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ABSTRACT 
Heat waves have catastrophic effects causing mortality, air quality loss, grid failures, infrastructure damage, and increases in electricity consumption. The 
literature indicates that heat waves are growing in intensity, duration, and frequency. This paper documents a heat wave study of the Sandia National 
Laboratories (SNL) California site. The analysis involves: 1) projection of a heat wave based on historical data and NEX-DCP30 climate projections, 
2) Classification of peak electricity load points that represent the site on workdays, Fridays, and weekends 3) Regression of the peak load data to produce 
confidence bounds for the analysis, and 4) Calibration and projection of building energy models (BEMs) to the heat wave scenario.  This approach worked 
well for the previous NM site analysis of meter data and 97 representative BEM’s. For the CA site, the BEM calibration procedure was unsuccessful 
without individual BEM calibrations. Many of the 23 California BEM’s required calibration at the building level rather than for the entire site. This 
was found to be due to many of the BEM’s having significantly different electric demand profiles than their meter data whereas the NM BEM’s were much 
more accurate. Unlike the NM site, the CA site did not distinguish Friday operations clearly and the associated K-mean cluster algorithm that worked 
for the NM site did not add value for the CA site. The regression analyses produced estimates of site-wide increases to daily peak loads with 95% confidence 
bounds that were much wider than the NM analysis. The CA site was found to have higher average peak load sensitivity of 1.07%/⁰C (0.59%/⁰F) in 
comparison to the NM site with 0.61%/⁰C (0.34%/⁰F). Even so, the larger sensitivity is counteracted by a milder projection for future heat waves from 
NEX-DCP30 downscaled climate projections. The expected heat wave maximum temperature of 45.1⁰C (113.2⁰F) did not even break the current record 
of 46.1⁰C (115.0⁰F) in Livermore, CA and only had total heating energy of 28⁰C⋅day (51⁰F⋅day) from baseline 2019 weather in comparison to NM’s 
38⁰C⋅day (68⁰F⋅day). This work emphasizes issues that can aid development of future guidelines for application of BEM and meter data to heat-wave 
scenarios.

