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ABSTRACT

Heat waves bave catastrophic effects cansing mortality, air quality loss, grid failures, infrastructure damage, and increases in electricity consumption. The
literature indicates that heat waves are growing in intensity, duration, and frequency. This paper documents a heat wave study of the Sandia National
Laboratories (SNL) California site. The analysis involves: 1) projection of a heat wave based on historical data and NEX-DCP30 climate projections,
2) Classification of peak electricity load points that represent the site on workdays, Fridays, and weekends 3) Regression of the peak load data to produce
confidence bounds for the analyss, and 4) Calibration and projection of building energy models (BEMs) to the heat wave scenario. "This approach worked
well for the previous NM site analysis of meter data and 97 representative BEM’s. For the CA site, the BEM calibration procedure was unsuccessful
without individual BEM calibrations. Many of the 23 California BEM's required calibration at the building level rather than for the entire site. This
was found to be due to many of the BEM’s having significantly different electric demand profiles than their meter data whereas the NM BEM’s were much
more accurate. Unlike the NM site, the CA site did not distinguish Friday operations clearly and the associated K-mean cluster algorithm that worked
for the NM site did not add value for the CA site. The regression analyses produced estimates of site-wide increases to daily peak loads with 95% confidence
bounds that were much wider than the NM analysis. The CA site was found to have higher average peak load sensitivity of 1.07%/°C (0.59%/ °F) in
comparison to the NM site with 0.61%/°C (0.34%/ °F). Even so, the larger sensitivity is counteracted by a milder projection for futnre heat waves from
NEX-DCP30 downscaled climate projections. The expected heat wave maximum temperature of 45.1°C (113.2°F) did not even break the current record
0f 46.1°C (115.0°F) in Livermore, CA and only had total heating energy of 28°C -day (51°F -day) from baseline 2019 weather in comparison to NM’s
38°C-day (68°F -day). This work emphasizes issues that can aid development of future guidelines for application of BEM and meter data to heat-wave

scenarios.

INTRODUCTION

A heat wave is a prolonged period of abnormally hot weather. Global warming is shown to be tied to increasing
magnitude, duration, and frequency of heat waves (Perkins, 2015; Horton et. al., 2016). The fifth Intergonvernmental
Panel on Climate Change (IPCC) report states that it is almost certain that heat wave risk will increase in the 21% century
(IPCC, 2014). Heat waves cause death, damage, and infrastructure service complications and interuptions such as power
outages (Santamouris, 2020; Falasca et. al, 2019; Burillo et. al., 2019; Santamouris et. al., 2015; Schubert et. al., 2014;
Fennessy and Kinter, 2011). Air conditioning (AC) has reduced heat related deaths by a factor of six over the 20™
century yet also is a contributor to anthropogenic global warming (Barreca et. al., 2013). AC is the dominant source of
increased electricity demand during a heat wave (Choobineh et. al., 2019). In urban environments, heat rejection from
AC systems can give positive feedback that elevates external ambient temperatures even further (Viguié et. al., 2020).
Climatic heat waves coupled to this and other urban heat island effects are anticipated to create temperatures of 14°C
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(25°F) higher than average peak temperatures (Santamouris, 2020).

Resilience to heat wave events can be obtained by several approaches. From the grid electricity supply side, power
production and grid infrastructure can be bolstered such that maximum potential peak electrical loads can be serviced
and maximum tempreatures survived without concern. From the demand side, grid interactive buildings and passive
cooling strategies (Baniassadi et. al., 2019) can be used to reduce demand or increase likelihood of survival for occupants
during a heat wave. Unfortunately, all of these approaches are costly and correlations between designing for resilience
to heat waves and designing for energy efficiency are not always positive (Sun et. al., 2020). As a result, quantification
of heat wave effects on electric demand loads is of paramount importance so that risk for a given location can be
assessed. Heat loads to be rejected by AC must therefore also be modeled. Building Energy Modeling (BEM) is a good
method to do this.

