 𝐹𝑡
𝑃,𝐸)𝑁𝑇

𝜏=𝑡    (D.2.4) 

where 𝐹𝑡
𝐺,𝐵/𝐹𝑡

𝐺,𝐼
/𝐹𝑡

𝐺,𝐸
 is the hourly reserve for beginning hour/intermiate hours/ending hour of the 

generation mode, and 𝐹𝑡
𝑃,𝐵/𝐹𝑡

𝑃,𝐼
/𝐹𝑡

𝑃,𝐸
 is the hourly reserve for beginning hour/intermiate hours/ 

ending hour of the pumping mode. We can consider (D.2.4) as a general representation of (D.2.3). 

That is, if the hourly deviations of the beginning, intermediate, and ending hours of 

generation/pumping mode are the same, (D.2.4) is degradaded to (D.2.3). 

We proposed two different sets of deviation constraint formulations based on the above 

two methods. The formulation for Method 1 “uniform hourly SOC deviation constraints” is 

described as follow (Note: Details of the formulation, illustrative example, and statistical analysis 

for Method 2 “three-section hourly SOC deviation constraints” were included in 2020 Q4 

Quarterly Report, and not included in this final report for conciseness.). 

 

Uniform hourly SOC deviation constraint formulation for Method 1 

In this subsection, we present the uniform hourly SOC deviation constraint formulation for 

Method 1, which shows that when the PSH is on the generation/ pumping mode, a uniformly 

hourly deviation boundary can be constructed at each time: 

 

Floor Room for Generation Mode: 

𝐹𝑟,𝑡
𝐺 ≥ ∆𝑟

𝐺 ∙ 𝑢𝑟𝑟,𝑡
𝐺           (D.2.5) 

Head Room for Pumping Mode: 

𝐹𝑟,𝑡
𝑃 ≥ ∆𝑟

𝑃 ∙ 𝑢𝑟𝑟,𝑡
𝑃           (D.2.6) 

Final Floor/Head Room Formulation: 

𝐸𝑟
𝐿𝐵 + ∑ 𝐹𝑟,𝜏

𝐺𝑁𝑇
𝜏=𝑡 ≤ 𝐸𝑟,𝑡 ≤ 𝐸𝑟

𝑈𝐵 − ∑ 𝐹𝑟,𝜏
𝑃𝑁𝑇

𝜏=𝑡        (D.2.7) 

Here we define 𝑢𝑟𝑟,𝑡
𝐺  and 𝑢𝑟𝑟,𝑡

𝑃  as continuous variables, which indeed can only take binary 

values as restricted by other constraints for PSHs. It is 1 if reservoir 𝑟 is in generation/pumping 

mode at time 𝑡. ∆r
G/∆r

P is the unique hourly deviation value for generation/pumping mode. 𝐹𝑟,𝑡
𝐺 / 

𝐹𝑟,𝑡
𝑃  is the hourly reserve for generation/pumping mode at time t. 𝐸𝑟,𝑡 is the scheduled SOC of time 

t for reservoir 𝑟. 

Variable 𝑢𝑟𝑟,𝑡
𝐺 /𝑢𝑟𝑟,𝑡

𝑃  describes whether the reservoir is operated in generation/pumping 

mode. The unique hourly deviation values for generation/pumping mode ∆r
G/∆r

P are evaluated by 

the historical data with a certain confidence level.  
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Statistical Analysis 

The head/floor room value for each time interval is calculated based on historical data in 

the pumping/generation period. Specifically, for the headroom, we collect and evaluate historical 

SOC deviation for each time interval in the pumping period; For the floor room, it is from the 

generation period. The unique hourly deviation values for generation/pumping mode ∆r
G/∆r

P are 

evaluated by the historical data with a certain confidence level. The statistical results presented 

below are obtained with a 95% confidence level. 

Fig. I.D.4.1 shows the data analysis of SOC deviation for generation/pumping mode during 

the historical PSH DA and RT data in 2019. The left subfigure is the histogram of the historical 

SOC deviation of the generation mode, and the right subfigure is the histogram of the historical 

SOC deviation of the pumping mode. 

 

 
Fig. D.2.1. Histgram for historical SOC deviation of generation/pumping mode 

 

Tables D.1.I and D.1.II show the statistical results of the floor and head rooms. The floor 

room is calculated by the 95% lower confidence bound of the histogram of generation mode in the 

left subfigure of Fig. D.2.1. The head room is calculated by the 95% higher confidence bound of 

the histogram of pumping mode in the right subfigure of Fig D.2.1. For instance, we can see from 

Tables D.1.I that if in the DA schedule the generation duration is 4 hours, the floor room will hold 

1,163.2MWh. When the PSH is on the pumping mode for 1-4 hours, the floor rooms range from 

420.3MWh to 1,681.2 WMh. As will be illustrated in the following subections, the model with 

energy reserve secure constraints will not necessarily reduce profits of PSH owners. Indeed, the 

profit could be the same or even higher than the one without energy reserve secure constraints. 

  

Table. D.1.I. Statistical results of floor room 

GEN period duration (hours) Floor Room (MWh) Conservative Ratio_Gen  

1 290.8 1.6% 
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4 

1,163.2, 872.4, 581.6, 

and 290.8 for GEN 

hours 1-4   

6.2%, 4.7%, 3.1%, 1.6% 

 

Table. D.1.II. Statistical results of head room 

PUMP period duration (hours) Head Room (MWh) Conservative Ratio_Pump 

1 420.3 2.3% 

4 

1,681.2, 1,260.9, 

840.6, and 420.3 for 

PUMP hours 1-4   

9%, 6.8%, 4.5%, 2.3% 

 

Besides the above uniform hourly SOC deviation constraint formulation for Method 1, we 

also explored a refined Method 2: three-section hourly SOC deviation constraints. This is 

motivated by the observations from MISO historical data that the levels of SOC deviation can be 

quite different during different periods of the PSH operation modes. The three-section hourly SOC 

deviation constraints describe the variant hourly deviation boundaries during beginning/ 

intermiate/ending periods of the generation/ pumping mode. Details of the formulation, illustrative 

example, and statistical analysis were included in 2020 Q4 Quarterly Report, and not included in 

this report for conciseness. The Method 2 “three-section hourly SOC deviation constraint” could 

provide better solutions, in terms of smaller conservative ratio, than the Method 1 “uniform hourly 

SOC deviation constraint”.  

 

IV.D. 3 Impact of modeling reserve secure constraint 

We use the PSH profit maximization problem with price forecasts as an example to 

understand the potential financial impacts of energy security constraints to PSH owners. We add 

the uniform hourly SOC deviation constraints, i.e., constraints (D.2.1)-(D.2.3) and (D.2.5)-(D.2.7), 

as well as additional binary variables, to the profit maximization model, which leads to an MILP 

formulation. 𝐿𝑀𝑃𝑡0,𝑠,𝑡 is forecasted LMP for hour t in scenario s conducted at hour 𝑡0, which are 

described in section IV.E. 

The PSH profit maximization mode is detailed as follows: 

𝑚𝑎𝑥 ∑ ∑ 𝑝𝑠𝐿𝑀𝑃𝑡0,𝑠,𝑡0
𝑝𝑠ℎ𝑔,𝑡0𝑔

𝑠𝑁
𝑠=𝑠0

+ ∑ ∑ ∑ 𝑝𝑠𝐿𝑀𝑃𝑡0,𝑠,𝑡𝑝𝑠ℎ𝑔,𝑠,𝑡𝑔
𝑇
𝑡=𝑡0+1

𝑠𝑁
𝑠=𝑠0

  

s.t.       𝑃𝑝𝑢𝑚𝑝𝑢𝑔,𝑡0

𝑝𝑢𝑚𝑝
+ 𝑃𝑔𝑒𝑛𝑢𝑔,𝑡0

𝑔𝑒𝑛
≤ 𝑝𝑠ℎ𝑔,𝑡0

≤ 𝑃𝑝𝑢𝑚𝑝𝑢𝑔,𝑡0

𝑝𝑢𝑚𝑝
+ 𝑃𝑔𝑒𝑛𝑢𝑔,𝑡0

𝑔𝑒𝑛
, (𝛼0) 

𝑃𝑝𝑢𝑚𝑝𝑢𝑔,𝑠,𝑡
𝑝𝑢𝑚𝑝

+𝑃𝑔𝑒𝑛𝑢𝑔,𝑠,𝑡
𝑔𝑒𝑛

≤ 𝑝𝑠ℎ𝑔,𝑠,𝑡 ≤ 𝑃𝑝𝑢𝑚𝑝𝑢𝑔,𝑠,𝑡
𝑝𝑢𝑚𝑝

+ 𝑃𝑔𝑒𝑛𝑢𝑔,𝑠,𝑡
𝑔𝑒𝑛

∀𝑡 ∈ [𝑡1, 𝑇], ∀𝑠,  (𝛼𝑡,𝑠, 𝛼𝑡,𝑠)  

𝑒𝑟,𝑡0
+ ∑ 𝑝𝑠ℎ𝑔,𝑡0

𝑔
− 𝐸𝑠𝑡𝑎𝑟𝑡 = 0, ∀𝑟     (𝛾0)  

𝑒𝑟,𝑠,𝑡0+1 + ∑ 𝑝𝑠ℎ𝑔,𝑠,𝑡0+1𝑔 − 𝑒𝑟,𝑡0
= 0, ∀𝑠, ∀𝑟    (𝛾𝑡,𝑠) 

𝑒𝑟,𝑠,𝑡 + ∑ 𝑝𝑠ℎ𝑔,𝑠,𝑡𝑔 − 𝑒𝑟,𝑠,𝑡−1 = 0,  ∀𝑡 ∈ [𝑡0 + 2, 𝑇], ∀𝑠, ∀𝑟   (𝛾𝑡,𝑠) 

𝐸𝑟,𝑇 − 𝑒𝑟,𝑠,𝑇 = 0,     ∀𝑠, ∀𝑟.      (𝛾𝑇,𝑠)  

𝐸𝑟
𝐿𝐵 + ∑ 𝐹𝑟,𝑠,𝜏

𝐺𝑁𝑇
𝜏=𝑡0

≤ 𝑒𝑟,𝑡0
≤ 𝐸𝑟

𝑈𝐵 − ∑ 𝐹𝑟,𝑠,𝜏
𝑃𝑁𝑇

𝜏=𝑡0
, ∀𝑠, ∀𝑟, (𝜃0,𝑠)  

𝐸𝑟
𝐿𝐵 + ∑ 𝐹𝑟,𝑠,𝜏

𝐺𝑁𝑇
𝜏=𝑡 ≤ 𝑒𝑟,𝑠,𝑡 ≤ 𝐸𝑟

𝑈𝐵 − ∑ 𝐹𝑟,𝑠,𝜏
𝑃𝑁𝑇

𝜏=𝑡  ∀𝑡 ∈ [𝑡1, 𝑇], ∀𝑠, ∀𝑟,  (𝜃𝑡,𝑠, 𝜃,𝑡,𝑠)  

Binary Constraints: 
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∑ 𝑢𝑔,𝑡0
𝑚 = 1𝑚∈𝑀𝑔

,  ∑ 𝑢𝑔,𝑠,𝑡
𝑚 = 1𝑚∈𝑀𝑔

,    ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇\𝑡0, ∀𝑠 

𝑢𝑔,𝑡0
𝑚 = ∑ 𝑣𝑔,𝑡0

𝑛,𝑚
𝑛∈𝑀𝑔

𝐹,𝑚 − ∑ 𝑣𝑔,𝑡0

𝑚,𝑛
𝑛∈𝑀𝑔

𝐹,𝑚  

𝑢𝑔,𝑠,𝑡
𝑚 − 𝑢𝑔,𝑠,𝑡−1

𝑚 = ∑ 𝑣𝑔,𝑠,𝑡
𝑛,𝑚

𝑛∈𝑀𝑔
𝐹,𝑚 − ∑ 𝑣𝑔,𝑠,𝑡

𝑚,𝑛
𝑛∈𝑀𝑔

𝐹,𝑚 , ∀𝑠, ∀𝑡 ∈ 𝑇\𝑡0 

∑ ∑ 𝑣𝑔,𝑡0

𝑚,𝑛
𝑛∈𝑀𝑔

𝐹,𝑚 ≤ 1𝑚∈𝑀𝑔
, ∑ ∑ 𝑣𝑔,𝑠,𝑡

𝑚,𝑛
𝑛∈𝑀𝑔

𝐹,𝑚 ≤ 1𝑚∈𝑀𝑔
,  ∀𝑠, ∀𝑡 ∈ 𝑇\𝑡0 

𝑢𝑟𝑟,𝑡0

𝑝𝑢𝑚𝑝
+ 𝑢𝑟𝑟,𝑡0

𝑔𝑒𝑛
≤ 1.   ∀𝑟 ∈ ℛ  

𝑢𝑟𝑟,𝑠,𝑡
𝑝𝑢𝑚𝑝

+ 𝑢𝑟𝑟,𝑠,𝑡
𝑔𝑒𝑛

≤ 1.   ∀𝑟 ∈ ℛ, ∀𝑡 ∈ 𝑇\𝑡0, ∀𝑠  

𝑢𝑔,𝑡0
𝑚 ≤ 𝑢𝑟𝑟,𝑡0

𝑚 , ∀𝑟 ∈ ℛ, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ,𝑟 , ∀𝑚 ∈ {𝑔𝑒𝑛, 𝑝𝑢𝑚𝑝}  

𝑢𝑔,𝑠,𝑡
𝑚 ≤ 𝑢𝑟𝑟,𝑠,𝑡

𝑚 , ∀𝑟 ∈ ℛ, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ,𝑟 , ∀𝑚 ∈ {𝑔𝑒𝑛, 𝑝𝑢𝑚𝑝}, ∀𝑡 ∈ 𝑇\𝑡0, ∀𝑠  

Energy Reserve Secure Constraints: 
𝐹𝑟,𝑡0

𝐺 ≥ ∆𝑟
𝐺 ∙ 𝑢𝑟𝑟,𝑡0

𝐺 , 𝐹𝑟,𝑡0
𝑃 ≥ ∆𝑟

𝑃 ∙ 𝑢𝑟𝑟,𝑡0
𝑃   

𝐹𝑟,𝑠,𝑡
𝐺 ≥ ∆𝑟

𝐺 ∙ 𝑢𝑟𝑟,𝑠,𝑡
𝐺 , ∀𝑠, ∀𝑡 ∈ [𝑡1, 𝑇 ]  

𝐹𝑟,𝑠,𝑡
𝑃 ≥ ∆𝑟

𝑃 ∙ 𝑢𝑟𝑟,𝑠,𝑡
𝑃 , ∀𝑠, ∀𝑡 ∈ [𝑡1, 𝑇 ]  

 

Case Study  

We use actual MISO data to evaluate the potential financial impacts of new energy security 

constraints to PSH owners. It should be noted that this study takes real-time price forecasting 

results from section IV.E as input, and tests for 5 different typical days have been conducted to 

provide insights and confirmations. The total DA+RT realized profits on a sample day in spring 

2020 are reported in Table D.3.1, calculated as ∑ 𝐿𝑀𝑃𝑡
𝐷𝐴 · (𝑔𝑡

𝐷𝐴 − 𝑝𝑡
𝐷𝐴) + 𝐿𝑀𝑃𝑡

𝑅𝑇 · [(𝑔𝑡
𝑅𝑇 −𝑇

𝑡=1

𝑝𝑡
𝑅𝑇) − (𝑔𝑡

𝐷𝐴 − 𝑝𝑡
𝐷𝐴)], where 𝑔𝑡

𝑅𝑇 and 𝑝𝑡
𝑅𝑇 are generating and pumping dispatches of the unit in 

RT optimized from the above mode and 𝐿𝑀𝑃𝑡
𝐷𝐴/𝐿𝑀𝑃𝑡

𝑅𝑇 represnets the actual DA/RT LMP. In 

this test, PSHs are considered as price takers (i.e., the inclusion of the above energy reserve secure 

constraints will not impact the actual DA/RT LMPs. The price making case will be further explored 

in milestone 8.1. 

From Table D.3.1, we can see that including energy reserve secure constraints does not 

necessarily reduce the profit of PSH owners. For instance, with the head/floor room of 50/70MWh, 

the profit is $11,335 for this PSH from the real-time market on this day, which is the same as the 

one without energy reserve secure constraints. Moreover, when the head/floor room raises to 

250MWh, the profits from our proposed model is $12,392, higher than $11,335 without these 

constraints. This clearly shows the PSH’s potential in increasing their profits by holding some 

energy through the proposed energy reserve secure constraints. That is, including energy reserve 

secure constraints potentially could not only improve system security against uncertainties and 

contingencies, but also in some cases increase profits of PSH units.  

We consider there may be circumstances when PSH profit decreases. Presumably, when 

future price is lower than current price, it should be more profitable to generate now than in the 

future. In this case, when the PSH is dispatched at lower level in DA market due to MWh reserve 

requirement, it may result in reduced profit as some generation is dispatched at a lower price in 

the future instead of being dispatched at a higher price now. 

 

Table. D.3.1. Profit maximization case study 

0(gen)&0(pump)/3000MWh 
After 

the Fact 

Rolling Window  

(50 scenarios) 

Rolling Window  

(single prediction) 

Stay with 

DA LMP 
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Profits ($) 17,017 11,335 12,456 10,977 

250(gen)&250(pump) 
After 

the Fact 

Rolling Window  

(50 scenarios) 

Rolling Window  

(single prediction) 

Stay with 

DA LMP 

Profits ($) 16,678 12,392 12,447 11,369 

 

Table D.3.1. shows the impact of MWh on PSH’s profit via Method 1 Uniform hourly 

SOC deviation constraints. We use three MWh reserve withheld values (0/0, 50/70, and 250/250 

MWh), and compare with the baseline (stay with DA LMP, i.e., do. not deviate from the DA 

positions) as well as the perfect simulation (after the fact, i.e., the best profit PSH owner can get if 

it can fully foresee the actual RT price ahead of time). We conducted two rolling window tests, 

one with 1 scenario, one with 50 scenarios. In both tests, the results are higher than the profits of 

baseline (“stay with DA LMP”), and comes closer to the ideal profit (“after the fact”). The full 

explanation of this table, together with other test results, can be found in the 2020 Q4 Quarterly 

Report. 

 

IV.E. Accomplishments Toward Deliverable 5.1  

Deliverable 5.1: A prototype representation of price forecast uncertainty in persistent deviation 

model of RT dispatch. 

Accomplishments Summary: There are a few accomplishments achieved for this Milestone. (1) 

Based on the deterministic PSHU model achieved in Milestone 2.1, the team developed stochastic 

PSHU models in LAC, where probabilistic price forecast is used to incorporate RT uncertainties. 

(2) An ARIMAX based forecast model has been developed for real-time (RT) LMP single point 

forecast. Next, the methodology for probabilistic LMP forecast is introduced. We innovatively 

applied scenario generation methods to generate a series of trajectory lines, which collectively 

represent a range of potential RT-LMP predictions over the forecast horizon, with associated 

probabilities. Further, based on the single point and probabilistic LMP forecast, an intra hour LMP 

forecast has been developed. (3) Based on the discussion with industry advisors, a risk 

management formulation is developed to address the concern of the profit lost in the RT market. 

Based on the LAC simulation in HIPPO that is achieved in Milestone 2.1, the team prototyped the 

proposed stochastic PSHU model and the risk management formulation. Case studies are 

developed, the preliminary results show the value of capturing uncertainties in the stochastic 

PSHU model and improvement in the system objective. The results demonstrate the effect of the 

risk management formulation in improving system objective and avoiding negative profits for the 

PSHU. 

IV.E.1 A Stochastic PSH Model in LAC Using Probabilistic Price Forecast  

In section IV.B, a deterministic PSH model is proposed in LAC using the single point price 

forecast. In this section, we propose a stochastic PSH model to incorporate the uncertainty in the 

50(gen)&70(pump) 
After 

the Fact 

Rolling Window  

(50 scenarios) 

Rolling Window  

(single prediction) 

Stay with 

DA LMP 

Profits ($) 17,017 11,335 12,456 10,977 
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RT market for intervals occurring after the LAC intervals. The methdology to generate the 

probabilistic price forecast is summarized in subsection IV.E.3 in this report. Therefore, in this 

subsection we assume a probabilistic LMP forecast is given.  

The formulation of the stochastic PSH model in LAC is listed below (E.1.1)-(E.1.18).  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑀𝑖𝑛 ∑ 𝐶𝑡(𝑔𝑡, 𝑢𝑡)

𝑡𝑒𝑛𝑑

𝑡=𝑡1

− ∑ ∑ ∑ 𝑝𝑠𝐿𝑀𝑃𝑔,𝑠,𝑡
𝑡0 (𝑞𝑔,𝑠,𝑡

𝑔𝑒𝑛
− 𝑞𝑔,𝑠,𝑡

𝑝𝑢𝑚𝑝)

𝑔∈𝐺𝑝𝑠ℎ

𝑇

𝑡=𝑡𝑒𝑛𝑑+1

𝑠𝑁

𝑠=𝑠1

 (E. 1.1) 

Similar to the deterministic PSH model in a LAC, the first term in (E.1.1) is the objective 

function for a LAC problem. The production cost 𝐶𝑡(𝑔𝑡, 𝑢𝑡) is minimized in a LAC window in 

intervals that start at 𝑡1 and end at 𝑡𝑒𝑛𝑑. Assume the operation and maintanence cost is negligable 

for a PSHU, and that the net cost of dispatching a PSHU in the LAC intervals  due to the net costs 

of sale or purchase of energy in the intervals post to the LAC intervals. This net cost is represented 

in the second term in (E.1.1) as the negative arbitrage profit of the PSHU in the intervals after the 

LAC that starts at 𝑡𝑒𝑛𝑑 + 1 and stops at the end of the operating day 𝑇. Notice that the second term 

in (E.1.1) now includes the cost/negative profit of the PSHU for multiple scenarios that are 

weighted by the probability of each scenario 𝑝𝑠.  Different PSHU generation and pumping values 

are allowed in each scenario. It is acknowledged that, strictly speaking, causality is violated by the 

implicit assumption that the generation and pumping values can be chosen for all intervals in a 

given scenario.   

The generation and pump demand of the PSHU during the intervals after the LAC are defined 

for each scenario 𝑞𝑔,𝑠,𝑡
𝑔𝑒𝑛

, 𝑞𝑔,𝑠,𝑡
𝑝𝑢𝑚𝑝

. The probabilistic LMP forecast 𝐿𝑀𝑃𝑔,𝑠,𝑡
𝑡0  is provided for each 

interval after the LAC and the forecast is updated at 𝑡0 that is one interval before the start of each 

LAC window 𝑡1.  

 

Power Balance Constraints: 

∑ 𝑔𝑘,𝑡

𝐾

𝑘=1

+ ∑ 𝑞𝑔,𝑡
𝑔𝑒𝑛

𝑔∈𝐺𝑝𝑠ℎ

= 𝐷𝑡 + ∑ 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝

𝑔∈𝐺𝑝𝑠ℎ

,  ∀𝑡 ∈ [𝑡1, 𝑡𝑒𝑛𝑑]                      (E. 1.2) 

∑ 𝑔𝑘,𝑡

𝐾

𝑘=1

= 𝐷𝑡 ,   ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇]                                                         (E. 1.2∗) 

 

Similar to the deterministic PSHU model, the PSHU is fully optimized within the LAC window 

given a deterministic forecast of the demand within the LAC window. In the power balance 

constraint within the LAC window ∀𝑡 ∈ [𝑡1, 𝑡𝑒𝑛𝑑], the deterministic generation of the PSHU, 𝑞𝑔,𝑡
𝑔𝑒𝑛

, 

is included on the left hand side of power balance constraint (B.2.2) and the determinstic pumping 

load of the PSHU, 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝

, is considered as demand on the right hand side of the power balance 

constraint (B.2.2). The dispatch of the PSHU in the intervals after the LAC relies on the LMP 

forecast and are not optimized with the rest of the system. Therefore, the generation and pumping 

of the PSHU in the intervals post to the LAC window ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇] are not included in the 

power balance constraint (B.2.3).  

