Sandia
National _
Laboratories

Exceptional
service

in the

national

interest

SCCR
:’0 SAND2020- 13005PE
Center for Computing Research

Automatic Differentiation of C++
Codes with Sacado

Eric Phipps (etphipp@sandia.gov)
Sandia National Laboratories
Albuquerque New Mexico USA

BYU Spline-based Finite Element Analysis
Class

Dec. 9, 2020

%, U.S. DEPARTMENT OF L YA T =35
(W ENERGY IVISA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
SAND2020-XXXX C

mailto:etphipp@sandia.gov)

Sandia

Outline) peima_

= Qverview of AD techniques/theory
= AD software

= Sacado: AD tools for C++ codes

= Brief overview of using Sacado

= Selected performance results

= AD on multicore/manycore architectures using Kokkos

Analytic Derivatives Enable Robust @&,
Simulation and Design Capabilities

= Analytic first & higher derivatives are useful for predictive simulations
= Computational design, optimization and parameter estimation
= Stability analysis
= Uncertainty quantification
= Verification and validation

= Analytic derivatives improve robustness and efficiency

= |nfeasible to expect application developers to code analytic derivatives
= Time consuming, error prone, and difficult to verify
= Thousands of possible parameters in a large code
= Developers must understand what derivatives are needed

= Automatic differentiation solves these problems

What Is Automatic Differentiation @&z
(AD) ?

= Analytic derivatives without hand-coding

= All differentiable computations are composition of simple
operations

= sin(), log(), +, *, /, etc...
= We know the derivatives of these simple operations
= We have the chain rule from calculus

= Systematic application of the chain rule through your computation
differentiating each statement line-by-line.

A Simple Example

Sandia
National
laboratories

y = sin(e” + xlogx), * = 2

d

m JR—

dx
x — 2 2.000 | 1.000
t; — e 7.389 | 7.389
ty «— logx 0.693 [0.500
y < sinty 0.605 [-7.233

Analytic derivative evaluated to machine precision

Sandia
Il'l National

Laboratories

Related Methods

y = sin(e® + xlogx), « = 2

/Automatic Differentiatior\ /Symbolic Differentiation \ " Finite Differencing
d

9 _ cos(e® + x log x)-
dx
dx ¥
xr «— 2 — «—1 (" +loga + 1)
E o
t, — e* o «— tl—w t1 — e* dy ~ y(2 + E) _ y(2)
de dx dr ~
dt, ldz b2 —loga ¢ 7.233 323 187
ty — logax EH;@ ts «— xto ~h
dt dx dt
t3<_wt2 _3<_t2__|_33—2 t4<—t1+t3
dx dx dx Yy < sinty
dt4 dtl dt3
byt + s - + 81 «— costy
dx dx dx
dy dt4 SS9 — t]_ + t2
Yy < sinty T — COS(M)@ Sz «— S+ 1
dy
—
e 8183 \ j

d d
Q—y =-7.233 340 400 802 315y Q—y =-7.233 340 400 802 31(y
T T

Sandia
ll'l National

Laboratories

Tangent Propagation
y=f(x), f:R" — R"™

Rn — 5

Rm
T t
0 v y(t)
x(t) N .
Operation Tangent Rule
= Tangents c=a+b |é=a+b
d o0 . . :
y(t) = F@t) — g=2 =Ty fe—a-b|e=a-)
dt t=to 3$ b . b+ -b
cC=aqa C—=—a a
" For each intermediate operation -
B B c=a/b ¢ = (a—cb)/b
c=¢p(a,b) = ¢=—a+ —>b b T :
da b c=a ¢ = c(blog(a) + ab/a)
= Tangents map forward through evaluation ¢ = sin(a) | é = cos(a)a
c=log(a)| ¢=a/a

Sandia
Il'l National
laboratories

A Simple Tangent Example

Yy, = sin(e* 4+ x1x2) . dy1 Oy r.
Y — ——— Y2 e A | [T2
U1 4+ m% Ox1 Oxo
Given xq, xa, T1, To:

S; «— e™ $1 «— S1d1

Sz «— T1T2 82 +— T1T2 + T1T2

83 <— 81 + S2 83 «— 81 + $2

Y1 < sin(s3) Y1 < cos(s3)33

Sy «— :1:% S84 — 2x124

S5 «— Y1 + S4 S5 «— Y1 + S4

Y2 < Y1/85 Y2 «— (Y1 — yY285)/35

Return y1, y2, Y1, U2

Forward Mode AD via Tangent) i,
Propagation

= Choice of space curve (t)is arbitrary
= Tangent ¥ depends only on &g, &
" Given xgandwv:
y(t) = f(xo+vt) = g = ﬁfv Jacobian vector product

awo
" Propagate P vectors V1 - . ., Upsimultaneously
0 0
[U1...Up] = —f [v1...0p] = —fV Jacobian matrix product
82130 3%0

* Forward mode AD:

@) — (1@, 22v)

V is called the seed matrix. Setting equal to identity matrix yields full Jacobian
= Computational cost = (1 + 1.5p)time(f)

= Jacobian-vector products, directional derivatives, Jacobians for m > n

Sandia
m National
Laboratories

Gradient Propagation
y=f(z), f:R" > R"

yTy = constant

T? £ yo\
y' f(x) = constant\ N
N S

~ -
~N———

= Gradients Operation Gradient Rule
o=\" [of\" _ Gi—z b—g
zngy:ng(a:) — == _ _f g c=a+b |a=c¢c, b=c
ox ox —
c=a—b |a=c¢c, b= -—c
= For each intermediate operation - -
c=ab a=cb, b=ca
0z 0z0c _Op
=9, = = €5 . G =¢c/b, b= —¢cc/b
da Ocoda Oa c=a/b |a=¢/b,
c=p(a,b) — -
, b — 9z — 9z dc :EB_SO c=a’ a = cclog(a), b =¢ccb/a
ob Ocob ob
c =sin(a) | @ = ccos(a)
= Gradients map backward through evaluation c=log(a) | &= ¢/a

A Simple Gradient Example

Given x1, 2, Y1, Y2:

Y1 = sin(e”™ + xix2)

Y Y1
2 _
2
Y1+ T7
- Oy1 9y
wl —_ 3%1 3%2
To| — |9y2 Ou2
8:131 8:132

e = p(a,b) —

jl <«— .fl -|— §181

Return yq, y2, 1, T2

I, < T1 + S22,

S1 < 83,

y1 < sin(s3)
S4 — X
S5 «— Y1 + S4

?IJz — y1/85

Y1 — Y1 + Y2/ s,
Y1 < Y1 + Ss,
T <— 28411

83 < Y1 cos(s3)

§2<—§3

3_32 «— ngC]_

Sandia
ﬂ'l National

Laboratories

85 «— —Y2U2/ S5

§4(—§5

Reverse Mode AD via Gradient) e,
Propagation

= Choice of normal ¥is arbitrary

= Gradient xdepends only on g Yy
= Givenxgandw:

a T
y=w,y=f(z) = = <a—f> w Jacobian-transpose vector product
£
= Propagate g vectors wi, ..., W, simultaneously
_ _ of g of ! Jacobian-transpose matrix product
[ml...wq]: % [wl...wq]: % 1%% P P
= Reverse mode AD: Of\7T

W is called the seed matrix. Setting equal to identity matrix yields full Jacobian

Computational cost =~ (1.5 4 2.5¢g)time(f) m = q =1 = cost = 4 time(f)

= Jacobian-transpose products, gradients, Jacobians for n > m

Sandia
Il'l National

Laboratories

Software Implementations

= Tools implementing AD have been created for many popular programming languages
= C/C++: ADOL-C, ADIC, Sacado, ...
= Fortran: ADIFOR, OpenAD, Tapenade, ...
= Matlab: ADIMAT, MAD, ...
= Python: pyADOL-C, AD, ...

