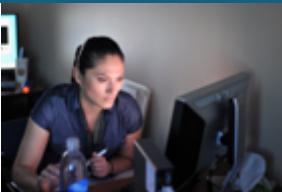
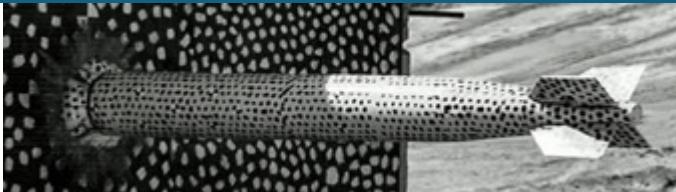




Sandia  
National  
Laboratories

SAND2020-12976PE

# Research Needs for Trusted Analytics in National Security Settings



David Stracuzzi and Ann Speed



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Overview



- Bottom Line Up Front
- The Prevailing Hypothesis
  - ...And Why Its Wrong
- A Motivating Example
- Important Definitions
- Challenges in Measuring Trust
- An Experimental Perspective on Trusted Analytics
- Research Gaps
- Principles for Trusted Analytics Research



# Bottom Line

## Drivers

- Analytics and AI are here to stay in national security domains
- Complexity and opacity of models raise questions about appropriate use:
  - How do we achieve it?
  - How do we measure it?
- Many gaps in current academic literature, commercial applications
  - Mission contexts often violate laboratory assumptions
  - Mission consequences often more severe than laboratory or commercial applications
  - Ground truth often presents a special challenge in national security domains



# Bottom Line

## Goal

- Establish principles to guide future research in trusted analytics
  - Trust is not the goal – we want analytics that improve decision making and are correctly used
  - Application domain expertise needs to be well represented during development
  - Mission applications need to be rooted in theory of ML/AI/data science



# Why Are Trusted Analytics So Challenging?

- **Setting:** Mitigating human inadequacy
  - Capacity – Too much data from too many sources
  - Time – Maintain situation awareness and decision making as dictated by application
  - Bias and Error – Reduce unjustified assumptions (perspective) and thinking errors
- **Constraints:**
  - Analysts and end-users have expertise not captured by analytics
  - Analysts and end-users may lack expertise in computational analytic methods
  - Ground-truth limitations
- **Outcomes:**
  - Failure to establish appropriate trust in analytics can make mission performance worse

# 6 | Prevailing Hypothesis



*“People don’t use analytics because they don’t trust them”*

## Analytic developers response:

### If we:

- Produce higher-quality solutions,
- Provide more information about our methods, or
- Explain how our methods made predictions...

### Then:

- People will necessarily trust and use our analytics, and
- The analytics will always be beneficial.

**Trust is not so simple. Developing trusted analytics less**

# Motivating Example: Coronavirus Testing



- **Virus tests are similar to detection algorithms**
  - Black boxes that perform specific tasks with hard-to-estimate performance
  - Binary output despite complex false positive and false negative rates
- **COVID-19**
  - Wide range of symptoms (weak indicators)
  - Asymptomatic cases (hidden patterns)
  - Lack of comprehensive testing (can't measure everything we'd like)

# Motivating Example: Coronavirus Testing



- **Decision-making challenge:**

- Task does not operate in a vacuum – many other possible diagnoses

- Test can augment or supplant physician judgement

- How to incorporate test results appropriately with:

- Other tests?

- Patient background?

- Patient symptoms (or lack thereof)?

- Exposure level?

- Physician background knowledge and experience?



What constitutes a well-calibrated decision?

# Important Definitions

- **Analytic:** any computational method that connects data with decisions
  - Focus on data-driven analytics
  - These tend to be correlational
  - Distinguished from simulation models (causal)

- **Automation:** technology that selects data,

transforms information,  
makes decisions, or controls

processes

- Includes AI/ML/stats models
- Large, relevant literatures

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HIGH | 10. The computer decides everything, acts autonomously, ignoring the human.<br>9. informs the human only if it, the computer, decides to<br>8. informs the human only if asked, or<br>7. executes automatically, then necessarily informs the human, and<br>6. allows the human a restricted time to veto before automatic execution, or<br>5. executes that suggestion if the human approves, or<br>4. suggests one alternative<br>3. narrows the selection down to a few, or<br>2. The computer offers a complete set of decision/action alternatives, or |
| LOW  | 1. The computer offers no assistance: human must take all decisions and actions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Levels of Automation, from Parasuraman, Sheridan & Wickens, 2000.