Institutions that manage 10°s-1000’s of buildings with critical operations such as government entities, health care
facilities, and universities are increasingly in need of ways to quantify the effects of heat waves on their infrastructure.
Such quantification involves complicated analyses that must include uncertainty due to the need to incorporate
downscaled climate modeling results. Methodologies are therefore needed that provide the uncertainty information
needed while keeping complexity in the analysis to a minimum.

Sandia National Laboratories (SNL) conducted a heat wave analysis of its New Mexico site which has over 700
buildings with floor area of approximately 600,000 m? (6.5¢6 ft?). The tresulting analysis (Villa, 2020) led to the
formulation of a procedure that uses BEM, a 2-parameter scaling function, and meter data to create two linear
regressions of: 1) maximum heat wave temperature versus site-wide peak load and 2) heat wave heat content versus
increased site energy consumption. The analysis created the linear regression models with 95% confidence intervals (CI)
that represent uncertainty for: 1) operational variations within the buildings and 2) uncertainty in calculating site-wide
peak loads when only partial metering is available. The second uncertainty had to be included because no direct
measurement of site-wide power at 15 minute intervals was available. Building meters with 15 minute data only
represented 69% of the NM site-wide power on average. Monthly energy bills of the entire site were therefore used to
estimate this uncertainty and to normalize the analysis result to site-wide levels.

The purpose of this paper is to emphasize the need for development of generalized methodologies in heat wave
analyses using BEM. This is accomplished through discussion of a follow-on analysis of the much smaller SNL
California (CA) Livermore site with about 60 buildings and floor area of approximately 80,000 m? (860,000 ft?). The
procedure proposed by the author (Villa, 2020) that was supposed to be generalized had many steps that did not work
or were unecessary in the CA analysis. The underlying BEM results did not initially fit the site-wide electricity demand.
As a result, each building had to be investigated against its own meter data. These comparisons revealed that the BEM
and metering signals had very different shapes from each other. It also revealed that the connectivity between centralized
chilled water loops were not correct in the models. As a result, individual building calibrations had to be carried out. In
the end, 9 BEM were calibrated to the American Society of Heating and Refrigeration American Engineers (ASHRAE)
Guideline 14 (G-14) (ASHRAE, 2014) to produce a reasonably good site-wide fit. Even so, peak loads for the model
were still consistently lower than the meter data. Other changes include: 1) The meter data filtration process was
different for CA versus NM and the classification using K-means clustering were not needed for the CA site.

This paper first lays out a brief review of the heat wave analysis procedure from (Villa, 2020) with minor changes
implemented for the CA site, presents the CA analysis results, and then briefly discusses lessons learned for generalized
heat wave analysis procedures using BEM.

METHODS

The two parameter function used for the NM analysis (Villa, 2020) did not produce good fits between the CA
BEM models and the data. A third parameter p; therefore had to be added. The calibration function now provides
scaling (Pm), stretching (p,), and translation (py).
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Here, f(t) is the output for each time step simulated by the aggregate output of BEM, fimax = max(f(t)), and fmin =
min(f(t)). The output calibration function frew(t) is compated to meter data fm(t) through the Normalized Mean
Bias Error NMBE) and Coefficient of Variation for Root Mean Square Error (CVRSME) as defined in G-14
(ASHRAE, 2014) The effects of pm, Po, and p¢ are illustrated in Figure 1. The offset parameter p, is less intuitive. It
has a range of -1 to 1. At -1 it makes fmin = 0. At 1 it makes f(t) = fmax for all t.
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Figure 1 Parameter effects plots for Pm (left), Po (middle), and p¢ (right) for a random example function
f@®) =t + 1)(t — 09)(t—0.2) + 0.5

The procedure for running a heat wave analysis is shown in Figure 2 and is elaborated in more detail in (Villa, 2020).
To conduct the analysis, the following input data is needed: 1) Energy meter data for the most recent year. This can be
at the building level or for a site-wide meter. It is ideal to have 15 minute data for the entire site. 2) Hourly weather data
for the the same year for inputs to BEM weather files. It is critical to use measured data for the site so that the BEM
calibration fits to site performance. 3) Downscaled climate model results providing projected temperature histories into
the future. 4) If site-wide meter 15 min data is unavailable monthly energy use bills for calculating normalization factors.

