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Abstract. We consider asynchronous versions of the first and second order Richardson methods4
for solving linear systems of equations. These methods depend on parameters which are chosen a5
priori. We explore the parameter values that can be proven to give convergence of the asynchronous6
methods. This is the first such analysis for asynchronous second order methods. We find that7
for the first order method, the optimal parameter value for the synchronous case also gives an8
asynchronously convergent method. For second order method, the parameter ranges for which we9
can prove asynchronous convergence do not contain the optimal parameters for the synchronous10
iteration. In practice, however, the asynchronous second order iterations may still converge using11
the optimal parameter values, or close to the optimal parameter values, despite this result. We12
explore this behavior with a multithreaded parallel implementation of the asynchronous methods.13
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1. Introduction. A parallel asynchronous iterative method for solving a sys-16

tem of equations is a fixed-point iteration in which processors do not synchronize17

at the end of each iteration. Instead, processors proceed iterating with the latest18

data that is available from other processors. Running an iterative method in such19

an asynchronous fashion may reduce solution time when there is an imbalance of the20

effective load between the processors because fast processors do not need to wait for21

slow processors. Solution time may also be reduced when interprocessor communica-22

tion costs are high because computation continues while communication takes place.23

However, the convergence properties of a synchronous iterative method are changed24

when running the method asynchronously.25

Consider the n-by-n system of equations x = G(x) which can be written in scalar26

form as xi = gi(x), i = 1, . . . , n. An asynchronous iterative method for solving this27

system of equations can be defined mathematically as the sequence of updates [2, 3, 5],28

xki =

{
xk−1i , if i /∈ Jk
gi(x

si1(k)
1 , x

si2(k)
2 , . . . , x

sin(k)
n ), if i ∈ Jk

29

where xki denotes xi at time instant k, Jk is the set of indices updated at instant k,30

and sij(k) ≤ k − 1 is the instant that xj is read when computing gi at instant k. We31

point out that (a) not all updates are performed at the same time instant, and (b)32

updates may use stale information, which models communication delays in reading or33

writing.34

With some natural assumptions on the sequence of updates above, much work35

has been done on showing the conditions under which asynchronous iterative methods36

converge; see the survey [9]. For linear systems, asynchronous iterations converge for37

any initial vector if and only if ρ(|T |) < 1, where T is the iteration matrix for the38

standard, synchronous iterations, and | · | is taken elementwise. Since ρ(T ) ≤ ρ(|T |),39
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it appears that the condition for convergence of asynchronous iterations is more strict40

than that of synchronous iterations.41

For linear systems, asynchronous iterative methods that are based on the Jacobi42

or block Jacobi splitting have been extensively studied (for some recent references,43

see [4, 14, 19, 20]), although these splittings generally give slow convergence. In this44

paper, we consider first and second order Richardson methods [16]. With estimates45

on the bounds of the spectrum of a problem, the second order Richardson method,46

in particular, converges rapidly. This paper explores the parameter values that can47

be proven to give convergence of asynchronous Richardson methods. This is the first48

such analysis for asynchronous second order methods.49

Statements about the rate of convergence, however, cannot be made without a50

description of the sets Jk and sij(k). Such sets depend on properties of the par-51

allel computation, including how the problem is partitioned among the processors,52

and computer characteristics such as computation speed and interprocessor commu-53

nication latency and bandwidth. Indeed, one can imagine that in an asynchronous54

computation where communication is fast and the workload is balanced, the asyn-55

chronous computation may behave very much like the synchronous computation. In56

this paper, we also demonstrate the actual behavior of asynchronous first and sec-57

ond order Richardson methods using a parallel multithreaded implementation of the58

methods.59

Our theoretical and experimental results are suggestive for an asynchronous ver-60

sion of the Chebyshev semi-iterative method. The Chebyshev method can be regarded61

as the non-stationary counterpart of the stationary method which is the second or-62

der Richardson method. If one uses the optimal parameter values in second order63