| SAE J3016™ LEVELS OF DRIVING AUTOMATION              |                                   |                                                                                                                                    |                                                                             |                                                                                                                       |                                                                                                                                                                                    |
|------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAE LEVEL 0                                          |                                   | SAE LEVEL 1                                                                                                                        |                                                                             | SAE LEVEL 2                                                                                                           |                                                                                                                                                                                    |
| What does the human in the driver's seat have to do? |                                   | You are driving whenever these driver support features are engaged – even if your feet are off the pedals and you are not steering |                                                                             | You are not driving when these automated driving features are engaged – even if you are seated in "the driver's seat" |                                                                                                                                                                                    |
| What do these features do?                           | These are driver support features | These features are limited to providing warnings and momentary assistance                                                          | These features provide steering OR brake/acceleration support to the driver | These features provide steering AND brake/acceleration support to the driver                                          | These are automated driving features                                                                                                                                               |
| Example Features                                     |                                   | • automatic emergency braking<br>• blind spot warning<br>• lane departure warning                                                  | • lane centering OR<br>• adaptive cruise control                            | • lane centering AND<br>• adaptive cruise control at the same time                                                    | • traffic jam chauffeur<br>• local driverless taxi<br>• pedals/steering wheel may or may not be installed<br>• same as level 4, but feature can drive everywhere in all conditions |



# Important Definitions

- **Trust:** measurement of the user, defined in terms of subjective and objective measures
  - Subjective – individual's reported level
  - Objective – comparison of human decision to analytic recommendation
  - Frequent dissociation between subjective and objective measures
  - Not binary – lies on a continuum
  - Influenced by decision environment
- **Trustworthiness:** measurement or property of the analytic
  - Degree to which analytic in general, or prediction in particular, should be relied upon
  - Focus area of AI/ML/stats literature (though often confused with trust)
  - Proposed metrics include:
    - Predictive Performance (such as accuracy)
    - Uncertainty Measurements
    - Model Transparency and Explainability
    - Anthropomorphism
  - Impact of most analytic properties on human trust not well established



# Important Definitions

- **Trusted Analytic:** Necessary (maybe not sufficient) conditions:
  - Analytic should demonstrate
    - Validity – an established connection between metric and user trust
    - Properties that are relevant to the application
  - Demonstrated trust and use of analytic
    - Measured subjectively and objectively
    - Uncalibrated – an important research waypoint
  - Demonstrated appropriate trust and use
    - Use needs to be calibrated relative to analytic performance
    - Complex and technically challenging for mission applications



# Challenges in Measuring Trust

- Analytics are imperfect predictors
- “Proper use” means correctly accounting for the chance that they are incorrect
  - Ideal decision = Bayes optimal
  - Means any decision error is due only to noise in the data/information
- **Case study:** COVID diagnosis and trust in virus test
  - **Available information:**  
COVID test results, patient symptoms, patient history, background knowledge of other diseases
  - **Suppose:** we know the probabilistic relationships among these based on observations
  - **Then:** we can measure the difference between ideal and doctor predictions

# Challenges in Measuring Trust



## Case Study: Why might the doctor differ from optimal?

- The doctor might...
  - Over/under weight COVID test – improper trust
  - Observe sample that yields different relationships among symptoms, tests, and conditions – disagreement (good trust?)
  - Improperly weight certain symptoms – bad decision criteria (good trust?)
  - Incorporate irrelevant information – bad decision criteria (good trust?)
  - Weights information correctly, but reasons incorrectly – good trust, thinking error
- In general, we **can't distinguish** among these (hard to know doctor's relative weighting)
- In many cases, the **probabilistic relationships are also unknowable** or weakly estimated
- Sometimes the test changes – COVID test may not pick up new mutations equally



# Challenges in Measuring Trust

**Bottom Line: Ground-truth for calibration entails more than just known theoretical relationships or desired outputs.**

**We need to know the decision-maker's internal evaluation function and background knowledge**

# An Experimental Perspective on Trusted Analytics



## How Analytics Indicate Trustworthiness (Key Independent Variables)

- Does analytic answer the question of interest?
- Does the data speak to the question of interest?
- Does analytic respect domain constraints and background knowledge?
- Is it consistent with known examples or expected behavior?

### Correctness of Analytic

### Performance of Analytic

- Does the model generalize to new examples?
- Does it distinguish between guessing and reliable predictions?
- Does it meet other performance criteria (speed, efficiency, etc)?

## How Users Demonstrate Trust in Analytics (Key Dependent Variables)

- Does the user indicate they trust the analytic?
- Does the user know when the analytic can

