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ASYNCHRONOUS RICHARDSON ITERATIONS: THEORY AND
PRACTICE*

EDMOND CHOWT, ANDREAS FROMMER?$, AND DANIEL B. SZYLD$

Abstract. We consider asynchronous versions of the first and second order Richardson methods
for solving linear systems of equations. These methods depend on parameters which are chosen a
priori. We explore the parameter values that can be proven to give convergence of the asynchronous
methods. This is the first such analysis for asynchronous second order methods. We find that
for the first order method, the optimal parameter value for the synchronous case also gives an
asynchronously convergent method. For second order method, the parameter ranges for which we
can prove asynchronous convergence do not contain the optimal parameters for the synchronous
iteration. In practice, however, the asynchronous second order iterations may still converge using
the optimal parameter values, or close to the optimal parameter values, despite this result. We
explore this behavior with a multithreaded parallel implementation of the asynchronous methods.

Key words. Asynchronous iterations. Parallel Computing. Second order Richardson method.

AMS subject classifications. 65F10, 65N22, 15A06

1. Introduction. A parallel asynchronous iterative method for solving a sys-
tem of equations is a fixed-point iteration in which processors do not synchronize
at the end of each iteration. Instead, processors proceed iterating with the latest
data that is available from other processors. Running an iterative method in such
an asynchronous fashion may reduce solution time when there is an imbalance of the
effective load between the processors because fast processors do not need to wait for
slow processors. Solution time may also be reduced when interprocessor communica-
tion costs are high because computation continues while communication takes place.
However, the convergence properties of a synchronous iterative method are changed
when running the method asynchronously.

Consider the n-by-n system of equations = G(z) which can be written in scalar
form as z; = g;(x), i = 1,...,n. An asynchronous iterative method for solving this
system of equations can be defined mathematically as the sequence of updates [2, 3, 5],

) A if i ¢ Jy,
€Ty = st sh st ep -
gi(xll(k),xf(k),...,xn"(k)), ifie Jg

where z¥ denotes z; at time instant k, J, is the set of indices updated at instant k,
and 5; (k) < k —1 is the instant that z; is read when computing g; at instant k. We
point out that (a) not all updates are performed at the same time instant, and (b)
updates may use stale information, which models communication delays in reading or
writing.

With some natural assumptions on the sequence of updates above, much work
has been done on showing the conditions under which asynchronous iterative methods
converge; see the survey [9]. For linear systems, asynchronous iterations converge for
any initial vector if and only if p(|T|) < 1, where T is the iteration matrix for the
standard, synchronous iterations, and | - | is taken elementwise. Since p(T) < p(|T),
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it appears that the condition for convergence of asynchronous iterations is more strict
than that of synchronous iterations.

For linear systems, asynchronous iterative methods that are based on the Jacobi
or block Jacobi splitting have been extensively studied (for some recent references,
see [4, 14, 19, 20]), although these splittings generally give slow convergence. In this
paper, we consider first and second order Richardson methods [16]. With estimates
on the bounds of the spectrum of a problem, the second order Richardson method,
in particular, converges rapidly. This paper explores the parameter values that can
be proven to give convergence of asynchronous Richardson methods. This is the first
such analysis for asynchronous second order methods.

Statements about the rate of convergence, however, cannot be made without a
description of the sets J; and s;(k) Such sets depend on properties of the par-
allel computation, including how the problem is partitioned among the processors,
and computer characteristics such as computation speed and interprocessor commu-
nication latency and bandwidth. Indeed, one can imagine that in an asynchronous
computation where communication is fast and the workload is balanced, the asyn-
chronous computation may behave very much like the synchronous computation. In
this paper, we also demonstrate the actual behavior of asynchronous first and sec-
ond order Richardson methods using a parallel multithreaded implementation of the
methods.