= See http://www.autodiff.org/ for a comprehensive listing

= Tools fall into two general categories
= Source transformation
= QOperator overloading

http://www.autodiff.org/

Sandia
ll'l National

Laboratories

Source Transformation

= AD implemented by preprocessor
= Preprocessor reads code to be differentiated
= Uses AD to generate derivative code
= Writes-out differentiated code in original source language
= Differentiated code is then compiled using a standard compiler

= Resulting derivative computation is usually very efficient
= Works well for simple languages (FORTRAN, some C)
= ADIFOR/ADIC/OpenAD out of Argonne

= Extremely difficult for C++

ADIFOR™ Example

(L

Sandia
National
Laboratories

-~

Cc

O

N

~

subroutine func(x, y)

double precision x(2), y(2)
double precision u, v, w

u = exp(x(1))

v = x(1)*x(2) C----

W = utv
y(1) = sin(w)

u = x(1)**2

v=y(1)+u C----

y(2) =y(1)v

return
end

/

www.mcs.anl.gov/research/projects/adifor/

"ADIFOR 2.0D

\e

subroutine g_func(g_p_, x, g_x, Idg_x, y, g_y, Idg_y)
Initializations removed for clarity...

d2_v = exp(x(1))

d1_p= d2_v

dog_i_=1,9_p_
g_u(g_i_)=d1_p*g_x(g_i_, 1)

enddo

u=d2_v

dog_i_=1,9_p_

g_v(g_i_) =x(1) * g_x(g9_i_, 2) +x(2) * g_x(g_i_, 1)
enddo
v =x(1) * x(2)

dog_i_=1,9_p_
_W(g_i_)=g_v(g_i_) +g_u(g_i_)

enddo

W=u+yv

d2_v = sin(w)

d1_p = cos(w)

dog i_=1,9_p_
9_y(9_i_,1)=d1_p*g_w(g_i_)

enddo

y(1)=d2_v

continues...

~

http://www.mcs.anl.gov/research/projects/adifor/

Sandia
m National

Laboratories

Operator Overloading

= AD implemented within source language constructs
= New data types are created for forward, reverse, Taylor modes

= |ntrinsic operations/elementary operations are overloaded to compute
derivatives as a side-effect

= Data type (e.g., double) in original code is replaced with AD type
= Generally easy to incorporate into C++ codes

= Generally slower than source transformation due to function call overhead
= This can generally be eliminated

= Requires changing data types from floats/doubles to AD types
= C++templates greatly help

= ADOL-C, FAD/TFAD, Sacado

(Naive) Operator Overloading e

I Laboratories
ﬁass Tangent { \
public:
\ static const int N = 2;
void func(const double x[], double y[]) { double val;
double u, v, w; double dot[N];
u = exp(x[0]); %
v = x[0]*x[1];
W = utv; Tangent operator+(const Tangent& a, const Tangent& b) {
y[0] = sin(w); Tangent c;
c.val = a.val + b.val;
u = x[0]*x[0]; for (int i=0; i<Tangent::N; i++)
v=y[0] + u; c.dot[i] = a.dot[i] + b.dot][i];
y[1] = y[0]/v; return c;
} }
Tangent operator*(const Tangent& a, const Tangent& b) {
void func(const Tangent x[], Tangent y[]) { Tangent c;
Tangent u, v, w; c.val = a.val * b.val;
u = exp(x[0]); for (int i=0; i<Tangent::N; i++)
v = x[0]*x[1]; c.dot[i] = a.val * b.dot[i] + a.dot[i]*b.val;
W = utv; return c;
y[0] = sin(w); }
Tangent exp(const Tangent& a) {
u = x[0]*x[0]; Tangent c;
v=y[0] +u; c.val = exp(a.val);
y[11 = y[0]/v; for (int i=0; i<Tangent::N; i++)
} c.dot[i] = c.val * a.dot][i];
_ /

\kreturn Cc; j

Expression Template Operator
Overloading

Sandia
m National

Laboratories

\ @plate <class E1, E2> class PlusExpr { \

double val() const { return e1.val() + e2.val(); }

-

void func(const Tangent x[], Tangent y[]) {

y[0] = sin(exp(x[0]) + x[0]*x[1]); double dx(int i) const { return e1.dx(i) + e2.dx(i); }
/... const E1& e1;
} const E2& e2;
5

template<class E1, class E2> PlusExpr<E1,E2>
operator+(const E1& a, const E2& b) {

SinExpr< PlusExp< ExpExpr<Tangent>, RO R == E B e

MultExpr<Tangent,Tangent> }
S template <class E1> class SinExpr {

> double val() const { return sin(e1.val())] }
double dx(int i) const { return cos(e1.val())*e1.dx(i); }
const E1& e1;

b

template<class E1> SinExpr<E1> sin(const E1& a) {
return SinExpr<E1>(a);