INTRODUCTION

      A heat wave is a prolonged period of abnormally hot weather. Global warming is shown to be tied to increasing 
magnitude, duration, and frequency of heat waves (Perkins, 2015; Horton et. al., 2016). The fifth Intergonvernmental 
Panel on Climate Change (IPCC) report states that it is almost certain that heat wave risk will increase in the 21st century 
(IPCC, 2014). Heat waves cause death, damage, and infrastructure service complications and interuptions such as power 
outages (Santamouris, 2020; Falasca et. al, 2019; Burillo et. al., 2019; Santamouris et. al., 2015; Schubert et. al., 2014; 
Fennessy and Kinter, 2011). Air conditioning (AC) has reduced heat related deaths by a factor of six over the 20th 
century yet also is a contributor to anthropogenic global warming (Barreca et. al., 2013). AC is the dominant source of 
increased electricity demand during a heat wave (Choobineh et. al., 2019). In urban environments, heat rejection from 
AC systems can give positive feedback that elevates external ambient temperatures even further (Viguié et. al., 2020). 
Climatic heat waves coupled to this and other urban heat island effects are anticipated to create temperatures of 14°C 
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(25°F) higher than average peak temperatures (Santamouris, 2020).    
      Resilience to heat wave events can be obtained by several approaches. From the grid electricity supply side, power 
production and grid infrastructure can be bolstered such that maximum potential peak electrical loads can be serviced 
and maximum tempreatures survived without concern. From the demand side, grid interactive buildings and passive 
cooling strategies (Baniassadi et. al., 2019) can be used to reduce demand or increase likelihood of survival for occupants 
during a heat wave. Unfortunately, all of these approaches are costly and correlations between designing for resilience 
to heat waves and designing for energy efficiency are not always positive (Sun et. al., 2020). As a result, quantification 
of heat wave effects on electric demand loads is of paramount importance so that risk for a given location can be 
assessed. Heat loads to be rejected by AC must therefore also be modeled. Building Energy Modeling (BEM) is a good 
method to do this.
      Institutions that manage 10’s-1000’s of buildings with critical operations such as government entities, health care 
facilities, and universities are increasingly in need of ways to quantify the effects of heat waves on their infrastructure. 
Such quantification involves complicated analyses that must include uncertainty due to the need to incorporate 
downscaled climate modeling results. Methodologies are therefore needed that provide the uncertainty information 
needed while keeping complexity in the analysis to a minimum. 
      Sandia National Laboratories (SNL) conducted a heat wave analysis of its New Mexico site which has over 700 
buildings with floor area of approximately 600,000 m2 (6.5e6 ft2). The resulting analysis (Villa, 2020) led to the 
formulation of a procedure that uses BEM, a 2-parameter scaling function, and meter data to create two linear 
regressions of: 1) maximum heat wave temperature versus site-wide peak load and 2) heat wave heat content versus 
increased site energy consumption. The analysis created the linear regression models with 95% confidence intervals (CI) 
that represent uncertainty for: 1) operational variations within the buildings and 2) uncertainty in calculating site-wide 
peak loads when only partial metering is available. The second uncertainty had to be included because no direct 
measurement of site-wide power at 15 minute intervals was available. Building meters with 15 minute data only 
represented 69% of the NM site-wide power on average. Monthly energy bills of the entire site were therefore used to 
estimate this uncertainty and to normalize the analysis result to site-wide levels.  
      The purpose of this paper is to emphasize the need for development of generalized methodologies in heat wave 
analyses using BEM. This is accomplished through discussion of a follow-on analysis of the much smaller SNL 
California (CA) Livermore site with about 60 buildings and floor area of approximately 80,000 m2 (860,000 ft2).   The 
procedure proposed by the author (Villa, 2020) that was supposed to be generalized had many steps that did not work 
or were unecessary in the CA analysis. The underlying BEM results did not initially fit the site-wide electricity demand. 
As a result, each building had to be investigated against its own meter data. These comparisons revealed that the BEM 
and metering signals had very different shapes from each other. It also revealed that the connectivity between centralized 
chilled water loops were not correct in the models. As a result, individual building calibrations had to be carried out. In 
the end, 9 BEM were calibrated to the American Society of Heating and Refrigeration American Engineers (ASHRAE) 
Guideline 14 (G-14) (ASHRAE, 2014) to produce a reasonably good site-wide fit. Even so, peak loads for the model 
were still consistently lower than the meter data. Other changes include: 1) The meter data filtration process was 
different for CA versus NM and the classification using K-means clustering were not needed for the CA site. 
      This paper first lays out a brief review of the heat wave analysis procedure from (Villa, 2020) with minor changes 
implemented for the CA site, presents the CA analysis results, and then briefly discusses lessons learned for generalized 
heat wave analysis procedures using BEM. 

METHODS

The two parameter function used for the NM analysis (Villa, 2020) did not produce good fits between the CA 
BEM models and the data. A third parameter 𝑝𝑡 therefore had to be added. The calibration function now provides 
scaling (𝑝𝑚), stretching (𝑝𝑜), and translation (𝑝𝑡).



𝑓𝑛𝑒𝑤(𝑡,𝑝𝑜,𝑝𝑚, 𝑝𝑡) =
𝑝𝑚[(1 ― 𝑝𝑜)𝑓(𝑡) + 𝑓𝑚𝑎𝑥𝑝𝑜] + 𝑝𝑡 1 ≥ 𝑝𝑜 ≥ 0

𝑝𝑚 ― 𝑝𝑜𝑓𝑛𝑒𝑤―1(𝑡) + (𝑝𝑜 + 1)𝑓(𝑡) + 𝑝𝑡 ―1 ≤ 𝑝𝑜 < 0 (1)

𝑓𝑛𝑒𝑤―1(𝑡) =
𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥 ― 𝑓𝑚𝑖𝑛
𝑓(𝑡) ―

𝑓𝑚𝑎𝑥𝑓𝑚𝑖𝑛
𝑓𝑚𝑎𝑥 ― 𝑓𝑚𝑖𝑛

(2)

Here, 𝑓(𝑡) is the output for each time step simulated by the aggregate output of BEM, 𝑓𝑚𝑎𝑥 = max(𝑓(𝑡)), and 𝑓𝑚𝑖𝑛 =
min(𝑓(𝑡)). The output calibration function 𝑓𝑛𝑒𝑤(𝑡) is compared to meter data 𝑓𝑚(𝑡) through the Normalized Mean 
Bias Error (NMBE) and Coefficient of Variation for Root Mean Square Error (CVRSME) as defined in G-14 
(ASHRAE, 2014) The effects of 𝑝𝑚, 𝑝𝑜, and 𝑝𝑡 are illustrated in Figure 1. The offset parameter 𝑝𝑜 is less intuitive. It 
has a range of -1 to 1. At -1 it makes 𝑓𝑚𝑖𝑛 = 0. At 1 it makes 𝑓(𝑡) = 𝑓𝑚𝑎𝑥 for all 𝑡. 

