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* Host rock characteristics

« Disposal concepts

« Technical gaps and priorities

 Process model development and integration
* Future work
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High mechanical strength and thermal limit
Suitable for disposal of large and hot waste

canisters

Fractured nature

Engineered barrier system equally
important as the nature barrier
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Geochemical characteristics of groundwater

Water type A: Dilute 0.5-2 g/L TDS; 5'%0 = -11.7 to -9.5 %
SMOW; Na-HCO,; mainly Meteoric

Main reactions: Weathering, ion exchange, dissolution of
calcite, redox reactions, microbial reactions

Redox conditions: Oxidising - reducing

Water type B: Brackish 5-10 g/L TDS; 5'0 = -11.5 to -8.5 %: SMOW;
Na(Ca,Mg)-CI(SO,) to Ca-Na(Mg)- CI(SO,); Marine (Strong Littorina Sea
component) *Meteoric; Glacial + Deeper Saline component.

Main reactions: lon exchange, pptn. of calcite, redox and microbial reactions
Redox conditions: Reducing
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Water type C: Saline 10-15 g/L TDS; §'80 = ~-11.6 to -13.6%s
SMOW (only 3 samples); Na-Ca-Cl to Ca-Na-Cl; Glacial - Deeper
Saline mixture

Main reactions: lon exchange, microbial reactions

Redox conditions: Reducing

Water type D: Strongly saline > 20 g/L TDS; Ca-Na-Cl;

Deep saline origin (Field observations)
Main reactions: Long term water rock interactions
Redox conditions: Reducing

Reducing conditions:

Iron and sulfate
reduction
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Laaksoharju et al. (2008)

energy.gov/ne



Post-closure safety strategy

 Containment

= Waste package is isolated by depth, and protected
by buffer/backfill and reducing conditions

= Canister integrity is maintained for a significant
portion of the regulatory time period.
* Limited Release
= Slow fuel dissolution in anoxic repository

= Low permeability of host rock (especially in rock
matrix)
= Retardation along fracture paths due to
* Fracture-matrix diffusion
» Adsorption in fractures and matrix

R&D objective: Advance understanding of long-term disposal of
used fuel in crystalline rocks (granitic or metamorphic rocks) and
develop experimental and computational capabilities to evaluate
various disposal concepts in such media.

~

Biosphere 5

. Pathways
0
K1
rQ
' Q

! A

. Transport o

T 2

. in Fractures '

| <
A
| @D
§3

Waste

' Package

energy.gov/ne



Disposal concept

Cladding tube Spent nuclear fuel Bentonite clay Surface portion of final repository

« Glass High-Level Waste 4-PWR
— 5 logs per waste package
— In-drift axial emplacement ({7 s00m
— Bentonite buffer
« Spent nuclear fuel (SNF) in 4-PWR waste
package

— Vertical deposition holes in floor of drift o e e e
(KBS-3V disposal concept)

— Compacted blocks of bentonite buffer

— To be implemented for DECOVALEX-2023
performance assessment comparison task 12-PWR

« SNF in 12-PWR waste package
— In-drift axial emplacement

Figure 8-1. The KBS-3 concept for disposal of spent nuclear fuel.

— Bentonite buffer with or without additives

Schematic cross-section of a
double-layer buffer in a
disposal drift of a crystalline
repository (Wang et al.
2014).
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2019 Roadmap Update: High-Priority R&D Activities

High Priority R&D Activities

Experiment of bentonite EBS under high

Activity Designator Legend:
A — Argillite

C — Crystalline

S — Salt

D — Dual Purpose Canisters

E — Engineered Barrier System
| — International

O — Other

P — Performance Assessment

* —indicates Gap Activity

High Priority R&D Activities
A-08 | Evaluation of ordinary Portland cement (OPC)
C-15* | Design improved backfill and seal materials
Development of new waste package concepts
C-16* | and models for evaluation of waste package
performance for long-term disposal
Probabilistic post-closure DPC criticality
consequence analyses
D-01 | Task 1 - Scoping Phase
Task 2 - Preliminary Analysis Phase
Task 3 - Development Phase
DPC filler and neutron absorber degradation
D-03 ) .
testing and analysis
Coupled multi-physics simulation of DPC
D-04 postclosure (chemical, mechanical, thermal-
hydraulic) including processes external to the
waste package.
Source term development with and without
D-05 e
criticality
E-09 | Cement plug/liner degradation
EBS High Temp experimental data collection-
E-11 | To evaluate high temperature mineralogy
/geochemistry changes.
E-14* | In-Package Chemistry
E-17* | Buffer Material by Design