}

class Tangent {

y[0].val = sin(exp(x[0]) + x[0]*x[1]);
for (int i=0; i<N; i++) {
y[0].dot[i] = cos(exp(x[0]) + x[0]*x[1])*

(exp(x[0])*x[0].dot[i] + public:
X[0]*x[1].dot[i] + x[1]*x[0].dot[i]); double val() const { return val; }
double dx(int i) const { return dot[i]; }
\ J template <class E> Tangent& operator=(const E& e) {
val = e.val();

for (int i=0; i<N; i++)
dot[i] = e.dx(i);

N _/
T

Public domain Fad/TFad package

Sandia
r“ National
laboratories

Sacado: AD Tools for C++ Apps

= Package in Trilinos
= https://github.com/trilinos
= Open source license

: il INOY

= Forward mode AD
= Based on Fad<> library of Di Césaré, Aubert and Pironneau
= Tries to eliminates OO overhead via expression templates
® DFad<double>: Derivative array determined at run-time
= SFad<double,N>: Derivative array length = N
= SLFad<double,N>: Derivative array length at most N

= Reverse mode AD
= David Gay’s Rad library

= AD applied through template-based generic

programming Iso-velocity adjoint surface for fluid flow in a 3D
= Template on scalar type steady MHD generator in Drekar computed via

= |nstantiate on AD data types Sacado (Courtesy of T. Wildey)

= Manually exploit simulation structure/sparsity
= AD applied at “element” level
= Template “physics”
= Manually incorporate derivatives into global linear algebra objects

https://github.com/trilinos

Sandia
ll'l National

Laboratories

How to use Sacado

= Template code to be differentiated: double -> ScalarT
= Replace independent/dependent variables with AD variables

= |nitialize seed matrix

= Forward: Derivative array of i’th independent variable is i’th row of seed
matrix

= Reverse: Derivative array of i’th dependent variable is i’th row of seed
matrix

= Evaluate function on AD variables
= |nstantiates template classes/functions

= Extract derivatives
= Forward: Derivative components of dependent variables
= Reverse: Derivative components of independent variables

Sandia
m National

Laboratories

Primary Sacado AD Classes
= #include “Sacado.hpp”

= All classes are templated on the Scalar type

= Forward AD classes:
» Sacado::Fad::DFad<ScalarT>: Derivative array is allocated dynamically

» Sacado::Fad::SFad<ScalarT>: Derivative array is allocated statically and dimension must
be known at compile time

» Sacado::Fad::SLFad<ScalarT>: Like SFad except allocated length may be greater than
“used” length

» Sacado::Fad::SimpleFad<ScalarT>: Dynamically allocated array that doesn’t use
expression templates

= Similar forward AD classes in other namespaces that use different forward AD
approaches (research ideas)

= Sacado::ELRFad, Sacado::CacheFad, Sacado::ELRCacheFad

= Reverse mode AD classes:
= ADvar<ScalarT>

Sandia
fh National
laboratories

Basic Fad Example

Sandia
m National
Laboratories

Forward or Reverse?

" Forward: Computes derivatives column-wise
= Number of independent variables <= number of dependent variables
= Square Jacobians for Newton’s method
= Sensitivities with small numbers of parameters
= Algorithm naturally calls for Jacobian-vector/matrix products

= (Block) Matrix-free Newton-Krylov

= Reverse: Computes derivatives row-wise
= Number of independent variables >> number of dependent variables
= Gradients of scalar valued functions
= Sensitivities with respect to large numbers of parameters
= Algorithm naturally calls for Jacobian-transpose-vector/matrix products
= (Block) Matrix-free solves of transpose matrix

= Optimization

Choosing AD Types) S5,

= DFad
= Derivative array allocated dynamically
= Most flexible
= Slowest
= Very slow in threaded environments

= SFad
= Derivative array size fixed at compile time
= Must know exact number of derivative components
= Fastest
= Best choice in threaded environments

= SLFad
= Fixed-length derivative array, can use only a portion of it at run-time
= Compromise between the two
= Usually just a little slower than SFad
= Good choice for threaded environments

= ADvar (reverse mode)