Figure 1  Parameter effects plots for 𝑝𝑚 (left), 𝑝𝑜 (middle), and 𝑝𝑡 (right)  for a random example function 
𝑓(𝑡) = 𝑡(𝑡 +  1)(𝑡 ―  0.9) (𝑡 ― 0.2) +  0.5

The procedure for running a heat wave analysis is shown in Figure 2 and is elaborated in more detail in (Villa, 2020). 
To conduct the analysis, the following input data is needed: 1) Energy meter data for the most recent year. This can be 
at the building level or for a site-wide meter. It is ideal to have 15 minute data for the entire site. 2) Hourly weather data 
for the the same year for inputs to BEM weather files. It is critical to use measured data for the site so that the BEM 
calibration fits to site performance. 3) Downscaled climate model results providing projected temperature histories into 
the future. 4) If site-wide meter 15 min data is unavailable monthly energy use bills for calculating normalization factors.
      With these inputs, the heat wave analysis is accomplished according to the flow diagram in Figure 2 by: 1) Filtering 
the meter data for outliers and unphysical changes using Interquartile range (IQR), maximum rate of change, and 
aggregation to an hourly time step. 2) Calibration of invididual BEM models. 3) Deriving the heat wave start time during 
the year 𝑡ℎ𝑤, change in peak temperature from the baseline peak temperature Δ𝑇ℎ𝑤, and length of the heat wave Δ𝑡ℎ𝑤. 4) 
Removing time steps where the site is not in full operation. This is done through adjustment of input parameters to a 
K-means clustering algorithm followed by visual inspection of the model to data result for all time steps and for daily 
peak load. 5) Run all BEM using the IX software platform (Villa, 2017) or other platform. The BEM results then have 
to be scaled by minimizing the sum of the absolute value of NMBE and the CVRSME while varying 𝑝𝑚, 𝑝𝑜, and 𝑝𝑡. 6) 
Application of the heat wave in a discreet set of steps where the maximum temperature is offset to a fraction of Δ𝑇ℎ𝑤. 
Simulating several steps in IX provides a way to regress peak load versus maximum temperature from the BEM model 
results. 7) Calculate linear regressions of maximum temperature versus peak load and heat wave heat content versus 
increase in site-wide energy. 8) From step 1 and the weather data, develop a second dataset of maximum temperature 
versus peak load from the meter data. 9) Create a log-linear regression of peak load versus peak temperature with 95% 
confidence bounds of the maximum temperature. 10) Extrapolate the 95% confidence bounds from the log-linear 



regression calculated in step 9 to the maximum heat wave temperature. This interval is the uncertainty in peak load due 
to operational variations. 11) Scale the meter results to site-wide results. This step was not needed for CA but was 
important to the NM case (Villa, 2020). 12) The outputs can then be provided with regression parameters with CI’s. 
Estimations of the effect of different heat waves than the one simulated with estimated CI’s can be made using the 
regression parameters, and calculation of 𝑡ℎ𝑤, Δ𝑇ℎ𝑤, and Δ𝑡ℎ𝑤 for the heat wave in question.

Figure 2 BEM heat-wave analysis procedure from (Villa, 2020) with modifications. Institutional Transformation (IX) is the 
BEM parameter study software platform used in this study

DATA INPUT

      Weather data came from the Lawrence Livermore National Laboratory (LLNL) weather stations at 10 m elevation 
above ground level (LLNL, 2020) directly adjacent to the SNL CA site. The sensors used to collect the information are 
maintained, replaced and calibrated per Department of Energy (DOE) standards (DOE, 2015). The only non-available 
signals were total horizontal solar radiation, cloud type, and cloud amount. Typical Meteorological Year 3 (TMY3) data 
were used for these variables (Wilcox and Marion, 2008).
      The meter data came from a site-wide electric meter recorded in the SNL energy analytics database. The data was 
extracted through a web application programming interface using Python. The accuracy of the meter was verified to be 
0.32% variation between the yearly sum of energy between 2019 monthly bills and the 15 min meter data. 
      The heat wave scenario for CA was constructed from NEX-DCP30 model results (Thrasher et. al., 2013). The 
process to derive the heat wave is not elaborated here and is not critical because of the use of regression in this study 
to parameterize the heat wave. The total change in temperature was set to Δ𝑇ℎ𝑤 =  3.4℃. The baseline hot period from 
the NEX-DCP30 historical results was chosen to be August 27th, 2017 (𝑡ℎ𝑤 = August 27th each year) and the heat wave 