With these inputs, the heat wave analysis is accomplished according to the flow diagram in Figure 2 by: 1) Filtering
the meter data for outliers and unphysical changes using Interquartile range (IQR), maximum rate of change, and
aggregation to an hourly time step. 2) Calibration of invididual BEM models. 3) Deriving the heat wave start time during
the year tp,, change in peak temperature from the baseline peak temperature ATp,, and length of the heat wave At,,. 4)
Removing time steps where the site is not in full operation. This is done through adjustment of input parameters to a
K-means clustering algorithm followed by visual inspection of the model to data result for all time steps and for daily
peak load. 5) Run all BEM using the IX software platform (Villa, 2017) or other platform. The BEM results then have
to be scaled by minimizing the sum of the absolute value of NMBE and the CVRSME while varying p,,, p,, and p;. 0)
Application of the heat wave in a discreet set of steps where the maximum temperature is offset to a fraction of ATp,,.
Simulating several steps in IX provides a way to regress peak load versus maximum temperature from the BEM model
results. 7) Calculate linear regressions of maximum temperature versus peak load and heat wave heat content versus
increase in site-wide energy. 8) From step 1 and the weather data, develop a second dataset of maximum temperature
versus peak load from the meter data. 9) Create a log-linear regression of peak load versus peak temperature with 95%
confidence bounds of the maximum temperature. 10) Extrapolate the 95% confidence bounds from the log-linear



regression calculated in step 9 to the maximum heat wave temperature. This interval is the uncertainty in peak load due
to operational variations. 11) Scale the meter results to site-wide results. This step was not needed for CA but was
important to the NM case (Villa, 2020). 12) The outputs can then be provided with regression parameters with CI’s.
Estimations of the effect of different heat waves than the one simulated with estimated CI’s can be made using the
regression parameters, and calculation of ty,, AThy,, and Atp,, for the heat wave in question.
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Figure 2 BEM heat-wave analysis procedure from (Villa, 2020) with modifications. Institutional Transformation (IX) is the
BEM parameter study software platform used in this study

DATA INPUT

Weather data came from the Lawrence Livermore National Laboratory (LLNL) weather stations at 10 m elevation
above ground level (LLNL, 2020) directly adjacent to the SNL CA site. The sensors used to collect the information are
maintained, replaced and calibrated per Department of Energy (DOE) standards (DOE, 2015). The only non-available
signals were total horizontal solar radiation, cloud type, and cloud amount. Typical Meteorological Year 3 (TMY3) data
were used for these variables (Wilcox and Marion, 2008).

The meter data came from a site-wide electric meter recorded in the SNL energy analytics database. The data was
extracted through a web application programming interface using Python. The accuracy of the meter was verified to be
0.32% variation between the yeatly sum of energy between 2019 monthly bills and the 15 min meter data.

The heat wave scenario for CA was constructed from NEX-DCP30 model results (Thrasher et. al., 2013). The
process to derive the heat wave is not elaborated here and is not critical because of the use of regression in this study
to parameterize the heat wave. The total change in temperature was set to ATy, = 3.4°C. The baseline hot period from
the NEX-DCP30 historical results was chosen to be August 27%, 2017 (tp,, = August 27% each year) and the heat wave



was assumed to be 7 days long (Atp,, = 7). Unlike the NM case, the 2°C volatility was not used due to lack of information
about CA concerning increased volatility. The resulting scenario peak temperature of 45.1°C did not even break the
current record high at the LLNL tower of 46.1°C, yet is still representative of expected, longer-duration future heat
waves according to NEX-DCP30 model results.

RESULTS

The CA analysis required significant changes to the parameters of the analysis in comparison to the NM analysis. In
step 1 (Figure 2) The IQR had to be expanded to 0.05 to 0.95 in comparison to the NM values of 0.1 to 0.9 to avoid
shaving off some of the most prominent peaks for the CA data. Also, the K-means clustering that was essential to the
NM analysis was not needed because non-full operations were not identified.