Our theoretical and experimental results are suggestive for an asynchronous ver-
sion of the Chebyshev semi-iterative method. The Chebyshev method can be regarded
as the non-stationary counterpart of the stationary method which is the second or-
der Richardson method. If one uses the optimal parameter values in second order
Richardson, i.e., the parameter values that minimize the spectral radius of the iter-
ation operator, then, asymptotically, both second order Richardson and Chebychev
iterations have the same convergence rate [13]. For a short historical description of
the development of these methods, see [17]. Unlike Krylov subspace methods, the sec-
ond order Richardson and Chebyshev methods do not require inner products, which
allows the possibility of executing these methods asynchronously.

In recent related work, asynchronous versions of Schwarz and optimized Schwarz
methods have been developed [10, 15, 21].

2. The setting. We consider
Ar=b, AeC™™ becCn

From the beginning, we assume that this system is preconditioned with a nonsingular
matrix M, that is, we have A= M — N, T = M~'N, ¢ = M~'b, and the original
linear system is equivalent to

Az =c, where A=M YA=1-T, ¢=M"b. (1)
We assume that A and M are such that 7' > 0 and is convergent, i.e., that
p=pT) <1,

and that the spectrum spec(A) is in R*. That is, we are assuming that A=M-N
is a convergent weak splitting with the additional property that the spectrum of T is
real. This includes of course the Jacobi and block Jacobi methods. In other words,
with this splitting, a standard iterative method would be as follows. Given zV, for
k=0,1,..., compute
o = T2k e (2)
2
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We note then that if we denote Ay and Apax the smallest and largest eigenvalue
of A we have
Amin = 1—/0, Amax < 1+P

We also assume that T is irreducible, so that we have a positive Perron vector
w > 0 with Tw = pw. (If T is reducible, we can consider small irreducible perturba-
tions T 4 eee* with e = [1,...,1]* of T and then go to the limit in the usual way, but
we do not elaborate on this here.)

3. First order Richardson. The first order Richardson method consists of
taking a linear combination of the previous iteration with that which would come
from the standard iteration (2). This method can be seen as the simplest case of
semi-iterative methods [6, 7, 18], and thus the sum of the coefficients of the linear
combination must add up to one, since otherwise the method cannot produce iterates
that converge towards A~1b.!

We first consider the case where the parameter o defining the Richardson iteration
is fixed for all iterations. This is a stationary iteration. We consider later the case
where o« = ay, a nonstationary iteration.

This is the (synchronous) iteration

2 = (1 —a)zf + (T2 + ¢) = 2% + afe — (I — T)2"] = 2% + ar®, 3)

where 7¥ = ¢ — (I — T)x* is the residual of the equivalent system (1)

The convergence analysis of this synchronous method consists of analyzing the
spectral radius of the iteration matrix T, = (1 —a)l+aT =1 —a(I —-T) = I — aA.
Let p € spec(Ty,), then, p =1 — o+ aX, with A € spec(T), i.e.,, A € [—p, p].

The convergence analysis of the synchronous method is straight-forward and well-
known.

THEOREM 1. We have that
(i) iteration (3) converges if a € (0, TQM),
(i) the optimal choice is & = 2/(Amin + Amax) i1 the sense that this choice mini-
mizes p(Ty,),
(iii) the optimal choice w.r.t. the information spec(4) C [a,b], a > 0 is a =
2/(a+10).

Proof. We have spec(T,) = {1 — aX: X € spec(A)} and thus
p(T(X) = max{|1 - a)‘min|a |1 - a)\max|}~

From this we see that p(T,) < 1iff @ € (0, +2—), which is (i), and that p(T,) is
minimal if 1 — @Amin = — (1 — @Amax) which gives (ii). Part (iii) follows from equating

1 — aa with —(1 — ab). |

Note that in our situation we know spec(A4) C [1 — p,1 + p|, and the optimal «
w.r.t. this information is o = 1.

For the asynchronous iteration we have to analyze when p(|T,|) < 1 [9], and we
do so by showing that |T,|w < vw for some v € [0,1), w > 0 the Perron vector of T.
That is, we show that the weighted-max norm ||T,||w < 1. The underlying vector

norm || - ||, is defined for any positive vector w as ||v||, = max; Vi

%

LGene Golub in his thesis [12] calls this a method of averaging, following the nomenclature used
by von Neumann.
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THEOREM 2. We have p(|T,]) <1 ifa € (0
Proof. We have

2
, 1+p)’ where o > 1.