### Subjective Ratings of Trust

### Behavioral Reliance on Analytic

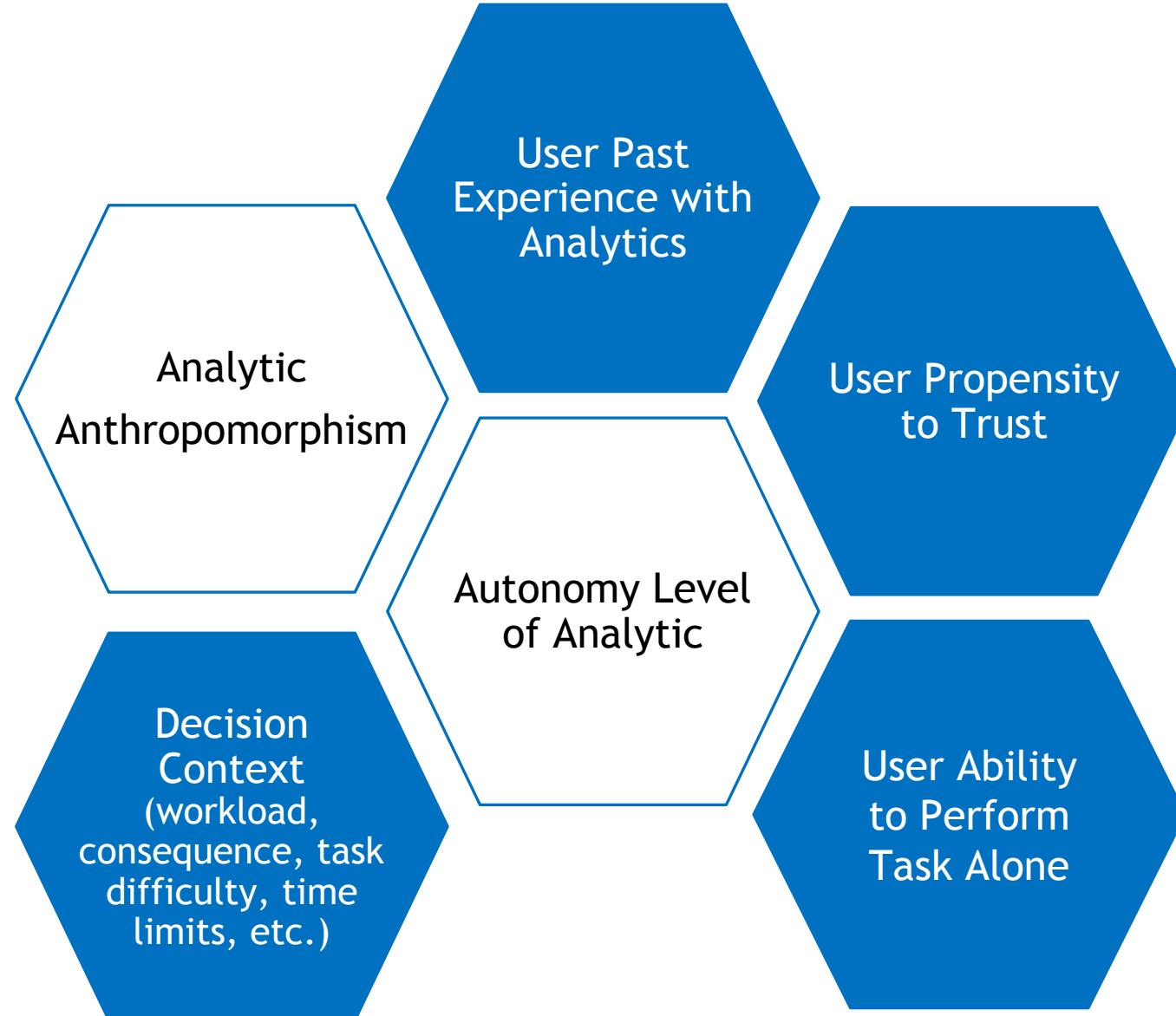
- Do subjective trust ratings and calibration predict actual use?
- Does analytic use correspond to its reliability?

- Does the analytic improve decision quality?

### Decision Quality

Additional moderating variables further complicate the picture.

# Example Moderating Variables





# Research Gaps

- **Strategic Gaps**

- Generalizability of laboratory research to national security environments
  - Differences in consequences
  - Lack of ground truth in national security situations
  - Theoretical models may hide nuances that drive mission applications
- Methodological issues in human subjects studies
- Lack of theoretical framework of trustworthiness and trust
- Temporal characteristics of trust

- **Focused Gaps**

- Trustworthiness characteristics of analytics that engender appropriate trust
- User, task, and environment characteristics that influence willingness to trust
- Adversarial conditions
  - Detection of adversarial manipulation
  - Potential vulnerability around manipulating analytics to report overconfidence
- When to automate and to what level