Performance of the institutional BEM heat wave analysis procedure required individual calibration of many of the
BEM (step 2). While the NM site BEM (Villa, 2020) were under continuous maintenance (Villa, 2019), it appears that
many of the CA building BEM had not recently been compared to meter data. Table 1 shows the NMBE and CVRSME
of each of the 23 buildings before and after six iterations of manually changing the BEM that were guided by the capacity
of the aggregate model response to match meter data peak loads in 2019 (Figure 5). The results of the iterative process
between steps 2, 4, and 5 are shown in Figure 3. Figure 3b shows the IX model output for 23 BEM with no individual
model calibration. Figure 3d shows the same result with the scaling function (Equation 1) applied. The model output
gives G-14 compliant results but peak loads were clearly not modeled well. Figure 3f shows the model with removed
data (orange). Unlike the NM case, the filtering process did not improve the fit to peak loads. Mismatch of peak loads
is depicted in Figure 3f by light purple. The left column of Figure 3 shows the results after individual model calibration.
Two major changes were needed for the scaling function to fit the meter data: 1) The AC energy needed to increase and
2) the reduction of loads at night and on weekends needed to be decreased significantly.

Investigation on a model by model basis, found that the day to night variation in plug, light, fan, and venting loads
in the models were significantly too high in comparison to the data. Also, it was found that two major Central Ultility
Buildings (CUB) were not defined correctly across a group of 3 buildings and another group of 4 buildings. All 7 of
these buildings were found to artificially meet their cooling loads with no electricity because they had previously been
connected together into 2 models instead of 7. It was also found that all of the schedules within the models assumed
significantly larger reductions in plug loads than actually occur according to the meter data. Figure 3a shows the updated
aggregate output with no scaling. Figure 3¢ shows the unfiltered results scaled and Figure 3e shows the filtered result
used for regression analysis. Even though the individual BEM calibrations produced much better peak loads, Figure 3e
still shows the BEM underpredicting peak loads. The light purple peaks in Figure 3e consistently are higher than the
23 BEM model (dark purple or blue). This is cleatly seen by observing the upper right hand corner of Figure 5.

The linear and data-driven log-linear regressions for peak load and site-wide energy created in Steps 6, 7, 9, and 10
are shown in Figure 4 and Figure 6. CI data and conversion to percentates for these regressions are supplied in Table 2
and Table 3. These results provide the needed information to estimate other heat wave effects with CI’s.

DISCUSSION

The CA site sensitivity is higher than the NM site (Villa, 2020). The less intense heat wave for CA (28.10°C-day
(50.58°F-day) versus 38.04°C-day (68.47°F-day) for NM) produced a 1.07%/°C (0.59%/°F) peak load sensitivity for the
“work days” (last row of Table 3) prediction in comparison to NM’s 0.67%/°C (0.37%/°F). Also, the energy sensitivity
(Figure 6 and Table 2) is more uncertain for CA than NM. For peak load, the CA analysis has clear misalignment (Figure
4) between slope and offset. The inability to capture the higher peak loads with the 23 BEM models (Figure 5) despite
changing AC systems to lower efficiencies indicates that there are is unknown air-exchange, refrigeration, or heat loads
in the 23 buildings being modeled. A better fit was not sought because the cause of mismatch could not be reasonably
postulated from the information available. This points to the need for an objective criterion to compare peak loads.

The need for individual BEM calibration in this study increased the work-load required to assess the effects of heat



waves to the CA site. The combination of higher uncertainty obtained from the analysis results and increased work for
the analysis suggests that follow on work should look at the effectiveness of using a low-resolution resistance capacitive
(5RC1) BEM model (Bacher et. al., 2011; Madsen and Holst, 1995) to see if equivalent or better results can be obtained
with less effort. Regardless, Table 1 shows that 9 of the detailed BEM used in this study became G-14 compliant. The
production of G-14 compliant models has significant benefit to parallel modeling efforts to perform energy retrofit
analyses using the BEM. This makes the time spent on this heat wave assessment more useful and shows an up-side to

maintaining large fleets of BEM (Villa, 2019).