was assumed to be 7 days long (Δ𝑡ℎ𝑤 =  7). Unlike the NM case, the 2℃ volatility was not used due to lack of information 
about CA concerning increased volatility.  The resulting scenario peak temperature of 45.1℃ did not even break the 
current record high at the LLNL tower of 46.1℃, yet is still representative of expected, longer-duration future heat 
waves according to NEX-DCP30 model results.

RESULTS

      The CA analysis required significant changes to the parameters of the analysis in comparison to the NM analysis. In 
step 1 (Figure 2) The IQR had to be expanded to 0.05 to 0.95 in comparison to the NM values of 0.1 to 0.9 to avoid 
shaving off some of the most prominent peaks for the CA data. Also, the K-means clustering that was essential to the 
NM analysis was not needed because non-full operations were not identified.  
      Performance of the institutional BEM heat wave analysis procedure required individual calibration of many of the 
BEM (step 2). While the NM site BEM (Villa, 2020) were under continuous maintenance (Villa, 2019), it appears that 
many of the CA building BEM had not recently been compared to meter data. Table 1 shows the NMBE and CVRSME 
of each of the 23 buildings before and after six iterations of manually changing the BEM that were guided by the capacity 
of the aggregate model response to match meter data peak loads in 2019 (Figure 5). The results of the iterative process 
between steps 2, 4, and 5 are shown in Figure 3. Figure 3b shows the IX model output for 23 BEM with no individual 
model calibration. Figure 3d shows the same result with the scaling function (Equation 1) applied. The model output 
gives G-14 compliant results but peak loads were clearly not modeled well. Figure 3f shows the model with removed 
data (orange). Unlike the NM case, the filtering process did not improve the fit to peak loads. Mismatch of peak loads 
is depicted in Figure 3f by light purple. The left column of Figure 3 shows the results after individual model calibration. 
Two major changes were needed for the scaling function to fit the meter data: 1) The AC energy needed to increase and 
2) the reduction of loads at night and on weekends needed to be decreased significantly.   
      Investigation on a model by model basis, found that the day to night variation in plug, light, fan, and venting loads 
in the models were significantly too high in comparison to the data. Also, it was found that two major Central Utility 
Buildings (CUB) were not defined correctly across a group of 3 buildings and another group of 4 buildings. All 7 of 
these buildings were found to artificially meet their cooling loads with no electricity because they had previously been 
connected together into 2 models instead of 7. It was also found that all of the schedules within the models assumed 
significantly larger reductions in plug loads than actually occur according to the meter data. Figure 3a shows the updated 
aggregate output with no scaling. Figure 3c shows the unfiltered results scaled and Figure 3e shows the filtered result 
used for regression analysis. Even though the individual BEM calibrations produced much better peak loads, Figure 3e 
still shows the BEM underpredicting peak loads. The light purple peaks in Figure 3e consistently are higher  than the 
23 BEM model (dark purple or blue). This is clearly seen by observing the upper right hand corner of Figure 5. 
      The linear and data-driven log-linear regressions for peak load and site-wide energy created in Steps 6, 7, 9, and 10 
are shown in Figure 4 and Figure 6. CI data and conversion to percentates for these regressions are supplied in Table 2 
and Table 3. These results provide the needed information to estimate other heat wave effects with CI’s.