Richardson, i.e., the parameter values that minimize the spectral radius of the iter-64

ation operator, then, asymptotically, both second order Richardson and Chebychev65

iterations have the same convergence rate [13]. For a short historical description of66

the development of these methods, see [17]. Unlike Krylov subspace methods, the sec-67

ond order Richardson and Chebyshev methods do not require inner products, which68

allows the possibility of executing these methods asynchronously.69

In recent related work, asynchronous versions of Schwarz and optimized Schwarz70

methods have been developed [10, 15, 21].71

2. The setting. We consider72

Âx = b̂, Â ∈ Cn×n, b̂ ∈ Cn.73

From the beginning, we assume that this system is preconditioned with a nonsingular74

matrix M , that is, we have Â = M − N , T = M−1N , c = M−1b̂, and the original75

linear system is equivalent to76

Ax = c, where A = M−1Â = I − T, c = M−1b̂. (1)77

We assume that A and M are such that T ≥ 0 and is convergent, i.e., that78

ρ = ρ(T ) < 1,79

and that the spectrum spec(A) is in R+. That is, we are assuming that Â = M −N80

is a convergent weak splitting with the additional property that the spectrum of T is81

real. This includes of course the Jacobi and block Jacobi methods. In other words,82

with this splitting, a standard iterative method would be as follows. Given x0, for83

k = 0, 1, . . ., compute84

xk+1 = Txk + c. (2)85
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We note then that if we denote λmin and λmax the smallest and largest eigenvalue86

of A we have87

λmin = 1− ρ, λmax ≤ 1 + ρ.88

We also assume that T is irreducible, so that we have a positive Perron vector89

w > 0 with Tw = ρw. (If T is reducible, we can consider small irreducible perturba-90

tions T + εee∗ with e = [1, . . . , 1]∗ of T and then go to the limit in the usual way, but91

we do not elaborate on this here.)92

3. First order Richardson. The first order Richardson method consists of93

taking a linear combination of the previous iteration with that which would come94

from the standard iteration (2). This method can be seen as the simplest case of95

semi-iterative methods [6, 7, 18], and thus the sum of the coefficients of the linear96

combination must add up to one, since otherwise the method cannot produce iterates97

that converge towards A−1b.198

We first consider the case where the parameter α defining the Richardson iteration99

is fixed for all iterations. This is a stationary iteration. We consider later the case100

where α = αk, a nonstationary iteration.101

This is the (synchronous) iteration102

xk+1 = (1− α)xk + α(Txk + c) = xk + α[c− (I − T )xk] = xk + αrk, (3)103

where rk = c− (I − T )xk is the residual of the equivalent system (1)104

The convergence analysis of this synchronous method consists of analyzing the105

spectral radius of the iteration matrix Tα = (1− α)I + αT = I − α(I − T ) = I − αA.106

Let µ ∈ spec(Tα), then, µ = 1− α+ αλ, with λ ∈ spec(T ), i.e., λ ∈ [−ρ, ρ].107

The convergence analysis of the synchronous method is straight-forward and well-108

known.109

Theorem 1. We have that110

(i) iteration (3) converges if α ∈ (0, 2
λmax

),111

(ii) the optimal choice is α = 2/(λmin + λmax) in the sense that this choice mini-112

mizes ρ(Tα),113

(iii) the optimal choice w.r.t. the information spec(A) ⊂ [a, b], a > 0 is α =114

2/(a+ b).115

Proof. We have spec(Tα) = {1− αλ : λ ∈ spec(A)} and thus116

ρ(Tα) = max{|1− αλmin|, |1− αλmax|}.117

From this we see that ρ(Tα) < 1 iff α ∈ (0, 2
λmax

), which is (i), and that ρ(Tα) is118

minimal if 1−αλmin = −(1−αλmax) which gives (ii). Part (iii) follows from equating119

1− αa with −(1− αb).120

Note that in our situation we know spec(A) ⊂ [1 − ρ, 1 + ρ], and the optimal α121

w.r.t. this information is α = 1.122

For the asynchronous iteration we have to analyze when ρ(|Tα|) < 1 [9], and we123

do so by showing that |Tα|w ≤ νw for some ν ∈ [0, 1), w > 0 the Perron vector of T .124

That is, we show that the weighted-max norm ‖Tα‖w < 1. The underlying vector125

norm ‖ · ‖w is defined for any positive vector w as ‖v‖w = maxi
|vi|
wi

.126

1Gene Golub in his thesis [12] calls this a method of averaging, following the nomenclature used
by von Neumann.
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Theorem 2. We have ρ(|Tα|) < 1 if α ∈ (0, 2
1+ρ ), where 2