Tolw < |1 —alw+aTw=(|1—-a|+ap)w=rw with v=|1— | + ap.

ForO<a<lwehave0<v=(1-a)+pa=1—a(l—p) <1, andf0r1<a<m

wehave 0 <v=(a—1)+pa=(14+pa—-1<1. 0

We note that a = 1, the optimal parameter one obtains assuming that spec(A) C
[1 — p,1+ p] is covered by this theorem.

We discuss now the case in which o = ay, i.e., the case, where the first order
Richardson parameter changes from one iteration to the next. As long as
0<ap < 135 + , the “non-stationary” asynchronous method converges as well, using
[9, Corollary 3.2]. In fact, using the latter result, we have the following theorem.

THEOREM 3. Let Ty, : C" — C", k € N be a pool of linear operators sharing the
same fized point x* = A~'b and being all contractive w.r.t. this fized point in the same
weighted maz-norm, i.e., | Ty — x* || < Y|l — 2| for allz € C™. If0 <y, <y <1
for some v € [0,1), then the asynchronous iterations which at each step picks one of
the operators form the pool as its iteration operator, produces iterates which converge
to z*.

The result for non-stationary first order Richardson follows by taking as w the
Perron vector of T" and by observing with Ty, = (1 — ag)l + axT we have that
(1 —ap) ] +arT| <|1—oap|+ap <|l—a|+ap<1.

4. Second order Richardson. The second order Richardson is the semi-
iterative method one obtains with the linear combination of the standard iteration
(2) with the two previous iterations. Again, all coefficients have to add up to one.
Equivalently, one can take a linear combination of the first order Richardson iteration
(3) with the previous step, as follows

2 = (14 8)[(1 — a)2® + (T2 + ¢)] — Ba*~!
= —BzF 1 4 (1 + B)zk + (1 + Ba[—z" + Ta* + ¢)]
=t B )+ (L Bale — (1~ T
= ok 4 B(a — 2P + (1 + Bale — Ar*) (1)
=1+8)U - aA) b BrF 4 (14 Bac, k=1,2,....

One needs to prescribe ! as well as z°, and one can use one step of (2) or one

step of first order Richardson [12].

The results to come are less nice than those for first order Richardson, since we can
show the convergence of asynchronous second order Richardson only for parameter
values which are quite far from the optimal ones.

We can write the three-term recurrence in (4) using a matrix of doubled size as
follows, cf. [22],

[az’f“} _ [(1+6)(I—0u4) —ﬁl} H 1] N {(Hﬂ)ac}

xk I 0

=Ta,8

We find in the literature for the synchronous implementation of (4) two approaches
to analyze its convergence. Following [22], we note that the if X is an eigenvalue of

4
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T, 5 with eigenvector (s7,tT)T, then, s = M, and (1 + B)[(I — ad)]s — Bt = As,
that is, (1 + B)(I — aA)Xt — Bt = A\%t. Thus, assuming that ¢ # 0, this implies that
det[(1+ B)(I — aA)X — BI — X\2I] = 0, so that for u € spec(A), the eigenvalues of T, s
must satisfy the quadratic equation

M= (1+8)(1—au)+B=0. (5)

Figure 1 (first column) plots the spectral radius of T, g for three examples.
Frankel [8] shows that the parameters o and § minimizing the maximum of these
2

polynomials is given by a = 2/(a 4+ b), and § = (ﬁ;ﬁ) = ¢2, for A assumed to
have spec(A) C [a,b] with a > 0. In other words, these parameters are optimal in the
sense that they minimize p(T, ), the spectral radius of the iteration operator.

On the other hand, if one uses these optimal parameters, Golub [12] (see also
[13]) used the recurrence of the polynomials defining (4) to bound the 2-norm of the
error as follows

* 17(]2 *
ot~ < o (14 ) e = o7l (©)

where z* is the solution of (1).
In summary, the following is known for the synchronous iteration.