DISCUSSION

       The CA site sensitivity is higher than the NM site (Villa, 2020). The less intense heat wave for CA (28.10⁰C⋅day 
(50.58⁰F⋅day) versus 38.04⁰C⋅day (68.47⁰F⋅day) for NM) produced a 1.07%/⁰C (0.59%/⁰F) peak load sensitivity for the 
“work days” (last row of Table 3) prediction in  comparison to NM’s 0.67%/⁰C (0.37%/⁰F). Also, the energy sensitivity 
(Figure 6 and Table 2) is more uncertain for CA than NM. For peak load, the CA analysis has clear misalignment (Figure 
4) between slope and offset. The inability to capture the higher peak loads with the 23 BEM models (Figure 5) despite 
changing AC systems to lower efficiencies indicates that there are is unknown air-exchange, refrigeration, or heat loads 
in the 23 buildings being modeled. A better fit was not sought because the cause of mismatch could not be reasonably 
postulated from the information available. This points to the need for an objective criterion to compare peak loads.
      The need for individual BEM calibration in this study increased the work-load required to assess the effects of heat 



waves to the CA site. The combination of higher uncertainty obtained from the analysis results and increased work for 
the analysis suggests that follow on work should look at the effectiveness of using a low-resolution resistance capacitive 
(5RC1) BEM model (Bacher et. al., 2011; Madsen and Holst, 1995) to see if equivalent or better results can be obtained 
with less effort. Regardless, Table 1 shows that 9 of the detailed BEM used in this study became G-14 compliant. The 
production of G-14 compliant models has significant benefit to parallel modeling efforts to perform energy retrofit 
analyses using the BEM. This makes the time spent on this heat wave assessment more useful and shows an up-side to 
maintaining large fleets of BEM (Villa, 2019).

Table 1 Summary of individual building calibrations results. 

 
* BEM that were G-14 compliant (NMBE < 10, CVRSME < 30) after calibration. 

Figure 3 IX model with and without individual BEM calibration (a) Unscaled calibrated (b) Unscaled uncalibrated (c) Scaled 
calibrated no filtering (d) Scaled uncalibrated no filtering (e) Scaled calibrated with filtering (f) Scaled uncalibrated 
with filtering.



Figure 4 Regressions for peak loads Figure 5 Data versus model peak load comparison 

        Care must be taken in interpreting CI’s. CI’s provide a statistical measure of the accuracy of calculations performed 
on the meter data but do not constitute a probability of occurance of a given peak load.  A statistical sampling study 
using the BEM and alternative weather histories would be needed to estimate probabilities.  

CONCLUSION

      An institutional heat-wave assessment has been performed at SNL CA that has shown that much more effort is 
needed when BEM have to be calibrated individually. A previous SNL NM analysis (Villa, 2020) required much less 
work because no individual BEM calibrations were needed to match site-wide meter data well. Other issues also arose 
for the SNL CA case: 1) The analysis procedure had to use an updated scaling function (Equation 1) with a translational 
parameter 𝑝𝑡; 2) The classification filtering processes that were invaluable to the NM process did not add significant 
value to the CA analysis; and 3) The resulting CA uncertainty ranges were much wider than the NM analysis including 
inability to match the highest peak loads without direct investigation of the buildings involved. Future work needs to 
continue to refine this institutional BEM heat-wave assessment methodology including investigating the ability of 5RC1 
models to produce equivalent results to detailed BEM. This work underscores issues that can aid development of future 
guidelines for application of BEM and meter data to heat-waves. The disparity in usefulness of data filtering in the two 
studies points to the need for classification techniques to be generalized for institutional BEM heat wave assessements.
      The above difficulties suggest that detailed BEM modeling is not always a good approach for heat wave assessments. 
Though the NM site analysis was compelling and models were maintained more thoroughly (Villa, 2019), the CA site 
analysis was more difficult. The best approach to use depends on the purposes of the analysis. If individual building 
performance in resilience analysis of the site under a heat wave is desired, then the detailed approach is needed. For the 
current analysis, using the data-driven modeling without BEM has nearly the same accuracy when projected (Figure 4). 



Figure 6 Site-wide energy-use due to heat waves

Table 2 Site-wide energy regression 
results 

Table 3 Peak load regression results

* The data regression model was calculated as log-linear [(𝑙𝑛 𝑦 1 MW  =  𝑎𝑥 + 𝑏) or ln 𝑦 1 MMBTU  =  𝑎𝑥 + 𝑏) where y is peak power in MW and x is daily 
maximum temperature. All others are for a linear model (𝑦 = 𝑎𝑥 + 𝑏).

      This work must be tied to resilience assessments where effects on cost and infrastructure due to increases in energy 
use and peak load during a heat wave are quantified. The reduction of the BEM and data to regression parameters with 
CI’s provides a low-order method with uncertainty for incorporating heat waves into  energy master planning analyses 
(Jeffers, 2020) that consider additional forcing events such as human-attacks, earthquakes, floods, draughts, and fires. 
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