1+ρ > 1.127

Proof. We have128

|Tα|w ≤ |1− α|w + αTw = (|1− α|+ αρ)w = νw with ν = |1− α|+ αρ.129

For 0 < α ≤ 1 we have 0 ≤ ν = (1−α) + ρα = 1−α(1− ρ) < 1, and for 1 < α < 2
1+ρ130

we have 0 < ν = (α− 1) + ρα = (1 + ρ)α− 1 < 1.131

We note that α = 1, the optimal parameter one obtains assuming that spec(A) ⊆132

[1− ρ, 1 + ρ] is covered by this theorem.133

We discuss now the case in which α = αk, i.e., the case, where the first order134

Richardson parameter changes from one iteration to the next. As long as135

0 < αk <
2

1+ρ , the “non-stationary” asynchronous method converges as well, using136

[9, Corollary 3.2]. In fact, using the latter result, we have the following theorem.137

Theorem 3. Let Tk : Cn → Cn, k ∈ N be a pool of linear operators sharing the138

same fixed point x∗ = A−1b and being all contractive w.r.t. this fixed point in the same139

weighted max-norm, i.e., ‖Tk − x∗‖w ≤ γk‖x− x∗‖ for all x ∈ Cn. If 0 ≤ γk ≤ γ < 1140

for some γ ∈ [0, 1), then the asynchronous iterations which at each step picks one of141

the operators form the pool as its iteration operator, produces iterates which converge142

to x∗.143

The result for non-stationary first order Richardson follows by taking as w the144

Perron vector of T and by observing with Tk = (1 − αk)I + αkT we have that145

‖(1− αk)I + αkT‖ ≤ |1− αk|+ αkρ < |1− α|+ αρ < 1.146

4. Second order Richardson. The second order Richardson is the semi-147

iterative method one obtains with the linear combination of the standard iteration148

(2) with the two previous iterations. Again, all coefficients have to add up to one.149

Equivalently, one can take a linear combination of the first order Richardson iteration150

(3) with the previous step, as follows151

xk+1 = (1 + β)[(1− α)xk + α(Txk + c)]− βxk−1152

= −βxk−1 + (1 + β)xk + (1 + β)α[−xk + Txk + c)]153

= xk − β(xk−1 − xk) + (1 + β)α[c− (I − T )xk)]154

= xk + β(xk − xk−1) + (1 + β)α(c−Axk) (4)155

= (1 + β)(I − αA)xk − βxk−1 + (1 + β)αc, k = 1, 2, . . . .156

One needs to prescribe x1 as well as x0, and one can use one step of (2) or one157

step of first order Richardson [12].158

The results to come are less nice than those for first order Richardson, since we can159

show the convergence of asynchronous second order Richardson only for parameter160

values which are quite far from the optimal ones.161

We can write the three-term recurrence in (4) using a matrix of doubled size as162

follows, cf. [22],163 [
xk+1

xk

]
=

[
(1 + β)(I − αA) −βI

I 0

]
︸ ︷︷ ︸

:=Tα,β

[
xk

xk−1

]
+

[
(1 + β)αc

0

]
·164

We find in the literature for the synchronous implementation of (4) two approaches165

to analyze its convergence. Following [22], we note that the if λ is an eigenvalue of166
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Tα,β with eigenvector (sT , tT )T , then, s = λt, and (1 + β)[(I − αA)]s − βt = λs,167

that is, (1 + β)(I − αA)λt − βt = λ2t. Thus, assuming that t 6= 0, this implies that168

det[(1 +β)(I −αA)λ−βI −λ2I] = 0, so that for µ ∈ spec(A), the eigenvalues of Tα,β169

must satisfy the quadratic equation170

λ2 − (1 + β)(1− αµ)λ+ β = 0. (5)171

Figure 1 (first column) plots the spectral radius of Tα,β for three examples.172

Frankel [8] shows that the parameters α and β minimizing the maximum of these173

polynomials is given by α = 2/(a + b), and β =
(√

b−
√
a√

b+
√
a

)2
:= q2, for A assumed to174

have spec(A) ⊂ [a, b] with a > 0. In other words, these parameters are optimal in the175

sense that they minimize ρ(Tα,β), the spectral radius of the iteration operator.176

On the other hand, if one uses these optimal parameters, Golub [12] (see also177

[13]) used the recurrence of the polynomials defining (4) to bound the 2-norm of the178

error as follows179

‖xk − x∗‖2 ≤
[
qk
(

1 + k
1− q2

1 + q2

)]
‖x0 − x∗‖2, (6)180

where x∗ is the solution of (1).181

In summary, the following is known for the synchronous iteration.182

Theorem 4. We have183

(i) The optimal parameters w.r.t. the information spec(A) ⊂ [a, b] with a > 0 are184