 

The Private Constraints for a PSHU within a LAC: 
(A. 1.3) − (A. 1.11), (A. 1.13), (A. 1.14),   ∀𝑡 ∈ [𝑡1, 𝑡𝑒𝑛𝑑], 
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The private constraints for a PSHU model are the same as the DA model described in 
(A. 1.3) − (A. 1.11), (A. 1.13), (A. 1.14)  in the Appendix for section IV.A.1, except those 

constraints are modeled in the intervals from the start of the LAC window 𝑡1 until the end of the 

operating day 𝑇. Since we currently solve the problem in hourly intervals and the constraint on the 

number of pump starts (A.1.12) is typically only binding in the sub-hour timeframe, (A.1.12) is 

less relevant and therefore it is not included in the model. 

The private constraints for a PSHU model are defined for each scenario in the intervals after 

the LAC and they are described in the rest of this subsection. In the following, we would focus on 

the explanation related to the stochastic scenarios, the detailed description of each of the 

constraints can be found in (A. 1.3) − (A. 1.11), (A. 1.13) and (A. 1.14) in this report.  

 

PSH Unit Commitment and Transition Mutual Exclusivity Constraints After a LAC Window: 

 

∑ 𝑢𝑔,𝑠,𝑡
𝑚

𝑚∈𝑀𝑔

= 1, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇],            (E. 1.3) 

 

∑ ∑ 𝑣𝑠,𝑡
𝑛,𝑚

𝑛∈𝑀𝑔
𝐹,𝑚𝑚∈𝑀

≤ 1, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇], (E. 1.4) 

 

Different to the deterministic model, in the intervals after the LAC window, starting at 𝑡𝑒𝑛𝑑 +
1 until the end of the operating day 𝑇,  the private constraints for the PSHU are modeled for each 

scenario 𝑠 . Mutual exclusivity constraints on the unit commitment variables and transition 

variables are presented in (E.1.3) and (E.1.4) respectively. 

 

PSH Transition Logic After a LAC Window: 

 

𝑢𝑔,𝑠,𝑡𝑒𝑛𝑑+1
𝑚 − 𝑢𝑔,𝑡𝑒𝑛𝑑

𝑚 = ∑ 𝑣𝑔,𝑠,𝑡𝑒𝑛𝑑+1
𝑛,𝑚

𝑛∈𝑀𝑔
𝐹,𝑚

− ∑ 𝑣𝑔,𝑠,𝑡𝑒𝑛𝑑+1
𝑚,𝑛

𝑛∈𝑀𝑔
𝐹,𝑚

, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑚 ∈ 𝑀𝑔, ∀𝑠 ∈ 𝑆, 

  (E. 1.5∗) 

𝑢𝑔,𝑠,𝑡
𝑚 − 𝑢𝑔,𝑠,𝑡−1

𝑚 = ∑ 𝑣𝑔,𝑠,𝑡
𝑛,𝑚

𝑛∈𝑀𝑔
𝐹,𝑚

− ∑ 𝑣𝑔,𝑠,𝑡
𝑚,𝑛

𝑛∈𝑀𝑔
𝐹,𝑚

, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑚 ∈ 𝑀, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 2, 𝑇],  

(E. 1.5) 

In the intervals after the LAC window, from 𝑡𝑒𝑛𝑑 + 2 until the end of the operating day 𝑇, the 

PSH transition logic constraints are modeled for each scenario 𝑠 in (E. 1.5). Since the transition 

logic constraint is inter-temporal, we need to specifically address the constraint when it crosses 

between the interval within a LAC window and the interval after the LAC w.indow. In (E. 1.5∗), 

the transition between modes from the last interval of the LAC, 𝑡𝑒𝑛𝑑, and the first interval after the 

LAC, 𝑡𝑒𝑛𝑑 + 1, are defined for each scenario 𝑠. Notice that the commitment variable within LAC 

𝑢𝑔,𝑡𝑒𝑛𝑑

𝑚  is deterministic and both the unit commitment and transition variables after the LAC are 

defined for each scenario, 𝑢𝑔,𝑠,𝑡𝑒𝑛𝑑+1
𝑚 , 𝑣𝑔,𝑠,𝑡𝑒𝑛𝑑+1

𝑛,𝑚
. Therefore, using (E. 1.5∗), every stochastic unit 

commitment variable in the intervals after LAC is linked to the last deterministic unit commitment 

variable within the LAC by the corresponding stochastic transition variables. 
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PSH Output Box Constraints: 

 

𝑢𝑔,𝑠,𝑡
𝑝𝑢𝑚𝑝𝑄𝑔

𝑝𝑢𝑚𝑝 ≤ 𝑞𝑔,𝑠,𝑡
𝑝𝑢𝑚𝑝 ≤ 𝑢𝑔,𝑠,𝑡

𝑝𝑢𝑚𝑝𝑄𝑔

𝑝𝑢𝑚𝑝
,  ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ,𝑟 , ∀𝑠 ∈ 𝑆, ∀𝑡

∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇],  
(E. 1.6) 

𝑢𝑔,𝑠,𝑡
𝑔𝑒𝑛

𝑄𝑔
𝑔𝑒𝑛

≤ 𝑞𝑔,𝑠,𝑡
𝑔𝑒𝑛

≤ 𝑢𝑔,𝑠,𝑡
𝑔𝑒𝑛

𝑄𝑔

𝑔𝑒𝑛
,  ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ,𝑟 , ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇],  

(E. 1.7) 

In the intervals after the LAC window starts at 𝑡𝑒𝑛𝑑 + 1 until the end of the operating day 𝑇,  

the upper and lower limit for pumping and generating in a PSHU are modeled for each scenario 𝑠 

in (E.1.6) and (E.1.7). 

 

PSH Reservoir State-of-charge (SOC) Constraints: 

 

𝑒𝑟,𝑠,𝑡𝑒𝑛𝑑+1 + ∑
𝑞𝑔,𝑡𝑒𝑛𝑑

𝑔𝑒𝑛

𝜂𝑔𝑒𝑛

𝑔∈𝐺𝑝𝑠ℎ,𝑟

− ∑ 𝑞𝑔,𝑡𝑒𝑛𝑑

𝑝𝑢𝑚𝑝 ∗ 𝜂𝑝𝑢𝑚𝑝

𝑔∈𝐺𝑝𝑠ℎ,𝑟

− 𝑒𝑟,𝑡𝑒𝑛𝑑
= 0,  ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, 

(E. 1.8∗) 

 

𝑒𝑟,𝑠,𝑡+1 + ∑
𝑞𝑔,𝑠,𝑡

𝑔𝑒𝑛

𝜂𝑔𝑒𝑛

𝑔∈𝐺𝑝𝑠ℎ,𝑟

− ∑ 𝑞𝑔,𝑠,𝑡
𝑝𝑢𝑚𝑝 ∗ 𝜂𝑝𝑢𝑚𝑝

𝑔∈𝐺𝑝𝑠ℎ,𝑟

− 𝑒𝑟,𝑠,𝑡 = 0,  ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆,  ∀𝑡

∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇],  
(E. 1.8) 

In the intervals after the LAC window, starting at 𝑡𝑒𝑛𝑑 + 1 until the end of the operating day 

𝑇, the SOC constraints are modeled for each scenario 𝑠 in (E. 1.8). For the inter-temporal SOC 

constraint, similar to the transition logic constraint, we need to specifically address the constraint 

when it crosses between the interval within a LAC window and the interval after the LAC window. 

In (E. 1.8∗), the SOC changes from the last interval of the LAC, 𝑡𝑒𝑛𝑑, and the first interval after 

the LAC, 𝑡𝑒𝑛𝑑 + 1, are defined for each scenario 𝑠. Notice that the SOC variable and generation 

and pumping variables at the last interval of LAC (𝑒𝑟,𝑡𝑒𝑛𝑑
, 𝑞𝑔,𝑡𝑒𝑛𝑑

𝑔𝑒𝑛
, 𝑞𝑔,𝑡𝑒𝑛𝑑

𝑝𝑢𝑚𝑝 ) are deterministic and 

the SOC in the first interval after LAC is defined for each scenario, 𝑒𝑟,𝑠,𝑡𝑒𝑛𝑑
. Therefore, using 

(E. 1.8∗), every stochastic SOC variable in the intervals after LAC is linked to the last deterministic 

SOC variable within the LAC. 

 

𝐸𝑟,𝑇+1 − 𝑒𝑟,𝑠,𝑇+1 = 0, ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆,    (E. 1.9) 

𝐸 ≤ 𝑒𝑟,𝑠,𝑡 ≤  𝐸,   ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇], (E. 1.10) 

The SOC variable at the end of the day 𝑇 + 1, 𝑒𝑟,𝑠,𝑇+1, is fixed to the given target 𝐸𝑟,𝑇+1 ,that 

is the SOC at the end of the day in the DA solution, in each scenario in (E.1.9). In the intervals 

after the LAC window, the upper and lower limit is enforced to each SOC variable for each 

scenario in (E.1.10). 

 

PSH Ramp Up/Down Constraints: 

 

𝑞𝑔,𝑡
𝑔𝑒𝑛

− 𝑞𝑔,𝑡−1
𝑔𝑒𝑛

≤ 𝑅𝑅𝑢𝑝𝑔,𝑡, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑡 ∈ [0, 𝑡𝑒𝑛𝑑], (𝐸. 1.11) 
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𝑞𝑔,𝑡−1
𝑔𝑒𝑛

− 𝑞𝑔,𝑡
𝑔𝑒𝑛

≤ 𝑅𝑅𝑑𝑜𝑤𝑛𝑔,𝑡, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑡 ∈ [0, 𝑡𝑒𝑛𝑑], (E. 1.12) 

 

𝑞𝑔,𝑠,𝑡𝑒𝑛𝑑+1
𝑔𝑒𝑛

− 𝑞𝑔,𝑡𝑒𝑛𝑑

𝑔𝑒𝑛
≤ 𝑅𝑅𝑢𝑝𝑔,𝑡𝑒𝑛𝑑+1, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑠 ∈ 𝑆, (E. 1.13) 

𝑞𝑔,𝑡𝑒𝑛𝑑

𝑔𝑒𝑛
− 𝑞𝑔,𝑠,𝑡𝑒𝑛𝑑+1

𝑔𝑒𝑛
≤ 𝑅𝑅𝑑𝑜𝑤𝑛𝑔,𝑡𝑒𝑛𝑑+1, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ, ∀𝑠 ∈ 𝑆, (E. 1.14) 

 

 𝑞𝑔,𝑠,𝑡
𝑔𝑒𝑛

− 𝑞𝑔,𝑠,𝑡−1
𝑔𝑒𝑛

≤ 𝑅𝑅𝑢𝑝𝑔,𝑡, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 2, 𝑇], (E. 1.15) 

𝑞𝑔,𝑠,𝑡−1
𝑔𝑒𝑛

− 𝑞𝑔,𝑠,𝑡
𝑔𝑒𝑛

≤ 𝑅𝑅𝑑𝑜𝑤𝑛𝑔,𝑡, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 2, 𝑇], (E. 1.16) 

Ramp up/down constraints within the LAC window are deterministc and they are listed in 

(E. 1.11) and (E. 1.12). The ramp up/down constraints at the boundary between the last interval of 

LAC 𝑡𝑒𝑛𝑑   and the first interval after LAC 𝑡𝑒𝑛𝑑 + 1 are listed in (E. 1.13) and (E. 1.14) (these 

ramping constraints are not enforced for the non-PSH units in the system). The Ramp up/down 

constraints after the LAC window are defined for each scenario in (E. 1.15) and (E. 1.16). 

 

Plant Level Mutual Exclusivity Constraints: 

 

𝑢𝑟𝑟,𝑠,𝑡
𝑝𝑢𝑚𝑝 + 𝑢𝑟𝑟,𝑠,𝑡

𝑔𝑒𝑛
≤ 1, ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇], (E. 1.17) 

𝑢𝑔,𝑠,𝑡
𝑚 ≤ 𝑢𝑟𝑟,𝑠,𝑡

𝑚 , ∀𝑟 ∈ 𝑅, ∀𝑔 ∈ 𝐺𝑝𝑠ℎ,𝑟 , ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ [𝑡𝑒𝑛𝑑 + 1, 𝑇], ∀𝑚 ∈ {𝑔𝑒𝑛, 𝑝𝑢𝑚𝑝}, (E. 1.18) 

In the intervals after the LAC window, the plant level mutual exclusivity constraints are 

defined for each scenario in (E.1.17) and (E.1.18). 

IV.E.2 Single Point Forecast Methodology for Locational Marginal Price (LMP) 

We analyzed historical LMP data from 2017 to 2019 for the locational nodes of the PSHU in 

the study. In the dataset we have historical real-time and day-ahead prices on hourly basis. 

 

IV.E.2.1 Time Series Analysis  

For this problem, we are dealing with time series forecasting. Because data points in time series 

are collected at sequential time periods, there is potential for correlation between observations. 

This is one of the main properties that distinguishes time series data from cross-sectional data. 

 

Components of Time Series 

Time series data typically includes a level, trend, seasonality, residual or noise. Before we illustrate 

each of those components, it’s important to note that not all time series data will include every one 

of these components. 

Level: Assuming if there were a straight line, baseline value of timeseries is called its level which 

refers to the mean of data. 

Trend: The increasing or decreasing behavior of the series over time shows its trend. If the data 

has no trend, then it is called a Stationary dataset. In other words, it has constant mean and variance, 

and covariance is independent of time. 

Seasonality:  The presence of variations that occur at specific regular intervals that are correlated 

with the calendar, which could be quarterly, monthly, weekly, daily, hourly and so on. Not all time 

series have a seasonal component. 

Residual: The variability in the observations that cannot be explained by the model. 
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When the fluctuation and variation of time series increase or decrease over time and shows 

dependency to the Level of time series, then we are dealing with a Multiplicative time series:  

Multiplicative Model: Time series = (Trend) * (Seasonality) * (Noise). 

On the other hand, Additive models are the ones in which variation in the time series stay almost 

constant over time, and can be interpreted as following: 

Additive Model: Time series = (Trend) + (Seasonality) + (Noise) 

Since our time series data does not increase or decrease over time it fits in the category of additive 

model for data decomposition. We can calculate the correlation for time series observations with 

observations from previous lags. Because the correlation of the time series observations is 

calculated with values of the same series at previous times, this is called an autocorrelation. Auto 

Correlation Function (ACF) considers all the above components while finding correlations and 

describes how well the present value of the series is related with its past values. 

IV.E.2.2. Methodology for Single Point LMP Forecasting  

The main objective is forecasting the price deviation between real-time and day-ahead 

Locational Marginal Price (LMP). For that purpose, if we are able to provide a good point forecast 

for real-time-LMP then we can readily calculate the expected deviation of the forecasted real-time 

from the given day-ahead-LMP.  

As described above, in this context we are dealing with a times series forecasting problem. 

There are a lot of methods and techniques to analyze and forecast time series. One of the most 

used is a methodology based on Autoregressive Integrated Moving Average (ARIMA) model. In 

this method, the historical data of univariate time series are used to analyze its own trend and 

forecast future cycle. The ARIMA model is one of the most used methodologies for analyzing 

time series. This is mostly because it offers great flexibility in analyzing various time series and 

because it can achieve accurate forecasts, too. The other advantage is that for analyzing single time 

series it uses its own historical data. Applying ARIMA(p,d,q) methods and finding the right 

parameters for autoregressive lags (p), moving average lags (q), and order of differencing (d) was 

studied. When an ARIMA model includes other time series as input variables, the model is 

sometimes referred to as an ARIMAX model. Usually including extra independent variable 

(covariant) X into the model brings much better results than simple ARIMA model. Here the 

choices for exogenous variable could be the Load forecast, and day-ahead-LMP, or both.  

Given time series data 𝑦𝑡(RT-LMP) and exogeneous data 𝑥𝑡(DA-LMP and Load), where p is 

the number of auto-regressive lags, d is the degree of differencing, and q is the number of 

moving average lags. 

𝑦𝑡 = ∑ 𝜑𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ 𝜃𝑗

𝑞

𝑗=1

𝜖𝑡−𝑗 + ∑ 𝛽𝑚

𝑀

𝑚=1

𝑥𝑚,𝑡 + 𝜖𝑡,      𝜖~ℵ(0, 𝜎2), (E. 2. 1) 

• Here 𝜖, is the residual which is assumed to be normally distributed, with ℵ(0, 𝜎2) defined 

to be the normal distribution with mean zero and variance 𝜎2.  

• The partial auto correlation function (PACF) and ACF plots can be used to estimate the 

AR-part, i.e. p-value, and the MA-part, i.e. q-value, respectively. 

• Here the choices for exogenous variable could be the Load forecast, and Day-Ahead LMP. 

 

We initially explored the three alternatives of including both exogenous variables of Load and 

DA-LMP together, and also including each one individually. The empirical result is that DA-LMP 
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plays the main role as a predictive variable. Moreover, including just the one exogenous variable 

of DA-LMP provides as good a prediction result as including both Load and DA-LMP. As a result, 

our final choice for covariate X-variable in the ARIMAX model is the DA-LMP. 

For each daily price prediction, we consider the past 6 days as our training data to fit the right 

ARIMAX(p,d,q) model and predict RT-LMP for the following day. In order to evaluate the  model, 

we compare the predicted results versus the data unseen by the prediction model, namely the test 

set for RT-LMPs for intervals in the following day.  

      In general, a perfect forecast is the one which fits exactly on the test set. However, the problem 

is that in reality this is not achivable. The main distinction of forecasting is that the future is 

unknown and the best a forecasting model could do is learning the most from the given historical 

data and do the prediction for future based on that. The result of prediction model is shown as the 

red curve of Fig. E.2.1. It demonstrates that the forecasted RT-LMP is tracing the path of  the 

actual RT-LMP shown in blue which is called the test set.  In the current time series analysis we 

captured the performance of our Seasonal-ARIMAX methodologies by computing some metrics 

such as, Mean-Absolute-Error (MAE), and Root-Mean-Square-Error (RMSE). The errors of our 

daily forecating analysis show an acceptable range which we can rely on ARIMAX as our point 

forecast methodology to predict RT-LMP. It should be pointed out that, for PSH, the key is to 

determine the hours of charging and discharging. Price forecast needs to properly capture the peak 

and valley within a day with enough spread to cover round trip efficiency. RMSE was used to 

evaluate the performance of ARIMAX as our choice to forecast the RT-LMP. We tried to fit two 

models, namely ARIMA and ARIMAX, on more than 200 days of study year 2019, and computed 

RMSE for both models. It was observed that in 82% of test days, the RMSE for ARIMAX was 

smaller than ARIMA. Moreover, it is notable that in the other 12% of days the performance of 

ARIMAX compared to ARIMA was not significantly worse. Consequently, we chose ARIMAX 

in all subsequent forecasts. 

 
Fig. E.2.1. Time Series Forecast of RT-LMP for day of March 7th, 2019 using ARIMAX method 

with X being DA-LMP. In total, six days of RT LMP data is used as training data and the 

prediction is made on the last day shown in the figure. The forecasted RT-LMP is tracing the 

path of  the actual RT-LMP. 

 

IV.E.3 Probabilistic LMP Forecasting Methodology 
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Probablistic forecasts are used to reflect the uncertainty range for the existing 

deterministic/point forecast approach. The issue is that usually the general form of probabilistic 

forecasts, such as quantile regression, neglect the interdependence structure of forecast errors in 

look ahead times. Creating statistical scenarios based on the transformed prediction errors in 

Normal space and capturing the interdependence structure of these prediction errors by their 

associated covariance matrix is the probabilistic methodology that we used to capture the 

uncertainty associated with the point forecasts.  The steps to generate statistical scenarios based 

on the given deterministic point forecasted LMP are included in the Appendix for section IV.E.3.  

As a result, the interdependent structure of errors can be summarized in a unique covariance 

matrix. Following steps of generating statistical scenarios proposed in [E.1], we will generate a 

series of trajectory lines, which collectively represent a range of potential RT-LMP predictions 

over the forecast horizon, with associated probabilities. Fig. E.3.1 shows the associated scenarios 

reflecting both the prediction uncertainty and the interdependence structure of predictions errors. 

 
Fig. E.3.1. Real-Time LMP point prediction with 50 alternative statistical scenarios for March 

7th, 2019. The RT LMP single point forecast of three days and the probabilistic forecast of the 

last day are plotted. 

 

IV.E.4 Intra-hour Single Point Price Forecast: 

For each daily price prediction, we consider the past 6 days as our training data to fit the right 

ARIMAX(p,d,q) model and predict RT-LMP for the following day. Now that the point forecast 

for RT-LMP in each forecast horizon, 24 hours, is available. We need to up-sample and interpolate 

the results and get the values of RT-LMP forecast for intra-hour points in every 15 minutes time 

interval. Detailed methodology is included in the Appendix for section IV.E.4. 

     Table E.4.1 demonstrates a quick look on how our final results for intra-hour RT-LMP would 

look like. As Table E.4.1 shows, the first column is the original hourly RT-LMP forecast values 

as a result of applying ARIMAX approach. Then, in the next columnm, we use the linear 

interpolation on the hourly forecasted RT-LMP values to get the intra-hour LMP values for all 
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those intra-hours. However, since the hourly average constraint is not yet considered in these 15-

minute RT-LMP values, we make sure to derive the intra-hour values which meet the averaging 

constraint. Finally, the last column demonstrates a new profile for 15-min intra-hour RT-LMP 

which the average of each four intra-hour values is equal to value of the corresponding beginning 

hour RT-LMP. 

 

Table. E.4.1. RT-LMP Point Forecast and its associated 50 scenarios based on 15-minute time 

intervals 

 
 

 

Fig. E.4.1 presents RT-LMP single point forecast and its associated statistical scenarios to capture 

uncertainties for 15-minues time intervals. 

 

 

 
Fig. E.4.1 RT-LMP Point Forecast and its associated 50 scenarios based on 15-minute time 

intervals 
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IV.E.5 Deterministic Forecasting for Multi-Day Ahead Forecasting 

 

Problem Description: The effort of forecasting Day-Ahead LMP in a forecast horizon of multiple 

days ahead, is helpful in identifying end of state of charge (SOC) values to faciliate multi-day 

ahead scheduling. Having access for DA-LMP forecast beyond day-ahead (24-36 hours), will help 

to decide the best schedule in day-ahead. 

The goal is to learn the below function W from the data and obtain forecasts of day ahead prices 

for t+h, where 𝐡 ∈ {𝟏, 𝟐, … ,  𝑯}.     

𝑦{𝑡+ℎ} = 𝑊(𝑦𝑡,  … ,  𝑦{𝑡−𝑛+1}) + 𝜖𝑡  

ARIMAX method is used to model multi-day ahead LMP single point forecasting and results are 

compared with those from another method of time-series analysis named Facebook Prophet. The 

details of the ARIMAX-based multi-day ahead LMP single point forecasting method and 

Facebook Prophet are included in the Appendix for section IV.E.5. 