= Due to overhead, need substantially more independent variables than dependent variables (at least 40
more)

= Currently not appropriate for threaded environments

Differentiating Element-Based h
Codes

Global residual computation (ignoring boundary computations):

N
f(@) => Qe (Pux)
1=1

Jacobian computation:

of . . dey,.
—7 = L 1 Py Ty = —
Y ;Qz k; k;

’
3337;

x; = Px

Jacobian-transpose product computation:

8f Z(Qz)TJk:

Hybrid symbolic/AD procedure
= Element-level derivatives computed via AD
= Exactly the same as how you would do this “manually”
= Avoids parallelization issues

Performance (Charon semiconductor g
physics code)

Scalability of the element-level derivative computation

Set of N hypothetical chemical species: |, Jacobian Eval ° Adjoint Eval
£ 600 £ 10
2X3\=\ j_1—|—Xj_|_1, j:2,...,N—1 — —=—FD —
. © 4001 —¢—FAD T 9
Steady-state mass transfer equations: |3 102 5
(O] (O]
u-VY; + VY=, j=1,...,N—1 |2 200 0.27 > 8
© © ——RAD
N o 0 o 7
ZYj =1 as 0O 100 200 300 400 @ 0 100 200 300 400
=1 DOF Per Element DOF Per Element
= Forward mode AD - Jacobian Eval - Adjoint Eval
= Faster than FD S 1000 559
o 3 —=—FD 3 ——RAD
= Better scalability in number of PDEs o —e—FAD 058
= Analytic derivative = 500 =
= Provides Jacobian for all Charon physics e 1.95 A ©57
= Reverse mode AD % 0 0.9 % -
= Scalable adjoint/gradient o 0 100 200 300 400 o "0 100 200 300 400
DOF Per Element DOF Per Element

DOF per element = 4*N

Matrix/Residual Assembly
Performance Test

= Performance test for measuring Jacobian/Residual assembly using
Sacado

—V-(K,Vu)—l—a'v-Vu—l—,Bu2:0

= 3-D, linear FEM discretization
= 1x1x1 cube, unstructured mesh
= Derived from FENL Kokkos example (H. Carter Edwards)

= Thread-parallel matrix/residual assembly
= Mesh cell loop parallelized with OpenMP/CUDA
= Atomic instructions for assembling into matrix/residual

= 3 algorithms studied

= Traditional element derivative w.r.t. nodal solution (AD size = #
nodes/element x # equations)

= Element derivative with optimized derivative of interpolation of nodal
solution, gradient at quadrature points

= Derivative at each quadrature point w.r.t. nodal solution and gradient
interpolated at quadrature point (AD size = 4 x # equations)

Sandia
National
Laboratories

Sandia
"1 National
laboratories

Sacado Assembly Performance

Sandy Bridge -- Linear Elements NVIDIA K20X GPU -- Linear Elements
(Single socket, 8 cores, 16 threads) o 1.4
1 E L
@ F
E 213 TN ————
~ 0.9 =]
5 T 512
£ 08 @ =t=F| t
b . =t=Element _‘; 11 emen
< 0.7 ' - - - - L [===Optimized Element
-) “®=Optimized Element o n —l o]
£ 0.6 . > 1 + =*=Quad Point
@ . ==Quad Point £
05 : | | . . £ 0.9 | | | . .
& 8 16 24 32 40 48 8 16 24 32 40 48
Grid Size Grid Size
Xeon Phi 7120P -- Linear Elements
(60 cores, 240 threads)

0 0.9

E

208 A

=)

£

20.7 y ==Element

< ' .

