‘ ! ! . LLNL-CONF-825647

LAWRENCE
LIVERMORE
NATIONAL

wonre | HIgh-Precision Evaluation of
Both Static andDynamic Tools
using DataRaceBench

P. Lin, C. Liao

August 10, 2021

Correctness 2021: Fifth International Workshop on Software
Correctness for HPC Applications

St. Louis, MO, United States

November 19, 2021 through November 19, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

High-Precision Evaluation of Both Static and
Dynamic Tools using DataRaceBench

Pei-Hung Lin
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory, CA, USA
Livermore, California, USA
lin32@]lInl.gov

Abstract—DataRaceBench (DRB) is a dedicated benchmark
suite to evaluate tools aimed to find data race bugs in OpenMP
programs. Using microbenchmarks with or without data races,
DRB is able to generate standard quality metrics and provide
systematical and quantitative assessments of data race detection
tools. In this paper, we present a new version of DRB with several
improvements. First, we design a novel approach to enable high-
precision checking of tool results. The approach relies on a format
to accurately encode data race ground truth including variables,
read/write types, and source file location information. The test
harness of DRB has also been improved to support static data
race detection tools. Finally, an enhanced code similarity analysis
is developed to consider code region details and cover more
regions. Our experiments show that the improved DRB generates
more accurate reports and exposes more limitations of both static
and dynamic data race detection tools. The enhanced similarity
analysis also is able to guide us to investigate similar code regions
in DataRaceBench in more detail.

Index Terms—Benchmarks, OpenMP, Data Races, Tools

I. INTRODUCTION

DataRaceBench (DRB) is a dedicated benchmark suite to
evaluate tools aimed to find data race bugs in OpenMP pro-
grams. Since its initial release in 2017, DRB has incorporated
various additions to have a richer set of microbenchmark
programs to cover the latest OpenMP constructs, base pro-
gramming languages (such as C/C++ and Fortran) and modern
parallel hardware devices (e.g. GPUs). Using microbench-
marks with or without data races, DRB is able to generate
standard quality metrics (such as accuracy and F-1 score) and
provide systematical and quantitative assessments of data race
detection tools. The existing workflow using DRB has several
steps: compiling the microbenchmark source codes, running
tools being evaluated, collecting the reports generated by the
tools, and processing the report files against ground truth to
calculate quality metrics of a tool. Due to its good design and
automated workflow, DRB has been widely adopted by tool
developers [1]-[7].

However, DRB still has several limitations as reported by
users. A major limitation is its last step of the workflow, which
uses a simple file-level true/false evaluation. If a tool reports
a data race for a microbenchmark file with some known data

Prepared by LLNL under Contract DE-AC52-07NA27344 (LLNL-CONF-
825647).

Chunhua Liao
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, California, USA
liao6 @lInl.gov

races, DRB simply counts it as a true positive. This works
fine since most likely, a microbenchmark file with known data
races has only a single pair of data race locations. However,
a tool could report a wrong pair of data race locations but
DRB still would count it as a correct data race (true positive)
report. This inadequacy in the workflow may lead to incorrect
evaluation results.

Another limitation is that the test harness for DRB was
designed mainly for the dynamic tools that require application
execution as part of the race detection process. With more
static analysis tools becoming available, the existing test
framework for DRB will not be adequate and requires revision
to support the needs.

A third limitation is that the similarity analysis in prior
work [8] is primitive. It only considers properties of OpenMP
directives associated with each code region, leaving out fea-
tures inherent to the code region itself. As we try to add
more microbenchmarks into DRB, it becomes increasingly
important to have a good quality of similarity analysis to
avoid duplicated microbenchmarks being collected in DRB.
The analysis helps us have a minimum collection of mi-
crobenchmark programs with maximum coverage of OpenMP
code patterns with or without data races.

In this paper, we present the enhancements added into
the DRB to address the limitations mentioned above. The
following lists the contributions introduced into DRB:

1) We design a format to accurately encode the ground
truth of data races in DRB microbenchmarks. A high-
precision evaluation method is designed based on infor-
mation parsed from the ground truth and tool reports.

2) We add support for static data race detection tools in
order to generate a complete dashboard reporting the
state-of-the-art of data race detection.

3) An enhanced code similarity analysing is developed to
detect duplicate test cases within DRB.

The remainder of this paper is organized as follows. In
the next section, we introduce a method to enable high-
precision, fine-grain correctness checking using DRB. Sec-
tion III presents how static data race detection tools are sup-
ported. Section IV describes an enhanced similarity analysis.
Experiments are discussed in Section V. Finally, related work

is mentioned in Section VI and conclusions are drawn in
Section VII.

