
Photos placed in 
horizontal position 
with even amount 

of white space
 between photos 

and header

Photos placed in horizontal 
position 

with even amount of white 
space

 between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly 
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 
SAND2020-XXXX C

Automatic Differentiation of C++ 
Codes with Sacado 

Eric Phipps (etphipp@sandia.gov)
Sandia National Laboratories
Albuquerque New Mexico USA

BYU Spline-based Finite Element Analysis 
Class

Dec. 9, 2020

SAND2020-13005PE

mailto:etphipp@sandia.gov)


Outline

 Overview of AD techniques/theory
 AD software
 Sacado:  AD tools for C++ codes
 Brief overview of using Sacado
 Selected performance results
 AD on multicore/manycore architectures using Kokkos



Analytic Derivatives Enable Robust 
Simulation and Design Capabilities
 Analytic first & higher derivatives are useful for predictive simulations

 Computational design, optimization and parameter estimation
 Stability analysis
 Uncertainty quantification
 Verification and validation

 Analytic derivatives improve robustness and efficiency

 Infeasible to expect application developers to code analytic derivatives
 Time consuming, error prone, and difficult to verify
 Thousands of possible parameters in a large code
 Developers must understand what derivatives are needed

 Automatic differentiation solves these problems



What Is Automatic Differentiation 
(AD) ?

 Analytic derivatives without hand-coding

 All differentiable computations are composition of simple 
operations 
 sin(), log(), +, *, /, etc…

 We know the derivatives of these simple operations

 We have the chain rule from calculus

 Systematic application of the chain rule through your computation 
differentiating each statement line-by-line.



A Simple Example
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Analytic derivative evaluated to machine precision



Related Methods

Automatic Differentiation Symbolic Differentiation Finite Differencing



Tangent Propagation

 Tangents

 For each intermediate operation

 Tangents map forward through evaluation

Operation Tangent Rule



A Simple Tangent Example



Forward Mode AD via Tangent 
Propagation

 Choice of space curve          is arbitrary
 Tangent    depends only on     ,
 Given      and   :

 Propagate     vectors                     simultaneously

 Forward mode AD:

     is called the seed matrix.  Setting equal to identity matrix yields full Jacobian

 Computational cost

 Jacobian-vector products, directional derivatives, Jacobians for

Jacobian vector product

Jacobian matrix product



Gradient Propagation

 Gradients

 For each intermediate operation

 Gradients map backward through evaluation

Operation Gradient Rule



A Simple Gradient Example



Reverse Mode AD via Gradient 
Propagation

 Choice of normal     is arbitrary
 Gradient    depends only on     ,
 Given      and.   :

 Propagate     vectors                        simultaneously

 Reverse mode AD:

     is called the seed matrix.  Setting equal to identity matrix yields full Jacobian

 Computational cost

 Jacobian-transpose products, gradients, Jacobians for

Jacobian-transpose vector product

Jacobian-transpose matrix product



Software Implementations

 Tools implementing AD have been created for many popular programming languages
 C/C++:  ADOL-C, ADIC, Sacado, …
 Fortran: ADIFOR, OpenAD, Tapenade, …
 Matlab:  ADiMAT, MAD, …
 Python:  pyADOL-C, AD, …

 See http://www.autodiff.org/ for a comprehensive listing

 Tools fall into two general categories
 Source transformation
 Operator overloading

http://www.autodiff.org/


Source Transformation

 AD implemented by preprocessor
 Preprocessor reads code to be differentiated
 Uses AD to generate derivative code
 Writes-out differentiated code in original source language
 Differentiated code is then compiled using a standard compiler

 Resulting derivative computation is usually very efficient

 Works well for simple languages (FORTRAN, some C)

 ADIFOR/ADIC/OpenAD out of Argonne

 Extremely difficult for C++



      subroutine g_func(g_p_, x, g_x, ldg_x, y, g_y, ldg_y)

C       Initializations removed for clarity…
        
        d2_v = exp(x(1))
        d1_p =  d2_v
        do g_i_ = 1, g_p_
          g_u(g_i_) = d1_p * g_x(g_i_, 1)
        enddo
        u = d2_v
C--------
        do g_i_ = 1, g_p_
          g_v(g_i_) = x(1) * g_x(g_i_, 2) + x(2) * g_x(g_i_, 1)
        enddo
        v = x(1) * x(2)
C--------
        do g_i_ = 1, g_p_
          g_w(g_i_) = g_v(g_i_) + g_u(g_i_)
        enddo
        w = u + v
C--------
        d2_v = sin(w)
        d1_p = cos(w)
        do g_i_ = 1, g_p_
          g_y(g_i_, 1) = d1_p * g_w(g_i_)
        enddo
        y(1) = d2_v