α = 2/(a+ b) and β =
(

b−a
a+b+2

√
ab

)2
=
(√

b−
√
a√

b+
√
a

)2
.185

(ii) With these parameters, the asymptotic convergence factor ρ(Tα,β) is given in186

(6).187

For the asynchronous second order Richardson, the following theorem proves con-188

vergence for certain ranges for α and β.189

Theorem 5. We have ρ(|Tα,β |) < 1, provided190

α > 0 and |1 + β|(|1− α|+ αρ) + |β| < 1. (7)191

Before we prove the theorem, consider the case α = 1. Then the theorem states that192

asynchronous iterations converge for −1 ≤ β < 1−ρ
1+ρ , as can be seen from considering193

the two cases β ≥ 0 and −1 < β < 0 separately. If the information about the spectral194

interval is spec(A) ⊂ [1− ρ, 1 + ρ], the optimal α from Theorem 4 is precisely α = 1,195

and the corresponding optimal β will be close to 1 for ρ close to 1, whereas 1− ρ, the196

bound for β from (7) for α = 1, will be close to 0.197

Proof of Theorem 5. Let γ > 1 and consider the vector [ wγw ]. Then, if α > 0, we have198

|Tα,β |
[
w
γw

]
=

[
|1 + β| · |I − αA| |β|I

I 0

] [
w
γw

]
199

=

[
(|1 + β| · (|1− α|+ αρ) + |β|γ)w

w

]
< σ

[
w
γw

]
,200

with201

σ = max{ 1γ , |1 + β| · (|1− α|+ αρ) + |β|γ}. (8)202

Now, if |1 + β|(|1− α|+ αρ) + |β| < 1, choose γ > 1 close enough to 1 such that we203

have |1 + β|(|1− α|+ αρ) + γ|β| < 1, which gives σ < 1 in (8).204
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We note that for β < −1, the inequality |1 + β|(|1−α|+αρ) + |β| < 1 cannot be205

fulfilled. Denoting ν := |1− α|+ αρ we can distinguish the two cases 0 ≤ ν < 1 and206

ν ≥ 1. In the first case, we obtain that |1 + β|ν + |β| < 1 if −1 ≤ β < 1−ν
1+ν . In the207

second case, there is no β which satisfies the inequality.208

We want to study the eigenvalues of |Tα,β |. We follow the same development as
before for Tα,β and write:

|Tα,β |
[
s
t

]
= λ

[
s
t

]
.

Looking at the second block row of |Tα,β |, we conclude that for the eigenvalue λ it209

must hold that s = λt.210

Now, the first block row reads:

(|1 + β||I − αA|λ+ |β|I − λ2I)t = 0.

This means that
det(|1 + β||I − αA|λ+ |β|I − λ2I) = 0.

For every eigenvalue µ = µi of |I − αA| we then have that λ satisfies the quadratic211

equation212

λ2 − |1 + β|µλ− |β| = 0. (9)213

Figure 1 (second column) plots the spectral radius of |Tα,β | for three examples.214

5. An additional result. The following result shows how to find a starting215

vector for an asynchronous iteration that diverges. The setting here is T ≥ 0 and216

ρ(T ) > 1.217

Theorem 6. Assume that T ≥ 0 and that ρ(T ) > 1. Then for any asynchronous218

iteration (i.e., choice of sij(k) and Jk defined in Section 1) there exists a starting error219

e0 such that the iteration does not reduce the error to 0.220

Proof. Let w > 0 be a vector for which Tw ≥ σw with σ > 1. Such w exists, take221

it as the Perron vector of T + εE, E the matrix of all ones, for ε > 0 sufficiently small.222

Assume that the initial error satisfies e0 ≥ w, and that, inductively, the all errors e`223

to the k − 1st satisfy e` ≥ w. Then, for those components i ∈ Ik that we update in224

time instant k we have225

eki = Ti(e
si1(k)
1 , . . . , e

sin(k)
n )T ≥ Tiw ≥ wi,226

where the sij(k) ≤ k − 1. Consequently, ek ≥ w.227

6. Discussion. For the second order Richardson method, Figure 1 plots the228

contours of the spectral radius of Tα,β (synchronous case) and of |Tα,β | (asynchronous229

case) as a function of α and β when λmin(A) = 1 − ρ and λmax(A) = 1 + ρ, for ρ230

equal to 0.1, 0.5, and 0.9. The spectral radii were computed from the roots of the231

polynomials (5) and (9). In our setting, the optimal α is always 1.232

In the synchronous case, as ρ increases, the optimal value of β increases from near233