=E=0Optimized Element

Bos P

v v \“'\.____. ~*=Quad Point

Tos I

€ 8 16 24 32 40 48

Grid Size

Sandia
l“ National
laboratories

Sacado Assembly Performance

Sandy Bridge -- Quadratic Elements NVIDIA K20X GPU -- Quadratic Elements
(Single socket, 8 cores, 16 threads) 0 16
£ . .. ¥ — —
o 0.9 =
> 14
F o8 =
) —————t . £
) @ 1.2
£ 0.7 @ ==Element
2 =i=Element _‘; 1
2 0. - ————— <-Optimized El t
-‘; 0.6 . . ,) ~ =E-Optimized Element "E ® . phimized Hlemen
© - = o ood - > . ==Quad Point
: 0-5 -ﬂ-Quad Point .‘g 0 8 __.*'I;F-_-"' - - -
> _—
E 0.4 T T T T 1 & 0.6 T T T T T 1
& 8 16 24 32 40 48 8 16 24 32 40 48
Grid Size Grid Size
Xeon Phi 7120P -- Quadratic Elements
(60 cores, 240 threads)
» 0.8
.g . ._ - &
507 o - ’
2
£
2 0.6 : - - - =*=Element
-‘; 7 “==0ptimized Element
805
° T—-—O——'\'_'—I ~=Quad Point
>
To4 -
& 8 16 24 32 40 48
Grid Size

AD Research

Efficiently deploying AD in modern programming environments
= Expression templates for C++
= AD ininterpreted languages (Matlab, Python, ...)

= Reducing overhead of reverse-mode AD

= AD in threaded-environments
= Automatically differentiating thread-parallel programs
= Exploiting thread parallelism within AD tools

= Finding most efficient way to differentiate a given program
= Column/row compression
= Cross-country elimination

= Efficiently evaluating higher derivatives

= Automatically detecting and exploiting sparsity in derivatives

Sandia
National
Laboratories

Sandia
Il'l National

Laboratories

LAMMPS STURTIe

Albany SPARC ® & o

Drekar SIERRA Applications & Libraries

Kokkos

performance portability for C++ applications

e » (A

™

===

g J VRN H

Multi-Core Many-Core APU CPU+GPU

C. Trott, et al., https://github.com/kokkos, https://kokkosteam.slack.com

https://github.com/kokkos
https://kokkosteam.slack.com

Kokkos Example) S

template <typename ViewTypeA, typename ViewTypeB, typename ViewTypeC>

void run_mat_vec(const ViewTypeA& A, const ViewTypeB& b, const ViewTypeC& c) {
typedef typename ViewTypeC::value_type scalar_type; /I The scalar type
typedef typename ViewTypeC::execution_space execution_space; // Where we are running

const int m = A.extent(0);
const int n = A.extent(1);
Kokkos::parallel_for(
Kokkos::RangePolicy<execution_space>(0,m), // lterate over [0,m)
KOKKOS_LAMBDA (constint i) { /I'"[=]" (capture by value)
scalar_type t =0.0;
for (int j=0; j<n; ++j)
t+=A(i,)"b();
c(i) =t
}
);
}

/I Use default execution space (OpenMP, Cuda, ...) and memory layout for that space
Kokkos::View<double*> A("A",m,n); // Create rank-2 array with m rows and n columns
Kokkos::View<double* > b("b",n); // Create rank-1 array with n rows
Kokkos::View<double* > ¢("c",m); // Create rank-1 array with m rows

...

run_mat_vec(A,b,c);

Layout Polymorphism for Performant
Memory Accesses

Sandia
m National

Laboratories

= CPU = GPU
= Each thread accesses contiguous range = Each thread accesses strided range of
of entries entries
= Ensures neighboring values are in cache = Ensures coalesced accesses (consecutive
threads access consecutive entries)
Layout Right Layout Left
{(Row-wise) {Column-wise)

{0.0y

CPU Thread 0 GPU Thread-block 04
10,3
(1,0}

CPU Thread 1 GPU Thread-block 14 ('
(1.3
(2,01

CPU Thread 2 GPU Threac-biock 2 ¢ 1
(2,3} ¢
(.0}

CPU Thread 3 GPU Thread-block 34 v
(3.3}

M =108 n=100

Architecture Description Execution | Measured Expected Measured Wrong

Space Bandwidth | Throughput | Throughput Layout
(GBIs) (GFLOPI/s) (GFLOPI/s) (GFLOPI/s)

Skylake Intel Xeon Gold OpenMP 64.4 16.1 18.0 15.3
(1 socket) 6154, 36 threads

GPU NVIDIA V100 Cuda 833 208 213 26.3

Sacado and Kokkos? rh) e,

= What happens when we use Sacado AD on manycore architectures
with Kokkos?