II. HIGH-PRECISION CORRECTNESS CHECKING

DRB includes both race-yes and race-no microbenchmarks.
The race-yes microbenchmarks have known data races injected
purposely to evaluate the data race detection capability of a
given tool. The race-no microbenchmarks do not have any data
races. Whenever possible, a race-yes microbenchmark is put
into a single source file containing only a single pair of source
locations that cause data races. s

This design simplifies the validation of tool generated «
reports. For a race-no microbenchmark, if a tool reports any
data races, it is counted as a false positive. Otherwise, a true
negative is counted. Similarly for a race-yes microbenchmark, s
if a tool reports any data races, it is counted as a true positive. ™
Otherwise, a false negative is counted. The test harness script .,
of DRB does not check details of tool reports such as variable s
names and read/write properties. Essentially, this is a coarse-’
grain, file-level validation of tool results. o

Over time, microbenchmarks with more pairs of data race «
locations have been added. It is possible that a tool reports ~
wrong pairs of source locations causing data races for a given
source file. But the test harness of DRB still counts the tool
with a true positive. To address this limitation, we design a new "
high-precision, fine-grain correctness checking method based ,
on accurate encoding of ground truth, formalization of tool
reports, and enhanced correctness evaluation techniques. This
section discusses the details of this method.

51

64

66

9

A. Encoding Ground Truth

For each known data race in a source file, we must represent
the following key information: 1) the shared variables causing
the race, 2) the pair of source locations including the line
and column information of the variable accesses, and 3) the
read/write type of each variable access. They are considered
the ground truth of the existence of data races of a source file.

We propose to encode the ground truth information as part
of the comment to a program. Syntax listed in Listing 1 is
used to present a source location information of a variable
access. VAR_NAME includes the variable name and subscript
information if the access is an array access. Three fields sep-
arated by the colon symbol are the LINE_INFO representing
the line number of the variable access in the source code,
the COLUMN_INFO showing the column number of the first
character of the variable name, and letter R or W identifying the
read and write access respectively. A pair of source location
information separated by vs. represent the pair of variable
accesses that causes a data race in the given source code
(Listing 2). Note that each variable access encoding should
have only one R or W property. If a variable is both Read and
Written, the accesses should be encoded separately in different
data race pairs.

Listing 1: Encoding syntax of the variable access information
{VAR_NAME}@{LINE_INFO} : { COLUMN_INFO} : {R/W}

52 int main(int argc,

Listing 2: Encoding syntax of a pair of variable accesses
{VAR_NAME_1}@{LINE_INFO_1}: {COLUMN_INFO_1}:{R/W} vs.
{VAR_NAME_2}@{LINE_INFO_2}:{COLUMN_INFO_2}:{R/W}

Listing 3 shows the DRB001 microbenchmark that has a
loop carried anti-dependence causing a data race, using the
designed encoding method. The order of these two variable
access information is not critical. It will be normalized by an
evaluation script.

Listing 3: C: DRB0O1-antidep1-orig-yes.c

17/ *

A loop with loop-carried anti-dependence.
Data race pair: a[i+1]@64:10:R vs. a[i]@64:5:W
*/
#include <stdio.h>
charx argv[])
{
int i;
int len = 1000;
int a[1000];

for (1=0;
alil= 1i;

i<len; i++)

#pragma omp parallel for
for (i=0;i< len -1 ;i++)
alil=ali+1]+1;

printf ("a[500]=%d\n",
return 0;

}

}

A second ground truth encoding syntax (shown in Listing 4)
is needed to present multiple source location pairs generated
from a read variable set and a write variable set. This syntax
is concise by avoiding explicit listing of all pairs.

a[500]);

Listing 4: Encoding syntax for Read/Write set of variable
accesses
Write_set = {W_NAME_1@W_LINE_1:W_COLUMN_1,
W_NAME_2@W_LINE_2:W_COLUMN_2. ..}
Read_set = {R_NAME_1@R_LINE_1:R_COLUMN_1,
R_NAME_2@R_LINE_2:R_COLUMN_2...}

DRBO095, shown in Listing 5, is an example using the
read/write sets to encode multiple pairs of data races. Any
combination of two elements from these two different sets
can cause a read/write data race for DRB(095. Similarly, any
combination of two elements from the write variable set can
cause a write/write data race. Note that the j@69:30 from
the j++ expression for the loop iteration expression represents
both read and write variable accesses due to the usage of the
++ operator.