 

To compare the performance of our existing ARIMAX model with Facebook Prophet, we ran 

an analysis using both approaches. Moreover, we generated a new set of outputs by taking their 

weighted average given ¾ weight to the ARIMAX and ¼ weight to the outputs of Facebook 

Prophet. Fig. E.5.1. shows the results of all three aforementioned single point forecasting along 

with the realized LMP values.  

 

 
Fig. E.5.1. The realized LMP along with three forecasted results, namely ARIMAX, Prophet, and 

the weighted average of both. 

 

From Fig. E.5.1, it can be seen that ARIMAX captures the trend and also the peaks and turning 

points of the realized RT-LMP much better than Facebook Prophet. And the output as a result of 

taking the average mean of these two approaches shows even better results than the ARIMAX. 

This observation was consistent in running the above comparison analysis for many random days 
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in all four seasons. We also measured the observed performance of these methodologies using 

Root-Mean-Square-Error. The numbers out of RMSE are also confirming our visual observations 

as described:  

RMSE_Facebook Prophet: 3.5011 

RMSE_ARIMAX: 3.0121 

RMSE_Weighted Avg: 2.8479 

 

IV.E.6 Probabilistic Forecasting for Multi-Day Ahead Forecasting 

 

The scenarios associated to the weighted average single point forecast, as described in previous 

section, are shown in Fig E.6.1 with 50 colors along with the point forecast shown in solid red and 

the realized LMP in solid blue. These statistical scenarios reflect the prediction uncertainty. 

 

 
Fig. E.6.1. Statistical scenarios associated to the single point forecast for multi-days ahead 

prediction. These statistical scenarios reflect the prediction uncertainty. 

 

 

IV.E.7 A Robust Risk-management Formulation 

In our discussion with industry advisors, some PSHUs are reluctant to participate in the real-

time market. One of the major concerns is the exposure to the uncertain RT LMP may cause the 

unit to lose profit in the RT market. To address this risk-averse concern, after discussion with the 

industry advisors, we have developed a robust risk-management formulation that can be applied 

to the stochastic PSHU model in LAC as we described in section IV.E.1. 

  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑀𝑖𝑛 ∑ 𝐶𝑡(𝑔𝑡, 𝑢𝑡)

𝑡𝑒𝑛𝑑

𝑡=𝑡1

+ ∑ 𝑤𝑟

𝑟∈𝑅

, (E. 7.1) 
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𝑤𝑟 ≥ − ∑ ∑ 𝐿𝑀𝑃𝑔,𝑠,𝑡
𝑡0 [(𝑞𝑔,𝑠,𝑡

𝑔𝑒𝑛
− 𝑞𝑔,𝑠,𝑡

𝑝𝑢𝑚𝑝) − (𝑞𝑔,𝑡
𝑔𝑒𝑛,𝐷𝐴

− 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝,𝐷𝐴)]

𝑔∈𝐺𝑝𝑠ℎ,𝑟

𝑇

𝑡=𝑡𝑒𝑛𝑑+1

, ∀𝑟 ∈ 𝑅, ∀𝑠

∈ [𝑠1, 𝑠𝑁]. 
 (E. 7.2) 

 
Subject to (E.1.2)-(E.1.18) 

 

In the risk-management formulation, the objective is updated in (E.7.1). Notice that the first 

term is the system production costs and that is the same compared to the stochastic model in (E.1.1). 

The difference is in the second term in the objective function. In (E.1.1), the cost/negative profit 

of the PSHU in the intervals after the LAC is weighted by the probability of each scenario. 

Therefore, the model presented in (E.1.1) is a risk-neutral formulation. However, in (E.7.1), the 

cost of each PSH plant 𝑟 is represented by variables 𝑤𝑟. The cost variable is then constrained in 

(E.7.2). The right-hand side of (E.7.2) is the negative profit of the PSHU in the RT market after 

the LAC intervals in each scenario. The RT profit is calculated as RT LMP forecast at each 

scenario 𝐿𝑀𝑃𝑔,𝑠,𝑡
𝑡0  times with gen/pump difference between its solution in RT market in a scenario 

(𝑞𝑔,𝑠,𝑡
𝑔𝑒𝑛

− 𝑞𝑔,𝑠,𝑡
𝑝𝑢𝑚𝑝) and the solution in the DA market (𝑞𝑔,𝑡

𝑔𝑒𝑛,𝐷𝐴
− 𝑞𝑔,𝑡

𝑝𝑢𝑚𝑝,𝐷𝐴). Constraint (E.7.2) 

limits each cost variable 𝑤𝑟 to be the cumulative cost of the PSHU from the first interval after 

LAC 𝑡𝑒𝑛𝑑 + 1 to the end of the day 𝑇 in the worst-case scenario (that is the largest cost to the 

system or the lowest profits to the PSHU) based on the probabilistic LMP forecast. Therefore, 

since the worst-case PSHU cost is minimized in the objective, it is a robust or risk averse 

formulation. The rest of the stochastic PSHU model remained unchanged from (E.1.2)-(E.1.18). 
With the proposed risk-management formulation in (E.7.1) and (E.7.2), the solution for a 

PSHU will only deviate from the DA solution if it is profitable indicated by every post-LAC price 

scenario. Therefore, (E.7.1) and (E.7.2) address the concern of profit loss in the RT market from 

the industry advisors. As in Section IV.E.1, it is acknowledged that, strictly speaking, causality is 

violated by the implicit assumption that the generation and pumping values can be chosen for all 

intervals in a given scenario.   

 

IV.E.8 LAC simulation Case Studies and Preliminary Results  

The HIPPO based LAC simulation platform is introduced in section IV.B.1. In this section, we 

first introduce the input data preparation for the LAC simulation. Then, a case study with four 

models will be presented. The four models include the deterministic PSHLAC model described in 

section IV.B.2, the stochastic PSH LAC model described in section IV.E.1, the risk management 

formulation described in section IV.E.7, and a perfect case benchmark model that we will 

introduce in this section.  

 

Simulation Setup 

It is necessary to update the real-time (RT) system condition in the LAC rolling window 

simulation. However, there were only day-ahead (DA) market cases available to HIPPO since it 

was initially developed for studies in a DA market. Therefore, a first task is to prepare the real-

time system condition data as input to the LAC simulation. 

To ensure that the RT data is valid and consistent with the DA system, we develop the real-

time system condition data in steps. For a large system like the MISO system with a large set of 
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input data, the security constrained unit commitment (SCUC) model is very large, and the model 

can easily become infeasible due to inconsistent input data. Because the real-time system data we 

are collecting hasn’t been used either in the HIPPO software or for the purpose of LAC rolling 

window simulation, it could be very difficult to detect the cause of model infeasibility and to 

troubleshoot if we update all different system input data at once. In contrast, taking a step at a time 

to update the real-time system data allows us to collect feedback from the model and make 

adjustment if it is necessary.  

Since RT demand is one of the data sets that distinctly represents a RT case, we first prepared 

RT demand data as input to the LAC rolling window simulation. We took advantage of existing 

software named ODC that is internally used in MISO for RT market benchmark purpose. Because 

ODC also takes RT MISO system data as input, we can take the RT system input data from a report 

that is generated by ODC and translate the data into a form that HIPPO can read. After a successful 

simulation run with the RT demand, we prepared and input the RT generator data to the LAC 

simulation. The RT generator data is another set of input that is important to represent the system 

conditions. In a similar way, the existing software ODC is used to prepare the RT generator input 

for our HIPPO based LAC simulation. It is noted that some approximations are made to clean the 

input data and resolve some inconsistency and to attain feasible solutions. As a result, only a part 

of the generator data has been successfully passed to feed in the HIPPO based LAC simulation.    

 A day in the existing DA case library is first picked, and then the RT demand and generator 

data for the same day are taken from the report from ODC and they are prepared for input to HIPPO. 

At the current stage of the study, we decide to first keep the hourly interval study to keep the 

simulation simpler and we can extend to 15-minute intervals later. Therefore, the RT demand and 

generator data are both prepared in hourly intervals. So far, we have updated the RT demand and 

generator data and kept the rest of the DA input data in the LAC simulation. Similarly, the other 

system settings are kept consistent with the way it is designed for the DA market. For example, 

the virtual bids and dispatchable demand are kept in the current LAC simulation to keep the 

problem feasible. We continue to refine and update the RT data on generators and other system 

conditions to bring the simulation closer to a realistic LAC. 

Two PSH plants are included in this study. The parameters of the units are matched with 

production data. 

 

Case Studies  

First, a day is picked from the HIPPO DA case library and the DA case is solved in HIPPO. 

Then the RT demand and generator input data for the same day is prepared for the LAC rolling 

window simulation in HIPPO. Finally, the historical RT LMP data for the same day is attained and 

both the single point and probability LMP forecast is generated by the methodology described in 

sections IV.E.2 and IV.E.3. Notice that only the most important but partial of the RT system data 

is prepared and read into the LAC while the LMP forecasts are made based on realistic historical 

LMP data. Therefore, there is a gap between the partial RT system represented in the LAC and the 

RT LMP forecast that is made from the realistic RT system data. This gap will be reduced as we 

continue to refine the RT input data for the LAC simulation.  

Case studies are developed with in total four models. Three models were described in the 

previous sections, and they are the deterministic PSH LAC model (in section IV.B.2), the risk-

neutral stochastic PSH LAC model (in section IV.E.1) and the risk-averse stochastic PSH LAC 

model (in section IV.E.7). In addition, a perfect forecast model is developed to set the benchmark 

and gauge the maximum benefits of incorporating a PSHU in the LAC problem.  
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DA Solution and Profit 

The DA case is solved before the LAC simulation starts. The DA solutions are used in the risk 

averse stochastic PSH LAC model (E.7.2). The DA profits can be calculated in (E.8.1) 

  𝑃𝑟𝑜𝑓𝑖𝑡𝑠𝑔
𝐷𝐴 = ∑ 𝐿𝑀𝑃𝑔,𝑡

𝐷𝐴 ∗ (𝑞𝑔,𝑡
𝑔𝑒𝑛,𝐷𝐴

− 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝,𝐷𝐴)𝑇

𝑡=1 , ∀𝑔 ∈ 𝐺𝑝𝑠ℎ (E.8.1) 

where 𝐿𝑀𝑃𝑔,𝑡
𝐷𝐴 is the DA locational marginal price (LMP) for the PSHU at interval 𝑡, 𝑞𝑔,𝑡

𝑔𝑒𝑛,𝐷𝐴
 and 

𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝,𝐷𝐴

 are the generation and the pump load of the PSHU 𝑔 at interval 𝑡 in the DA solutions. 

 

Perfect Model 

In the perfect model, the LAC is solved in a series of rolling windows such that each of them 

contains three hourly intervals. The generators other than the PSHUs are optimized within the 

LAC three-hour window. The LAC window is solved and slides forward one hour at a time. The 

solution of the first interval inside each LAC is implemented and saved to be fixed in the following 

windows.  

The PSHU is fully optimized in the horizon that starts at the beginning of each LAC window 

and ends at the last interval of the day. That the PSHU is fully optimized means all the unit 

constraints are fully represented in the system wide optimization including the unit output limits, 

ramp limits and limits on the state of charge (SOC) etc. The end of the day SOC is set to meet the 

end of the day target in the DA solution. Notice that we don’t incorporate the price forecast in this 

perfect case, instead, we assume the after the fact RT system conditions (the RT demand and 

generator conditions) are known to PSHUs when each LAC is solved. With the full awareness to 

the real time market system condition, the PSHU can be put to the best position by the optimization. 

Therefore, in comparison to cases where price forecast is used to guide the PSHU’s output in a 

LAC, the solution from a perfect case should guarantee the lowest system objective value and the 

highest profits for a PSHU.  

The system objective value is stored after the last LAC window has been solved. If the PSHU 

deviates from its DA position in LAC, the PSHU would gain (or lose) profits from the RT market. 

Therefore, the profits for the benchmark are composed by a DA component and a RT component 

as follows. 

 𝑃𝑟𝑜𝑓𝑖𝑡𝑠𝑔
𝐿𝐴𝐶 = ∑ 𝐿𝑀𝑃𝑔,𝑡

𝐷𝐴 ∗ (𝑞𝑔,𝑡
𝑔𝑒𝑛,𝐷𝐴

− 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝,𝐷𝐴)  + 𝐿𝑀𝑃𝑔,𝑡

𝑅𝑇 ∗ [(𝑞𝑔,𝑡
𝑔𝑒𝑛,𝐿𝐴𝐶

− 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝,𝐿𝐴𝐶) −𝑇

𝑡=1

(𝑞𝑔,𝑡
𝑔𝑒𝑛,𝐷𝐴

− 𝑞𝑔,𝑡
𝑝𝑢𝑚𝑝,𝐷𝐴)] , ∀𝑔 ∈ 𝐺𝑝𝑠ℎ 

 (E.8.2) 

where 𝐿𝑀𝑃𝑔,𝑡
𝑅𝑇 is the realized RT LMP for the PSHU at interval 𝑡, 𝑞𝑔,𝑡

𝑔𝑒𝑛,𝐿𝐴𝐶
and 𝑞𝑔,𝑡

𝑝𝑢𝑚𝑝,𝐿𝐴𝐶
 are the 

generation and pump load of the PSHU at interval 𝑡 in the LAC solution, respectively. Notice that 

the first term on the right-hand side of (E.8.2) is the same as the right-hand side of (E.8.1) that 

represents the DA profits for the unit. The second term on the right-hand side of (E.8.2) is the RT 

profits for the PSHU and that is the RT LMP times with the dispatch difference between the unit 

net output in the LAC and the unit net output in the DA.  

 

Some Other System Conditions in LAC 

 

Except for a few constraints summarized in Table E.8.1, the unit commitment and economic 

dispatch model for the rest of the system remains unchanged in each LAC simulation. The 
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transmission constraint is only considered inside each LAC window. Only in the Perfect Case, the 

PSHU is included in the power balance constraint for every interval starting from the beginning of 

the LAC until the end of the day. For the three models that uses price forecast, the PSHU is 

included in the power balance constraint only inside each LAC window. The system reserve 

requirement is only considered inside each LAC window. The ramp rate for the rest of the units 

(other than the PSHUs) in the system are modeled only inside each LAC window as well.  

 

Table E.8.1. System Conditions Settings in Each Model  
 Transmission 

Constraint 

Load Balance Reserve (Reg, 

Spin, Supp) 

Ramp Rate for the 

Rest of the Units 

Perfect Case Only in LAC PSH is Counted 

Till T 

Only in LAC Only in LAC 

Deterministic PSH Only in LAC PSH is Counted 

Only in LAC 

Only in LAC Only in LAC 

Risk-neutral 

Stochastic PSH  

Only in LAC PSH is Counted 

Only in LAC 

Only in LAC Only in LAC 

Risk-averse 

Stochastic PSH 

Only in LAC PSH is Counted 

Only in LAC 

Only in LAC Only in LAC 

 

 

Preliminary Simulation Results  

A series of three hour LAC windows are solved sequentially. The simulation ends at the last 

LAC window that starts from 22nd hourly interval and contains the last three hours of the day. (In 

actual practice, the LAC would also be performed for the window starting at the 23rd and 24th 

hourly interval and would include data relevant to the next day; however, we did not have that next 

day DA and RT data available, so we used the LAC window starting at the 22nd hour to set the RT 

decisions for all three hours.) After in total twenty-two LAC problems been sequentially solved 

for all models, the system objective values and the unit profits are collected and compared in Table 

E.8.2 and Table E.8.3 respectively.  

Table E.8.2. LAC System Objective Results. 

 Change compared to 

the Perfect Case 

Change in Percentage compared to 

the Perfect Case 

Deterministic PSH +21959.2 +7.1% 

Risk-neutral Stochastic PSH  +10374.9 +3.3% 

Risk-averse Stochastic PSH +4221.5 +1.3% 

As described earlier, the Perfect Case should give the best system objective. Therefore, the 

objective value of the Perfect Case is set as the benchmark. The objective of the other three models 

are compared and the difference (increase and percentage) are listed in Table E.8.2. It is observed 

that the deterministic PSH model using the single point forecast gives the highest (worst) objective. 

With the probabilistic price forecast applied, the risk-neutral stochastic PSH improves the 

objective compared to the deterministic PSH model. Furthermore, with the robust risk 

management formulation applied to the stochastic PSH model, the objective is improved further 

and is close to the result from the Perfect Case. Notice that only part of the RT system data is 

represented in the LAC simulation, therefore the LMP forecast that is based on the actual RT 

system may differ significantly from the represented RT system in the LAC. It makes sense that 

the risk-averse PSH model does better than the risk-neutral model when the LMP forecast is 

relatively “off”. However, in the case when the represented RT system is closer to the actual system 
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that the LMP forecast is based on, we expect that a good LMP forecast would help the risk-neutral 

PSH model to achieve a better objective than the risk-averse PSH model. We will update the results 

in more case studies in a later paper.  

Table E.8.3. PSHU Profits Results. 

 RT Profits [$] 

Perfect Case  

PSHU1 1484 

PSHU2 -735 

Deterministic PSH  

PSHU1 -7581 

PSHU2 -10653 

Risk-neutral Stochastic PSH   

PSHU1 -2387 

PSHU2 -5454 

Risk-averse Stochastic PSH   

PSHU1 610 

PSHU2 -1894 

 

 The profits for the two PSH plants are listed in Table E.8.3, the DA profits are calculated by 

(E.8.1) and the RT profits are calculated by (E.8.2). The RT profits for each model are listed in the 

second column. In the perfect case, PSHU1 gains some RT profits while PSHU2 loses a small 

amount of profit in the RT market. Notice that both PSHU1 and PSHU2 are connected at the same 

node, multiple optimal solutions exist, and so it is likely that there is a solution where both units 

make a small amount of positive RT profits. It is observed that even in the Perfect Case, the PSH 

deviation from the DA solution is not significant and results in a small profit gain in the RT market. 

This is largely due to the fact that only part of the RT system data is represented in the LAC 

simulation such that the system condition in LAC is not too much different to the DA. 

Among the three proposed models, the Risk-averse Stochastic PSH model gives the best RT 

profits. The deterministic PSH model results in worse profits due to RT dispatch for both units. 

That is partly because the model considers only the single point LMP forecast. When the 

probabilistic price forecast with total 50 scenarios is applied in the Risk-neutral Stochastic PSH 

model, both units still lose profits in the RT market but the situation is significantly relieved 

compared to the result from the deterministic model. In addition, after the robust risk-management 

formulation is applied in the risk-averse stochastic PSH model, one of the PSHUs has a small 

negative RT profits, and the other PSHU gains a small amount of positive RT profit. Notice that 

the margin of the RT profits is very small shown in the results of the Perfect Case, and the results 

from the Risk-averse stochastic PSH model is very close to the Perfect Case. 

The unit dispatch solutions for plant PSHU1 and PSHU2 from the simulation with the risk-

averse stochastic model are plotted in Fig. E.8.1 and Fig. E.8.2. The PSHU outputs are indicated 

by the solid lines and they align with the units on the left of the figure. The LMP are indicated by 

the dashed lines and they align with the units on the right of the figure. The DA solutions are in 

blue and LAC solutions are in red. For both PSHU plants, most of the LAC solutions are either the 

same (where the red lines overlap with the blue lines) or very close to the DA solution.  

The most significant differences between the LAC and DA solutions for both PSHU are 

highlighted in the dashed rectangles in Figs. E.8.1 and E.8.2 and they can be summarized as 

follows. First of all, compared to the DA results, the ramp of the morning peak in the LAC are 
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slower and they can be observed by the comparison of LMPs in DA and LAC. This change from 

DA to LAC is reflected in the LAC solution. In the LAC solution, the generation of both units at 

interval 5 are less than the DA solution as highlighted in the first dashed rectangle from left to 

right in both figures. Second, in the LAC solution, both units generate more in the morning peak 

hour at interval 6 shown in the second dashed rectangle from left to right in both figures. Third, 

both units have some activities in the mid-day (gen and pump for PSHU1 and pump for PSHU2) 

in the LAC while they are kept offline in the DA solution as highlighted in the third dashed 

rectangle from left to right in both figures.  

 
Fig. E.8.1 DA and LAC Solution for PSHU1. The dispatch differences between the DA and LAC 

solution are highlighted in the black dashed rectangles. The changes in LAC dispatch solutions 

reflect that the PSHU is adapted to the updated LAC LMP shown in the dashed red lines.     

 
Fig. E.8.2 DA and LAC Solution for PSHU2. The dispatch differences between the DA and LAC 

solution are highlighted in the black dashed rectangles. The changes in LAC dispatch solutions 

reflect that the PSHU is adapted to the updated LAC LMP shown in the dashed red lines.   

Compared to the DA solution, the first and second deviations at both units in the LAC solution 

show cases where the probabilistic price forecast accurately captured the changed system 
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conditions in RT and helped to take the right decision for both units; that is, to generate less when 

the morning peak ramp is slower and generate more in the peak hour. Those actions would 

contribute to the improved system objective and the increased RT profits at the units. Compared 

to the DA solution, the third deviations in the LAC solution for both units don’t perfectly align 

with the RT system condition indicated by the LAC LMP. That indicates the probabilistic LMP 

forecasts in the corresponding LAC windows consistently deviate from the realized LAC LMP or 

that another issue, such as the size of the MIP relative gap, drive the outcomes in this case.   

In summary, with the risk-neutral stochastic PSH model, the dispatch of the PSHU in the LAC 

simulation deviates from the DA solution as designed. The risk-neutral stochastic PSH model helps 

to bring the system objective close to the perfect case and avoid large negative RT profits for one 

PSHU and achieved a small positive RT profits for the other PSHU. With the current RT system 

data in the LAC simulation, the DA system condition and the RT system condition in LAC are 

relatively close. Therefore, the value of the adjustment on the PSHU dispatch in LAC is marginal 

as indicated by the results from the perfect case. We plan to continuously refine the RT data in 

LAC simulations that would reduce the gap between the model in the LAC simulation and the 

realistic system condition. In addition, more cases where the DA and RT system conditions are 

significantly different will be studied. We will update those results in a later paper that will be 

submitted for a journal publication.   
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IV.F. Accomplishments Toward Milestone 6.1 

Milestone 6.1: Establish deterministic PSH optimization model for economic planning while 

reflecting market optimization.     

Accomplishments Summary: (1) In section IV.C, the team established a deterministic PSH 

optimization model for economic planning while reflecting DA and RT market optimizations in a 

MISO system using PLEXOS. Based on this, the team establishes a PSH optimization model with 

market optimizations enhancements (e.g., incorporating price forecast and MWh reserve). Tests 

are conducted in revised planning models for a MISO planning case. (2) MWh reserve modeling 

was included for MISO system using PLEXOS. Numerical simulation shows the benefit of 

modeling MWh reserve in MISO planning model is to make sure the SOC would not violate its 

limit given certain reserve deployment assumptions. (3) A value-of-water based approach was 

used for the RT operation of PSH units to exploit the flexibility of storage resources. Test results 

show defining a value-of-water function for RT can enable the flexibility of PSH and reduce the 

overall system cost in the RT market. (4) Furthermore, we explored the benefit of MWh reserve 

in real-time rolling horizon optimization. Combining with a value-of-water based rolling horizon 

framework, we analyzed the benefit of withholding energy in a test system. 
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IV.F.1 Incorporating MWh-reserve for PSH in planning studies 

MWh-reserve modeling 

Based on the MWh reserve modeling method in section IV.D, a MWh reserve formulation is 

implemented in PLEXOS. We assume PSH units can provide both upward and downward reserve 

in the generating mode, and zero reserve in the pumping mode due to the fixed-power pump. As 

shown in (F.1.1), the lower limit of the upper reservoir is improved with the consideration of 

possible reserve deployments. The storage should withhold a certain amount of energy to avoid 

SOC lower limit violation in time period t, If reserve was deployed k time periods before.  