= Kokkos::View< Sacado::Fad::SFad<double,p>**>:
= Derivative components always stored consecutively
= CPU: Good cache, vector performance
= GPU: Large stride causes bad coalescing

Layout Right Layout Left
{Row-wise) {Column-wise)
dx dx
valx‘y Val\\
0.0
CPU Thread 0 GPU Thread-block 04 o3
0.3
{10
1
CPU Thread 1 GPU Thread-block 1 }1;
{13
2.0
2,
CPU Thread 2 GPU Thread-block 2 12 ;i
2.3
3.0
3,1)
CPU Thread 3 GPU Thread-block 3 ES 2;
(33

Sacado/Kokkos Integration) 5.
= Want good AD performance with no modifications to Kokkos kernels

= Achieved by specializing Kokkos::View data structure for Sacado scalar types
= Rank-r Kokkos::View internally stored as a rank-(r+1) array of double
= Kokkos layout applied to internal rank-(r+1) array

Layout Left
{Column-wise}

dg/\
val
Y

GPU Thread-block O

GPU Thread-block 1

GPU Thread-block 2

GPU Thread-block 3

AD Performance Portability) .

Kokkos::View<Sacado::Fad::SFad<double,p>**> A("A",m,n,p); // Create rank-2 array with m rows and n columns
Kokkos::View<Sacado::Fad::SFad<double,p>* > b("b",n,p); // Create rank-1 array with n rows
Kokkos::View<Sacado::Fad::SFad<double,p>* > c("c",m,p); // Create rank-1 array with m rows

...

run_mat_vec(A,b,c);

AD Througputon NVIDIAV100 GPU

SFad, Derivative dimension p=8

Architecture Expected Measured No View

./

o
o

Throughput Throughput | Specialization
(GFLOPI/s) (GFLOP/s) (GFLOPI/s)

Skylake 30.4 34.1 34.0
GPU 393 395 317

\ ——View Spec.
00 \\ -=-No View Spec.

(52
(=]

roughput(GFLOP/s)
[] (o] w w =
)
=]

Th
[
i
o
i

100 . 1
4 8 16

Derivative Dimension

Sandia
rl'l National
Laboratories

Hierarchical Parallelism

= Layout approach was explored to minimize code user-code changes for

Sacado
= Differentiate code without changing parallel scheduling

= Derivative propagation provides good opportunities for exposing more

parallelism
= Parallelism across derivative array
= Code may not expose enough parallelism natively (e.g., small workset)

= Motivation is PDE assembly using worksets
= Many codes group mesh cells into batches called worksets
= Threaded parallelism over cells in each workset: want large worksets for GPUs

with very high concurrency
Memory required proportional to size of workset: want small worksets because of

limited high-bandwidth memory on GPUs

= Solution: apply fine-grained (warp-level) parallelism across derivative

dimension on GPUs
= |mplementation uses Cuda code hidden behind Sacado’s overloaded operators

Advection Kernel Example) .

r= / (f(w) - V(x) + S(w)go(az)) dx NVIDIA V100 GPU
e (p =50)

1E4

Kokkos::View<ScalarT****, Layout, ExecSpace> wgb; ;ﬁ_ 15

Kokkos::View<ScalarT***, Layout, ExecSpace> flux; ﬁ ‘

Kokkos::View<ScalarT***, Layout, ExecSpace> wbs; 5 ——Flat SFad

Kokkos::View<ScalarT**, Layout, ExecSpace> src; E 1E-6 -=-Flat SLFad

Kokkos::View<ScalarT**, Layout, ExecSpace> residual; (= ~+~Flat DFad
1E-7 : : : . .

200 600 1000 1400 1800 2200 2600 3000
Mesh Cells

typedef Kokkos::RangePolicy<ExecSpace> Policy;
Kokkos::parallel_for(

Policy(0,num_cell),

KOKKOS_LAMBDA(const int cell)

{

for (int basis=0; basis<num_basis; basis+=1) {
ScalarT value(0),value2(0);
for (int qp=0; gp<num_points; ++qp) {
for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,gp,dim)*wgb(cell,basis,qp,dim);
value2 += src(cell,qp)*wbs(cell,basis,qp);

}

residual(cell,basis) = value+value2;

}
—

Advection Kernel Example) .