A Python script, get SourceRaceInfo.py, is provided
to parse the ground truth information written in the source
codes and save relevant information into files in JSON for-
mat. Therefore, each microbenchmark will have an associated
JSON file storing the data race ground truth information.

B. Parsing Different Data Race Tool Reports

Data race detection tools often generate customized reports
using different formats presenting different information re-
garding data races found. Table I lists five existing tools that

wn

s #if
s #error "An OpenMP 4.5 compiler is needed to compile

Listing 5: C: DRB095-doall2-taskloop-orig-yes.c
/ *

Two-dimensional array computation:

Only one loop is associated with omp taskloop.

The inner loop’s loop iteration variable will be
shared if it is shared in the enclosing context.

Data race pairs (we allow multiple ones to preserve
the pattern):

Write_set = {j@69:14, j@69:30, al[i]l[j1@70:11}

Read_set = {j@69:21, j@69:30, j@70:16, a[il[j]l@70
:11})

Any pair from Write_set vs. Write_set and

Write_set vs. Read_set is a data race pair.

*
/
(_OPENMP<201511)

this test."
#endif
#include <stdio.h>
int a[l100][1001;
int main ()
{

int i, 3Jj;

3 #pragma omp parallel
{
5 #pragma omp single
{
#pragma omp taskloop
for (1 = 0; i < 100; i++)
for (3 = 0; j < 100; Jj++)
alil [J1+=1;
}
}
printf ("a[50][50]1=%d\n", al[50]1[501]);

return 0;

are actively maintained and the available information in their
reports with respect to the ground-truth including memory
address, Read/Write type, line and column numbers. Some
tools may also report inaccurate information for the column
numbers. With various formats from various tools, formalizing
the reports from various tools becomes a necessity to simplify
the tool evaluation process.

Tool Mem. R/W | Line Column
Address | type
Intel Inspector v v
ROMP v v incorrect
for all

ThreadSanitizer v v v

Coderrect v incorrect

for Fortran

LLOV v v

TABLE I: Information available in tool reports.

For example, Intel Inspector by default reports only issue
statistics including the number of races detected by the tool. It
requires additional steps by a separated tool to retrieve source
information and variable access type. However, the source
column information is not provided in the report (shown in
Listing 6).

ROMP by default reports the total number of detected
races. ROMP reports a higher number of detected races
because it reports races according to memory access in byte

Listing 6: Intel Inspector report format

Pl: Error: Data race: New
P1.9: Error: Data race: New
DRBOOl-antidepl-orig-yes.c(64): Error X17: Write:
Function main: Module DRBOOl-antidepl-orig-yes.c
.inspector.out
DRBOOl-antidepl-orig-yes.c(64): Error X18: Read:
Function main: Module exec/DRBO0l-antidepl-orig-
yes.c.inspector.out

granularity. A race caused by a 4-byte variable access will
lead to 4 separated reported races. An environment variable,
“ROMP_REPORT_LINE=true”, needs to be set up to enable
the report for source information. However, the variable access
type information is not available from the report.

Listing 7: ROMP report format

3717 CoreUtil.cpp:76] RAW: data race found at mem
addr: T7fffe0d6e754
DRBOOl-antidepl-orig-yes.c@[40083alline:64 col:0 vs
DRBOOl-antidepl-orig-yes.c@[400827]1line:64 col:0
ThreadSanitizer reports all the data race instances triggered
by different pairs of hardware threads, as shown in Listing 8.
The total number of reported races varies according to the
number of OpenMP threads used in the testing. Thread-
Sanitizer can report the source information (variable name
and source line) and the read/write type information for the
variable accesses causing the race.

Listing 8: ThreadSanitizer report format

WARNING: ThreadSanitizer: data race (pid=43)
Read of size 4 at 0x7ffcfdbbdbb8 by thread T5:
#0 .omp_outlined._debug__ DRBOOl-antidepl-orig-
yes.c:64 (DRBOOl-antidepl-orig-yes.c.tsan-clang.
out+0x4cc2le)

Previous write of size 4 at Ox7ffcfdbbdbb8 by
thread T6:
#0 .omp_outlined._debug__ /RB00l-antidepl-orig-
yes.c:64 (DRBOOl-antidepl-orig-yes.c.tsan-clang.
out+0x4cc25c)

Coderrect prints out verbose reports to identify the location
of the detected race. Code snippet with annotation is listed to
help users to find the variable access location in source code.
The variable access type is not reported explicitly but can be
manually retrieved from the listed code snippet.

LLOV reports the file path and source line information for
the variable accesses causing a race. The variable access type
information can also be found from the reported information.