C      continues…

ADIFOR* Example

       subroutine func(x, y)
C      
       double precision x(2), y(2)
       double precision u, v, w
C      
       u = exp(x(1))
       v = x(1)*x(2)
       w = u+v
       y(1) = sin(w)
C      
       u = x(1)**2
       v = y(1) + u
       y(2) = y(1)/v
C      
       return
       end

*ADIFOR 2.0D 
www.mcs.anl.gov/research/projects/adifor/

http://www.mcs.anl.gov/research/projects/adifor/


Operator Overloading

 AD implemented within source language constructs
 New data types are created for forward, reverse, Taylor modes
 Intrinsic operations/elementary operations are overloaded to compute 

derivatives as a side-effect
 Data type (e.g., double) in original code is replaced with AD type

 Generally easy to incorporate into C++ codes

 Generally slower than source transformation due to function call overhead
 This can generally be eliminated

 Requires changing data types from floats/doubles to AD types
 C++ templates greatly help

 ADOL-C, FAD/TFAD, Sacado



class Tangent {
public:
  static const int N = 2;
  double val;
  double dot[N];
};

Tangent operator+(const Tangent& a, const Tangent& b) {
  Tangent c;
  c.val = a.val + b.val;
  for (int i=0; i<Tangent::N; i++) 
    c.dot[i] = a.dot[i] + b.dot[i];

return c;
}
Tangent operator*(const Tangent& a, const Tangent& b) {
  Tangent c;
  c.val = a.val * b.val;
  for (int i=0; i<Tangent::N; i++) 
    c.dot[i] = a.val * b.dot[i] + a.dot[i]*b.val;

return c;
}
Tangent exp(const Tangent& a) {
  Tangent c;
  c.val = exp(a.val);
  for (int i=0; i<Tangent::N; i++) 
    c.dot[i] = c.val * a.dot[i];

return c;
}

(Naive) Operator Overloading 
Example

void func(const double x[], double y[]) {
  double u, v, w;
  u = exp(x[0]);
  v = x[0]*x[1];
  w = u+v;
  y[0] = sin(w);
     
  u = x[0]*x[0];
  v = y[0] + u;
  y[1] = y[0]/v;
}

void func(const Tangent x[], Tangent y[]) {
  Tangent u, v, w;
  u = exp(x[0]);
  v = x[0]*x[1];
  w = u+v;
  y[0] = sin(w);
     
  u = x[0]*x[0];
  v = y[0] + u;
  y[1] = y[0]/v;
}



template <class E1, E2> class PlusExpr {
  double val() const { return e1.val() + e2.val(); }
  double dx(int i) const { return e1.dx(i) + e2.dx(i); }
  const E1& e1;
  const E2& e2;
};
template<class E1, class E2> PlusExpr<E1,E2> 
operator+(const E1& a, const E2& b) {
  return PlusExpr<E1,E2>(a,b); 
}
template <class E1> class SinExpr {
  double val() const { return sin(e1.val())] }
  double dx(int i) const { return cos(e1.val())*e1.dx(i); }
  const E1& e1;
};
template<class E1> SinExpr<E1> sin(const E1& a) {
  return SinExpr<E1>(a); 
}
class Tangent {
public:
  double val() const { return val; }
  double dx(int i) const { return dot[i]; }
  template <class E> Tangent& operator=(const E& e) {
    val = e.val();
    for (int i=0; i<N; i++) 
      dot[i] = e.dx(i); 
   }
};

Expression Template Operator 
Overloading

void func(const Tangent x[], Tangent y[]) {
  y[0] = sin(exp(x[0]) + x[0]*x[1]);
  //…
}

SinExpr< PlusExp< ExpExpr<Tangent>,
                  MultExpr<Tangent,Tangent> 
                 > 
        >

y[0].val = sin(exp(x[0]) + x[0]*x[1]);
for (int i=0; i<N; i++) {
  y[0].dot[i] = cos(exp(x[0]) + x[0]*x[1])*
     (exp(x[0])*x[0].dot[i] +    
      x[0]*x[1].dot[i] + x[1]*x[0].dot[i]);