# Principles for Research in Trusted Analytics

Trust is not the goal

- Trust is a mediator – people unlikely to use analytics they don't trust

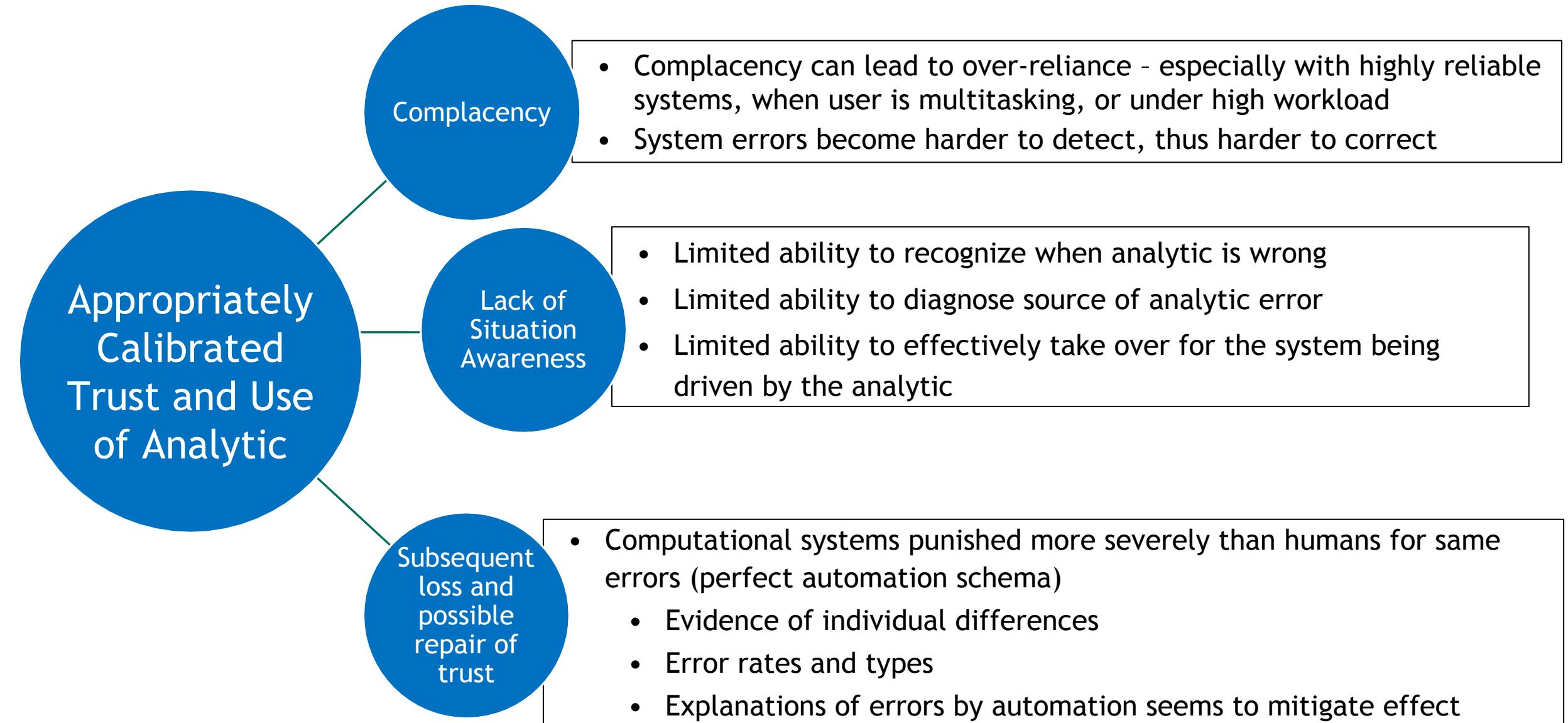
**HOWEVER**

- Just because they trust it doesn't mean they trust it appropriately
- Just because they trust it appropriately doesn't mean they use it appropriately
- Just because they trust and use it appropriately, doesn't mean all effects are positive, and
- Just because they say they don't trust it doesn't mean it doesn't impact their behavior (explicitly or implicitly)!

**The goals are appropriate analytic use and  
Improved mission performance**



# Finally, users trust and use your analytic appropriately... There are still risks!





# Principles for Research in Trusted Analytics

- **Incorporate relevant technical and domain expertise in development process**
  - Mission expertise and background knowledge
  - AI, statistics, computing, and mathematics
  - Experimental psychology and/or human factors
- **ML/AI applications built on theoretical foundation**
  - Methods with well-understood strengths and weakness calibrated to application
  - Avoid poorly characterized, ad-hoc approaches
- **Intentional analytic design to include and respect:**
  - Relevant domain expertise
  - Human user needs
  - Anticipated trust-use pitfalls

# Summary

## 1. Trusted Analytics is not well-defined in the literature

- Intersection of computer science, statistics, human factors, psychology, cognitive science
- Communities tend to ignore each other

## 2. As a field trusted analytics lacks strong theoretical and empirical foundations

- Theory of factors that influence trust and how they interact with analytic properties is needed
- Experimental methodology needs to be strengthened

## 3. Several factors to consider in developing trusted analytics

- Trustworthiness (according to some metric) does not imply trust
- Trust does not imply appropriate use
- Properties of the user, task, and application environment influence trust