For each tool’s output format, a parser is developed to
retrieve information from the tool report and store the infor-
mation into JSON format.

C. High-Precision Correctness Evaluation

Using JSON files storing both the ground truth and tool
reports, we have developed a high-precision correctness check-
ing process with the following steps:

o Normalizing Data: This step filters out memory addresses

which do not fit any source code locations. They may
come from the OpenMP runtime library. All data race

pairs are also sorted using first the variable access type,
the source code line information, and finally the source
code column information.

o Generating Distinct Set of Races: A tool may report
duplicated information. This step keeps only the distinct
set of races for the final comparisons.

o Trivial Decision: A trivial decision can be made for three
scenarios. First, a true negative can be recorded if there
is no race recorded in either the ground truth or a tool
report. A false positive can be recorded if there is no
race in ground truth but a tool reports one. Finally, a
false negative is counted if there is data race in ground
truth but the tool does not find any.

« Fine-granularity Comparison: This step is used when both
the ground truth and a tool report contain data races. The
accuracy of evaluation can be adjusted by considering
different combinations of variable access type, read/write
type, as well as source line and source column informa-
tion. DRB provides scripts to allow different levels of
fine-granularity comparisons using different encoding in-
formation involved. For example, the first level will only
consider source line/column information when deciding
if a tool reports a correct data race. A more rigid level
will additionally consider the read/write types reported.
Evaluation is expected to be more precise when more
information is considered in comparison.

The evaluation process performs comparison between the
list of variable access pairs from the source encoded infor-
mation and the list of variable access pairs reported by the
tools. One detail is that while our ground truth explicitly
encodes all true positive pairs, it does not explicitly encode
the complete set of true negative pairs. The true negative pairs
include all possible pairs of variable access locations which
do not cause data races. Instead, we use an approximation set
of true negative pairs in our correctness evaluation. The idea
is that for each tool, the set of data race pairs reported can
be categorized into two subsets: true positive subset and false
positive subset. We can compare a tool’s output against the
True Positive ground truth and easily obtain its false positive
set (which in turn is a subset of the ground truth true negative
set). For all selected tools, we union their false positive sets
as an approximation of the total true negative ground truth.

ITII. STATIC ANALYSIS TOOL SUPPORT

State-of-the-art data race detection analyses can be largely
divided into dynamic and static approaches. Majority of data
race detection tool developments, for both academic and indus-
trial usage, exploit the dynamic approaches, including Archer,
ThreadSanitizer, Intel Inspector, and Helgrind. The interests
for static data race detection tools are also growing as they
complement dynamic approaches. DRACO [9], OMPRacer
[10], and LLOV [11] are the three latest developed tools that
were evaluated with DRB.

The testing harness of DRB was designed solely for the
dynamic data race tools since only the dynamic tools were
available several years ago. With more static tools becoming

available, supporting static tool evaluation becomes a critical
need in the development of DRB. A candidate static tool to be
included into DRB should be publicly available, easy for use
and has detailed instructions or container support. And most
important of all, the static tool should support both C and
Fortran languages and process the microbenchmarks collected
in DRB without any modification. Coderrect [12], previously
known as OMPRacer, and LLOV [11] fulfill the selection
criteria to be included into DRB evaluation support.

Coderrect is developed as a Clang/LLVM extension for
static data race analysis. The Fortran language support in
Coderrect depends on the LLVM Fortran front-end develop-
ment. Coderrect exploits multiple analyses to extract OpenMP
semantics to build the static happens-before graph at the
level of logical threads, reason OpenMP-defined data sharing
semantic, and perform OpenMP semantic analysis with a set
of novel algorithms for pointer aliases and value flows in
an inter-procedural setting. LLOV is a lightweight, language
agnostic, and static data race detection tool built on top of
the LLVM framework. LLOV exploits Polly, the polyhedral
compilation engine in LLVM, to perform exact dependence
analysis to detect data races in affine regions. For source code
in a non-affine region, LLOV checks the barriers or locks and
uses Mod/Ref information from the LLVM’s Alias Analysis
to detect potential data races.

Both Coderrect and LLOV have been evaluated using DRB
by their developers. We add support in the test harness script
in DRB to include the environment setup, compiler command,
evaluation command and the tool reporting commands for
these two static tools. The required information to run those
tools are available in the tool’s source code repositories.