0 toward 1.234

The plots for the asynchronous case are best explained in terms of the plots for the235

synchronous case. When β ≤ 0, ρ(|Tα,β |) and ρ(Tα,β) appear to be the same. When236

β > 0, it appears that ρ(|Tα,β |) > ρ(Tα,β). In particular, the region where the spectral237

radius is less than 1 is smaller in the asynchronous case than in the synchronous case.238
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Fig. 1. Spectral radius of Tα,β (synchronous case) and of |Tα,β | (asynchronous case) as a
function of α and β when λmin(A) = 1− ρ and λmax(A) = 1 + ρ, for three values of ρ.
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The effect is that the asynchronous method has an optimal value for β of 0, which239

corresponds to the first order method. Here, optimal means minimizing ρ(|Tα,β |),240

although ρ(|Tα,β |) is only correctly used to ascertain asymptotic convergence and241

does not directly correspond to any convergence rate.242

Consider ρ = 0.5. For the synchronous case, the optimal β is approximately243

0.0718. Although the asynchronous method can converge for this value of β, the244

value of 0 gives a lower value of ρ(|Tα,β |). Now consider ρ = 0.9. For the synchronous245

case, the optimal β is approximately 0.3929. The asynchronous method has spectral246

radius greater than 1 for this value of β. To guarantee convergence, the asynchronous247

method must use a very small value of β.248

These results are quite negative for the asynchronous second order method. How-249

ever, in practice, the situation could be more favorable. The condition ρ(|Tα,β |) < 1250

for the asynchronous method guarantees that the method will converge for any initial251

vector and any sequence of asynchronous iterations, i.e., with any choice of specific252

delays, k− sij(k), and any choice of when components are updated (satisfying natural253

conditions). In practice, the asynchronous method may converge despite ρ(|Tα,β |) > 1.254

One could imagine that the “degree of asynchrony” affects the convergence of the255

asynchronous method, and we explore this next with numerical experiments.256

7. Numerical behavior. The asynchronous first and second order Richardson257

methods were implemented in parallel using multithreading and shared memory. Tests258

were run on a dual processor Intel Xeon computer with a total of 20 cores. The threads259

were pinned to the cores using “scatter” thread affinity.260

The test matrix is the standard finite difference Laplacian matrix on a 100× 100261

grid of unknowns, scaled so that its diagonal is all ones. This matrix satisfies the262

setting of this paper so that ρ(T ) < 1, T ≥ 0, and T is irreducible. A single right-263

hand side was chosen randomly and uniformly from (−0.5, 0.5) and was the same for264

all tests. The initial vector was zero.265

Different numbers of threads were used. Each thread was assigned approximately266

the same number unknowns to update. The iterations performed by each thread267

were terminated when the all the unknowns were updated an average of 500 times.268

Because the threads operate asynchronously, the number of updates performed on each269

unknown is generally different. We refer to the difference between the largest number270

of updates and the smallest number of updates as the range. When the iterations are271

terminated, we measure the residual norm relative to the initial residual norm. The272

residual norm is not calculated during the iterations, as such calculations involving273

dot products induce synchronization in the method.274

7.1. First order Richardson. For the asynchronous first order Richardson275

method, Table 1 shows the convergence results for different numbers of threads. For276

the given matrix, the optimal α is 1. For each number of threads, the method was277

run 100 times. Columns 2 and 3 of the table show the average range, and the average278

relative residual norm when the asynchronous iterations were terminated. For compar-279

ison, the relative residual norm attained after 500 iterations of the synchronous first280

order Richardson method is 1.691939e-02. Evidently, the convergence of the asyn-281

chronous method is better than the convergence of the synchronous method. This282

perhaps nonintuitive result is due to the fact that the asynchronous method has a283

multiplicative effect [19, 20], i.e., unknowns are not all updated at the same time, and284

when unknowns are updated, they are immediately available to other threads. Indeed,285

for a single thread, the asynchronous method corresponds to Gauss-Seidel, giving a286

relative residual norm of 7.421009e-03 which is lower than that of the synchronous287

8

This manuscript is for review purposes only.