THEOREM 4. We have
(i) The optimal parameters w.r.t. the information spec(A) C [a, b] with a > 0 are

2 2
a=2/(a+b) and B = (a%l:;m) = (‘\/fgjrﬁ) .
(i1) With these parameters, the asymptotic convergence factor p(Ta g) is given in
(6).
For the asynchronous second order Richardson, the following theorem proves con-
vergence for certain ranges for o and f.

THEOREM 5. We have p(|Ta,8|) < 1, provided
>0 and |14 B|(|1 — a| + ap) + 8] < 1. (7)

Before we prove the theorem, consider the case &« = 1. Then the theorem states that
asynchronous iterations converge for —1 < g < ;—p, as can be seen from considering
the two cases § > 0 and —1 < 8 < 0 separately. If the information about the spectral
interval is spec(A4) C [1 — p, 1 + p], the optimal « from Theorem 4 is precisely a = 1,
and the corresponding optimal 8 will be close to 1 for p close to 1, whereas 1 — p, the
bound for 8 from (7) for o = 1, will be close to 0.

Proof of Theorem 5. Let v > 1 and consider the vector [y, ]. Then, if & > 0, we have

o[ 2] = [P e B ]

yw I 0 Yw
_ [(I1+ﬁ|~(|1—a|+ap)+|ﬁ7)w] <o {w}
w yw|’
with
o = max{L, [1+ 8] - (11 - o] +ap) + |817}. ®)

Now, if |1+ 8](]1 — a| + ap) + |B] < 1, choose v > 1 close enough to 1 such that we
have |1 + B8|(]1 — | + ap) + v|8| < 1, which gives o < 1 in (8). O
5
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We note that for 8 < —1, the inequality |1+ 8|(]1 — a| + ap) +|8| < 1 cannot be
fulfilled. Denoting v := |1 — o + ap we can distinguish the two cases 0 < v < 1 and
v > 1. In the first case, we obtain that |1+ Slv + 8] < 1if -1 < g < ;—Z In the
second case, there is no § which satisfies the inequality.

We want to study the eigenvalues of |1, g|. We follow the same development as

before for T;, 3 and write:
s s

Looking at the second block row of |T,, g|, we conclude that for the eigenvalue A it
must hold that s = At.
Now, the first block row reads:

(11 + BI|I — aA|X +|B|T — N21)t = 0.

This means that
det(|1+ B||I — a AN+ |B|I — N21) = 0.

For every eigenvalue p = p; of |[I — aA| we then have that A satisfies the quadratic
equation

N2 |1+ Blud — |8 = 0. (9)
Figure 1 (second column) plots the spectral radius of |T, g| for three examples.

5. An additional result. The following result shows how to find a starting
vector for an asynchronous iteration that diverges. The setting here is T > 0 and
p(T) > 1.

THEOREM 6. Assum_e that T > 0 and that p(T) > 1. Then for any asynchronous
iteration (i.c., choice of sj(k) and Ji, defined in Section 1) there exists a starting error
e such that the iteration does not reduce the error to 0.

Proof. Let w > 0 be a vector for which Tw > cw with ¢ > 1. Such w exists, take
it as the Perron vector of T'+ ¢FE, E the matrix of all ones, for € > 0 sufficiently small.
Assume that the initial error satisfies e® > w, and that, inductively, the all errors e
to the k — 1st satisfy e/ > w. Then, for those components i € I;, that we update in
time instant k we have
ek = Ti(e‘;i(k), .. .,effl(k))T > Tow > w;,

?

where the s’ (k) < k — 1. Consequently, e* > w. O

6. Discussion. For the second order Richardson method, Figure 1 plots the
contours of the spectral radius of T, g (synchronous case) and of |T, g| (asynchronous
case) as a function of o and  when Apin(A) = 1 — p and Apax(A4) = 1+ p, for p
equal to 0.1, 0.5, and 0.9. The spectral radii were computed from the roots of the
polynomials (5) and (9). In our setting, the optimal « is always 1.

In the synchronous case, as p increases, the optimal value of 8 increases from near
0 toward 1.