Table 1 Summary of individual building calibrations results.

NMBE (%) CVRSME (%) Data Mean Power Model Mean Power
Calibrated Uncalibrated Calibrated Uncalibrated Calibrated UnCalibrated
(kW) (kBTU/h) (kW)  (kBTU/h) (kW)  (kBTU/h)
1 -3414 -5209 4.228E+04 4.26E+04 1.013 3.458 35.6 121.5 53.79 121.5
2 -5.5 11.41 206.7 206.7  225.3 768.8  237.7 811  199.6 811
3 92.86 87.31 101.9 97.15  193.4 659.9  13.83 4717 24.56 47.17
4% 8.967 17.57 11.05 21.1  488.4 1667  444.6 1517 402.6 1517
5% -0.7239 37.61 23,05 45.59  37.98 1296 38.25 130.5 23.7 130.5
6 474 -178.6 476.9 226.6  102.7 350.3  589.3 2011 286.1 2011
T* 0.6584 51.78 7.819 56.5  593.2 2024  589.3 2011 286.1 2011
8% 0.6287 -8.661 17.98 81.37  101.6 346.7 101 344.5 1104 344.5
9% 0.4323 -3.088 25.85 35.3  420.1 1433 418.3 1427 433.1 1427
10 -191.6 -260.1 198.1 282.5 106 361.7  309.1 1055  381.7 1055
11 -44.67 -78.66 69.07 105.9  213.7 7201 309.1 1055  381.7 1055
12% -0.2531 -49.1 23.21 99.81  21.09 71.96  21.14 72.14  31.44 72.14
13 -18.89 31.5 42.31 49.83  31.95 109 37.98 129.6  21.89 129.6
14 -90.59 -93.12 147.9 190.1  15.07 51.42  28.72 98 29.1 98
15 -98.79 -192.5 163 310.9  16.69 56.96  33.19 113.2  48.82 113.2
16 -116.7 -120.6 170.5 162.3 70.1 239.2  151.9 518.3  154.6 518.3
17 -42.3 41.2 51.58 111.2 118 402.6  167.9 572.8  166.6 572.8
18 0.1673 77.76 57.42 a97.75 129.7 442.5 129.5 441.8 28.86 441.8
19 24.57 24,57 61.26 61.26  32.91 112.3  24.82 84.69  24.82 84.69
20 27.77 27.77 48.57 48.57 14.73 50.25 10.64 36.3 10.64 36.3
21% -1.07 47.08 14.6 58.97  36.19 123.5  36.58 124.8  19.15 124.8
22%* -1.371 -43.79 18.49 60.07 110.1 375.7 111.6 380.9 158.3 380.9
23% -2.128 31.99 27.39 4727 90.29 308.1  92.22 314.7  61.42 314.7
Unscaled total 27.38 35.9 27.91 40.4 3059 1.044E+04 2700 9214
Scaled total all data 2.563E-08 3.006E-07 5.242 7.202 4213 1.437E404 4213  1.437E+404 4213  1.43TE404
Scaled total filtered data  4.418E-08 1.469E-08 5.121 6.74 4213  1437E404 4231  1.444E4+04 4236  1.445E404
* BEM that were G-14 compliant (NMBE < 10, CVRSME < 30) after calibration.
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Figure 3 IX model with and without individual BEM calibration (a) Unscaled calibrated (b) Unscaled uncalibrated (c) Scaled
calibrated no filtering (d) Scaled uncalibrated no filtering (¢) Scaled calibrated with filtering (f) Scaled uncalibrated
with filtering.
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Care must be taken in interpreting CI’s. CI’s provide a statistical measure of the accuracy of calculations performed
on the meter data but do not constitute a probability of occurance of a given peak load. A statistical sampling study
using the BEM and alternative weather histories would be needed to estimate probabilities.