  (F.1.1) 

We first evaluate the value of MWh reserve modeling in a small test system. As shown in Fig. 

F.1.1, the three bus system consists of three generators and one PSH unit. To test two different 

cases, we designed a low load profile for CASE I, and a high load profile for CASE II in Fig. F.1.2 

(a) and Fig. F.1.2 (b), respectively. The SOC schedule results for both cases are shown in Fig. 

F.1.3. As indicated, in CASE I, the SOC curve from the test with MWh reserve modeling is higher 

than that from the test without MWh reserve modeling. Hense, MWh reserve modeling can 

withhold some water to avoid the reservoir from violating its lower limit when there exists reserve 

deployment. However, in CASE II the two SOC curves are exactly the same. As shown in Table 

F.1.1, the cleared reserve of PSH turns to zero in CASE II with MWh reserve. Thus, the SOC 

solution satisfies (F.1.1) when the cleared reserve is zero. Note the key feature of CASE I is that 

other online conventional generators cannot fully satisfy the system reserve requirement, which is 

100 MW. So, the reserve of PSH would be cleared even with the price of withholding more water. 

However, as the load increase in CASE II, all three generators are online, and the total available 

capacity of them can cover the system reserve requirement. Then the reserves of other generators 

are preferred to be deployed than the reserve of PSH. 

Through this comparative test, we found when MWh reserve is modeled: 1) PSH might 

withhold some extra water if the other generator cannot fully cover the system reserve requirement, 

like CASE I. 2) the reserve of PSH might not be cleared if other generators cannot fully cover the 

system reserve requirement, like CASE II. 

 

Fig. F.1.1. A 3-bus test system 
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(a) load profile for CASE I                                               (b) load profile for CASE II 

Fig. F.1.2 load profiles for two test cases 

 

  
(a) CASE I                                                                           (b) CASE II 

Fig. F.1.3 Scheduled SOC of PSH. MWh reserve modeling can withhold some water to avoid the 

reservoir from violating its lower limit when there exists reserve deployment. 

Table F.1.1 cleared reserve of each unit in CASE II with MWh reserve 

Time period 

(hour) 
1 2 3 4 5 6 

G1 reserve 

(MWh) 
0.00 0.00 0.00 0.00 0.00 0.00 

G2 reserve 

(MWh) 
68.33 25.00 25.00 25.00 25.00 25.00 

G3 reserve 

(MWh) 
31.67 75.00 75.00 75.00 75.00 75.00 

PSH reserve 

(MWh) 
0.00 0.00 0.00 0.00 0.00 0.00 

 

Test on the revised MISO planning model 

The MWh reserve is implemented in a MISO planning model, which is a portion of the 

interconnection seam study model. The detailed implementation of the MWh reserve is shown in 

(F.1.2), wherein a four-interval look-back formulation is employed as an example. In our test, the 

SOC is not explicitly daily recycled. As shown in (F.1.3), only the lower bound of SOC is limited 

to enable the capability of lifting the SOC curve up. 
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  (F.1.2) 

  (F.1.3) 

The testing results of the cases without and with MWh reserve are shown in Fig. F.1.4 and Fig. 

F.1.5, respectively. In the test with MWh reserve, the MWh reserve constraint for the ending hour 

does bind, but the SOC curve doesn’t change, which is similar to CASE II in the previous 

subsection. Also, we noticed that the reserve of PSH at hour 21 changes to 0 after the MWh reserve 

modeling is included. As the reserves of other generators are sufficient to cover the system reserve 

requirement in hours 21-24, if reserve can be offered by other generators, the optimal solution 

tends not to clear PSH’s reserve. 

Although the scheduled SOC curve doesn’t change, the inclusion of MWh reserve modeling 

does change the cleared reserve of PSH. For the solution from the without MWh reserve test, 

suppose the reserve of PSH is deployed in the time period 21, the ending SOC would violate its 

lower limit. However, with MWh reserve modeling, it would not happen as the reserve of PSH is 

not cleared in the time period 21. The benefit of modeling MWh reserve in MISO planning model 

is to make sure the SOC would not violate its limit given certain reserve deployment assumptions. 

 
(a) SOC of a realistic PSH station 

 
(b) energy and reserve dispatch of a realistic PSH station 

Fig. F.1.4 simulation result of a realistic PSH station without MWh reserve modeling 
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(G) SOC of a realistic PSH station 

 
(b) energy and reserve dispatch of a realistic PSH station 

Fig. F.1.5 simulation result of a realistic PSH station with MWh reserve modeling 

 

IV.F.2 Incorporating real-time value-of-water for PSH in planning studies 

Real-time value-of-water modeling 

1) current practice: following the DA schedule 

Currently, in RT operations, PSH owners attempt to follow the DA schedule as close as 

possible. As shown in Fig. F.2.1, actual DA and RT schedule of a realistic PSH from in a 15-day 

period also verifies the aforementioned fact from a long-term perspective. This PSH RT operation 

strategy works well for power systems with relatively low renewable energy penetration, however, 

restricts the flexibility of PSH in RT operations when the DA forecast error is large. In our 

numerical simulations, following the DA generate and pump schedule in RT is regarded as the 

current practice of PSH RT operation strategy. 
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Fig. F.2.1 Actual DA and RT schedule of a realistic PSH. RT operations. RT schedule largely 

follows the DA schedule. 

 

2) proposed approach: define an appropriate value-of-water function 

A value-of-water based rolling horizon DA/RT interleaved framework is developed to reflect 

the impact of future prices in guiding short-term PSH optimization. 

In RT operations, ISOs usually optimize a single time period market clear problem every 5 

minutes. Lack of look-ahead ability brings a significant challenge for energy-limited resources if 

they don’t follow the DA schedule. The look-ahead schedule is a good option to consider the future 

possibilities for the current decision, however, it suffers from heavy computational burdens for 

practical large-scale power systems to clear the market in less than 5 minutes. 

To this end, value-of-water based approach is a promising technical solution to keep the 

optimization time horizon of market clear problem as one period, while considering the forecast 

for the future. The value of water (VOW) is an expectation of the water cost in the upper reservoir 

of PSH. 

As investigated in section IV.B, the DA storage shadow price, i.e. the dual variable for the 

SOC constraint of the upper reservoir, can be used to estimate it for perfect DA prediction and 

strongly convex cases. In reality, the market model is generally non-convex. In the planning model, 

we use the DA storage shadow price as a predictive indicator for the future water price, as shown 

in (F.2.1). 

 𝑉𝑂𝑊𝑠,𝑡 ≈ 𝛾𝑠,𝑡
DA (F.2.1) 

 

Test the Revised MISO Planning Model 

The DA/RT interleaved method and the value-of-water based PSH RT operation strategy are 

implemented in the Seams model using PLEXOS. The revised model is tested to compare different 

operation strategies and analyze the value of the interleaved simulation method. 

1) flexibility advantage of the value-of-water based PSH RT operation strategy 

In our simulation for the current practice of RT operation strategy, PSH units follow their DA 

generate and pump schedule. As shown in Fig. F.2.2, in RT, MW output and hour-end SOC of 
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PSH units cannot deviate from their DA schedules. Suppose RT system net-load is far from the 

DA forecasted value, the system needs the flexibility from PSH to follow the RT net-load, and 

meanwhile, PSH owner can earn more to follow the price signal and deviate from the DA schedule. 

In these scenarios, following DA schedule can restrict the flexibility of PSH. 

For the proposed value-of-water based approach, VOW is estimated by DA storage shadow 

price. We first apply VOW for the generate mode, and remain pump schedule following that from 

DA. As indicated in Fig. F.2.3, PSH can generate even when it is not pre-scheduled in DA. The 

flexibility of PSH units can be exploited when it is needed.  

 
(G) DA and RT SOC 

 
(b) DA and RT SOC change 

Fig. F.2.2 Simulated DA and RT dispatch of a realistic PSH (RT follows DA schedule approach) 

 
(G) DA and RT SOC 
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(b) DA and RT SOC change 

Fig. F.2.3 Simulated DA and RT dispatch of a realistic PSH (proposed value-of-water based 

approach where RT generation uses VOW, RT pump follows DA). PSH can generate in RT even 

when it is not pre-scheduled in DA in order to exploit the flexibility of PSH units. 

For different PSH RT operation strategies and different fluctuation levels, RT overall system 

costs are compared. As indicated in Table F.2.1, in contrast to the current practice (i.e., follow DA 

schedule), the preliminary result shows that defining a value-of-water function for RT can enable 

the flexibility of PSH. This can reduce the overall system cost for the RT market. Longer term 

simulation results are shown later in this report. 

Fig. F.2.1 RT cost comparison for different PSH RT operation strategies (2-day result) 

PSH RT operation strategy 
trend only 

(10
3

$) 

with error σ = 1% 

(10
3

$) 

with error σ = 5% 

(10
3

$) 

follows DA schedule 226,388.020 226,313.814 227,718.326 

gen uses VOW, pump follows DA 225,816.761 225,936.243 227,122.333 

VOW for both gen and pump 225,794.180 - - 
 

2) value of the proposed interleaved simulation 

A case with larger intra-hour prediction errors in DA, i.e., with a 5% standard deviation in 

synthesizing the RT load, is also tested. As shown in Fig. F.2.4, PSH units generate more in RT to 

flexibly address the uncertainty. The interleaved simulation can reflect DA/RT deviation that is 

brought by DA prediction error. In addition, it can be observed that the initial SOC of the second 

day starts from the ending SOC of the first day, which indicates the interleaved simulation can 

reflect the SOC interaction between the RT market of the current day and the DA market of the 

next day. 
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(G) DA and RT SOC 

 
(b) DA and RT SOC change 

Fig. F.2.4 Simulated DA and RT dispatch of a realistic PSH (larger DA load prediction error, RT 

generation uses VOW, RT pump follows DA). The interleaved simulation can reflect the SOC 

interaction between the RT market of the current day and the DA market of the next day. 

3) long term evaluation 

We further conducted simulation for longer time periods. With a monthly simulation for each 

quarter, RT overall system costs are compared for different PSH RT operation strategies. As 

indicated in Table F.2.2, in contrast to the current practice (i.e., follow DA schedule), the test result 

shows that defining a value-of-water function for RT can enable the flexibility of PSH. This can 

reduce the overall system cost for the RT market, with a monthly average of 0.22% reduction.  As 

the only difference between the ‘follow DA schedule’ and ‘VOW’ is the RT dispatch approaches 

for PSH, the cost benefits are thus from better utilizations of PSHUs’ flexibility, demonstrating 

the value of better optimized PSH. 

Table F.2.2. RT cost comparison for different PSH RT operation strategies Using DA/RT 

Interleaved Simulation on MISO planning model for 2024 (with error σ = 5%) 

PSH RT operation 

strategy 

January 2024  

(10
3

$) 

April 2024 

(10
3

$) 

July 2024 

(10
3

$) 

October 2024 (10
3

$) 

Follows DA 

schedule 
4,303,959 3,161,008 6,752,143 3,424,229 

VOW 4,275,751 3,157,345 6,750,693 3,420,599 
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Cost Reduction 

($) 28,208 3,663 1,450 3,630 

Cost Reduction 

(%) 0.66% 0.12% 0.02% 0.11% 

 

IV.F.3 Exploring the benefit of MWh reserve in real-time rolling horizon 

optimization 

In this subsection, we focus on uncertainties, and try to find the benefits of MWh reserve 

modeling in rolling horizon optimization. In addition to physical violations, we aim to investigate 

the potential cost increase or revenue decrease that is caused by running out of water. 

In RT operation, dualizing the SOC constraint was proposed in previous tasks to decouple the 

temporal coupling in the SOC constraints. The value of water can be estimated by the DA storage 

shadow price, i.e., 𝑉𝑂𝑊𝑠,𝑡 ≈ 𝛾𝑠,𝑡
DA. This works well for perfect prediction and strongly convex 

cases. If uncertainties are further considered in RT, the assumption of perfect prediction does not 

hold. For testing convenience, we keep the strongly convex assumption (simplified linear 

constraints and quadratic objectives for problems with both long and short horizons). The ISO 

clear and PSH owner strategic bid problems that do not consider MWh reserve constraints are 

shown in (F.3.1) and (F.3.2), respectively. For perfect prediction, adding MWh reserve constraints 

(F.3.3) would have ISO cost non-decreasing and PSH owners’ profit non-increasing. We then 

analyze cases with uncertainties in a small illustrative case. 

  (F.3.1) 

  (F.3.2) 

  (F.3.3) 

The small illustrative system contains one PSH with 20MW and 40MWh installed capacity, 

and three generators as listed in Table F.3.1. The predicted load (or net-load) profile is assumed as 

shown in Fig. F.3.1. For a perfect prediction case, the rolling-horizon optimization result matches 

that from long-horizon optimization (we don’t elaborate on the result as it has been shown in 

previous sections). 

Table F.3.1 system parameter 
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unit Pmax (MW) b ($/MW) a ($/MW2) 

G1 100 8.5 0.002 

G2 100 9 0.001 

G3 30 16 0.0005 

 

 

Fig. F.3.1 predicted load profile 

We consider the load/net-load uncertainty. Although the load difference is small and LMP 

patterns are similar (not perfect but good load/LMP predictions), the PSH rolling-horizon schedule 

misses the highest price because of running out of the water, as shown in Fig. F.3.2. In our rolling 

horizon dispatch, the value of water from even a very small inaccurate prediction (in our case, 

close net-load and very similar LMP pattern) might not always correctly guide the PSH schedule. 

Additional floor room might be needed to avoid PSH from running out of the water before the high 

price. 

 

(a)       (b) 
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(c)        (d) 

Fig. F.3.2 load/net-load uncertainty test without MWh reserve (a) load; (b) LMP; (c) SOC price; 

(d) SOC. The PSH rolling-horizon schedule misses the highest price because of running out of 

the water. 

As the LMP patterns are similar, in this case, we used a simple SOC lower bound strategy, 

which sets a floor level around the long-horizon SOC solution, as shown in (F.3.4). The main 

purpose is to check if modeling floor room makes sense in rolling horizon RT dispatch with VOW 

defined. Considering MWh reserve, as shown in Fig. F.3.3, the PSH doesn’t miss the highest price 

at hour 7. For rolling horizon RT dispatch, ISO cost can be reduced from $10943 to $10801 with 

the MWh reserve modeling. As the PSH owner, catches the high price, a profit increase can be 

expected. 

  (F.3.4) 

 

Fig. F.3.3 load/net-load uncertainty test with MWh reserve. The PSH doesn’t miss the highest 

price at hour 7. 

Although this the benefit analysis conclusion may not necessarily hold for general uncertainty 

realizations, it is sufficient to reflect the value of withholding water in particular inaccurate-

prediction scenarios. 

 

IV.G. Accomplishments Toward Milestone 8.1 

Milestone 8.1: Establish prototype stochastic SCUC tool equipped with fast computation 

capability that can accurately determine MW and MWh reserve requirements of systems against 

uncertainties. 

Accomplishments Summary: (1) The team has built a stochastic model to incorporate uncertainty 

SOC considerations in the day-ahead FRAC model to address the potential SOC boundary 

violation issue in real-time ED, as a result of RT uncertainties. (2) By studying MISO’s historical 

data, the team has introduced new parameters to define scenarios describing DA to RT 

decrepedancy, which are used to cast a computationally-tractable stochastic model for determining 

MWh reserve requirements of systems. Numerical results show that including energy reserve 

secure constraints can improve system flexibility against uncertainties and contingencies, and 
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meanwhile does not necessarily reduce profits of PSH plants as evaluated by new DA and RT 

LMPs after including the uncertainty SOC constraints. (3) The team has used ADP to learn SOC-

price curves for evaluating the value of water of PSHs outside a finite time horizon. The learned 

SOC-price curves could be used in the FLAC and LAC models to optimize the SOC levels at the 

end of the final time horizon, without explicitly simulating uncertainties of future time periods. 

Numerical results on a one-hour look-ahead PSH profit maximization problem show that the SOC-

price curves learned out of the ADP approach could derive better solutions than a rolling based 

stochastic model while effectively avoiding the needs to explicitly simulate/forecast uncertainties 

of future time periods. 

IV.G.1 Stochastic SOC Headroom and Floor Room of PSHs  

This subsection describes the proposed stochastic model to incorporate uncertainty SOC 

considerations in the DA FRAC model. Specifically, multiple selective historical scenarios are 

incorporated in the DA FRAC model via chance constraints, in order to leverage solution 

robustness and economics against potential uncertainties of SOC deployment in the RT market. 

A SOC limitation constraint that considers headroom and floor room can be written as: 

𝑆𝑂𝐶𝐿𝐵 + 𝐻𝑡
𝐿𝐵 ≤ 𝑠𝑜𝑐𝑡 ≤ 𝑆𝑂𝐶𝑈𝐵 − 𝐻𝑡

𝑈𝐵 (G.1.1) 

where 𝑠𝑜𝑐𝑡 represents the SOC at hour 𝑡; 𝑆𝑂𝐶𝐿𝐵 and 𝑆𝑂𝐶𝑈𝐵 are respectively its lower and upper 

bounds; headroom and floor room 𝐻𝑡
𝐿𝐵 and 𝐻𝑡

𝑈𝐵 are given values that are learned from history 

data. All variables are denoted by lower case letters and all parameters are denoted by upper case 

letters. Our goal is to consider uncertainties within this constraint by adopting a stochastic 

formulation. Indeed, is would be computationally challenging if directly considering variable 𝑠𝑜𝑐𝑡 

as stochastic, because it is explicitly related with pumping and generating dispatch variables of the 

PSH (denoted as variable 𝑝𝑡 and 𝑔𝑡). If 𝑠𝑜𝑐𝑡 is defined as a stochastic variable, 𝑝𝑡 and 𝑔𝑡 will be 

stochastic variables as well; and since these variables are involved in the power balance constraint 

of FRAC, the uncertainties will finally spread to the entire FRAC model, resulting in extremely 

heavy computational burden that is not affordable for the stringent FRAC computational time 

requirement. Alternatively, manipulating 𝐻𝑡
𝐿𝐵  and 𝐻𝑡

𝑈𝐵  may be a feasible option to consider 

uncertainties. In the following, we consider 𝐻𝑡
𝐿𝐵 and 𝐻𝑡

𝑈𝐵 as variables and thereafter rewrite them 

as ℎ𝑡
𝐿𝐵 and ℎ𝑡

𝑈𝐵. 

To begin with, a new parameter named “deviation rate” is introduced, which is defined as the 

ratio of the actual SOC deviation to the maximum possible deviation. The maximum possible 

deviation will be determined by the PSH’s lower power bound (denoted as 𝑃𝐿𝐵 for pumping and 

𝐺𝐿𝐵 for generating) and power upper bound (denoted as 𝑃𝑈𝐵 for pumping and 𝐺𝑈𝐵 for generating) 

as well as its current dispatch. For example, if a PSH is scheduled in DA at 600MW and its power 

lower/upper bound is 400MW/800MW, the maximum possible up-deviation (i.e., generating more) 

is 200MW (i.e., 800MW-600MW), while the maximum possible down-deviation (i.e., generating 

less) is also 200MW (i.e., 600MW-400MW). With this, if the PSH is dispatched at 700MW in RT, 

the up-deviation rate can be calculated as (700-600)/200=0.5; While if the PSH is dispatched at 

550MW, the down-deviation rate can be calculated as (600-550)/200=0.25. 

We use four parameters 𝑅𝑡
𝐺,𝑈𝑃

, 𝑅𝑡
𝐺,𝐷𝑁

, 𝑅𝑡
𝑃,𝑈𝑃

, and 𝑅𝑡
𝑃,𝐷𝑛

 to denote the up-deviation rate under 

generating, down-deviation rate under generating, up-deviation rate under pumping, and down-

deviation rate under pumping. We further add a subscript 𝑠 to these variables, which gives 𝑅𝑠,𝑡
𝐺,𝑈𝑃

, 

𝑅𝑠,𝑡
𝐺,𝐷𝑁

, 𝑅𝑠,𝑡
𝑃,𝑈𝑃

 and 𝑅𝑠,𝑡
𝑃,𝐷𝑛

, to indicate generated deviation rates under a certain historical scenario s.  
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In fact, SOC deviations can be induced in two occasions: One is the dispatch discrepancy 

between DA and RT, but with the same generating/pumping mode; The other is 

generating/pumping mode switching (e.g., the PSH is scheduled Off in DA, but generates in RT 

at a certain time interval). The deviation rate is designed to measure first occasion. To deal with 

the second occasion, we further define four possible mode switching types from DA to RT: 

▪ pumping to Off (𝐼𝑡
𝑃−𝑂) 

▪ generating to Off (𝐼𝑡
𝐺−𝑂) 

▪ Off to pumping (𝐼𝑡
𝑂−𝑃) 

▪ Off to generating (𝐼𝑡
𝑂−𝐺) 

Mode switching directly from generating to pumping or from pumping to generating has not been 

seen in the MISO’s historical operation data, thus, not considered. In the same way, we add a 

subscript 𝑠 to these parameters to indicate generated mode switching under a certain historical 

scenario s. 

 

Scenario generation for Stochastic SOC Headroom and Floor Room 

We borrow the idea of stochastic production simulation (simulating both unit output and unit 

status) and propose a “dual track” scenario generation procedure. On one track, a scenario will 

have deviation rates, both up- and down-deviation rates for pumping and generating, generated for 

each time interval; On the other track, this scenario may also have mode switching for each hour. 

In a scenario, the mode switching at a certain time interval can be none (i.e., no mode switching 

happens from DA to RT) or one of the above four possible mode switching types exclusively. 

 

Formulation of Stochastic SOC Constraints 

The basic idea of assessing the possible deviation under each scenario is that if a mode 

switching exists at a certain time interval and is triggered by the schedule under this scenario, its 

resulting SOC deviation will be counted first; otherwise, only dispatch deviation will be counted. 

The floor room under a certain scenario 𝑠 can be formulated as: 

ℎ𝑠,𝑡
𝐿𝐵 = 𝑅𝑠,𝑡

𝐺,𝑈𝑃(𝐺𝑈𝐵 · 𝑢𝑡
𝐺 − 𝑔𝑡) + 𝑅𝑠,𝑡

𝑃,𝐷𝑁(𝑝𝑡 − 𝑃𝐿𝐵 · 𝑢𝑡
𝑃) + 𝐺𝑈𝐵 · 𝐼𝑠,𝑡

𝑂−𝐺(1 − 𝑢𝑡
𝐺 − 𝑢𝑡

𝑝) + 𝑝𝑡 · 𝐼𝑠,𝑡
𝑃−𝑂; 

 (G.1.2) 

where 𝑢𝑡
𝐺 and 𝑢𝑡

𝑝
 are binary mode indicators for generating and pumping respectively. 

The four terms of ℎ𝑠,𝑡
𝐿𝐵 are explained as follows: 

• First term: scheduled as generating in both DA and RT, but generates more in RT; 

• Second term: scheduled as pumping in both DA and RT, but pumps less in RT; 

• Third term: scheduled as OFF in DA, but starts to generate in RT; 

• Fourth term: scheduled as pumping in DA, but quits pumping in RT. 