The plots for the asynchronous case are best explained in terms of the plots for the
synchronous case. When 8 < 0, p(|Tw,g|) and p(T,,5) appear to be the same. When
B >0, it appears that p(|Ta g|) > p(Ta,5). In particular, the region where the spectral
radius is less than 1 is smaller in the asynchronous case than in the synchronous case.

6
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synchronous, p=0.1 asynchronous, p=0.1

B &
synchronous, p=0.5 asynchronous, p=0.5

F16. 1.  Spectral radius of T g (synchronous case) and of |Ty g| (asynchronous case) as a
function of o and 8 when Amin(A) =1 — p and Amax(A) = 1+ p, for three values of p.
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The effect is that the asynchronous method has an optimal value for 8 of 0, which
corresponds to the first order method. Here, optimal means minimizing p(|T4.8]),
although p(|T.,5|) is only correctly used to ascertain asymptotic convergence and
does not directly correspond to any convergence rate.

Consider p = 0.5. For the synchronous case, the optimal g is approximately
0.0718. Although the asynchronous method can converge for this value of 3, the
value of 0 gives a lower value of p(|T4,g|). Now consider p = 0.9. For the synchronous
case, the optimal S is approximately 0.3929. The asynchronous method has spectral
radius greater than 1 for this value of 5. To guarantee convergence, the asynchronous
method must use a very small value of .

These results are quite negative for the asynchronous second order method. How-
ever, in practice, the situation could be more favorable. The condition p(|T,,g|) < 1
for the asynchronous method guarantees that the method will converge for any initial
vector and any sequence of asynchronous iterations, i.e., with any choice of specific
delays, k — s; (k), and any choice of when components are updated (satisfying natural
conditions). In practice, the asynchronous method may converge despite p(|T,,3]) > 1.
One could imagine that the “degree of asynchrony” affects the convergence of the
asynchronous method, and we explore this next with numerical experiments.

7. Numerical behavior. The asynchronous first and second order Richardson
methods were implemented in parallel using multithreading and shared memory. Tests
were run on a dual processor Intel Xeon computer with a total of 20 cores. The threads
were pinned to the cores using “scatter” thread affinity.

The test matrix is the standard finite difference Laplacian matrix on a 100 x 100
grid of unknowns, scaled so that its diagonal is all ones. This matrix satisfies the
setting of this paper so that p(T) < 1, T > 0, and T is irreducible. A single right-
hand side was chosen randomly and uniformly from (—0.5,0.5) and was the same for
all tests. The initial vector was zero.

Different numbers of threads were used. Each thread was assigned approximately
the same number unknowns to update. The iterations performed by each thread
were terminated when the all the unknowns were updated an average of 500 times.
Because the threads operate asynchronously, the number of updates performed on each
unknown is generally different. We refer to the difference between the largest number
of updates and the smallest number of updates as the range. When the iterations are
terminated, we measure the residual norm relative to the initial residual norm. The
residual norm is not calculated during the iterations, as such calculations involving
dot products induce synchronization in the method.

7.1. First order Richardson. For the asynchronous first order Richardson
method, Table 1 shows the convergence results for different numbers of threads. For
the given matrix, the optimal « is 1. For each number of threads, the method was
run 100 times. Columns 2 and 3 of the table show the average range, and the average
relative residual norm when the asynchronous iterations were terminated. For compar-
ison, the relative residual norm attained after 500 iterations of the synchronous first
order Richardson method is 1.691939e-02. Evidently, the convergence of the asyn-
chronous method is better than the convergence of the synchronous method. This
perhaps nonintuitive result is due to the fact that the asynchronous method has a
multiplicative effect [19, 20], i.e., unknowns are not all updated at the same time, and
when unknowns are updated, they are immediately available to other threads. Indeed,
for a single thread, the asynchronous method corresponds to Gauss-Seidel, giving a
relative residual norm of 7.421009e-03 which is lower than that of the synchronous

8
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TABLE 1
Asynchronous first order Richardson for different numbers of threads. For comparison, the
synchronous method attains an average relative residual norm of 1.691939e-02 for all numbers of
threads. Timings for the asynchronous and synchronous methods are also given.