Public domain Fad/TFad package



Sacado:   AD Tools for C++ Apps
 Package in Trilinos

 https://github.com/trilinos
 Open source license

 Forward mode AD
 Based on Fad<> library of Di Césaré, Aubert and Pironneau
 Tries to eliminates OO overhead via expression templates 
 DFad<double>:  Derivative array determined at run-time
 SFad<double,N>:  Derivative array length = N
 SLFad<double,N>:  Derivative array length at most N

 Reverse mode AD
 David Gay’s Rad library

 AD applied through template-based generic 
programming
 Template on scalar type
 Instantiate on AD data types

 Manually exploit simulation structure/sparsity
 AD applied at “element” level
 Template “physics” 
 Manually incorporate derivatives into global linear algebra objects

Iso-velocity adjoint surface for fluid flow in a 3D 
steady MHD generator in Drekar computed via 
Sacado (Courtesy of T. Wildey)

https://github.com/trilinos


How to use Sacado

 Template code to be differentiated:  double -> ScalarT

 Replace independent/dependent variables with AD variables

 Initialize seed matrix
 Forward:  Derivative array of i’th independent variable is i’th row of seed 

matrix
 Reverse:  Derivative array of i’th dependent variable is i’th row of seed 

matrix

 Evaluate function on AD variables
 Instantiates template classes/functions

 Extract derivatives
 Forward:  Derivative components of dependent variables
 Reverse:  Derivative components of independent variables



Primary Sacado AD Classes
 #include “Sacado.hpp”

 All classes are templated on the Scalar type

 Forward AD classes:
 Sacado::Fad::DFad<ScalarT>:  Derivative array is allocated dynamically
 Sacado::Fad::SFad<ScalarT>:  Derivative array is allocated statically and dimension must 

be known at compile time
 Sacado::Fad::SLFad<ScalarT>:  Like SFad except allocated length may be greater than 

“used” length
 Sacado::Fad::SimpleFad<ScalarT>:  Dynamically allocated array that doesn’t use 

expression templates

 Similar forward AD classes in other namespaces that use different forward AD 
approaches (research ideas)
 Sacado::ELRFad, Sacado::CacheFad, Sacado::ELRCacheFad

 Reverse mode AD classes:
 ADvar<ScalarT>



Basic Fad Example



Forward or Reverse?

 Forward:  Computes derivatives column-wise
 Number of independent variables <= number of dependent variables
 Square Jacobians for Newton’s method
 Sensitivities with small numbers of parameters
 Algorithm naturally calls for Jacobian-vector/matrix products

 (Block) Matrix-free Newton-Krylov

 Reverse:  Computes derivatives row-wise
 Number of independent variables >> number of dependent variables
 Gradients of scalar valued functions
 Sensitivities with respect to large numbers of parameters
 Algorithm naturally calls for Jacobian-transpose-vector/matrix products

 (Block) Matrix-free solves of transpose matrix
 Optimization



Choosing AD Types
 DFad

 Derivative array allocated dynamically
 Most flexible
 Slowest
 Very slow in threaded environments

 SFad
 Derivative array size fixed at compile time
 Must know exact number of derivative components
 Fastest
 Best choice in threaded environments

 SLFad
 Fixed-length derivative array, can use only a portion of it at run-time
 Compromise between the two
 Usually just a little slower than SFad
 Good choice for threaded environments

 ADvar (reverse mode)
 Due to overhead, need substantially more independent variables than dependent variables (at least 40 

more)
 Currently not appropriate for threaded environments



Differentiating Element-Based 
Codes

 Global residual computation (ignoring boundary computations):

 Jacobian computation:

 Jacobian-transpose product computation:

 Hybrid symbolic/AD procedure
 Element-level derivatives computed via AD
 Exactly the same as how you would do this “manually”
 Avoids parallelization issues



Steady-state mass transfer equations:

Performance (Charon semiconductor 
physics code)

Scalability of the element-level derivative computation
Set of N hypothetical chemical species:

DOF per element = 4*N

 Forward mode AD
 Faster than FD
 Better scalability in number of PDEs
 Analytic derivative
 Provides Jacobian for all Charon physics

 Reverse mode AD
 Scalable adjoint/gradient



Matrix/Residual Assembly 
Performance Test
 Performance test for measuring Jacobian/Residual assembly using 

Sacado

 3-D, linear FEM discretization
 1x1x1 cube, unstructured mesh
 Derived from FENL Kokkos example (H. Carter Edwards)
 Thread-parallel matrix/residual assembly