Table 1
Asynchronous first order Richardson for different numbers of threads. For comparison, the

synchronous method attains an average relative residual norm of 1.691939e-02 for all numbers of
threads. Timings for the asynchronous and synchronous methods are also given.

number of average average rel. async sync
threads range resid. norm time (s) time (s)

1 0.0 7.421009e-03 0.060177 0.048345
2 17.1 7.491060e-03 0.034049 0.030291
3 76.1 7.686441e-03 0.022664 0.020642
4 98.3 7.624358e-03 0.018009 0.017360
5 129.6 7.940683e-03 0.015023 0.015171
6 138.1 7.902309e-03 0.012898 0.012751
7 144.6 8.021550e-03 0.011334 0.012374
8 172.2 8.149458e-03 0.010997 0.012067
9 240.4 8.500669e-03 0.010039 0.010737
10 191.4 8.248697e-03 0.009339 0.010642
11 222.4 8.363452e-03 0.009225 0.010741
12 215.5 8.311822e-03 0.008861 0.010590
13 248.9 8.450671e-03 0.009132 0.010339
14 227.7 8.416794e-03 0.007867 0.009669
15 253.7 8.403988e-03 0.009014 0.009998
16 292.2 8.610365e-03 0.008414 0.009871
17 284.6 8.530868e-03 0.008179 0.009668
18 305.9 8.573682e-03 0.007307 0.009660
19 288.4 8.445288e-03 0.007020 0.009496
20 297.3 8.448706e-03 0.007200 0.009249

method, which corresponds to the Jacobi method. As the number of threads is in-288

creased, convergence generally worsens slightly as the method departs from a pure289

Gauss-Seidel method. The convergence is always better than the convergence of the290

synchronous method for all numbers of threads tested.291

The table also shows timings for the asynchronous method and the synchronous292

method different numbers of threads. For small numbers of threads, the synchronous293

method is faster in performing 500 iterations than the asynchronous method in per-294

forming an average of 500 iterations by each thread. This can be explained by two295

factors: (1) the asynchronous method has more work to do because each thread, af-296

ter each iteration, needs to count how many iterations have been performed by other297

threads in order to decide whether to terminate, and (2) the asynchronous method has298

more write invalidations of cache lines compared to the synchronous method which299

writes new values of x to a separate array. However, for large numbers of threads,300

despite these two factors, the asynchronous method is faster, due to the elimination301

of thread synchronization. The overhead of threads waiting for other threads in the302

synchronous method is evidently larger when more threads are used.303

7.2. Second order Richardson. For the asynchronous second order Richard-304

son method, Table 2 shows the convergence results for different numbers of threads305

using the values α = 1 and β ≈ 0.93968 which are optimal for the synchronous306

method. For these values, the asynchronous method is not guaranteed to converge.307

For each number of threads, the method was run 100 times. The table shows the308

average range, the average relative residual norm, and the number of failures, which309

is the number of times the relative residual norm is greater than unity in the 100 runs.310

When a single thread is used, the asynchronous method is mathematically iden-311

tical to the synchronous method. When a small number of threads was used, the312

asynchronous method always converged in the 100 runs, with a degradation in the313
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Table 2
Asynchronous second order Richardson for different numbers of threads. The parameter values

α = 1 and β ≈ 0.93968 that were used are optimal for synchronous iterations. For comparison, the
synchronous method attains an average relative residual norm of 1.258388e-07 for all numbers of
threads. Timings for the asynchronous and synchronous methods are also given.

number of average average rel. number of async sync
threads range resid. norm failures time (s) time (s)

1 0.0 1.258388e-07 0 0.053275 0.052961
2 40.8 4.235170e-07 0 0.031146 0.032542
3 104.3 6.175605e-06 0 0.019592 0.023368
4 115.7 1.444428e-05 0 0.016493 0.018801
5 166.0 1.495107e-04 0 0.013533 0.017519
6 163.0 4.524130e-04 0 0.011563 0.014606
7 200.1 1.868556e-03 0 0.010649 0.013078
8 151.5 9.259216e-03 0 0.009794 0.012843
9 246.0 4.035731e-02 1 0.008917 0.012560
10 203.2 1.088207e-01 1 0.009000 0.012371
11 209.4 4.582844e-01 21 0.008972 0.011905
12 185.5 1.678645e+00 25 0.008397 0.011527
13 227.6 1.046313e+01 32 0.008216 0.011698
14 205.9 3.971405e+01 43 0.007081 0.010863
15 239.3 5.207066e+02 35 0.007568 0.010828
16 166.8 2.317140e+02 24 0.007101 0.011470
17 226.3 3.303636e+01 22 0.006217 0.011161
18 191.8 6.415417e+01 30 0.005972 0.010969
19 237.6 2.377968e+01 23 0.006237 0.011147
20 173.8 3.136173e+01 46 0.006614 0.011012