-04 temperature, HotBENT

1-06 Mont Terri FS Fault Slip Experiment

108 DECOVALEX-2019 Task A: Advective gas
flow in bentonite

112 TH and THM Processes in Salt: German-US
Collaborations (WEIMOS)

113 TH and THM Processes in Salt: German-US
Collaborations (BENVASIM)

1-16* New Activity: DECOVALEX Task on Salt
Heater Test and Coupled Modeling

1-18* New Activity: Other potential DECOVALEX
Tasks of Interest: Large-Scale Gas Transport

P-12 | WP Degradation Model Framework
Salt Coupled THM processes, hydraulic

S$-01 | properties from mechanical behavior
(geomechanical)
Coupled THC advection and diffusion

S$-03 | processes in Salt, multi-phase flow processes
and material properties in Salt
Coupled THC processes in Salt, Dissolution

S$-04 | and precipitation of salt near heat sources
(heat pipes)

S-05 | Borehole-based Field Testing in Salt

DOE SFWST Campaign
R&D Roadmap Update

Fuel Cycle Research & Development

Prepared for
U.S. Department of Energy

energy.gov/ne



Current R&D activities and priorities mapped to R&D roadmap

. Fu)el matrix degradation model (FMDM). (ANL). (H: D-05, E- ,
14 b o

« Radionuclide interactions with corrosion products (LLNL). (H:\
D-05, E-14) ) X :'r"Biosphere

« Bentonite erosion and colloid generation and transport NN ' Path
(LANL). (H: C-15, M-H: E-20) AN A

* Fluid flow in low-permeability media (SNL, LBNL). (H: I-08 N . |
M-H: C-11) S N

« Multiple scale core experiments on radionuclide- bentonlte ¥
interactions (SNL, LBNL). (H: C-15, M: C-08) U N NN

+  New-generation buffer materials/waste package materials; . ™ . \\L,T"va"‘ﬁ““
understanding thermal limits of buffer materials (SNL). (H: C- ™~ ™ ><7iin Fractures
15, C-16, E-11, E-17) oLl < fNN

-~ wi)shAg Aiojsodsy

« Discrete fracture network (DFN) model; especially a reduced---~ « ——————
order model for GDSA (LANL). (M-H: C- o1,pP-02) - :_~<;:ﬂ.“*:fff\\‘ .

Workflow for field data synthesis and flow modeling in -----"""" e SN
fractured media (SNL). (M-H: C-01, M-H: C-13, P-02) Wt

Geophysical and well-testing techniques for site . Package "\

characterization (LBNL). (M-H: E-03)  "TTTTTTTTeeeeeee L i

Current focuses: (1) better characterization and understanding of fractured media
and fluid flow and transport in such media, and (2) designing effective engineered
barrier systems (EBS) for waste isolation.
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Process model development and integration

107

Regional flow

(topography,
climate changes)

1020

; ) RM release from RN mobility & 107
Buffer & backfill / WPs I

material
performance / 1.0

Flow & transport 02
e 21 through access RN releaseto
through backfill ramps/shafts biosphere 0.0
|.
Flow & transport Flow & transport -0.5

RN transport

through DRZ DRZ to major through soil
fracture zone

Spearman Rank Correlation for max['*1]

¢ a.) Observation point "glaciall”

107 b
In-package 10 b

chemistry 101-: N
10710 L.
=12
Em_13 —
F10 b

EBS&DRZ thermal Nl \Waste package Waste form 7 207 o
e 10 ——

& hydrologic ! degradation degradation 10|

environments ;o 107 |
/ 107 -

10719 [

i

10° 10° 10° 10° 10" 10° 10°

Time (years)

a.) Observation point "glaciall"

DRZ = Disturbed rock zone
RN = Radionuclide

THMC - Thermal-hydrologic-
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Waste form and engineered barrier

Solution  Steel | Bentonite Three-electrode
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Lead/lead-alloy as a corrosion-resistant outer layer packaging material
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Requirements
+ Longevity: >1000 years
= Avoid any detrimental
impacts on other EBS
materials.
+ Retrievability v/
+ Radiation shielding v
» Reasonable structural
strength (tensile stentgh
70 MPa for alloy) v/
« Availability v
Lead
+ Good resistance in sulfide
environments
+ 50.87/lb
» RCRA: Already present as
fission product
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Development of next-generation buffer materials for harsh environments
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Coupled thermal-hydrological-mechanical-chemical (THMC) model buffer materials

The full-scale in situ test is located in Grimsel, Switzerland, heating started in 1997 at 100 °C, as part of
FEBEX (Full-scale Engineered Barrier Experiment).