 Mesh cell loop parallelized with OpenMP/CUDA
 Atomic instructions for assembling into matrix/residual

 3 algorithms studied
 Traditional element derivative w.r.t. nodal solution (AD size = # 

nodes/element x # equations)
 Element derivative with optimized derivative of interpolation of nodal 

solution, gradient at quadrature points
 Derivative at each quadrature point w.r.t. nodal solution and gradient 

interpolated at quadrature point (AD size = 4 x # equations)



Sacado Assembly Performance



Sacado Assembly Performance



AD Research

 Efficiently deploying AD in modern programming environments
 Expression templates for C++
 AD in interpreted languages (Matlab, Python, …)

 Reducing overhead of reverse-mode AD

 AD in threaded-environments
 Automatically differentiating thread-parallel programs
 Exploiting thread parallelism within AD tools

 Finding most efficient way to differentiate a given program
 Column/row compression
 Cross-country elimination

 Efficiently evaluating higher derivatives

 Automatically detecting and exploiting sparsity in derivatives



DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Multi-Core Many-Core APU CPU+GPU

Drekar

TrilinosSPARC

Applications & Libraries

Kokkos
performance portability for C++ applications

Albany

EMPIRELAMMPS

SIERRA etc...

C. Trott, et al., https://github.com/kokkos, https://kokkosteam.slack.com
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Kokkos Example
template <typename ViewTypeA, typename ViewTypeB, typename ViewTypeC>
void run_mat_vec(const ViewTypeA& A, const ViewTypeB& b, const ViewTypeC& c) {
  typedef typename ViewTypeC::value_type scalar_type;          // The scalar type 
  typedef typename ViewTypeC::execution_space execution_space; // Where we are running

  const int m = A.extent(0);
  const int n = A.extent(1);
  Kokkos::parallel_for( 
    Kokkos::RangePolicy<execution_space>( 0,m ), // Iterate over [0,m)
    KOKKOS_LAMBDA (const int i) {                // "[=]" (capture by value)
      scalar_type t = 0.0;
      for (int j=0; j<n; ++j)
        t += A(i,j)*b(j);
      c(i) = t;
    }
  );
}

// Use default execution space (OpenMP, Cuda, ...) and memory layout for that space
Kokkos::View<double**> A("A",m,n); // Create rank-2 array with m rows and n columns
Kokkos::View<double* > b("b",n);   // Create rank-1 array with n rows
Kokkos::View<double* > c("c",m);   // Create rank-1 array with m rows

// ...

run_mat_vec(A,b,c);



Layout Polymorphism for Performant 
Memory Accesses

 GPU
 Each thread accesses strided range of 

entries
 Ensures coalesced accesses (consecutive 

threads access consecutive entries)

 CPU
 Each thread accesses contiguous range 

of entries
 Ensures neighboring values are in cache

Architecture Description Execution
Space

Measured 
Bandwidth 

(GB/s)

Expected 
Throughput  
(GFLOP/s)

Measured 
Throughput 
(GFLOP/s)

Wrong 
Layout 

(GFLOP/s)

Skylake 
(1 socket)

Intel Xeon Gold 
6154, 36 threads

OpenMP 64.4 16.1 18.0 15.3

GPU NVIDIA V100 Cuda 833 208 213 26.3

M = 106, n = 100



Sacado and Kokkos?
 What happens when we use Sacado AD on manycore architectures 

with Kokkos?

 Kokkos::View< Sacado::Fad::SFad<double,p>**>:
 Derivative components always stored consecutively
 CPU:  Good cache, vector performance
 GPU:  Large stride causes bad coalescing



Sacado/Kokkos Integration
 Want good AD performance with no modifications to Kokkos kernels

 Achieved by specializing Kokkos::View data structure for Sacado scalar types
 Rank-r Kokkos::View internally stored as a rank-(r+1) array of double
 Kokkos layout applied to internal rank-(r+1) array



AD Performance Portability

Architecture Expected 
Throughput  
(GFLOP/s)

Measured 
Throughput 
(GFLOP/s)

No View 
Specialization 

(GFLOP/s)

Skylake 30.4 34.1 34.0

GPU 393 395 317

Kokkos::View<Sacado::Fad::SFad<double,p>**> A("A",m,n,p);  // Create rank-2 array with m rows and n columns
Kokkos::View<Sacado::Fad::SFad<double,p>* > b("b",n,p);    // Create rank-1 array with n rows
Kokkos::View<Sacado::Fad::SFad<double,p>* > c("c",m,p);    // Create rank-1 array with m rows