Equation (G.1.2) can be understood as follows: 

• If no mode switching occurs (𝐼𝑠,𝑡
𝑂−𝐺=0 and 𝐼𝑠,𝑡

𝑃−𝑂=0) and the PSH is scheduled as generating 

at time 𝑡, namely 𝑢𝑡
𝐺=1. The first term becomes 𝑅𝑠,𝑡

𝐺,𝑈𝑃 · (𝐺𝑈𝐵 − 𝑔𝑡), which calculates the 

dispatch up-deviation (extra generation); While all other three terms will be 0. 

• If no mode switching occurs (𝐼𝑠,𝑡
𝑂−𝐺=0 and 𝐼𝑠,𝑡

𝑃−𝑂=0) and the PSH is scheduled as pumping 

at time 𝑡, namely 𝑢𝑡
𝑃=1. The second term becomes 𝑅𝑠,𝑡

𝑃,𝐷𝑁 · (𝑝𝑡 − 𝑃𝐿𝐵), which calculates 

the dispatch down-deviation (short in pumping); While all other three terms will be 0. 
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• If 𝐼𝑠,𝑡
𝑂−𝐺=1, but the PSH is scheduled as pumping or generating (i.e., not OFF), the mode 

switching will not be triggered, and the third term is cancelled out as 0. On the other hand, 

when the PSH is scheduled OFF (i.e., 𝑢𝑡
𝐺=0 and 𝑢𝑡

𝑝
=0), the third term is triggered and equal 

to 𝐺𝑈𝐵, indicating that the PSH starts to generate at the max in RT. 𝐺𝑈𝐵 represents the 

most conservative situation and it may be set as other values to mitigate the 

conservativeness. 

• If 𝐼𝑠,𝑡
𝑃−𝑂 =1, but the PSH is scheduled other than pumping, the mode switching is not 

triggered and the fourth term is 0, since 𝑝𝑡  will be 0. When the PSH is scheduled as 

pumping, the fourth term is equal to 𝑝𝑡, indicating that the PSH quits pumping in RT. 

It is worthwhile to emphasize that 𝐼𝑠,𝑡
𝑂−𝐺  and 𝐼𝑠,𝑡

𝑃−𝑂  are given parameters, which are derived 

according to the historical scenarios. 𝐼𝑠,𝑡
𝑂−𝐺  and 𝐼𝑠,𝑡

𝑃−𝑂  can be 0 or 1 depending on the specific 

scenario. 

Following the same logic, 𝐻𝑠,𝑡
𝑈𝐵 can be calculated as: 

ℎ𝑠,𝑡
𝑈𝐵 = 𝑅𝑠,𝑡

𝐺,𝐷𝑁(𝑔𝑡 − 𝐺𝐿𝐵 · 𝑢𝑡
𝐺) + 𝑅𝑠,𝑡

𝑃,𝑈𝑃(𝑃𝑈𝐵 · 𝑢𝑡
𝑃 − 𝑝𝑡) + 𝑃𝑈𝐵 · 𝐼𝑠,𝑡

𝑂−𝑃 · (1 − 𝑢𝑡
𝐺 − 𝑢𝑡

𝑝) + 𝑔𝑡 · 𝐼𝑠,𝑡
𝐺−𝑂 ; 

  (G.1.3) 

The four terms of ℎ𝑠,𝑡
𝑈𝐵 represent: 

• First term: scheduled as generating in DA and RT, but generates less in RT; 

• Second term: scheduled as pumping in DA and RT, but pumps more in RT; 

• Third term: scheduled as OFF in DA, but starts to pump in RT; 

• Fourth term: scheduled as generating in DA, but quits generating to OFF in RT. 

With the above equations, the SOC limitation constraint can be written as: 

 𝑆𝑂𝐶𝐿𝐵 + ∑ ℎ𝑠,𝑡
𝐿𝐵𝑡

𝑘=1 − 𝑠𝑠,𝑡
𝐿𝐵 ≤ 𝑠𝑜𝑐𝑡 ≤ 𝑆𝑂𝐶𝑈𝐵 − ∑ ℎ𝑠,𝑡

𝑈𝐵𝑡
𝑘=1 + 𝑠𝑠,𝑡

𝑈𝐵 (G.1.4) 

Additional auxiliary constraints and final SOC stochastic constraints are included in the Appendix 

for section IV.G.1. 

 

IV.G.2 Case Study with Stochastic SOC Headroom and Floor Room  

The DA FRAC with stochastic SOC limitation constraint is performed on the MISO cases with 

the HIPPO platform. There are three PSH plants in MISO’s system (referred to as PSH-1, PSH-2, 

and PSH-3 in this study), in which each of the first two contain 3 units and the last one contains 2 

units. One sample day in spring 2019 is selected for the study. The scenarios used to formulate the 

stochastic constraints are selected from historical data of the past three years and the total numbers 

of scenarios for individual PSHs are listed in Table G.2.1. All scenarios are given on the plant 

level. With different RT load profiles and settings on the allowance of recommitment/ 

decommitment of PSH plants in RT, four cases are studied as shown in Table G.2.2. The DA load 

profile and RT load profile with and without extra wind fluctuations are shown in Fig. G.2.1. 

 

Table G.2.1 The number of selected scenarios 

PSH Name 
Total Number 

of Scenarios  

Num of 

Scenarios in 

2017  

Num of 

Scenarios in 

2018  

Num of 

Scenarios in 

2019 

PSH-1 30 15 10 5 

PSH-2 30 15 10 5 
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PSH-3 30 15 10 5 

 

Table G.2.2 The four cases and their settings 

Case Name Setting 

Normal load + Fixed PSH UDS load + fixed unit commitment of PSH plants 

High load + Fixed PSH UDS load + wind fluctuation + fixed commitment of 

PSH plants 

Normal load + Committable PSH UDS load + re-committable/de-committable PSH plants 

High load + Committable PSH UDS load + wind fluctuation + re-committable/de-

committable PSH plants 

 

 
Fig. G.2.1. Load profiles in DA and RT for a sample day in spring 2019 

 

Models with different headroom and floor room settings are differentiated with different 𝑁 

values, and the case without considering headroom and floor room is viewed as the benchmark 

model and denoted by w/o. In the simulation, 𝑀 of each PSH is set as 5 times of the reservoir 

capacity. The MILP gap threshold for all cases is set as 0.1% and the solution time limit is 1200s.  

The day-ahead revenue of the three PSHs are shown in Table G.2.3. It is worthwhile to mention 

that all the above four cases are created for RT, thus all the four cases will share the same DA 

result from the same DA case. The DA revenue is calculated as Realized profits = 

∑ 𝐿𝑀𝑃𝑡
𝐷𝐴 · (𝑔𝑡

𝐷𝐴 − 𝑝𝑡
𝐷𝐴)𝑇

𝑡=1 , where 𝑔𝑡
𝐷𝐴 and 𝑝𝑡

𝐷𝐴 are generating and pumping dispatches of the 

PSH plant and 𝐿𝑀𝑃𝑡
𝐷𝐴 represnets the DA LMP. It can be seen that even with different settings of 

N, all the three PSH plants profit less in the DA comparied with the benchmark model. This is 

expected since certain amount of energy has been reserved via the headroom and floor room for 

the RT use. 

Table. G.2.3 DA revenue with different 𝑁 settings ($). 

N PSH-1 PSH-2 PSH-3 Total 

w/o 153,701 96,522 67,273 317,497 

40% 150,300 96,474 67,530 314,304 

30% 150,021 96,440 67,511 313,973 

20% 148,971 94,711 66,584 310,267 

10% 149,225 94,189 66,534 309,949 

0% 147,772 93,506 63,684 304,963 

 

RT schedule results are derived from two different RT market clearing simulation setups: 

hourly security-constrained economic dispatch (SCED) and 15-min SCED. As their names suggest, 
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hourly SCED has 1 hour time interval and 15-min SCED has 15 minutes time interval. That is, the 

latter has a high time resolution. 

 

RT Result with hourly SCED 

The DA+RT revenue results of the three PSH plants from hourly SCED are shown in Tables G.2.4-

G.2.8, for the four cases under different N settings. The DA+RT revenue is calculated as Realized 

Profits = ∑ 𝐿𝑀𝑃𝑡
𝐷𝐴 · (𝑔𝑡

𝐷𝐴 − 𝑝𝑡
𝐷𝐴) + 𝐿𝑀𝑃𝑡

𝑅𝑇 · [(𝑔𝑡
𝑅𝑇 − 𝑝𝑡

𝑅𝑇) − (𝑔𝑡
𝐷𝐴 − 𝑝𝑡

𝐷𝐴)]𝑇
𝑡=1 , where 𝑔𝑡

𝑅𝑇 and 

𝑝𝑡
𝑅𝑇 are generating and pumping dispatches of the unit in RT and 𝐿𝑀𝑃𝑡

𝑅𝑇 represnets the RT LMP. 

 

Table. G.2.4 DA+RT revenue with Normal load + Fixed PSH ($). 

N PSH-1 PSH-2 PSH-3 Total 

w/o 154,636 96,766 67,273 318,676 

40% 150,696 97,114 67,530 315,341 

30% 150,146 96,591 67,511 314,249 

20% 149,185 95,430 66,584 311,200 

10% 149,373 94,366 66,534 310,273 

0% 147,772 93,506 63,684 304,963 

 

Table. G.2.5 DA+RT revenue with High load + Fixed PSH ($). 

N PSH-1 PSH-2 PSH-3 Total 

w/o 153,902 96,849 67,273 318,026 

40% 150,810 97,185 67,530 315,525 

30% 150,428 97,094 67,511 315,034 

20% 149,181 95,574 66,584 311,340 

10% 149,412 94,446 66,534 310,393 

0% 147,999 94,093 63,764 305,857 

 

Table. G.2.6 DA+RT revenue with Normal load + Committable PSH ($). 

N PSH-1 PSH-2 PSH-3 Total 

w/o 154,958 98,310 67,353 320,623 

40% 154,431 99,270 67,610 321,312 

30% 155,151 98,435 68,381 321,968 

20% 154,741 97,939 67,289 319,970 

10% 154,779 98,430 67,191 320,401 

0% 156,149 96,367 67,802 320,319 

 

Table. G.2.7 DA+RT revenue with High load + Committable PSH ($). 

N PSH-1 PSH-2 PSH-3 Total 

w/o 153,865 94,367 66,856 315,089 

40% 156,415 100,186 67,646 324,248 

30% 154,974 97,976 68,711 321,662 

20% 156,056 100,519 68,027 324,602 

10% 156,630 99,274 68,249 324,153 
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0% 157,962 100,723 68,503 327,189 

 

It can be seen that in the first three cases, all three PSH plants are hard to profit more compared 

to the benchmark model. In addition, generally, with a higher 𝑁, PSH plants are more likely to 

profit more. On the other hand, in the last case, all three PSH plants profit more. There are two 

main reasons. The headroom and floor room added in DA in fact reflect reserved flexibility of 

PSH plants. With the cases that consist of low DA-RT load discrepancy, the need of flexibility in 

RT would be limited. In addition, fixing commitment of PSH plants puts a restrict on exploiting 

the reserved flexibility. These two limits do not apply in the last case of High load + Committable 

PSH, leading to more profit to PSH plants. 

Fig. G.2.2 show the DA and RT LMPs of the three PSH plants under the case of Normal load 

+ Fixed PSH. Although PSH-1 and PSH-2 are two different plants, they are connected at the same 

Cpnode and share the same LMPs. From the profile of DA LMP, it can be seen that the case with 

𝑁=0% leads to the highest LMP during hours of 9-12 (i.e., 1PM-4PM GMT) which are usually 

generating hours, while having the lowest LMPs during hours 1-3 (i.e., 5AM-7AM GMT) which 

are usually pumping hours. For models with N being 30%, 20%, and 10%, their LMPs at these 

time periods are between those of the model with 𝑁  being 0% and the model without 

headroom/floor room. LMPs in RT deviate from those in DA but show the same pattern as 

described above. The difference in LMPs from DA to RT partially support the higher profits that 

PSH plants can achieve. 

 

 
Fig. G.2.2 DA and RT LMPs of the three PSH plants for a sample day in spring 2019. 

 

RT SOC curves of the three PSHs under the case of Normal load + Fixed PSH are respectively 

shown in Figs. G.2.3-G.2.5. Their DA SOC curves are also given in those figures. In Fig. G.2.3, 

with 𝑁 going from high to low, PSH-1 in DA becomes more inactive, which agrees to the predicted 

impacts of headroom and floor room. This can also be observed on the other PSH plants as in Fig. 

G.2.4 and Fig. G.2.5, especially during hours approaching the end of the time horizon. SOC curves 

are arranged following the decreasing order of 𝑁. Particularly, from Fig. G.2.3, PSH-1with the 

case of 𝑁=0% is extremely inactive and almost does not pump at the beginning hours compared 
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to other models. This is because pumping can also contribute to ℎ𝑠,𝑡
𝐿𝐵, with the term of 𝑝𝑡 · 𝐼𝑠,𝑡

𝑃−𝑂 

under some extreme scenarios with 𝐼𝑠,𝑡
𝑃−𝑂=1. In the case of PSH-1, the terminal SOC is set as a low 

value which forces ℎ𝑠,𝑡
𝐿𝐵 to be small; otherwise, infeasibility could occur. With the models of 𝑁 

being other than 0%, at least some extreme scenarios could be relaxed which allows pumping at 

the beginning hours. We can also see that RT SOC curves are very close to the DA ones, this is 

because: (i) the DA and RT load profiles are close and (ii) recommitment and decommitment in 

RT are not allowed which limits the change of PSH plants in RT. These two factors also contribute 

to the reduced profit compared to the benchmark model.  

By contrast, as shown in Fig. G.2.6, RT SOC curves of the three PSH plants under the case of 

High load + Committable PSH are different from that of DA. One observation can be made here 

is that all curves with different 𝑁 become very close to each other. This is because by allowing 

recommitment and decommitment, both dispatch and commitment of PSH plants will be adjusted 

in RT so that the system can achieve a lower objective. In RT, 𝑁 no longer extensively affects the 

model of PSH plants, thus the optimal solution of PSH plants, even if unit commitments and 

dispatches of units other than PSH plants could still be different with different N. In summary, in 

the case of High load + Committable PSH, the extra wind fluctuation added into the RT load profile 

aggravates the deviation between DA and RT load profiles and requires more flexibility, while 

allowing recommitment and decommitment can fully release the reserved flexibility of PSHs. This 

enables a higher profit of PSH plants in the proposed models than the benchmark model. 

 

 
Fig. G.2.3 SOC of PSH-1 for a sample day in spring 2019. 
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Fig. G.2.4 SOC of PSH-2 for a sample day in spring 2019. 

 

 
Fig. G.2.5 SOC of PSH-3 for a sample day in spring 2019. 
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Fig. G.2.6 RT SOC of PSH-2 and PSH-1 in High load + Committable PSH for a sample day in 

spring 2019. 

 

 

RT Result with 15min SCED 

We further show the result with 15-min SCED under the case of Normal load + Fixed PSH and 

High load + Committable PSH. Generally, the similar observation as the hourly SCED can be 

made. 

Table. G.2.8 DA+RT revenue with Normal load + Fixed PSH with 15-min SCED ($). 

N PSH-1 PSH-2 PSH-3 Total 

w/o 154,447 96,749 67,273 318,471 

40% 150,765 96,955 67,530 315,252 

30% 150,201 96,662 67,512 314,376 

20% 149,292 95,307 66,587 311,186 

10% 149,627 94,388 66,535 310,551 

0% 148,144 93,845 63,753 305,743 

 

Table. G.2.9 DA+RT revenue with High load + Committable PSH with 15-min SCED ($). 

N PSH-1 PSH-2 PSH-3 Total 

w/o 156,049 94,438 67,356 317,844 

40% 156,425 96,042 68,188 320,656 

30% 156,989 96,239 68,955 322,184 

20% 156,984 97,893 68,894 323,772 

10% 155,625 97,527 69,280 322,433 

0% 156,973 97,330 68,710 323,014 

 

Fig. G.2.7 compares RT LMPs from the 15-min SCED with DA LMPs and that from hourly 

SCED. It can be seen that DA LMP and RT LMP profiles are close except for some peak hours. 

RT LMPs from 15-min SCED and hourly SCED are rather close, and the former is smoother that 
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the latter because of the smoother load profile. In addition, SOC curves from 15-min SCED and 

hourly SCED are also very close, as shown in Fig. G.2.8 and Fig. G.2.9. As a conclusion, with the 

tested cases, 15-min SCED and hourly SCED do not show significant differences worth taking 

note of. 

 

 
Fig. G.2.7 RT LMP comparison of PSH-1 and PSH-2 with 15-min SCED for a sample day in 

spring 2019. 

 

 
Fig. G.2.8 SOC comparison of PSH-1 with 15-min SCED for a sample day in spring 2019. 
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Fig. G.2.9 SOC comparison of PSH-2 with 15-min SCED for a sample day in spring 2019. 

 

IV.G.3 ADP-based approach for evaluating the value of water outside a finite time 

horizon 

In this section, we discuss an ADP-based approach to generate price-SOC curves which could be 

used in FRAC and LAC models while considering the value of water outside the finite time horizon. 

Specifically, we formulate an optimization model for PSHs in maximizing its arbitrage profit in 

the electricity market. We simulate the energy storage operation as a Markov decision process 

(MDP) and generate the reward function/value function, which reflects the profit from real-time 

LMPs and generating/pumping actions. We also derive an ADP algorithm to maximize the 

cumulative reward. 

 

Dynamic programming/reinforcement learning is a general sequential model to take actions/ 

decisions and gain the maximum reward for the whole-time horizon. This model can benefit the 

exploitation and exploration. In our study, the optimal strategy will balance the profits based on 

the decision to generate and pump now and the opportunity profit based on the water stored for 

the future. Here we start from the context of classical dynamic programming in our PSH model.  

 

State Space: 

The whole model is a dynamic system that evolves in periods 𝑡 =  1, 2,· · · , 𝑇, 𝑇 + 1  and its 

evolution is influenced by actions7. At each time 𝑡, the system is characterized by state variables. 

The state space can also be named as the set of environment or agent states. Since the PSH can be 

considered as a particular case of the storage problem, we define the state space as 𝑆𝑡 = (𝑅𝑡,  𝑊𝑡) ∈
𝒮, where 𝑅𝑡 is the terminal SOC at time 𝑡 − 1 and 𝑊𝑡 is the forecasted real-time price 𝐿𝑀𝑃𝑡 of 

time t,  ∀𝑡 = 1, … , 𝑇. This means our state has two elements: The first one is the stored amount of 

water 𝑅𝑡, and the second is the market price 𝑊𝑡. We can treat 𝑅𝑡 as an endogenous variable, which 

comes from the system itself (i.e., PSH). Variable 𝑊𝑡 is the exogenous variable, which comes from 

the outside of this system. 

 
7 This section adopts hourly real-time price forecasts from section IV.E of the study, and therefore t takes the 

value of 1 to 24 with one-hour time step. 
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Action/Decision Space: 

At each time 𝑡, we decide on some actions (decisions) 𝑥𝑡, and these actions must be chosen from 

a finite set 𝒳𝑡(𝑆𝑡). Here the action is to decide the amount of energy change, i.e., the amount we 

generate or pump. We know that the action/decision at time 𝑡 depends on the current system state, 

i.e., the terminal SOC at time 𝑡 − 1 and the price at current time 𝑡. In other words, we choose the 

decision based the varying of the current SOC and the current market price. We denote our action 

variable as 𝑥𝑡 = (𝑝𝑡, 𝑔𝑡) ∈ 𝒳𝑡(𝑅𝑡,  𝑊𝑡), where 𝑝𝑡/𝑔𝑡  is the pump/gen amount at time 𝑡,  ∀𝑡 =
1, … , 𝑇. 

 

Transition function: 

The transition function at time 𝑡 is to describe the probability of transferring from one state at time 

𝑡 to another state at time 𝑡 + 1 under a given action. This process can be considered as a Markov 

decision process. Let us denote 𝑆𝑡+1 = 𝑓𝑡(𝑥𝑡,  𝑆𝑡), where the 𝑆𝑡 = (𝑅𝑡,  𝑊𝑡) is the current state at 

time 𝑡, 𝑆𝑡+1 = (𝑅𝑡+1,  𝑊𝑡+1) is the state at time 𝑡 + 1, and 𝑥𝑡 is the action taken at time 𝑡. From 

time 𝑡 to 𝑡 + 1, 𝑅𝑡+1 is equals to the terminal SOC at time 𝑡, i.e., 𝑅𝑡+1 = 𝑅𝑡 − 𝑔𝑡/𝜂𝑔 + 𝑝𝑡 ∗ 𝜂𝑝, 

which 𝜂𝑝/𝜂𝑔 is the efficiency of pumping/generation. Also, we have 𝑊𝑡+1 = 𝑊𝑡 + 𝑊𝑡̂, where 𝑊𝑡̂ 

is the deviation of the market price from time 𝑡 to time 𝑡 + 1. 

 

 

Reward function: 

The reward function is also referred to as cost function, which means the reward/cost based on the 

current action. Here we denote 𝐶𝑡(𝑥𝑡, 𝑆𝑡 ) = 𝑊𝑡(𝑔𝑡 − 𝑝𝑡),  ∀𝑡 = 1, … , 𝑇. It means that after we 

decide the amount of energy generation/pumping based on the price 𝑊𝑡 , we have the profit 

𝑊𝑡(𝑔𝑡 − 𝑝𝑡). If we consider this system for a whole day, the total reward is represented by 𝐺1 =
 ∑ 𝑐𝑡

24
𝑡=1 = ∑ 𝑊𝑡(𝑔𝑡 − 𝑝𝑡)24

𝑡=1 .  

Therefore, we can have the following optimization problem as our goal: 

max
𝑥1∈𝒳1

[𝐶1(𝑆1, 𝑥1) + 𝔼[ max
𝑥2∈𝒳2

𝐶2(𝑆2, 𝑥2) + ⋯ + 𝔼[ max
𝑥𝑇∈𝒳𝑇

𝐶𝑇(𝑆𝑇 , 𝑥𝑇)]]]   (G.3.1) 

 

 

Bellman equation/Value function: 

The essential notion in dynamic programming is the value function 𝑉𝑡(𝑥𝑡). The value function is 

defined as the expected return starting with state 𝑆𝑡 = 𝑆0, and successively following a policy 𝜋. 

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡

{𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝔼[𝑉𝑡+1(𝑆𝑡+1
∗ )]}     (G.3.2) 

It is the maximum profit of operating the system in periods 𝑡 = 1, … , 𝑇, under the condition that it 

starts from state 𝑥𝑡 at time 𝑡. By definition, 𝑉𝑇+1(𝑥𝑇+1) = 0. The value function describes how 

good is to be in a specific state if we consider taking one series of policies.  