Extensive laboratory tests were carried out to characterize THMC properties of bentonite, concrete, steel liner
and granite after two dismantling events (2002 and 2015).

Coupled THMC models were developed to understand the processes in the bentonite and granite.
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Colloid-facilitated transport model and buffer material erosion

| Attached Colloids in Fracture (Rew.)
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Multiple column Figure 2-11. Model matches to the extraction breakthrough curves of test 08-01.

experiments for

interrogating

radio_nuclide The model is ready available to be incorporated
sorption into Generic Disposal Safety Analysis (GDSA)
parameters

Reimus et al. (2017)
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DENGen

Development of discrete fracture network (DFN) model

1.0 1 b
DFN (PFLOTRAN)
ECM Method 2
~——————— ECM Method 1
'ﬂﬁ- — = = Mean of ECM Method 2
2 — e == = [Mean of DFN (PFLOTRAN)

-E, | —— Mean of DFN
3 (Particle Tracking)
2
= 1 .
£ 0.6 LaGriT - Mesh DEN
o |
g DENTTans
E 0.4
m 4
£
==
Q
= ]

0.2 A ECM: Equivalent

Continuum Model
{I-O B T LR |

1et0 1e+1 1e+2 1e+3 1et+4 1e+d 1e+6
Ti me {years} PFLOTRAN- Pressure Solution Lagrangian Transport Simulation

DFN toolkit for meshing discrete fractures and

Comparison of different modeling approaches: The results show that . : .
simulating flow and transport in fracture networks.

DFN and ECM are comparable in the prediction of fluid flow and
transport. Hadgu et al. (2017)
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Discrete fracture model: Field data synthesis and validation

Mizunami Underground
Research Lab, Japan

Wang et al. (2020)
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« Itis important to condition fracture network generation on actual
fracture distribution (location, size) in tunnel and borehole.
« Statistical stability of fracture networks?

SFWS
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Technology for site characterization and monitoring:

Disturbed rock zone (DRZ) characterization

2 0=
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Granite core samples from Grimsel, Switzerland Rigid-body-spring network model for simulating fracture patterns
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Fracture characterization and field monitoring

HIMDVd HIMOT

Step-rate Injection Method for Fracture In-situ Properties
(SIMFIP) system

Velocity[m/s]

500 particles evenly distributed within the tunnel at » Challenge: Design a monitoring system to capture

time 0. sutficient number of particles.
» Key capabilities: High-resolution geophysical techniques

for fracture characterization
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Current status of process models and total system integration
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DRZ = Disturbed rock zone

RN = Radionuclide

THMC — Thermal-hydrologic-mechanical-chemical
WF — Waste form

WP = Waste package
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Next steps

Develop a sensible GDSA model for
sensitivity analyses.
= Provide a minimum set of process models to
GDSA
Move model development more towards
model validation with real data.

Develop reduced order models for
incorporation into the GDSA model.

Continue with buffer material development.

Develop and refine engineered barrier
system (EBS) models, especially waste
package (WP) degradation models.

Towards a more realistic representation of fluid
flows in crystalline rocks: Crystalline rocks are
generally quite impermeable.

o _1‘_"

realization 1

Deterministic fracture zones

realization 1 w/ CHUW Case A; WR 2012-42
Stochastic fractures
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Disclaimer & Legal Notice

Disclaimer

This is a technical presentation that does not take into account
contractual limitations or obligations under the Standard
Contract for Disposal of Spent Nuclear Fuel and/or High-Level
Radioactive Waste (Standard Contract) (10 CFR Part 961). For
example, under the provisions of the Standard Contract, spent
nuclear fuel in multi-assembly canisters is not an acceptable
waste form, absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this
presentation conflict with the provisions of the Standard
Contract, the Standard Contract governs the obligations of the
parties, and this presentation in no manner supersedes,
overrides, or amends the Standard Contract.

This presentation reflects technical work which could support
future decision making by DOE. No inferences should be drawn
from this presentation regarding future actions by DOE, which
are limited both by the terms of the Standard Contract and
Congressional appropriations for the Department to fulfill its
obligations under the Nuclear Waste Policy Act including
licensing and construction of a spent nuclear fuel repository.

Legal Notice

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government, nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or
any of their contractors.
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