CONCLUSION

An institutional heat-wave assessment has been performed at SNL CA that has shown that much more effort is
needed when BEM have to be calibrated individually. A previous SNL NM analysis (Villa, 2020) required much less
work because no individual BEM calibrations were needed to match site-wide meter data well. Other issues also arose
for the SNL CA case: 1) The analysis procedure had to use an updated scaling function (Equation 1) with a translational
parameter py; 2) The classification filtering processes that were invaluable to the NM process did not add significant
value to the CA analysis; and 3) The resulting CA uncertainty ranges were much wider than the NM analysis including
inability to match the highest peak loads without direct investigation of the buildings involved. Future work needs to
continue to refine this institutional BEM heat-wave assessment methodology including investigating the ability of 5RC1
models to produce equivalent results to detailed BEM. This work underscores issues that can aid development of future
guidelines for application of BEM and meter data to heat-waves. The disparity in usefulness of data filtering in the two
studies points to the need for classification techniques to be generalized for institutional BEM heat wave assessements.

The above difficulties suggest that detailed BEM modeling is not always a good approach for heat wave assessments.
Though the NM site analysis was compelling and models were maintained more thoroughly (Villa, 2019), the CA site
analysis was more difficult. The best approach to use depends on the purposes of the analysis. If individual building
performance in resilience analysis of the site under a heat wave is desired, then the detailed approach is needed. For the
current analysis, using the data-driven modeling without BEM has nearly the same accuracy when projected (Figure 4).



Table 2 Site-wide energy regression

{* F-day)
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Figure 6 Site-wide energy-use due to heat waves

Table 3 Peak load regression results

Description Data (workdays) Workdays Fridays Weekends
SI English SI English SI English SI English

43.1°C mean predicted peak (MW /MMBTU) 6.962 23.76 7.647 26.09 7.448 25.42 5.417 18.48

+95% CI T.669 26.17 7.899 26.95 T.64T 26.09 5.762 19.66
— +450% CI 7.049 24.05 T.68 26.2 7.494 25.57 5.473 18.67

-50% CI 6.877 23.47 T.614 25.98 7.403 25.26 5.361 18.29
— -95% CI 6.321 21.57 7.395 25.23 7.25 24.74 5.072 17.31
37.2°C mean predicted peak (MW /MMBTU) 6.633 22.63 7.379 25.18 7.165 24.45 5.215 17.79
Heat wave to baseline % difference 4.965 3.631 3.949 3.879
Mean slope (MW /"C or 1/°C) 0.01425*%  0.007918* 0.07881 0.1494 0.08322 0.1578 0.0595 0.1128
(MMBTU/®F or 1/°F)

+95% CI 0.01539*% 0.00855*%  0.09057 0.1717 0.09958 0.1888 0.0823 0.156
— -95% CI 0.01312*  0.007286™ 0.06706 0.1271 0.06687 0.1268 0.0823 0.156
Intercept (MW or unitless) 8.205 4.093 13.96 3.695 12.61 2.733 9.327
(MMBTU or unitless)
— +95% intercept 8.234 4.572 15.6 4.355 14.86 3.668 12.51
— -95% intercept 8.177 3.614 12.33 3.035 10.36 1.799 6.14
R? value 0.7929 0.837 0.9539 0.5051
Model to data sensitivity % difference 0 -16.64 -11.97 -37.06
Mean normalized slope 1.46 0.8113 1.068 0.5934 1.161 0.6452 1.141 0.6339

(%/°C or %/°F)

* The data regression model was calculated as log-linear [(?(y/1 MW) = @x +b) o In (y/1MMBTU) = ax + b) where y is peak power in MW and x is daily

maximum temperature. All others are for a linear model (¥ = X + b).

This work must be tied to resilience assessments where effects on cost and infrastructure due to increases in energy
use and peak load during a heat wave are quantified. The reduction of the BEM and data to regression parameters with
CI’s provides a low-order method with uncertainty for incorporating heat waves into energy master planning analyses
(Jefters, 2020) that consider additional forcing events such as human-attacks, earthquakes, floods, draughts, and fires.

DISCLAIMER

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineerig Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper
describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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