 

Approximate Dynamic Programming 

Based on the Bellman equation we have, we can have a linear approximate to our reward from the 

future, which is shown as follows: 

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡,𝑦𝑟,𝑡

𝔼{𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝑉𝑡+1(𝑆𝑡+1
∗ |𝑊𝑡)} = 𝔼 [ max

𝑥𝑡,𝑦𝑟,𝑡

[𝐶𝑡(𝑆𝑡, 𝑥𝑡) + ∑ 𝑣𝑟,𝑡𝑦𝑟,𝑡
𝑅
𝑟=1 ]]       (G.3.3) 

while max
𝑥𝑡,𝑦𝑟,𝑡

[𝐶𝑡(𝑆𝑡, 𝑥𝑡) + ∑ 𝑣𝑟,𝑡𝑦𝑟,𝑡
𝑅
𝑟=1 ] equals to the following optimization problem: 
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𝑚𝑎𝑥
𝑝𝑡,𝑔𝑡,𝑦𝑡

𝑊𝑡(𝑔𝑡 − 𝑝𝑡) + ∑ 𝑣𝑟,𝑡𝑦𝑟,𝑡
𝑅
𝑟=1   

0 ≤ 𝑔𝑡 ≤  𝐺 

0 ≤ 𝑝𝑡 ≤  𝑃 

𝑒𝑡−1 −
𝑔𝑡

𝜂𝑔 + 𝑝𝑡 ∗ 𝜂𝑝 = 𝑒𝑡  

𝑒𝑡 = ∑ 𝑦𝑟,𝑡
𝑅
𝑟=1   

𝐸 ≤ 𝑒𝑡 ≤  𝐸 

−(𝑇 − 𝑡0)𝑃𝜂𝑝 ≤ 𝑒𝑡 − 𝐸𝑇 ≤ (𝑇 − 𝑡0) 𝐺/𝜂𝑔        (G.3.4) 

 

This optimization problem aims to maximize the PSH profit by generating when prices are high 

and pumping at low prices. The first and the second constraints limit the range of pumping and 

generation; The third constraint describes the water storage change from time 𝑡 − 1 to time 𝑡, with 

respect to the generation/pumping decisions 𝑔𝑡  and 𝑝𝑡  at stage 𝑡 ; The fourth constraint is the 

energy at the end of time t by our linear approximation, which leverages how much to 

generate/pump in the current time and what SOC level to be held for the future; The fifth constraint 

describes the energy storage limit; The last constraint is the terminal boundary constraint, making 

g sure we have a feasible result by the end of the scheduling day. 

 

  
Fig. G.3.1 SOC-Value curve trained by ADP. 

 

Here we illustrate the linear approximation curve. Fig. G.3.1 shows the linear approximation V =
∑ 𝑣𝑟𝑦𝑟

𝑅
𝑟=1  which maps the state space to the value function space. In this linear approximation, we 

consider 𝑣𝑟 as the slope of the curve and 𝑦𝑟 as the segment values for 𝑟 = 1, … 𝑅. Based on the 

curve parameters, the linear approximation builds the relationship between the 𝑆𝑂𝐶 = y and the 

profit V  under this water storage. For example, if we take the segment points as 𝑦𝑟 =
[0,100,200], 𝑟 = 1,2,3, and the corresponding curve slopes as 𝑣𝑟 = [2,1, −3], for a given value 

of current SOC y = 150, we can get the value function for this SOC as V = 2 ∗ 100 + 1 ∗ 50 =
250. 
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Fig. G.3.2 Transition process for ADP. 

Fig. G.3.2 further illustrates how this sequential model works, primarily focusing on time 𝑡 to time 

𝑡 + 1. We build the x-axis for the state space, the T-axis for time, and the V-axis for the return of 

the value function. For each period 𝑡, the amount 𝑅𝑡 as water storage from the last time period and 

the price for time 𝑡 are inputs. After the algorithm run for this iteration, the optimal decision 𝑥𝑡 =
{𝑔𝑡, 𝑝𝑡} can be used to calculate 𝑅𝑡+1 = 𝑅𝑡 − 𝑔𝑡/𝜂𝑔 + 𝑝𝑡 ∗ 𝜂𝑝 as input for the next period 𝑡 + 1.  

 

SPAR Algorithm 

We choose the separable, projective approximation routine (SPAR) Algorithm to support us 

calculating the parameters of the curves [G.1]. This method turns the previous model from the 

dynamic programming problem into a machine learning problem. We use multiple scenarios of 

historical market prices to train our model so that we can have a fitted curve. The detail of the 

algorithm is as follows: 

 

 

 
Fig. G.3.3 Pseudo codes for the SPAR algorithm. 

 

From the algorithm, in each iteration/scenario, the first step is to find the optimal solution of the 

optimization model with the given curve 𝑣𝑡 and the given historical data 𝑤𝑡 at time 𝑡. The second 

step is to update our value function- state curve, which represents the relation between the water 

storage and the value function (i.e., as shown in Fig. G.3.4). The key for this step is to update the 
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current curve based on the future profits calculated out of this iteration. At the same time, we shall 

keep the curve’s concavity to ensure convergence. Figure G.3.4 illustrates the iterative updates of 

the curve slopes. We can consider the blue as an old curve, and we have the orange curve as the 

new one under the update steps in Fig. G.3.3. 

 

 
Fig. G.3.4 The iteration of SOC-Value Curve trained by ADP. 

 

 

Numerical result for one-hour look-ahead PSH profit  

In this section, we show the numerical result of one-hour-ahead PSH profit. We choose four 

different days’ DA prices and forecast prices, one in March 2019 and three in April 2019 (which 

are referred to as D1, D2, D3, and D4 in this tudy). The day-ahead and 50 scenarios forecast prices 

are used to train in the ADP algorithm. Then we apply the trained SOC-price curve to help predict 

the one-hour look-ahead PSH profit based on the RT price. 

All the numerical results are compared with the result of the rolling model, the day head, and real-

time’s optimization results. 

The first numerical result is based on the D1 data set. This training data set contains the day ahead 

price and the 50 scenarios real forecast price only on D1. Table G.3.1 shows the final profit results 

of the four days using the trained curve of D1. It shows that the ADP algorithm gives the profit of 

$14,385.20 on D1, which is better than the rolling and DA models. The ADP model also shows 

better performance on D2 and D4, but gives less profit than the rolling model on D3. 

 

Table G.3.1 Profit Comparison based on the trained curve of March 07th, 2009. 

Prediction D1 D2 D3 D4 

ADP $14,385.20 $14,530.62 $5,109.75 $13,872.76 

RT $17,017.01 $16,270.65 $8,294.46 $18,734.72 

Rolling $11,334.57 $10,666.31 $6,784.00 $12,863.84 

DA $10,976.77 $9,026.81 $6,743.30 $10,198.84 
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The second numerical result is based on the D2 data set. This training data set contains the day 

ahead price and the 50 scenarios real forecast price only on D2. Table G.3.2 shows the final profit 

results of the four days using the trained curve of D2. We can see from the table that the ADP 

algorithm gives a profit of $14,630.49 on D2, which is better than the rolling and DA models. The 

ADP model still shows better performance on D1 but gives slightly lower profits on D3 and D4. 

When the information of the training day and the testing days are similar, it can provide good 

performance; Otherwise, less profit might be expected. 

 

Table G3.2 Profit Comparison based on the trained curve of April 01st, 2009.  

Prediction D1 D2 D3 D4 

ADP $15,261.03 $14,630.49 $6,395.11 $12,754.24 

RT $17,017.01 $16,270.65 $8,294.46 $18,734.72 

Rolling $11,334.57 $10,666.31 $6,784.00 $12,863.84 

DA $10,976.77 $9,026.81 $6,743.30 $10,198.84 

 

The third numerical result is based on the D3 data set. This training data set contains the day ahead 

price and the 50 scenarios real forecast price on D3. Table G.3.3 shows the final profit results of 

the four days using the trained curve of D3.We can see the ADP algorithm gives the profit 

$7,640.57 on D3, which is higher than the rolling model. When we have the data set of the same 

day on D3, this gives a better result in the ADP method. 

 

Table G.3.3 Profit Comparison based on the trained curve of April 15th, 2009.  

Prediction D1 D2 D3 D4 

ADP $15,129.48 $13,877.79 $7,640.57 $788.15 

RT $17,017.01 $16,270.65 $8,294.46 $18,734.72 

Rolling $11,334.57 $10,666.31 $6,784.00 $12,863.84 

DA $10,976.77 $9,026.81 $6,743.30 $10,198.84 

 

 

The fourth numerical results are based on the D4 data set. This training data set contains the day 

ahead price and the 50 scenarios real forecast price on D4. Table G.3.4 shows the final profit results 

of the four days using the trained curve of D4. The trained data set from D4 only gives us almost 

the same result on DA but less than the profit of the rolling model. This shows the data set only 

contains one day may not be sufficient for certain cases and a larger data set might be needed. 

 

Table G.3.4 Profit Comparison based on the trained curve of April 22nd, 2009.  

Prediction D1 D2 D3 D4 

ADP $15,143.50 $15,490.90 $6,714.35 $10,162.90 

RT $17,017.01 $16,270.65 $8,294.46 $18,734.72 

Rolling $11,334.57 $10,666.31 $6,784.00 $12,863.84 
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DA $10,976.77 $9,026.81 $6,743.30 $10,198.84 

 

 

The last numerical result is based on the data set including all four days, i.e., this training data set 

contains the day ahead price and the 50 scenarios real forecast price on D1-D4. Table G.3.5 shows 

the final profit results of the four days using the trained curve from all four-day data. When we 

combine the scenarios of all four days, the result becomes more robust (i.e., consistent performance 

over multiple testing days). We can have a better result on all these four days than the DA model. 

Also, we have a better performance than the rolling model on D1, D2, and D3. This shows when 

the training set has more data, the ADP model becomes more robust and accurate. 

 

Table G.3.5 Profit Comparison based on the trained curve based on all four days 

Prediction D1 D2 D3 D4 

ADP $15,661.79 $13,197.94 $6,827.14 $12,403.79 

RT $17,017.01 $16,270.65 $8,294.46 $18,734.72 

Rolling $11,334.57 $10,666.31 $6,784.00 $12,863.84 

DA $10,976.77 $9,026.81 $6,743.30 $10,198.84 

 

From previous numerical studies, we can see that the same-day data set significantly impacts the 

ADP result. On D2 and D3, with the same day data set, it gives a better result than the model 

without the same day data set. We can also learn that other days’ data set can robust the result. On 

D4, the training models without the same-day data set have a good prediction (Table G.3.1, Table 

G.3.2, Table G.3.4), while a significant decrease is observed in Table G.3.3. When we have the 

four dates’ data set in Table G.3.5, a good result has been preserved. For instance, for March 07th, 

2009, the outcomes in Tables G.3.1-G.3.4 show robust performance, nevertheless the outcome 

based on all four days in Table G.3.5 has the best performance. In conclusion, the same-day data 

set firmly impacts the performance, and the more extensive data set could lead to a more robust 

result. Since most calculation burdens are moved to the training stage and the online calculation 

with the trained SOC-price curve is rather light, this approach could be applied to solve FRAC and 

LAC models while considering the uncertain value of water outside the finite time horizon. 
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IV.H. Accomplishments Toward Deliverable 9.1 

Deliverable 9.1: A detailed report on long-term value of enhanced PSH model through 

planning analyses. 

Accomplishments Summary: (1) The team developed a stochastic optimization approach for 

economic planning studies. In detail, A linear program based approximated model is first used to 

approximate the nonconvex unit commitment model to accelerate the solution of stochastic 
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production cost simulation models. Test results using a MISO planning model show acceptable 

accuracy and significant solution time improvement from our proposed approach. (2) We also 

further explored a stochastic transmission expansion planning method in a test case, with the same 

approximation strategy together with a decomposition framework. (3) Long-term production cost 

simulation was performed on MISO planning cases and results showed enhanced PSH 

optimization can reduce load cost and in some cases increase CO2 emission. 

IV.H.1 Explore stochastic unit commitment for planning  

Accelerating stochastic production cost simulation 

Conventionally, deterministic unit commitment (UC) models have been considered in 

economic planning. With the increasing penetration of intermittent resources, deterministic 

approaches might cause conservative unit commitment solutions to meet system security 

requirements. Stochastic optimization is a promising alternative to hedge against uncertainties. 

However, incorporating stochastic unit commitment for planning will bring significant 

computational challenges. Furthermore, the time-coupled nature of pumped storage hydro 

facilities, which is reflected in state-of-charge evaluation and status switching logic modeling, 

complicates the system operation simulations. However, as a critical enabler in the pathway to a 

low-carbon sustainable future, to accurately reflect the features of storage and efficiently solve the 

resulting stochastic production cost simulation models are urgently needed. 

In the current industry practice, typically a large number of production cost simulations run for 

a combination of scenarios and candidate planning schemes. However, only limited combinations 

can be enumerated given a long computational time for production cost simulations. With 

accelerations in solution strategies, we developed a stochastic production cost simulation method 

for economic planning with detailed UC constraints, as shown in (H.1.1). sy  represents unit 

commitment and economic dispatch decision variables in scenario s . sb  contains cost coefficients 

for production cost simulation. ps  is the probability for scenario s . UC ( )s x  is the feasible region 

of UC constraints given planning decisions x . An illustrative figure for our modeling framework 

is shown in Fig. H.1.1. 

 
( )

UC

min

( )

p

s.t.

s s

s

S

s

s s




 b y

y x
  (H.1.1) 

To address the computational complexity of stochastic transmission expansion planning 

problem with UC model, solution techniques based on unit commitment approximation will be 

evaluated. High-quality convex approximations for the underlying unit commitment models are 

expected to preserve the flexibility quantification quality, meanwhile simplify the nonconvex 

mixed-integer formulation. Mathematically, we use UC( )ss y x  to approximate the UC 

constraints in (H.1.1), where UC ( )s x  is a polyhedron approximation of UC ( )s x . 
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Fig. H.1.1. modeling framework for stochastic production cost simulations 

As shown in (H.1.2), the generators are modeled using a tight formulation in [H.1, H.2], which 

considers a two-time-period convex hull of a UC model. Note the variables in (H.1.2) are 

continous. 
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  (H.1.2) 

where, , ,g s tx  and , ,g s tu  are commitment and start-up variables for unit g in scenario s and time t. 

, ,g s t  is the cost for unit g, which is piecewise approximated by , , , ,

k k

g g s t g g s tp x +  with K pieces. 
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gp , gp , gv , gv  are capacity, minimum stable level, ramp rate, and start-up/shut-down ramp rate, 

respectively. gUT  and gDT  are minimum online and offline time periods, respectively. 

 

It should be point out that for the formulation in (H.1.2) is a genral formulation for generator 

modeling. We did some simplification on (H.1.2) in detailed inplemnetation to reduce the number 

of variables and constraints. For example, some hydro genrators with zeros start-up cost, zeros 

minimun stable levels, and very quick ramp rates, we can model them with simple economic 

dispatch models like 
, , ,0 , ,g s t gp p g s t        . 

Pumped storage hydro stations are modeled in (H.1.3). The SOC formulation that we use here 

is a tight formulation developed in previous tasks of this project [H.3]. 
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  (H.1.3) 

where, g

, ,h s tx  and 
p

, ,h s tx  are status variables for generating and pumping statuses of PSH station h in 

scenario s and time t. g

hP  and p

hP are generating and pumping capacities, respectively. g

hP  and p

hP  

are minimum stable levels for generating and pumping modes, respectively. , ,h s te  is SOC of PSH 

upper reservoir of station h in scenario s and time t. hE  and hE  are upper and lower bounds for 

reservoir of station h, respectively. 

Given the constraints in (H.1.2) and (H.1.3) are linear, they form set UC ( )s x . The objective 

function is the sum of investment and operation cost, as shown in (H.1.4). Note PSH units are 

assumed to be operated by ISOs, thus their bidding and offering curves are not modeled in the 

objective function. 

 ( ), , , ,g s t g g s t

s t g

CST u
    

+    (H.1.4) 

where, gCST  is the start-up cost for generator g. 

A MISO planning model is used to evaluate the performance of approximation quality and 

solution time of our proposed stochastic production cost simulation approach. We notice the 

problem is naturally decoupled for each scenario. Thus, production cost simulations are run 

separately for each scenario first; the expected cost is then evaluated with (H.1.4). The tested 

system contains all the generators in the eastern interconnection. We run a simulation with 5 
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stochastic scenarios for 7 days in a transmission unconstrainted case. All the optimization 

problems are solved by using Gurobi 8.0.1. MILP gap is set as 0.5%. 

The overall performance is summarized in Table H.1.1. As indicated, the expected cost values 

from MILP unit commitment model (denote as “MILP UC” in tables and figures hereafter) and 

LP relaxation model (denote as “LP approximation” in tables and figures hereafter) are very close. 

The two expected objective values have only a small difference of 0.35% in percentage. In terms 

of the solution time, the LP relaxation model can result in a significant time reduction of 71.6%. 

In detail, a performance comparison for each scenario is summarized in Table H.1.2. As indicated, 

the expected cost values from MILP unit commitment model and LP relaxation approximation 

model are also very close. We also see significant time reductions in all the scenarios. 

Table H.1.1. Overall objective value and solution time comparison 

 

Objective Value ($108) CPU time (sec) 

MILP 
UC 

LP 
approx. 

Difference 
in 

Percentage 

MILP 
UC 

LP 
approx. 

Time 
Reduction 

in 
Percentage 

Stochastic 
production cost 

simulation 
8.935 8.904 0.35% 

17174.1 
(or 

4.771 
hours) 

4873.8 
(or 1.354 

hours) 
71.6% 

Table H.1.2. Objective value and solution time comparison for each scenario 

Scenario 

Objective Value ($108) CPU time (sec) 

MILP 
UC 

LP 
approx. 

Difference 
in 

Percentage 

MILP 
UC 

LP 
approx. 

Time 
Reduction 

in 
Percentage 

Base case scenario 8.923 8.892 0.35% 3092.4 961.5 68.9% 

Case 1 scenario 11.721 11.687 0.29% 2855.9 731.1 74.4% 

Case 2 scenario 10.306 10.271 0.34% 3344.5 711.4 78.7% 

Case 3 scenario 6.267 6.241 0.43% 4170.9 1480.0 64.5% 

Case 4 scenario 7.574 7.545 0.38% 3710.4 989.9 73.3% 

 

In Fig. H.1.2 and Fig. H.1.3, detailed generation levels for all types of generators are shown 

for MILP unit commitment model and LP relaxation approximation model, respectively. As 

indicated, for each type, the patterns of total generation levels in two models are also very close. 

SOC levels of all PSH stations for MILP unit commitment model and LP relaxation approximation 
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model are shown in Fig. H.1.4 and Fig. H.1.5, respectively. For each PSH station, the patterns of 

SOC levels in two models are also similar. Taking one of the PSH station as an example, as shown 

in Fig. H.1.6, its SOC levels in two models generally have a similar pattern. Thus, we conclude 

the two models have similar performance in terms of the schedule pattern of PSH and other 

generators. 

 

Fig. H.1.2. Generation levels for all types of generators in a week (MILP UC model) 
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Fig. H.1.3. Generation levels for all types of generators in a week (LP approximation model) 

 

Fig. H.1.4. SOC levels of all PSH stations in a week (MILP UC model) 

 

Fig. H.1.5. SOC levels of all PSH stations in a week (LP approximation model) 
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Fig. H.1.6. SOC level of one PSH station in a week (MILP UC model versus relaxed LP 

approximation model) 

Thus, from the proposed method, we can obtain a solution with a small difference of 0.35% in 

comparison to the MILP unit commitment model, as well as a similar schedule pattern. However, 

the proposed model can enable a significant time reduction of 71.6% in this test case. Note our test 

is based on a transmission unconstrained case, which may mathmaticaly reduce the gap between 

MILP and its LP relaxation. Further studies on transmission constrained cases can be investigated 

in the future. 

Further exploration work on embedding UC constraints in stochastic transmission 

expansion planning 

In economic planning, unit commitment (UC) modeling can accurately reflect the system 

operational flexibility and quantify long-term economic performances. Given the volatility of 

renewable energy and thus increased time couplings in the modeling, the need to consider UC-

based production cost simulation in transmission expansion planning formulation is growing. It is 

worth mention that the existence of pumped storage hydro unit and the expectation of increasing 

storage penetration in the future are also important driving forces for the inclusion of production 

cost simulation in transmission expansion planning. 

As described, although it is appealing to consider both UC model and stochastic optimization 

approach in transmission expansion planning, this would bring great computational challenges for 

large-scale practical power systems. In the literature, two-stage or multi-stage stochastic [H.4] or 

robust [H.5] transmission expansion planning problems have been widely investigated. However, 

economic dispatch models are usually used in the system operation stage under representative day 

settings [H.4, H.5], to achieve tractable solutions at the expense of optimality. 

We consider a stochastic transmission expansion planning approach considering UC model, as 

shown in (H.1.5). x  and sy  represents planning decision variables and unit 

commitment/economic dispatch decision variables in scenario s , respectively. a  and sb  are cost 

coefficients for planning and operation, respectively. ps  is the probability for scenario s . PLAN  

is feasible region for planning decisions constructed by planning constraints. UC ( )s x  is the 

feasible region of UC constraints given planning decisions. An illustrative figure for our modeling 

framework is shown in Fig. H.1.7. 
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( )

PLAN UC

p

s. )

min

,t. (

s s sS

s

s

s




 

+



a x b y

x y x
  (H.1.5) 

 

Fig. H.1.7. Modeling framework for stochastic transmission expansion planning with UC 

constraints 

 

In detail, the planning constraints is (H.1.6), which corresponds to PLAN . 

 
1 1 1 2  and 1,  2 have the same parameter

{0,1}  i

n
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n

iz z i i i i
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   

  
  (H.1.6) 

where, iz  is the binary decision variable for transmission line i, i.e., line i is planned to build if 

1iz = . 
n

 is the set of candidate lines. 

The system balance and transmission constraints are shown in (H.1.7). Candidate lines are 

modeled with a disjunctive formulation. 
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  (H.1.7) 

where, , ,i s tf  is the flow in line i in scenario s and time t. , ,g s tp  and , ,d s tp  are power from unit g and 

to load d, respectively. , ,b s t  is the phase angle of bus b. ix  and iF  are line admittance and power 
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rating for line i.  and 
n

 are sets of existing and candidate lines, respectively.  and  are set 

of generators and loads, respectively.  is the set of scenarios. is the set of time periods. 

To address the computational complexity, we again use UC( )ss y x  to approximate the UC 

constraints in (H.1.5), where UC ( )s x  is a polyhedron approximation of UC ( )s x . In detail, we use 

(H.1.2) and (H.1.3) to approximate UC ( )s x . 

The objective function is the sum of investment and operation cost, as shown in (H.1.8). 

 ( ), , , ,
n

g s t g g s

i

i ti

s t g

TC z CV S uIN 
    

++     (H.1.8) 

where, iCINV  is the investment cost for line i, gCST  is the start-up cost for generator g. 

For this exploration work, we performed a preliminary test to assess the feasibility of the 

convex approximation approach for underlying unit commitment models. Garver’s 6 bus system, 

which is a classical test system for transmission expansion planning studies is used in our test. We 

employ a linear program (LP) relaxation of a tight unit commitment formulation to solve a 

deterministic transmission expansion planning problem (noted as ‘LP approximation’ in Table 

H.1.3). As a reference for comparison, binary UC variables are kept for in another transmission 

expansion planning run (noted as ‘MILP UC’ in Table H.1.3). Given including annual UC model 

is computational unmanageable, this test incorporates one-day operation constraints for model 

accuracy validation purposes. As indicated in Table H.1.3, the investment costs from the two 

models are exactly the same, meanwhile the operation costs are very close, so as the total costs. 

This result verifies that approximating unit commitment models in the operation stage of 

transmission expansion planning is a promising approach worth further investigation. 

Table H.1.3. Accuracy of LP approximation for UC model 

model 
investment 

(103 $) 

operation 

(103 $) 

total 

(103 $) 

LP approximation 500.0 312.3 812.3 

MILP UC 500.0 316.7 816.7 

 

Already considering both UC characteristics and stochastic optimization approach in 

transmission expansion planning, massive scenarios, large practical system size and long study 

time horizon would make the decision making more computationally challenging in practice. 