“convergence rate” as the number of threads is increased. What we mean here with314

convergence rate is how small is the residual when the termination criterion is satisfied.315

When a larger number of threads was used, the number of failures of the asynchronous316

method generally increases. This is due to an increased degree of asynchrony, which317

is somewhat reflected by the increasing average range.318

The table also shows timings for the asynchronous and synchronous second order319

Richardson methods. The asynchronous method is faster when more than 1 thread is320

used, and the difference is generally larger when more threads are used.321

To attempt to make the asynchronous method more robust, we test using a smaller322

value of β. This is analogous to underestimating the bounds of the spectrum in the323

inexact Chebyshev method [11]. Table 3 shows the convergence results using α = 1324

and β = 0.9. With this value of β, the asynchronous method is still not guaranteed325

to converge, but it can be observed that convergence is always obtained in the 100326

runs for each number of threads. However, the convergence rate is degraded for this327

choice of β, i.e., compared to Table 2 when a small number of threads is used.328

Comparing the asynchronous first and second order Richardson methods, the329

second order method can converge faster than the first order method. Convergence330

can be reliable although it is not guaranteed. In this example, the asynchronous331

method for second order Richardson, as reported in Table 3, is about 30% faster than332

the synchronous first order method.333

8. Conclusion. Except to say whether or not an asynchronous iterative method334

will converge in the asymptotic limit, the convergence behavior of these methods is335

strongly problem-dependent and computer platform-dependent and not well covered336

by theory. For the first and second order Richardson methods, in the setting where337

ρ(T ) < 1, T ≥ 0, and T is irreducible, this paper provides a description of the pa-338
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Table 3
Asynchronous second order Richardson for different numbers of threads. Parameter values:

α = 1 and β = 0.9.

number of average average rel. number of time
threads range resid. norm failures (sec.)

1 0.0 9.566179e-05 0 0.053059
2 47.7 1.032052e-04 0 0.030998
3 105.8 1.802432e-04 0 0.019752
4 122.3 1.499666e-04 0 0.016426
5 148.3 2.081259e-04 0 0.013676
6 154.7 2.091337e-04 0 0.011510
7 208.8 2.745261e-04 0 0.010352
8 182.9 2.802124e-04 0 0.010104
9 230.9 3.434991e-04 0 0.009003
10 190.7 2.701899e-04 0 0.008824
11 185.7 3.500390e-04 0 0.008086
12 154.8 3.445788e-04 0 0.008059
13 198.9 6.526787e-04 0 0.008342
14 219.4 2.479312e-03 0 0.007052
15 212.1 8.821667e-03 0 0.008112
16 158.8 2.594421e-03 0 0.006902
17 227.1 1.113219e-03 0 0.006715
18 191.0 6.389028e-03 0 0.006050
19 227.5 1.464582e-03 0 0.006365
20 173.2 4.955854e-03 0 0.006487

rameter values for which the asynchronous versions of these methods are guaranteed339

to converge. Numerically, however, we find that this theoretical description can give340

a pessimistic view of asynchronous iterative methods. For a standard test problem, a341

multithreaded parallel implementation of asynchronous iterations can converge reli-342

ably in cases where it is theoretically possible for such iterations to diverge. How likely343

divergence will occur depends on the degree of asynchrony in the computation, which344

is difficult to quantify. A possible theoretical approach is to analyze asynchronous345

iterative methods as randomized algorithms [1].346

Although we did not demonstrate it here, asynchronous iterative methods can347

give much lower time-to-solution than their synchronous counterparts when the com-348

putation is effectively unbalanced among the processing units. In such cases where the349

synchronization costs are large, the asynchronous second order Richardson method350

could still be used effectively with an appropriate choice of parameter values if the351

degree of asynchrony is controlled.352
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