IV. ENHANCED SIMILARITY ANALYSIS

DRB is expected to continue to grow and collect more mi-
crobenchmarks representing OpenMP data race code patterns
extracted from different domains. Ideally, DRB should contain
a minimum collection, if possible, to represent the maximum
coverage in terms of code patterns and the OpenMP language
specifications. Similarity analysis can help identify duplicated
code patterns and guide the addition of new microbenchmarks.

A distance-based similarity analysis has been applied to
DRB [8]. The analysis relies on the feature vectors repre-
senting both static and dynamic information of code regions.
The static information includes OpenMP directives and clauses
used in source code while dynamic information contains the
data race analysis result. A major limitation of this analysis
is that the feature vector misses information representing the
content of the code region wrapped by OpenMP directives.

This paper overcomes the limitation by expanding the
feature vectors to contain more fields representing the details
of the code regions, as shown in Table II. Fields E123 through
E134 are the new features added, including various statistics
of a code region about its operators, integer and floating point
constants, and variable references. The operators include Add,
subtract, multiply, divide and assign operators. Comparison
operators, bitwise operators, logical operators, and combined

assign operators (+=, -=, *=, etc.) are also counted. We revised
a Clang-based plugin tool, the OpenMP Extractor [8], to
collect these features from clang AST. The new feature vector
is defined using the following formula:

A = (Directive, Clause, { Extracted source info. list},

{T ool result list}, Ground Truth)
(D

Another improvement is the coverage of code regions.
In previous work the feature vectors were generated only
for OpenMP parallel loops under the OMPLoopDirective
AST node. We have expanded the coverage to include ba-
sic blocks under the OMPParallelDirective AST node. This
will include more code regions into analysis. For exam-
ple the DRBO74-flush-orig-yes.c, that has only omp
parallel reduction in the source code, was not previ-
ously considered since it does not have a loop. The enhanced
similarity analysis can now cover it as part of a parallel region.

Feature Value Encoding | Description
Range Fields
Directive [0,1] [EO- 87 directives are flattened into the
ES86] first 87 elements in the vector. The

existing directive’s value is set to
1, else 0.

Clause [0,1] [E87- The next 36 integer elements are 36

E122] flattened clauses. If the value is 1,

the test case contains that clause.

AddOp [0.n] E123 Number of Add operators.

SubOp [0.n] El124 Number of Subtract operators.

MulOp [0.n] E125 Number of Multiply operators.

DivOp [0.n] E126 Number of divide operators.

CompOp [0.n] E127 Number of compare operators.

BitOp [0.n] E128 Number of bit operators.

LogicOp [0,n] E129 Number of logic operators.

AssignOp [0,n] E130 Number of assign operators.

CombOp [0,n] E131 Number of combined operators
(+=, -=, etc.).

ConstOp [0,n] E132 Number of constant integer and
floating values.

VariableRef| [0,n] E133 Number of distinct variable names.

totalVarRef | [0,n] E134 Total number of variable refer-
ences.

Intel [-2,1] E135 Data race result by the tool. -2

ROMP [-2,1] E136 represents time out. -1 represents

Tsan [-2,1] E137 the segmentation fault. O

Coderrect [-2,1] E138 represents no data race. 1

LLOV [-2,1] E139 represents the data race.

Ground [0,1] E140 Ground Truth, whether a loop has

Truth a data race or not.

TABLE II: Feature vector’s definition and encoding methods

To compare the similarity, this work continues to use Cosine
Distance, which is a way to calculate the distance between
two non-zero vectors of an inner-product space and is more
suitable for high-dimensional vectors. The Cosine Distance is
derived from the Euclidean dot product formula as follows:

_AB iz AiBi
Bl VoL AV B

The distance, range from [-1,1], is used to determine the
similarity of two vectors. If two vectors are more similar, the

o0s(6) 2)

cosine distance will be closer to 1, and the degree for two
vectors will be closer to 0°.

V. EXPERIMENTS

In this section, we present experiment results using the pro-
posed high-precision correctness checking method to evaluate
both static and dynamic tools. The selected tools are capable
of detecting data races in OpenMP codes, publicly available
and with active development and maintenance in the past
year. We also evaluate the enhanced similarity analysis for
its effectiveness.

A. Experiment Configuration

Table III summarizes both dynamic and static tools used in
this evaluation. Intel Inspector was evaluated on the Quartz

[Tool | Tool type | Version [Compiler |
Intel Inspector Dynamic | 2020(build Intel Compiler 19.1.0.166
603904)
ROMP Dynamic | 20ac93c GCC & gfortran 7.4
ThreadSanitizer | Dynamic 12.0 Clang/LLVM 12.0.0, gfor-
tran 10.3.0
Coderrect Static 0.8.0 Clang/LLVM 9.0
LLOV Static N/A Clang/LLVM 6.0.1

TABLE III: Selected Tools: version and compilers used.

machine hosted at the Livermore Computing Center. Ex-
periments with the rest tools were conducted using Docker
containers. The containers for LLOV and ROMP are built from
the published Docker images. The rest containers were built
from the Dockerfiles provided in the DRB repository.