number of average  average rel. async sync
threads range resid. norm  time (s)  time (s)
1 0.0 7.421009e-03  0.060177  0.048345
2 17.1 7.491060e-03  0.034049  0.030291
3 76.1 7.686441e-03  0.022664  0.020642
4 98.3 7.624358e-03  0.018009  0.017360
5 129.6 7.940683e-03  0.015023  0.015171
6 138.1 7.902309e-03  0.012898  0.012751
7 144.6 8.021550e-03  0.011334  0.012374
8 172.2 8.149458e-03  0.010997  0.012067

9 240.4 8.500669e-03  0.010039  0.010737
10 191.4 8.248697e-03  0.009339  0.010642
11 222.4 8.363452e-03  0.009225  0.010741
12 215.5 8.311822e-03  0.008861  0.010590
13 248.9 8.450671e-03  0.009132  0.010339
14 227.7 8.416794e-03  0.007867  0.009669
15 253.7 8.403988e-03  0.009014  0.009998
16 292.2 8.610365e-03  0.008414  0.009871
17 284.6 8.530868e-03  0.008179  0.009668
18 305.9 8.573682e-03  0.007307  0.009660
19 288.4 8.445288e-03  0.007020  0.009496
20 297.3 8.448706e-03  0.007200  0.009249

method, which corresponds to the Jacobi method. As the number of threads is in-
creased, convergence generally worsens slightly as the method departs from a pure
Gauss-Seidel method. The convergence is always better than the convergence of the
synchronous method for all numbers of threads tested.

The table also shows timings for the asynchronous method and the synchronous
method different numbers of threads. For small numbers of threads, the synchronous
method is faster in performing 500 iterations than the asynchronous method in per-
forming an average of 500 iterations by each thread. This can be explained by two
factors: (1) the asynchronous method has more work to do because each thread, af-
ter each iteration, needs to count how many iterations have been performed by other
threads in order to decide whether to terminate, and (2) the asynchronous method has
more write invalidations of cache lines compared to the synchronous method which
writes new values of x to a separate array. However, for large numbers of threads,
despite these two factors, the asynchronous method is faster, due to the elimination
of thread synchronization. The overhead of threads waiting for other threads in the
synchronous method is evidently larger when more threads are used.

7.2. Second order Richardson. For the asynchronous second order Richard-
son method, Table 2 shows the convergence results for different numbers of threads
using the values @« = 1 and 8 =~ 0.93968 which are optimal for the synchronous
method. For these values, the asynchronous method is not guaranteed to converge.
For each number of threads, the method was run 100 times. The table shows the
average range, the average relative residual norm, and the number of failures, which
is the number of times the relative residual norm is greater than unity in the 100 runs.

When a single thread is used, the asynchronous method is mathematically iden-
tical to the synchronous method. When a small number of threads was used, the
asynchronous method always converged in the 100 runs, with a degradation in the

9
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TABLE 2
Asynchronous second order Richardson for different numbers of threads. The parameter values
a =1 and B ~ 0.93968 that were used are optimal for synchronous iterations. For comparison, the
synchronous method attains an average relative residual norm of 1.258388e-07 for all numbers of
threads. Timings for the asynchronous and synchronous methods are also given.

number of  average average rel. number of async sync
threads range resid. norm failures time (s)  time (s)
1 0.0 1.258388e-07 0 0.053275  0.052961
2 40.8 4.235170e-07 0 0.031146  0.032542
3 104.3 6.175605e-06 0 0.019592  0.023368
4 115.7 1.444428e-05 0 0.016493  0.018801
5 166.0 1.495107e-04 0 0.013533  0.017519
6 163.0 4.524130e-04 0 0.011563  0.014606
7 200.1 1.868556e-03 0 0.010649  0.013078
8 151.5 9.259216e-03 0 0.009794  0.012843
9 246.0 4.035731e-02 1 0.008917  0.012560
10 203.2 1.088207e-01 1 0.009000  0.012371
11 209.4 4.582844e-01 21 0.008972  0.011905
12 185.5 1.678645e+00 25 0.008397  0.011527
13 227.6 1.046313e4-01 32 0.008216  0.011698
14 205.9 3.971405e+4-01 43 0.007081  0.010863
15 239.3 5.207066e+02 35 0.007568  0.010828
16 166.8 2.317140e+02 24 0.007101  0.011470
17 226.3 3.303636e+01 22 0.006217  0.011161
18 191.8 6.415417e+01 30 0.005972  0.010969
19 237.6 2.377968e+-01 23 0.006237  0.011147
20 173.8 3.136173e+4-01 46 0.006614  0.011012