// ...

run_mat_vec(A,b,c);

SFad, Derivative dimension p=8



Hierarchical Parallelism
 Layout approach was explored to minimize code user-code changes for 

Sacado
 Differentiate code without changing parallel scheduling

 Derivative propagation provides good opportunities for exposing more 
parallelism
 Parallelism across derivative array
 Code may not expose enough parallelism natively (e.g., small workset)

 Motivation is PDE assembly using worksets
 Many codes group mesh cells into batches called worksets
 Threaded parallelism over cells in each workset:  want large worksets for GPUs 

with very high concurrency
 Memory required proportional to size of workset:  want small worksets because of 

limited high-bandwidth memory on GPUs

 Solution:  apply fine-grained (warp-level) parallelism across derivative 
dimension on GPUs
 Implementation uses Cuda code hidden behind Sacado’s overloaded operators



Advection Kernel Example

Kokkos::View<ScalarT****, Layout, ExecSpace> wgb;
Kokkos::View<ScalarT***,  Layout, ExecSpace> flux;
Kokkos::View<ScalarT***,  Layout, ExecSpace> wbs;
Kokkos::View<ScalarT**,   Layout, ExecSpace> src;
Kokkos::View<ScalarT**,   Layout, ExecSpace> residual;

typedef Kokkos::RangePolicy<ExecSpace> Policy;
Kokkos::parallel_for( 
  Policy( 0,num_cell ),
  KOKKOS_LAMBDA( const int cell )
  {

    for (int basis=0; basis<num_basis; basis+=1) {
      ScalarT value(0),value2(0);
      for (int qp=0; qp<num_points; ++qp) {

for (int dim=0; dim<num_dim; ++dim)
  value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);
value2 += src(cell,qp)*wbs(cell,basis,qp);

      }
      residual(cell,basis) = value+value2;
    }
  });



Advection Kernel Example

const int VectorSize = 32;
typedef Kokkos::LayoutContiguous<Layout,VectorSize> ContLayout;
Kokkos::View<ScalarT****, ContLayout, ExecSpace> wgb;
Kokkos::View<ScalarT***,  ContLayout, ExecSpace> flux;
Kokkos::View<ScalarT***,  ContLayout, ExecSpace> wbs;
Kokkos::View<ScalarT**,   ContLayout, ExecSpace> src;
Kokkos::View<ScalarT**,   ContLayout, ExecSpace> residual;

typedef typename ThreadLocalScalarType<decltype(src)>::type     
  local_scalar_type;
typedef Kokkos::TeamPolicy<ExecSpace> Policy;
Kokkos::parallel_for( 
  Policy( num_cell, Kokkos::AUTO, VectorSize ),
  KOKKOS_LAMBDA( const typename Policy::member_type& team )
  {
    const int cell = team.league_index();
    const int ti   = team.team_index();
    const int ts   = team.team_size();
    for (int basis=ti; basis<num_basis; basis+=ts) {
      local_scalar_type value(0),value2(0);
      for (int qp=0; qp<num_points; ++qp) {

for (int dim=0; dim<num_dim; ++dim)
  value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);
value2 += src(cell,qp)*wbs(cell,basis,qp);

      }
      residual(cell,basis) = value+value2;
    }
  });



Discretizations & Algorithms

Drekar/Panzer PDE Tools 
(Pawlowski, Cyr, Shadid, Smith)

Applications

Uncertainty Quantification

PDE Constrained 
Optimization

IMEX

Magnetohydrodynamics

Turbulent CFD

Compatible Discretizations
Algebraic Multigrid

(>100k cores)

Block 
Preconditioning



Hierarchical Parallelism in Panzer
 Diffusion problem with mixed finite element discretization:



Concluding Remarks
 Analytic derivatives are an important enabling technology for 

simulation and analysis
 Automatic differentiation is a powerful means for obtaining these derivatives

 Sacado provides efficient AD capabilities to C++ codes
 Widespread use within Sandia simulation codes

 Highly parallel architectures like GPUs are here
 AD tools and techniques need to work in these environments

 Sacado solves this problem through integration with Kokkos
 Leverage layout polymorphism to enable AD of Kokkos kernels without 

modification
 Incorporate GPU vector/warp-level parallelism for improved performance

 Code and performance tests are available within Sacado (and Panzer)
 https://github.com/trilinos

https://github.com/trilinos