B. Evaluation results

The new version of DRB continues to automatically calcu-
late counts of False Positive, True Positive, False Negatives,
and True Negative based on tool results and ground truth, as
shown in Table IV. It reports five standard metrics: Recall,
Specificity, Precision, Accuracy, and F1 score to evaluate the
quality of tools. We also report tool support rate (TSR), which
is the ratio of how many test files are supported by a tool. The
F1 score is a measure combining both precision and recall It
provides a single metric that weights precision and recall in a
balanced way, requiring both to have higher values for the F1-
score value to rise. The reported adjusted F1 score, F1 score
multiplied by the TSR, can show the true ability of a tool.

Table V shows the baseline results using the original coarse-
grain evaluation strategy. For C/C++, Coderrect generated the
best adjusted F1 score of 0.911. ThreadSanitizer performed
the best for Fortran, with its adjusted F1 score of 0.889.

The high-precision evaluation method introduced in this pa-
per considers more detailed information that is available in the
data race tool reports. As shown in Table I, all selected tools
can provide source line information in their data race reports.
However, we observed that most of the selected tools are not
ready to provide precise column information. Therefore, the
first level of evaluation includes the source line information
that is commonly available from all the tool reports. For
the second level of evaluation, we additionally consider the

Ground Truth . ..
Tool Result True | False Recall Specificity Precision Accuracy F1 Score
True TP FP .
F TP/ (TP +FN) | TN/ (TN +FP) | TP/ (TP + FP) | (TP+TN) / (TP + FP + TN+ FN) | 2 * (P * R) / (P + R)
alse FN TN
TABLE IV: Definition of metrics (Recall, Specificity, Precision, Accuracy and F1 Score)
TP: true-positive; FP: false-positive; TN: true-negative; FN: false-negative; P: precision; R:recall
[Tool [Languages | TP [FN | TN | FP | Recall | Specificity | Precision | Accuracy [TSR [Adjusted F1 |
Intel Inspector 69 13 80 7 0.841 0.920 0.908 0.881 0.955 0.873
ROMP 62 16 56 13 0.795 0.812 0.827 0.803 0.831 0.810
ThreadSanitizer C/C++ 69 17 87 3 0.802 0.967 0.958 0.886 0.994 0.873
Coderrect 72 12 87 2 0.857 0.978 0.973 0.919 0.977 0.911
LLOV 55 28 78 9 0.663 0.897 0.859 0.782 0.960 0.748
Intel Inspector 65 16 66 10 0.802 0.868 0.867 0.834 0.946 0.833
ROMP 58 15 50 11 0.794 0.820 0.841 0.806 0.807 0.817
ThreadSanitizer Fortran 52 13 65 0 0.800 1.000 1.000 0.900 0.783 0.889
Coderrect 62 18 65 11 0.775 0.855 0.849 0.814 0.939 0.810
LLOV 40 39 65 11 0.506 0.855 0.784 0.677 0.945 0.615

TABLE V: Baseline results using the original file-level, coarse-grain evaluation method.

information about the variable access type. Results of level 1
and level 2 evaluations are in Table VI and VII respectively. .,
It is notable that several key quality metrics (including s
Precision, Accuracy, and F1) reported in the Level 1 evaluation
are significantly lower than the corresponding values reported
in the previous coarse-granularity evaluation. The best adjusted «
F1 score for C/C++ now is Thread Sanitizer’s 0.752 compared "
to the corresponding baseline score of 0.911. The reason is .
that more false positives and false negatives are reported. For ¢
example, 25 false positives are reported for Intel Inspector ((
compared to the original 7. For Fortran, the best adjusted [(
F1 score is Intel Inspector’s 0.575 compared to 0.889. The s
Level 2 evaluation further requires the tools to report more "
precise information for the reported races about variable access ;,
types. A tool needs to pass even more information checking to »
generate final metrics. Even lower metric results are observed ‘
in the Level 2 evaluation compared to the results in the Level 1 .,
evaluation. For example, the best adjusted F1 score for C/C++ 7

is reduced to 0.715 while the score for Fortran is reduced to |

0.497.