“convergence rate” as the number of threads is increased. What we mean here with
convergence rate is how small is the residual when the termination criterion is satisfied.
When a larger number of threads was used, the number of failures of the asynchronous
method generally increases. This is due to an increased degree of asynchrony, which
is somewhat reflected by the increasing average range.

The table also shows timings for the asynchronous and synchronous second order
Richardson methods. The asynchronous method is faster when more than 1 thread is
used, and the difference is generally larger when more threads are used.

To attempt to make the asynchronous method more robust, we test using a smaller
value of 5. This is analogous to underestimating the bounds of the spectrum in the
inexact Chebyshev method [11]. Table 3 shows the convergence results using o = 1
and S = 0.9. With this value of 3, the asynchronous method is still not guaranteed
to converge, but it can be observed that convergence is always obtained in the 100
runs for each number of threads. However, the convergence rate is degraded for this
choice of 3, i.e., compared to Table 2 when a small number of threads is used.

Comparing the asynchronous first and second order Richardson methods, the
second order method can converge faster than the first order method. Convergence
can be reliable although it is not guaranteed. In this example, the asynchronous
method for second order Richardson, as reported in Table 3, is about 30% faster than
the synchronous first order method.

8. Conclusion. Except to say whether or not an asynchronous iterative method
will converge in the asymptotic limit, the convergence behavior of these methods is
strongly problem-dependent and computer platform-dependent and not well covered
by theory. For the first and second order Richardson methods, in the setting where
p(T) <1, T >0, and T is irreducible, this paper provides a description of the pa-
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TABLE 3
Asynchronous second order Richardson for different numbers of threads. Parameter values:
a=1and g =0.9.

number of  average average rel. number of time
threads range resid. norm failures (sec.)
1 0.0 9.566179e-05 0 0.053059
2 47.7 1.032052e-04 0 0.030998
3 105.8 1.802432e-04 0 0.019752
4 122.3 1.499666e-04 0 0.016426
5 148.3 2.081259e-04 0 0.013676
6 154.7 2.091337e-04 0 0.011510
7 208.8 2.745261e-04 0 0.010352
8 182.9 2.802124e-04 0 0.010104
9 230.9 3.434991e-04 0 0.009003
10 190.7 2.701899e-04 0 0.008824
11 185.7 3.500390e-04 0 0.008086
12 154.8 3.445788e-04 0 0.008059
13 198.9 6.526787e-04 0 0.008342
14 219.4 2.479312e-03 0 0.007052
15 212.1 8.821667e-03 0 0.008112
16 158.8 2.594421e-03 0 0.006902
17 227.1 1.113219e-03 0 0.006715
18 191.0 6.389028e-03 0 0.006050
19 227.5 1.464582e-03 0 0.006365
20 173.2 4.955854e-03 0 0.006487

rameter values for which the asynchronous versions of these methods are guaranteed
to converge. Numerically, however, we find that this theoretical description can give
a pessimistic view of asynchronous iterative methods. For a standard test problem, a
multithreaded parallel implementation of asynchronous iterations can converge reli-
ably in cases where it is theoretically possible for such iterations to diverge. How likely
divergence will occur depends on the degree of asynchrony in the computation, which
is difficult to quantify. A possible theoretical approach is to analyze asynchronous
iterative methods as randomized algorithms [1].

Although we did not demonstrate it here, asynchronous iterative methods can
give much lower time-to-solution than their synchronous counterparts when the com-
putation is effectively unbalanced among the processing units. In such cases where the
synchronization costs are large, the asynchronous second order Richardson method
could still be used effectively with an appropriate choice of parameter values if the
degree of asynchrony is controlled.
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