Mathematical decomposition approaches can be leveraged to reduce computational burden 

together with advanced high-performance computing techniques. A well-designed decomposition 

framework can enable the parallel computing capability of high-performance computers in 

subproblem solution process to significantly reduce the total solution time.  

The optimization problem structure among scenarios can be utilized to facilitate the design of 

the decomposition framework. In our proposed stochastic transmission expansion planning model, 

given fixed expansion decisions, the production cost simulation models for different scenarios are 

naturally decoupled, as shown in Fig. H.1.8. To achieve scenario-based decomposition, techniques 
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such as Benders decomposition will be explored to coordinate the master problem for transmission 

expansion planning in (H.1.9) and production cost simulation subproblems UC ( )ˆ
s s

ky x . In 

(H.1.9), 
, ,ds s k s k + c x  is Benders cut from subproblem in scenario s  in iteration k . 

 
( )

PLAN

, ,

m

,

p

s.t

n

. d ,

i s sS

s s k s

s

k s k








 + 

+



a x

x c x
  (H.1.9) 

 

Fig. H.1.8. Illustration for scenario decomposition 

We also test stochastic transmission expansion planning with full annual chronological UC 

constraints in Garver’s 6 bus system. The feasibility of using scenario decomposition to speed up 

is assessed. We use Benders decomposition to decouple the scenarios. In this preliminary test, the 

subproblems are solved sequentially. As indicated in Table H.1.4, the solution time significantly 

is reduced by using scenario decomposition even without parallel accelerations. Further speed-up 

can be expected with fine-grained decomposition and parallel computing techniques. 

Table H.1.4. Speed up with scenario decomposition 

Number of scenarios Method 
Objective 

value (106 $) 

Time 

(sec) 

5 

w/o scenario 

decomposition 
- >1200 

w/ scenario 
decomposition 

104.43 501.3 
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IV.H.2 Long-term impact of enhanced PSH model through planning analyses  

In order to evaluate the long-term impact of enhanced PSH modeling, numerical studies were 

performed using MISO planning cases. For each study, two PSH modeling were developed: 

Current Practice model and Proposed Practice model. Current Practice model is designed to reflect 

the current market rules, where pumping and generating hours are specified by PSH owners. For 

study purpose, a generic rule was employed for all PSH units in the study footprint, where 

generating hours are 7am-21pm, and pumping hours are 22pm-6am. Proposed Practice model is 

designed to capture the enhanced PSH model, where pumping and generating schedule is 

optimized by ISO.  

Impact on Load Cost 

A MISO planning case (referred to as MISO Planning Case 1) was used to evaluate the impact 

of enhanced PSH modeling on load cost. In this planning case, the generation of most of the US 

Eastern Interconnection and a simplified zonal transmission system were included. The case was 

built for year 2024, and therefore a whole year (8784-hour) production cost simulation was 

performed for year 2024 using PLEXOS for each of the two models, where 24-hour SCUC and 

hourly SCED are simulated in a chronological fashion. MIP solver was used in solving SCUC. A 

daily recycling pattern was modeled in this study. 

Fig. H.2.1 shows the load cost change in percentage between Current Practice model and 

Proposed Practice model. The annual load cost comparison is shown in Table H.2.1. It can be seen 

that, generally speaking, the Proposed Practice model can result in a reduction in monthly load 

cost. On annual basis, the load cost can be reduced by 1.42%. The reduction in load cost is intuitive 

as the Proposed Practice model allows more flexibility in choosing the time of pumping and 

generating in comparison to the predetermined pumping/generating times. Specifically, in the 

Proposed Practice model, PSH units pump more and generate more due to increased flexibility. 

The increased pumping will increase LMP at some locations and therefore increase load cost 

during pumping hours. The increased cost reflects the cost of additional generation, typically from 

inexpensive generation during the pumping hours. On the other hand, the pumped energy is stored 

in the upper reservoir and is used to generate electricity in other times to displace more expensive 

generation. The increased PSH generation during generating hours decreases LMP at some 

locations and subsequently reduces load cost. The reduced load cost during generating hours is 

generally considerably larger than the increased load cost during pumping hours, resulting in a net 

reduction of load cost. 
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Fig. H.2.1: Monthly load cost difference between Current Practice and Proposed Practice. The 

Proposed Practice model can generally bring load cost reduction across the year. 

 

Table H.2.1: The Total Annual Load Cost Comparison Between Current Practice and 

Proposed Practice  

 

Study Case and Study 

Period 

Total System Load Cost in Year 2024 ($) 

 

 

Difference 

of Total 

System 

Load Cost 

(%) 

Current Practice 

Model 
Proposed Practice Model 

MISO Planning Case 1 

01/01/2024-12/31/2024 
453,361,269,181 446,945,866,587 -1.42% 

 

The simulation results further show the increase pumping power in the Proposed Practice 

model is provided from inexpensive generation including wind, hydro and nuclear units. The 

increased PSH generated power replaces more expensive generation including those from Coal-

ST, and Gas-GT, and combined cycle units. In addition, the increased pumping in Proposed 

Practice helps reduce energy curtailment. This is because, for this specific MISO planning case, 

load is low during the pumping periods in the Current Practice model and therefore wind and hydro 

generation gets curtailed due to transmission congestion. In the Proposed Practice model, the 

increased pumping during the pumping periods effectively increase the load, and takes power from 

those generating units and therefore leads to less curtailment. The strong correlation between 

increased pumping and reduced curtailment (from Current Practice model to Proposed Practice 

model) can be seen from Fig. H.2.2, which shows the hourly data of increased pumping and 

reduced curtailment for May 2024. 
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Fig. H.2.2: Increased pumping and reduced curtailment between Current Practice and Proposed 

Practice in May 2024. A strong correlation between increased pumping and reduced curtailment 

is observed. 

 

 

Impact on CO2 emission 

Another MISO planning case (referred to as MISO Planning Case 2) was used to evaluate the 

impact of enhanced PSH modeling on CO2 emission due to the available emission rates in the case. 

In this planning case, the generation of most of the US Eastern Interconnection and a full 

transmission system were included. The case was built for year 2017, and therefore a whole year 

(8760-hour) production cost simulation was performed for year 2017 using PLEXOS, where 24-

hour SCUC and hourly SCED are simulated in a chronological fashion. No recycling pattern was 

specifically modeled in this study. The simulation was performed for each of the two models 

(Current Practice model and Proposed Practice model) respectively. It should be noted that, due to 

the prolonged simulation time, transmission constraints are ignored in this study to speed up the 

simulation. 

Table H.2.2 compares the simulated annual CO2 emission in 2017 for the two models. It shows 

the Proposed Practice results in higher CO2 emission, or 0.07% increase in annual CO2 emission 

in comparison to the Current Practice. It may appear surprising at first glance but not 

counterintuitive given the SCUC/SCED is based on economics and security of the system, not CO2 

emission. Further investigation reveals the CO2 emission in MISO Planning Case 2 increases due 

to two major reasons: 1) in the Proposed Practice, the increased flexibility allows for increased 

utilization of PSHUs for economics. That leads to more pumping and generating from the PSHUs. 

Due to 75%-80% cycle efficiency of PSHUs, the increased pumping is higher than the increase 

generation from PSHUs, which effectively increased the total demand. The increased demand in 

turn needs to be served by increased generation from other generating sources, which result in 

increased CO2 emission; 2) in the Proposed Practice, more expensive yet lower emission rate 

generation is replaced by generation from PSHUs, while less expensive and higher emission rate 

generation serves the pumping load from PSHUs. It causes a net increase of CO2 emission despite 

the net decrease in cost. 

The second point is further illustrated using data in Table H.2.3 and Table H.2.4. Table H.2.3 

shows the pumped storage hydro generation increases significantly (by about 25%) in the Proposed 

Practice. Pumping load is not directly shown in this generation table, yet implied by the total 

increased generation. The difference between the total increased generation and increased PSH 

generation represents the total increased generation from all other generation sources. Among 

those, CC and ST Coal provides most of the increased generation, which mostly happen when 
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PSHUs pump. ST Gas and ST Oil has most of the decreased generation, which mostly happen 

when PSHUs generate. In consequence, the CO2 emission increased for CC and ST Coal, and 

decreased for ST Gas and ST Oil, as seen in Table H.2.4. It should be noted that, although ST Coal 

generation increased in slightly less amount than the decrease in ST Gas generation, the increased 

CO2 emission from ST Coal is considerably larger than the decreased CO2 emission from ST Gas, 

which is due to the emission rate difference between generation categories. 

Table H.2.2: The Total CO2 Emission Comparison Between Current Practice and Proposed 

Practice 
 

Study Case and 

Study Period 

Total CO2 emission in Year 2017 (lb)  

Difference of Total CO2 

emission (%) 
Current Practice  Proposed Practice  

MISO Planning Case 2 

01/01/2017-12/31/2017 
2,394,514,615,461 2,396,280,506,607 0.07% 

 

Table H.2.3: The Total Generation Comparison Between Current Practice and Proposed 

Practice 

Generation Category 
Total Generation in Year 2017 (MWh)  Generation Difference 

(MWh) Current Practice Proposed Practice 

CC 848,927,420 849,932,130 1,004,710 

Conventional Hydro 116,905,340 116,904,330 (1,010) 

CT Gas 91,629,201 91,946,878 317,677 

CT Oil - - - 

CT Other 623 363 (260) 

CT Renewable - - - 

External Transaction (3,180,264) (3,180,264) - 

Fuel Cell 182,243 184,097 1,854 

Geothermal 330,686 330,686 - 

IC Gas 1,686,312 1,783,455 97,143 

IC Oil 47,560 51,971 4,411 

IC Renewable 868,750 881,128 12,378 

IGCC 8,636,717 8,750,485 113,768 

Industrial Loads (15,268,680) (15,268,680) - 

Interruptible Loads - - - 

Nuclear 631,777,810 631,777,810 - 

Pumped Storage Hydro 19,220,090 24,029,821 4,809,731 

Qualifying Facilities 16,558,612 16,558,612 - 

ST Coal 687,597,850 688,023,150 425,300 

ST Gas 53,105,837 52,654,518 (451,319) 

ST Oil 2,117,801 2,114,578 (3,223) 

ST Other 1,599,051 1,626,927 27,876 

ST Renewable 17,956,441 18,010,383 53,942 

Existing Solar PV 3,745,556 3,745,556 - 

Existing Wind 157,572,450 157,572,450 - 
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Total 2,642,017,406 2,648,430,384 6,412,978 

 

Table H.2.4: The Total CO2 Emission Comparison Between Current Practice and Proposed 

Practice By Generation Category 

Generation Category 
Total CO2 emission in Year 2017 (lb) CO2 emission Difference 

(lb) Current Practice Proposed Practice 

CC 736,365,872,816 737,264,258,650 898,385,834 

CT Gas 114,170,422,002 114,503,836,084 333,414,082 

CT Oil - - - 

CT Other 336,326 263,990 (72,336) 

CT Renewable - - - 

IC Gas 1,176,638,303 1,220,404,576 43,766,273 

IC Oil 73,125,645 80,909,172 7,783,527 

IC Renewable 955,459,768 966,781,955 11,322,187 

IGCC 11,111,941,451 11,217,388,009 105,446,558 

Qualifying Facilities 17,198,079,795 17,198,079,795 - 

ST Coal 1,412,251,741,813 1,413,044,652,727 792,910,914 

ST Gas 65,379,854,959 64,839,521,300 (540,333,659) 

ST Oil 2,672,029,020 2,667,959,691 (4,069,329) 

ST Other 3,420,997,828 3,507,670,400 86,672,572 

ST Renewable 29,738,115,735 29,768,780,258 30,664,523 

Total 2,394,514,615,461 2,396,280,506,607 1,765,891,146 

 

Sensitivity Analysis 

It should be pointed that the above observations and conclusions are based on simulations of 

MISO Planning Case 2. When assumptions in the planning case change, the results may change 

and demonstrate a different pattern. For example, when renewable penetration level is set to very 

high (for example at 50%), when PSHUs pump, the required energy may require committing more 

nuclear generators (which has no CO2 emission). Due to the long minimum-up time of nuclear 

generators, the newly committed nuclear generators will stay on for a few days, causing other 

generation sources such as CC and ST Coal to ramp down, which effectively reduces CO2 emission. 

In this case, the total CO2 emission may reduce in Proposed Practice. A one-week results of the 

aforementioned dispatch pattern is illustrated in Fig. H.2.3. 
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Fig. H.2.3. The generation difference by generation category between Current 

Practice and Proposed Practice in MISO Planning Case 2 with 50% renewable penetration 

for simulation period of January 1, 2017 through January 7, 2017 
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R. Das, R. Bo, W. Rehman, H. Chen, D. Wunsch, "Forecasting Nodal Price Difference between 

Day-ahead and Real-time Electricity Markets using Long-Short Term Memory and Sequence-to-

Sequence Networks", accepted, IEEE Access, 2021. 
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S. Wang, J. Liu, H. Chen, R. Bo, Y. Chen, “Modeling State Transition and Head-Dependent 

Efficiency Curve for Pumped Storage Hydro in Look-Ahead Dispatch”, IEEE Transactions on 

Power Systems, accepted. 
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Z. Tang, Y. Liu, L. Wu, J. Liu, and H. Gao, “Reserve Model of Energy Storage in Day-ahead 

Joint Energy and Reserve Markets: A Stochastic UC Solution,” IEEE Transactions on Smart Grid, 

vol. 12, no. 1, pp. 372-382, 2021. 

Y. Liu, L. Wu, Y.  Yang, Y. Chen, R. Baldick, and R. Bo, “Secured Reserve Scheduling of 

Pumped-Storage Hydropower Plants in ISO Day-ahead Market,” IEEE Transactions on Power 

Systems, accepted, 2021. 

Y. Liu, Z. Tang, and L. Wu, “On Secured Spinning Reserve Deployment of Energy-Limited 

Resources Against Contingencies”, IEEE Transactions on Power Systems, accepted, 2021. 

 

Related to Task 9: 

S. Wang, R. Bo, “Joint Planning of Electricity Transmission and Hydrogen Transportation 

Networks”, IEEE Transactions on Industry Applications, accepted. 

 

B. Under Review and Under Submission Papers 

Related to Task 1: 
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R. Baldick, Y. Chen, and B. Huang, "Optimization formulations for storage devices," 

submitted to Operations Research, 2021. 

J. Liu, R. Bo, et al, “Implication of Market Impact and Price Forecast Accuracy on Energy 

Arbitrage for Electricity Merchants with Storage and Renewable Power Plant”, Manufacturing & 

Service Operations Management, in submission. 

 

Related to Task 2 and 5:  

A.Ghesmati, B.Huang, Y.Chen, R. Baldick. “Scheduling Pumped Storage Hydro in a Realtime 

Market with Probabilistic Price Forecast”, IEEE Transactions Power System, in submission. 

B.Huang, A.Ghesmati, Y.Chen, R. Baldick. “Pumped Storage Hydro Modeling and Simulation 

in a Look-ahead Commitment using Price Forecast”, IEEE Transactions Power System, in 

submission. 

 

Related to Task 3 and 6: 

S. Wang, R. Bo, “Approximate Input-Output Curve for Pumped Storage Hydro: A Disjunctive 

Convex Hull Model”, IEEE Transactions on Power Systems, under review. 

 

C. Technical Presentations 

 

R. Baldick, Y. Chen, and B. Huang, "Optimization formulations for storage devices,'' Presented 

at The 4th Georgia Tech Workshop on Energy Systems and Optimization, Atlanta, GA, December 

10-11, 2020. 

Y. Chen, et al, “Developing Optimization Algorithms and Computational Techniques for 

Future Resource Integration", panel presentation at 2021 IEEE PES General Meeting. 

B. Huang, A. Ghesmati, Y. Chen, R. Baldick, R. Bo, “Modeling and Optimizing Pumped 

Storage in a Multi-stage Large Scale Electricity Market under Portfolio Evolution”, presentation 

at 2021 FERC Technical Conference on Increasing Market and Planning Efficiency through 

Improved Software. 

B. Huang, A. Ghesmati, Y. Chen, R. Baldick, “Pumped Storage Optimization in Day-ahead 

and Real-time Market under Uncertainty”, presentation at 2021 INFORMS Annual Meeting.  

 

 

VII. Conclusions 

The project developed a prototype enhanced pumped storage hydro (PSH) model for 

incorporation into the multi-stage market clearing process with proper consideration of the unique 

characteristics of PSH. In the market clearing process, energy products and ancillary service 

products (including capacity-based regulating reserve and energy-based reserve) in energy and 

ancillary service market are co-optimized. The enhanced PSH model in the multi-stage market 

clearing process can facilitate a deeper participation of PSH resources in organized electricity 

markets. 

Through the investigation of three research areas (as mentioned in the Executive Summary), 

the project delivered the below specific outcomes: 

• A prototype deterministic day-ahead (DA) SCUC model with PSH optimization has been 

developed and implemented using HIPPO. It meets MISO’s solution quality and 
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performance requirement. Studies on actual MISO system showed 0.04%-0.67% reduction 

in system total cost and up to 97% increase in PSH profit. The benefits are expected to be 

significantly higher with higher penetration of PSH and renewable generation. 

• A “tighter” formulation of the state-of-charge constraints with binary variables has been 

proposed and implemented to improve the computational performance of the proposed 

deterministic day-ahead (DA) SCUC model. Statistical data based on repeated tests using 

MISO cases show that the tightened constraints typically have approximately neutral or 

positive impact (e.g., up to 34% reduction in studied cases) on the computational time. 

• An energy reserve (or MWh reserve) concept has been proposed to deal with the SOC 

deviation in real-time. Head room and floor room are derived using statistical models. Both 

the rolling based stochastic approach and the approximate dynamic programming (ADP) 

approach have been employed to evaluate the value of water of PSHs outside a finite time 

horizon. Studies show that both approaches can lead to a better utilization of available 

water with higher profits for PSHs in RT markets, than exactly staying with the DA 

solutions. In addition, no approach consistently outperforms the other, and their 

performances depend on the quality of RT price forecasts as well as similarities between 

price patterns in RT and those used for ADP training. 

• A rolling window simulation platform has been developed in HIPPO, which closely mimics 

the LAC of MISO. It is a valuable tool for investigation of the intra-day clearing process.  

• An ARIMAX-based deterministic price forecast and a scenario generation-based stochastic 

price forecast have been developed to predict RT prices. The price forecasts can be used in 

the developed deterministic and stochastic PSHU models respectively to guide intra-day 

dispatch. Studies using MISO data show the developed ARIMAX model can capture the 

trend, the peaks and the turning points of the actual RT-LMP significantly better than the 

Facebook Prophet model. 

• A risk-averse formulation has been developed to address the concern of profit loss in the 

RT market. Studies demonstrate the effect of the risk management formulation in reducing 

system total cost and avoiding negative profits for the PSHU. 

• A planning model with improved realistic characteristics of PSH and the incorporation of 

market optimization enhancement has been developed. Studies using actual PSH plant 

parameters and MISO planning models reveal the SOC error from inaccurate PSH input-

output curve modeling will accumulate quickly in chronological production cost 

simulation, and consequently requires periodical adjustment of SOC or the adoption of 

proposed improved input-output curve modeling. 

• A novel disjunctive convex hull model for input-output curve approximation has been 

developed to improve the computational performance, and studies show an order of 

magnitude speedup over the common piece-wise linear approximation methods. 

• Studies using MISO planning models show using DA storage shadow price as an indicator 

for future value of water can exploit the flexibility of PSH in RT and reduce RT system 

total cost (with a monthly average of 0.22% reduction in studied cases). 

• A linear program based approximated model is used to approximate the nonconvex unit 

commitment model to accelerate the solution of stochastic production cost simulation 

models. Studies using a MISO planning model show the proposed method can produce 

acceptable accuracy in results (with 0.35% difference in system total cost) and significant 

solution time improvement (with 71.6% reduction in solution time). 
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Appendix for Section IV.A.1 

      Deterministic PSH model in SCUC 

Nomenclature: 
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Objective Function: The objective of the unit commitment problem is to minimize the system 

operating costs. Under MISO current practice, the costs related to a PSHU are the offered 

production costs of the generating mode minus the virtual bid prices for the pumping mode. 

However, assuming that the operating cost of PSH is close to zero due to negligible O&M cost, 

the bid and offer from a PSHU are eliminated in the proposed model. That is, in the proposed 

model the true opportunity cost of generating and pumping in a PSHU is already reflected in the 

cost of other generation plants. That is, the objective is as shown in (A.1.1), representing the piece-

wise linear production costs of the rest of generators in the system: 

         (A.1.1) 

System Energy Balance Constraints: The generation has to be balanced with net load in the 

system at all times. In (A.1.2), during each interval t, the total generation in the system including 

the generation from PSHUs on the left should be balanced with the sum of the net load and the 

pumping load from the PSHUs on the right. 

     (A.1.2) 

State and Transition Logic Constraints: Constraints (A.1.3) guarantee that the unit 

commitment variables of each mode in a PSHU described in Fig. A.1.1 are mutually exclusive. 

The variables representing the modes are shown in Fig. A.1.1.  

 

       (A.1.3) 

The transition between two modes m, n in a PSHU g at time t is defined as a binary variable 

. These transition variables are shown in Fig. A.1.1 near to the double-headed arrows.  

Notice that the start-up and shut-down of a mode are modeled as the transition between the 

mode and the alloff mode. 

      (A.1.4) 

In addition to the mutual exclusivity constraints on the commitment variable of each 

configuration, there should be at most one feasible transition at any time. 

     (A.1.5) 

Box constraints: The amount of pumping load during interval t from the PSHU is constrained 

by the capacity of the pump unit in (A.1.6). The pump output of a PSHU will be forced to zero by 

(A.1.6) when = 0 indicating the unit is not in a pumping mode. Symmetrically, the amount 
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of generation during interval t from the PSHU is constrained by the capacity of the generation unit 

shown in (A.1.7). The generation output of a PSHU will be forced to zero by (A.1.7) when 

= 0 indicating the unit is not in a generating mode. 

     (A.1.6) 

   (A.1.7) 

Storage Energy Balance and State of Charge (SOC) Constraints: The energy stored in the PSH 

system is linked at each consecutive time interval as shown in (A.1.8). Notice that there can be 

more than one PSHU sharing a reservoir in the model. Parameters and are the 

efficiencies of generating and pumping indicating energy loss in both modes. The energy stored in 

the reservoir at the beginning and end of the day is given by (A.1.9) and (A.1.10), respectively. 

The upper and lower bounds of the SOC are provided by (A.1.11). 

    (A.1.8) 

        (A.1.9) 

                 (A.1.10) 

                (A.1.11) 

The start up and shut down time, transition time, minimum up/down time and security 

constraints are not listed here. They can be easily accommodated in the proposed configuration 

based model. 

Practical Operational Limits: To demonstrate the adaptability of the proposed configuration 

based PSH model to industry practice, two additional constraints are presented to reflect some of 

the physical limits the PSHUs have in their daily operations. 

                (A.1.12) 

At some PSH plants, due to the physical limits in the start up procedure of pump units, only a 

limited number of pump units can be brought online in a given time period. In constraints (A.1.12), 

is the set of modes for which unit g can feasibly transit to a pump mode, bearing in mind 

that is the transition variable of unit g from mode n to the pump mode. Therefore, without 

introducing new variables, constraints (A.1.12) precisely capture the operational feature that no 

more than N units sharing reservoir r can transit from any mode to a pumping mode in time interval 

t. 

For the PSH plant with large reservoirs, there are typically multiple PSH units installed in the 

plant and they are jointly operated with the reservoirs. It is usually not economical and physically 
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not feasible for the plant to have one unit pumping and another generating at the same time. To 

incorporate this feature for a PSH plant with multiple units, constraints (A.1.13) and (A.1.14) are 

introduced. 