By exposing more false positives and false negatives, the
high-precision evaluation process is able to identify more
issues of a tool. For example, DRBO16 has two expected races
as shown in Listing 9. Intel Inspector detects the two expected
races in RDBO16 correctly. But it also reports an additional
write/write race with both variable accesses at line 73. The
previous file-level coarse-grain evaluation overlooks this issue
and counts the entire report as a true positive. Using the new
high-precision evaluation method, this additional write/write
race is correctly counted as false-positive by both the Level 1
and Level 2 evaluation.

C. Similarity analysis experiments

Among the microbenchmarks in DRB, 653 code regions
are extracted by the OpenMP Extractor. These code regions
include loop bodies and basic blocks that have OpenMP
directives specified in the source codes. A total of 426,409

Listing 9: C: DRB016-outputdep-orig-yes.c
/ *

Data race pairs: we allow two pairs to preserve the
original code pattern.
1. xQ@73:12:R vs. x@74:5:W
2. x@74:5:W vs. x@74:5:W
*/

#include <stdio.h>
int a[100];

int main ()

{
int l1len=100;
int i,x=10;

#fpragma omp parallel for
for (i1i=0;i<len;i++)
{
ali] =
x=1;

X7

}
printf ("x=%d", x) ;
return 0;

(653 x 653) cosine distance values can be generated but we
only consider distances reported by distinct pairs of code
regions and eliminate the distances from self-to-self compar-
isons. A total of 213,531 cosine values, ((1+ 652) x 652)/2,
are reported in Table VIII. Two threshold values, 0.87 and
0.5 representing cosine values for 30° and 60°, are picked to
categorize the levels of similarity.

There are 14 pairs of identical code regions reported. These
identical pairs come from the following groups: First, many
of them are from microbenchmarks with fixed size input
data and variable size input data, for example DRBO0OI-
antidepl-orig-yes.c and DRB002-antidepl-var-yes.c. Second,
some statements in the code region are highly identical
but with minor differences in the array subscript. For ex-
ample, DRB0OI1-antidepl-orig-yes.c and DRB029-truedepl-
orig-yes.c are considered identical because of the statements

[Tool [Languages | TP | FN | TN [FP [Recall | Specificity | Precision [Accuracy | TSR | Adjusted FI |
Intel Inspector 76 18 149 | 25 0.809 0.856 0.752 0.840 0.955 0.744
ROMP 59 35 138 | 40 0.628 0.775 0.596 0.682 0.831 0.508
ThreadSanitizer C/C++ 64 30 163 11 0.681 0.937 0.853 0.811 0.994 0.752
Coderrect 62 32 160 | 14 0.660 0.920 0.816 0.787 0.977 0.712
LLOV 33 61 143 | 46 0.351 0.757 0.418 0.540 0.960 0.367
Intel Inspector 62 30 173 | 50 0.674 0.776 0.554 0.746 0.946 0.575
ROMP 48 44 172 | 56 0.522 0.754 0.462 0.659 0.807 0.395
ThreadSanitizer Fortran 45 47 193 | 29 0.489 0.869 0.608 0.719 0.783 0.424
Coderrect 44 48 194 | 28 0.478 0.874 0.611 0.717 0.939 0.504
LLOV 26 66 197 | 25 0.283 0.887 0.510 0.637 0.945 0.344

TABLE VI: Level 1: evaluation with source line information included
Tool [Languages | TP [FN | TN [FP [Recall [Specificity | Precision | Accuracy | TSR | Adjusted FI |
Intel Inspector 83 | 20 | 147 58 0.806 0.717 0.589 0.747 0.955 0.649
ThreadSanitizer C/C++ 64 39 190 11 0.621 0.945 0.853 0.786 0.994 0.715
LLOV 33 65 170 46 0.337 0.787 0.418 0.558 0.960 0.358
Intel Inspector 63 35 217 79 0.643 0.733 0.444 0.711 0.946 0.497
ThreadSanitizer Fortran 38 60 151 | 200 | 0.388 0.430 0.160 0.399 0.783 0.177
LLOV 26 71 265 25 0.268 0.914 0.510 0.686 0.945 0.332

TABLE VII: Level 2: evaluation using variable access types and source line information

al[il=al[i+1]1+1; and a[i+1]=a[i]+1; in the source
codes respectively. Third, 006-indirectaccess2-orig-yes.c, 007-
indirectaccess3-orig-yes.c and DRBO0O08-indirectaccess4-orig-
yes.c are identical by design to detect data races when different
numbers of threads are used in the testing. The only differ-
ences are their different input data element values. Fourth,
code regions have the same statements but in different order,
for example DRB020-privatemissing-var-yes.c and DRB035-
truedepscalar-orig-yes.c. And last, code regions that have only
a function call statement can be treated identical because the
OpenMP Extractor does not inspect the function definition that
is called from the OpenMP code region.