r= / (F) - Vo(a) + s@)p(x)) da

const int VectorSize = 32;

typedef Kokkos::LayoutContiguous<Layout,VectorSize> ContLayout;
Kokkos::View<ScalarT****, ContLayout, ExecSpace> wgb;
Kokkos::View<ScalarT***, ContLayout, ExecSpace> flux;
Kokkos::View<ScalarT***, ContLayout, ExecSpace> wbs;
Kokkos::View<ScalarT**, ContLayout, ExecSpace> src;
Kokkos::View<ScalarT**, ContLayout, ExecSpace> residual;

typedef typename ThreadLocalScalarType<decltype(src)>::type
local_scalar_type;
typedef Kokkos::TeamPolicy<ExecSpace> Policy;
Kokkos::parallel_for(
Policy(num_cell, Kokkos::AUTO, VectorSize),
KOKKOS_LAMBDA(const typename Policy::member_type& team)
{
const int cell = team.league_index();
constintti =team.team_index();
constintts =team.team_size();
for (int basis=ti; basis<num_basis; basis+=ts) {
local_scalar_type value(0),value2(0);
for (int qp=0; gp<num_points; ++qp) {
for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,gp,dim)*wgb(cell,basis,qp,dim);
value2 += src(cell,qp)*wbs(cell,basis,qp);

}

residual(cell,basis) = value+value2;

}

NVIDIA V100 GPU
(p=50)
1E4
— 4
8 \b_
f 1E-5 '—h*-"i—*—-t—i-*—-h_._‘ ~FlatShad
3 ¢ -=-Flat SLFad
E ——Flat DFad
L - B =
v 16 = T ~Hier. SFad
= — —~Hier. SLFad
1E-7 : : : . : : | —-a—Hier. DFad
200 600 1000 1400 1800 2200 2600 3000
Mesh Cells
104 { w100 FlA: 7526.1 GFLOP/s
Ma: 3925.9 GFLOP/s
Yo
o o L1
[~9
S O L2
E ¥ HEM
% 1
z
S SFad {flat)
E SLFad {flat}
a 1p! DFacd (Mal)
SFad {hierarchical}
SLFad {hierarchical}
DFad {hierarchical)
10 T T T .
10-7 1071 107 102 107

Arithmetic Intensity [FLOPs/Byte]

Drekar/Panzer PDE Tools =: iNGs IOEEN
(Pawlowski, Cyr, Shadid, Smith)

Applications

S
o E
= o E
= =

Magnetohydrodynamics

Hierarchical Parallelism in Panzer [@&s.
= Diffusion problem with mixed finite element discretization:

Vip—f o }:> [(V5= D(T - wyan =0 vw € H,

¢=¢r onT =N /Q(W_g).(vq)dnzovqeﬁm

Description Operator Panzer C++ Class Name
1. Evaluate g at Quadrature Points g=2,9iW; DOF
2. Evaluate V¢ at Quadrature Points Vo =2,0:Vq; DOFGradient
3. Evaluate V - g at Quadrature Points V-g=3,4;V-w; DOFDiv
4. Integrate Eq. 6 withh = V¢ — g f (h) - (Vg)dQ Integrate_GradBasisDotVector
5. Integrate Eq. 5 withs =V - g — f /:: (s)(V-w)dQ Integrate_DivBasisTimesScalar
200
+—DOF
180 +DOFGradient
e 160 —-—DOFDiv
ﬁ 140 -~ Integrate_GradBasisDotVector
" ——Integrate_DivBasisTimesScalar
g 120
%’ 100
§ 80
-El &0
a0
20
0
] 2000 4000 6000 8000 10000
Workset Size

Concluding Remarks) .

Analytic derivatives are an important enabling technology for
simulation and analysis

= Automatic differentiation is a powerful means for obtaining these derivatives

Sacado provides efficient AD capabilities to C++ codes
= Widespread use within Sandia simulation codes

Highly parallel architectures like GPUs are here
= AD tools and techniques need to work in these environments

Sacado solves this problem through integration with Kokkos

= Leverage layout polymorphism to enable AD of Kokkos kernels without
modification

= |ncorporate GPU vector/warp-level parallelism for improved performance

Code and performance tests are available within Sacado (and Panzer)
= https://github.com/trilinos

https://github.com/trilinos