               (A.1.13) 

               (A.1.14) 

A pair of variables  are introduced for a reservoir or a PSH plant r to represent 

the status of the plant as pumping or generating at time interval t. Therefore, constraints (A.1.13) 

are the mutual exclusivity constraints at the plant level with (A.1.14) constraining which is 

the commitment variable of PSHU g in mode m at time interval t. Constraint (A.1.14) indicates if 

any unit g of the plant r is in pump mode then the plant status will be in pump mode indicated by 

= 1. The same for the gen mode. Notice that since is binary, can be continuous 

and bounded by (A.1.13) and (A.1.14). 

Combining (A.1.13) and (A.1.14), if any unit in a reservoir is generating at a time interval, all 

the other units sharing the same reservoir would not pump at the same time interval and vice versa. 

With the configuration based model, constraint (A.1.13) and (A.1.14) can be easily adapted to 

reflect different PSH constraints such as ternary PSH. 

 

Appendix for Section IV.B.1 

HIPPO LAC Simulation Validation Results 

The DA problem with the entire horizon is solved before the LAC rolling window starts. The 

DA solutions are used to fix the variables after the LAC window in the LAC simulations. The 

constraints linking LAC and DA intervals are kept for benchmarking results purpose in this test. 

In this simulation validation, the system conditions in LAC rolling window simulations including 

demand and generator inputs remain the same as they are in DA. Therefore, we expect that the 

solutions from LAC rolling windows would repeat the DA solutions, except where there was 

primal degeneracy in the model or because of non-zero MIP relative gaps in the either or both of 

the DA and LAC solutions.  

Two PSH units are included in the current study namely PSHU1 and PSHU2. Although the 

Ludington reservoir is physically shared by PSHU1 and PSHU2, based on the reservoir capacity 

split agreement, it is modeled as two separate reservoirs and one for each of the PSHUs. The PSH 

dispatch results for each of the plants in the LAC rolling windows and its DA solution are shown 

in Figs B.1.2 and B.1.3. The generation and pump of the PSH units are illustrated as positive and 

negative values, respectively, using the vertical axis on the left of the figures. The LAC solutions 

and DA solutions are perfectly overlapped showing that the unit dispatch results from the LAC 

rolling windows repeat the DA solutions.   
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Fig. B.1.2. LAC Rolling Window Simulation Validation Results PSHU 1 

 

Fig. B.1.3. LAC Rolling Window Simulation Validation Results PSHU 2 
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Appendix for Section IV.E.3 

      Quantile Regression: 

Quantile regression (QR) as a method of non-parametric forecast method is an extension of 

linear regression that is used when the conditions for linear regression are not met (i.e., linearity, 

homoscedasticity, independence, or normality). The two main assumptions in using QR methods 

read as follows: 

• No pre-assumption on distribution of data is considered. 

• Distribution of data varies over time. 

Assuming that residuals are normally distributed, regular linear regression estimates the 

conditional mean of the response variable, conditioned on the exogenous variable, using the 

following model: 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝,   𝑖 = 1,2, … , 𝑛     (E. 3. 1) 

with Mean-Square-Error as a “loss function” to measure the performance of fitted model, 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖 − (𝛽0 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝))

2
,    (E. 3. 2)

𝑛

𝑖=1

. 

In quantile regression, unlike regular linear regression, for any quantile 0 < 𝛼 <  1,  we 

estimate the conditional median of the target across different values of the features. 

 

𝑄𝛼 𝑦𝑖 =  𝛽0(𝛼) +  𝛽1(𝛼)𝑥𝑖1 + 𝛽2(𝛼)𝑥𝑖2 + ⋯ + 𝛽𝑝(𝛼)𝑥𝑖𝑝,   𝑖 = 1,2, … , 𝑛    (E. 3. 3) 

Median-Absolute-Deviation is used as the loss function in QR , where median is calculated for 

for each 𝛼 of interest, and the loss function is defined as: 

𝑀𝐴𝐷 =
1

𝑛
 ∑ 𝜌𝛼  (𝑄𝛼 𝑦𝑖 − ( 𝛽0(𝛼) +  𝛽1(𝛼)𝑥𝑖1 + 𝛽2(𝛼)𝑥𝑖2 + ⋯ + 𝛽𝑝(𝛼)𝑥𝑖𝑝)𝑛

𝑖=1 )  (E. 3.4) 

Where 𝜌𝛼(𝜖) = 𝛼 max(𝜖, 0) + (1 − 𝛼)max (0, −𝜖) . Here 𝜌𝛼(𝜖)  gives weights to the error 

depending on the given quantile, and the sign of error. This implies if the error is positive then 

𝜌𝛼(𝜖) multiples the error by 𝛼, and if error is negative multiples the error by (1-𝛼). For example, 

for 𝛼=0.2 , the median of 20th quantile, means in equation (E.3.4) we want 80% of errors to be 

positive and 20% of errors to be negative. 

 

Non-Parametric Probabilistic Forecast: 

The following is a summary of the methodology we used to reconstruct the conditional 

distributions (PDF and CDF) for the time series values at any given time in look-ahead window: 

• Get the dataset for which we wanted to do the forecasting for look-ahead hours. 

• Fit Quantile-Regression (QR) curves through the predicted data in look-ahead time window. 

To reconstruct the conditional distributions (PDF and CDF) for the time series values at any given 

time, we can use quantiles as a result of fitting the Quantile-Regression (QR) which for each time 

ahead t+k and each quantile 𝟎 ≤ 𝜶𝟏 <  𝜶𝟐 <  … < 𝜶𝒊 <  … <  𝜶𝒎 < 𝟏 is shown with 𝒒̂𝒕+𝒌
(𝜶𝒊)

 .  

Here we do not assume any shape for the target distription namely LMP, thus a non-parametric 

forecast of Cumulative Distribution Function 𝑪𝑫𝑭̂ of the variable of interest at any given time 

can be produced by gathering a set of m quantile forecasts.  For any target time, t+k,  in look ahead 

horizon, Probability Density Function (PDF) can be derived by taking derivative of the 

corresponding CDF. 
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Fig. E.3.1. quantile regressions for 10%, 20%, ..., 90% quantiles associated with predicted 

RT-LMP. 

 

 

Assumptions to describe the relation between our random variable, the quantiles, the 

probability density function (PDF), and its associated cumulative distribution function (CDF): 

• 𝒑𝒕+𝒌:  random variable;  𝒇𝒕+𝒌: PDF;   𝑭𝒕+𝒌: CDF 

• 𝒒𝒕+𝒌
𝜶 = 𝑭𝒕+𝒌

−𝟏 (𝜶) quantile with proportion α∈ [𝟎, 𝟏] or P(𝑷𝒕+𝒌 < 𝒙) = α.  

For our application, we produce a set of quantile regression for the given point forecast 

obtained from our statistical predictive model, namely ARIMAX method. 

 

 
Fig. E.3.2. CDF and PDF for one selected hour in look-ahead window. 

 

Scenario Generation: 

In General, the probabilistic forecasts do not reflect the interdependence structure of forecast 

errors during look-ahead time, so these methods do not inform about prediction errors. This 

interdependence structure of errors is very important for many time dependent decision-making 

problems. In the context of PSHU optimization, if LMPs are high in a particular interval, this might 
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suggest additional PSHU generation or decreased pumping, with the SOC restored during later 

intervals; however, if LMPs are correlated over time, then there is a risk that increased generation 

in a high priced interval will necessitate increased pumping in another interval with high prices, 

resulting in a net increase in costs. 

In order to fulfill this requirement and reflect the prediction errors, we follow the method of 

statistical scenario generation for wind production adapted from [E.1]. The method has some 

generic value, since the results of any type of forecasting methodology can be used as input.  

 

1) Creating the Gaussian multivariate random variables: 

The random variable 𝒀𝒌 whose realization 𝑌𝑘
𝑡  at time t is defined by 𝑌𝑘

𝑡 = 𝐹̂𝑡+𝑘(𝑝𝑡+𝑘),   ∀𝑡; is 

uniformly distributed on the unit interval U[0,1]. 

A fundamental property of a reliable probabilistic prediction is that the prediction errors can 

be made Gaussian by applying a suitable transformation using the Probit function, known as the 

quantile function for standard normal distribution. Therefore, we can Transform Uniform 

distribution to Normal distribution; using the Probit function 

           Xk
(t)

=  Φ−1(Yk
t),   ∀t. 

 

2) Creating Covariance Matrix: 

The random variable 𝑋𝑘 ~ ℵ(0,1).   The transformed random vector 𝑋 = (𝑋1,  𝑋2, … ,  𝑋𝐾) 𝑇 

~ ℵ(𝜇0, 𝛴)  𝜇0  being a vector of zeros, and K is the max forecast horizon. e.g. 24-hour. 

The sample covariance Matrix is formulated as:  𝛴𝑡 =
1

𝑡−1
 ∑ 𝑋𝑗  𝑡

𝑗=1 𝑋𝑗𝑇
. 

Due to non-stationary characteristics of price, long term variations in the interdependence 

structure of prediction errors are tracked by recursively estimating this covariance matrix.  

∑ =  𝝀 (
𝑡−2 

𝑡−1
)𝑡  𝛴𝑡−1 + (1 +  𝝀 (

1

𝑡−1
 − 1)) 𝑋𝑡𝑋 (𝑡)𝑇

, λ ∈ [0,1). 

 

The covariance matrix is initialized by setting all its off-diagonal elements to 0 and its diagonal 

elements to 1. The parameter 𝝀 is a “forgetting factor” that adjusts how quickly new information, 

in the form of 𝑋𝑡𝑋 (𝑡)𝑇
, are incorporated into the estimate ∑ .𝑡  

 

Fig. E.3.3. Covariance matrix of the multivariate normal random variable-  March 7th,2019 
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In Error! Reference source not found. E.3.3, the horizontal and vertical axes range over the 

window of prediction, k=24 hours. Each pixel gives the covariance between two forecast horizons, 

and hence variance values for each forecast horizon on the diagonal.  

Now that the covariance matrix containing the whole information on variance and covariance 

of the transformed variable 𝑋 = (𝑋1,  𝑋2, … ,  𝑋𝐾) 𝑇 is calculated. The following are steps to create 

statistical scenarios associated with forecasted RT-LMP. 

 

3) Generating Statistical Scenarios [E.1]: 

1. In order to have S-realizations 8  of the random variable  𝑋 = (𝑋1,  𝑋2, … ,  𝑋24) 𝑇 

~ ℵ(𝜇0, 𝛴𝑡−24), we use a multivariate Gaussian random number generator with zero mean, 

and covariance matrix, 𝛴𝑡−24. The 𝑖𝑡ℎ scenario of S-realizations is denoted as 𝑋𝑖. 

2. For each horizon k ∈ {1,2, … ,  24},  S-realizations 𝑌𝑘
𝑖  of the uniform variable 𝑌𝑘 are 

obtained by applying the inverse probit function Φ to each component  of 𝑋𝑖  as  𝑌𝑘
𝑖 = 

Φ(𝑋𝑘
𝑖 ) , ∀ 𝑖 = {1,2, … 𝑆},  𝑘 = {1,2, … ,24}. 

3. For each look-ahead time k∈ {1,2, … ,  24}, the scenarios of RT price, result from the 

application of the inverse cdf 𝐹̂𝑡+𝑘|𝑡
−1  to the S realizations 𝑌𝑘

𝑖  of the uniform variable 

𝑌𝑘: 𝑝̂𝑡+𝑘|𝑡
𝑖 = 𝐹̂𝑡+𝑘|𝑡

−1 (𝑌𝑘
𝑖)   , ∀ 𝑖,  𝑘. 

 

Appendix for Section IV.E.4 

      Up-sampling and Interpolating the RT-LMP Point Forecast Results for intra-hour 15-

min Intervals 

To produce the more granular data points, or in other words to increase the frequency of the 

samples, we need to derive a new data set from the existing one. In our case, we are interested in 

intra-hour, 15 minutes intervals, RT-LMP forecasts, which requires data points to be created at a 

4-times higher rate than the forecasted RT-LMP prices. For that purpose, the first thing we do is 

create datapoints at higher frequency to report the RT-LMP prediction on those new data points. 

Once the data points are created at a more granular level, we start to use the hourly RT-LMP 

forecast information from the lower rate data and define an interpolation function to generate the 

RT-LMP forecast values for those higher rate missing data points. Given the realized RT-LMP 

values are in 5-minute granularity, the existing hourly RT-LMP data are derived by averaging 

those realized 5-minute RT-LMP data during each hour. Given the mentioned averaging constraint, 

we make sure that the new intra-hour RT-LMP dataset satisfies the averaging constraint as well. 

To interpolate those values there is a wide selection of simple and more complex interpolation 

functions. However, in most cases a linear interpolation is considered as a good start. In the linear 

interpolation, it basically draws a straight line between available data (which in this context is the 

forecasted hourly RT-LMP) and then interpolates and fills in values in between (which in this 

context is the 5-minute RT-LMP). Figure E.4.2 shows the original hourly RT-LMP Point Forecast 

and its associated 50 scenarios. 

 

 
8 S-realization of multivariate variable X means creating S number of scenarios to represent the potential 

values of X. 
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Fig. E.4.2. Observed price, point forecast price and probabilistic forecast with 50 scenarios of 

RT-LMP for day of April 15th, 2019.  ARIMAX method is used with X being DA-LMP. 

 

In order to do the Up-Sampling and creating high frequency data points we proceed as follows. 

First, we create data points for minutes in between each of consecutive hours. 

Given the original hourly data points as follows:  

[4/15/2019  0:00 AM, 4/15/2019  1:00 AM, 4/15/2019  2:00 AM, … , 4/15/2019  23:00] 

The intra-hour data points would be as follows:  

[4/15/2019  0:00, 4/15/2019  0:15, 4/15/2019  0:30 ,  4/15/2019  0:45 , 4/15/2019  1:00, 4/15/2019  

1:15, 4/15/2019  1:30 , 4/15/2019  1:45, 4/15/2019  2:00, …,  4/15/2019  23:00, 4/15/2019  23:15, 

4/15/2019  23:30 ,  4/15/2019  23:45 ] 

Now that we could derive the higher frequency dataset. We use linear interpolation on the 

forecasted hourly RT-LMP to get the velues for these 15-minute intra-hour intervals, considering 

the average constraint as described above. 

 

 

Appendix for Section IV.E.5 

      ARIMAX formulation to model multi-days ahead LMP single point forecasting: 

[𝑦𝑑=1, 𝑦𝑑=2, 𝑦𝑑=3,  𝑦𝑑=4, 𝑦𝑑=5, 𝑦𝑑=6, 𝑦𝑑=7] = ∑ 𝜑𝑖

𝑝

𝑖=1

𝒚𝒕−𝒊 + ∑ 𝜃𝑗

𝑞

𝑗=1

𝜖𝑡−𝑗 + 

∑ 𝛽𝑚

3

𝑚=1

𝑥𝑚,𝑡=[𝑑=1,2,3,4,5,6,7] + 𝜖𝑡,      𝜖~𝑁(0, 𝜎2) 

The target value is forecasting the day ahead LMP for the next 7-days. The potential candidates 

to include into the model for the exogenous varibles are 𝑥𝑚={GasPrice, Load, Wind-Solar, Online 

Margin, Net Schedule Interchange (NSI)}, and the level of granularity is hourly for each day. 
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Figure E.5.2 shows the deterministic point forecast as a result of applying ARIMAX 

methodology. As observed from the figure, the red line demonstrates the ARIMAX forecasted 

result versus the blue line which shows the realized LMP, for the week of October 15, 2019 for 

the  nodes where the studied PSHU are connected to

 
Fig. E.5.2. LMP point forecast along with the actual realized LMP for the week of Oct15th, 

considering the past 30days for the training set for forecasting the price for 7-days ahead look 

ahead time horizon. 

 

      Facebook Prophet to model multi-days ahead LMP single point forecasting: 

The quality of the generated statistical scenarios is directly related to the level of the accuracy 

of the method of deterministic point forecast. In this study we tried to run a comparison study 

between our statistical ARIMAX based method and another method of time-series analysis named 

Facebook Prophet. This method is developed by Facebook as a procedure for forecasting time 

series data based on an additive model where non-linear trends are fit with yearly, weekly, and 

daily seasonality, plus holiday effects. 

Components of Facebook Prophet as an additive model: 

Y(t)= G(t) + S(t) + H(t) + Noise 

G(t): Growth, piecewise linear curves for modelling non-periodic changes in time series. 

S(t): Seasonality, periodic changes (e.g. weekly/yearly seasonality) Seasonal effects S(t) are 

approximated by Fourier Series:  

 
H(t): Holiday, effects of holidays (user provided) with irregular schedules. 

Noise: error term accounts for any unusual changes not accommodated by the mode. 

Figure E.5.3 shows the results of single point forecast applying the Facebook Prophet approach 

and evaluates the performance of the results by computing Root-Mean-Square-Error (RMSE). 
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Fig. E.5.3. The forecasted LMP using prophet methodology for the week of Oct, 15th, 2019 

shown in red along with the realized LMP. 

 

Appendix for Section IV.G.1 

      Additional auxiliary constraints and final SOC stochastic constraints 

Additional auxiliary constraints are included as follows: 

𝑠𝑠,𝑡
𝐿𝐵 ≤ ∑ ℎ𝑠,𝑡

𝐿𝐵𝑡
𝑘=1 ; (G.1.5) 

𝑠𝑠,𝑡
𝑈𝐵 ≤ ∑ ℎ𝑠,𝑡

𝑈𝐵𝑡
𝑘=1 ; (G.1.6) 

0 ≤ 𝑠𝑠,𝑡
𝐿𝐵 ≤ 𝑀 · 𝑦𝑠; (G.1.7) 

0 ≤ 𝑠𝑠,𝑡
𝑈𝐵 ≤ 𝑀 · 𝑦𝑠; (G.1.8) 

∑ 𝑦𝑠𝑠 ≤ 𝑁 · 𝛬 (G.1.9) 

It can be seen that the SOC limitation constraint (G.1.4) is not formulated as a hard constraint, 

because slack variable 𝑠𝑠,𝑡
𝐿𝐵 and 𝑠𝑠,𝑡

𝑈𝐵 are introduced. 𝑠𝑠,𝑡
𝐿𝐵 and 𝑠𝑠,𝑡

𝑈𝐵 are limited by the total amount of 

added headroom and floor room as in (G.1.5) and (G.1.6), which means the physical limits of PSH 

plants will be always respected. Constraints (G.1.7) and (G.1.8) are auxiliary constraints that 

enable slack variables or turn them OFF. 𝑦𝑠 is a binary indicator, describing if the SOC limitation 

is violated in scenario s. The total violation ∑ 𝑦𝑠𝑠  is required to be no larger than a certain threshold, 

for example, 95% of the total number of scenarios. This is enforced by (G.1.9), where 𝛬 is the total 

number of scenarios and 𝑁 is the percentage. In summary, violations are allowed in some extreme 

scenarios, but the majority shall be satisfied. The violation is actually caused by the insufficiency 

of enforcing headroom and floor room, while the physical limits are always satisfied under all 

scenarios, which is guaranteed by limiting the range of slack variables. 
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The above constraints are formulated based on the assumption that a PSH has only one unit, 

namely the reservoir of the PSH plant has a one-to-one mapping with the unit. In fact, a PSH could 

have multiple units, and these units share the same reservoir. We extend the above formulation to 

consider this, and the final SOC stochastic constraints are summarized as follows: 

𝑆𝑂𝐶𝐿𝐵 + ∑ ℎ𝑠,𝑡
𝐿𝐵𝑡

𝑘=1 − 𝑠𝑠,𝑡
𝐿𝐵 ≤ 𝑠𝑜𝑐𝑡 ≤ 𝑆𝑂𝐶𝑈𝐵 − ∑ ℎ𝑠,𝑡

𝑈𝐵𝑡
𝑘=1 + 𝑠𝑠,𝑡

𝑈𝐵; 

𝑠𝑠,𝑡
𝐿𝐵 ≤ ∑ ℎ𝑠,𝑡

𝐿𝐵𝑡
𝑘=1 ; 

𝑠𝑠,𝑡
𝑈𝐵 ≤ ∑ ℎ𝑠,𝑡

𝑈𝐵𝑡
𝑘=1 ; 

0 ≤ 𝑠𝑠,𝑡
𝐿𝐵 ≤ 𝑀 · 𝑦𝑠; 

0 ≤ 𝑠𝑠,𝑡
𝑈𝐵 ≤ 𝑀 · 𝑦𝑠; 

∑ 𝑦𝑠𝑠 ≤ 𝑁 · 𝛬; 

ℎ𝑠,𝑡
𝑈𝐵 = 𝑅𝑠,𝑡

𝐺,𝐷𝑁(𝑔𝑡 − 𝐺𝐿𝐵 · 𝑢𝑡
𝐺) + 𝑅𝑠,𝑡

𝑃,𝑈𝑃(𝑃𝑈𝐵 · 𝑢𝑡
𝑃 − 𝑝𝑡) + 𝑃𝑈𝐵 · 𝐼𝑠,𝑡

𝑂−𝑃(1 − 𝑢𝑡
𝐺 − 𝑢𝑡

𝑝) + 𝑔𝑡 · 𝐼𝑠,𝑡
𝐺−𝑂; 

ℎ𝑠,𝑡
𝐿𝐵 = 𝑅𝑠,𝑡

𝐺,𝑈𝑃(𝐺𝑈𝐵 · 𝑢𝑡
𝐺 − 𝑔𝑡) + 𝑅𝑠,𝑡

𝑃,𝐷𝑁(𝑝𝑡 − 𝑃𝐿𝐵 · 𝑢𝑡
𝑃) + 𝐺𝑈𝐵 · 𝐼𝑠,𝑡

𝑂−𝐺(1 − 𝑢𝑡
𝐺 − 𝑢𝑡

𝑝
) + 𝑝𝑡 · 𝐼𝑠,𝑡

𝑃−𝑂; 

𝑢𝑡
𝐺 ≥ 𝑢𝑖,𝑡

𝐺 ; (G.1.10) 

𝑢𝑡
𝑃 ≥ 𝑢𝑖,𝑡

𝑃 ; (G.1.11) 

𝑢𝑡
𝐺 ≤ ∑ 𝑢𝑖,𝑡

𝐺
𝑖 ; (G.1.12) 

𝑢𝑡
𝑃 ≤ ∑ 𝑢𝑖,𝑡

𝑃
𝑖 ; (G.1.13) 

𝑔𝑡 = ∑ 𝑔𝑖,𝑡𝑖 ; (G.1.14) 

𝑝𝑡 = ∑ 𝑝𝑖,𝑡𝑖 ; (G.1.15) 

where 𝑔𝑖,𝑡 , 𝑝𝑖,𝑡 , 𝑢𝑖,𝑡
𝐺 , and 𝑢𝑖,𝑡

𝑃  are the counterparts of 𝑔𝑡 , 𝑝𝑡 , 𝑢𝑡
𝐺 , and 𝑢𝑡

𝑃  but defined on the 

individual unit level for unit i. The stochastic SOC constraints are imposed on the plant level, 

which contains multiple units. To this end, auxiliary variables and aggregations constraints are 

defined and imposed to aggregate the units onto the plant level. This is done by constraints 

(G.1.10)-(G.1.15). The plant is indicated as ON (pumping or generationg) if any of its units is ON. 

The output of a PSH plant is equal to the output summationg of all units contained by it. 

 