The previous study reported about 45% of the pairs are
considered identical, 32% are moderately identical and 23%
are distinct. With additional static information included into
the feature vectors, the evaluation reports about 54% of the
pairs are considered highly identical, 44% are moderately
identical and only 2.9% are distinct. Manual inspections were
performed to investigate the differences between pairs in a
highly identical group and pairs in a moderately identical
group. Those identified as moderately identical are likely
to have one code region coming from microbenchmarks in
PolyBench. These code regions in PolyBench are generated by
the polyhedral transformations and have more complex loop
statements. A code region with loop statement and another
code region without loop statement in it are categorized as
moderately identical. Those pairs identified as distinct have
more differences reflecting the fields in the feature vector.
They tend to have different directives and clauses. In addition,
they have more obvious differences in the source codes. For
example, one has a loop statement but the other one does not.

In summary, the enhanced similarity analysis is helpful
to guide detailed investigation of potential redundant code
regions in DRB. However, including even more source code
statistical information into feature vectors does not necessarily
improve the distance-based similarity analysis to distinguish

the differences among code regions. The cosine similarity is
simply the cosine of the angle between two vectors. This
feature poses the main drawback of the cosine distance that the
magnitude of vectors is not taken into account. For the feature
vector used in this work, there will be a higher difference
reflected by cosine distance when there are more zero v.s.
non-zero differences. Difference between two non-zero values
does not seem to cause high impact in the similarity analysis.
This can be seen from one example found in the result that
a pair is more likely to be different when one block has a
loop statement and the other one has not. Their feature vectors
will have more zero v.s. non-zero differences: differences in
directive, clause, having comparison operator, and having ++
operator for index increment. A future study is required to
discover a better similarity analysis approach. The directions
include finding a more suitable distance measure that can han-
dle high-dimensional vectors and reflect the value differences
represented among vectors, or adding coefficient values into
the feature vector elements for the distance measurement.

[Cosine Distance [Degree [Similarity Index [Pair Number |
[1.0] 0° Identical 14
[0.87-1.0] 0°-30° Highly Identical 114,086
[0.5-0.87) 30°-60° Moderately Identical 92,646
[-1-0.5) 60°-180° Distinct 6,132
Total 212,878

TABLE VIII: Results of the enhanced similarity analysis

VI. RELATED WORK

Most OpenMP benchmarks focus on performance eval-
uation benchmarks. Popular examples include NPB [13],
SPEComp [14], and SPEC ACCEL OpenMP version [15].
At the same time, several benchmarks for data race detection
exist for the Java language. For example, JBench [6] is one
of the popular data race benchmarks with 48 JAVA test
cases and three data race tools support. A run-time error

detection (RTED) testing suite collects over ten-thousand
runtime error tests including OpenMP test cases. Different
from , RTED supports evaluation for system software’s ca-
pability in runtime-error detection [16]. DataRaceBench [17]
is the first specially designed benchmark suite for extensive
OpenMP programs’ data race detection. Its previous version,
DataRaceBench v1.3.0 [8], incorporates Fortran support and
more code patterns in general. In this paper, we enhance DRB
further to have more accurate correctness checking, static tool
support, as well as an improved similarity analysis.

Code similarity analysis is widely used in many different
domains. For example, a recent paper [18] gives a good survey
about binary code clone detection techniques, including those
based on metrics, text, tokens, trees, and graphs. Deep learning
is also used to measure code similarity. Deepsim [19] encodes
code control flow and data flow into a semantic matrix to
develop a model that measures code functional similarity for
Java programs. The work of Statistical Similarity of Bina-
ries [20] divides code into smaller fragments to compare the
resemblance of procedures in stripped binaries. The Tracelet-
Based Code Search in Executables [21] introduced a new static
method to find similar functions in the code-base. The authors
divided the function into tracelets, which are short, contin-
uous, partial traces of execution. After that, they calculated
the tracelet match score by aligning the tracelet with LCS
variation (edit distance). These two methods analyze the binary
code similarity by a similar approach. Our similarity analysis
encodes both static and dynamic information of OpenMP code
regions. A compiler is used to extract static code features. The
dynamic information is derived from the results of state-of-the-
art dynamic analysis tools.

VII. CONCLUSION

In this paper, we present the work to improve
DataRaceBench to have a high-precision evaluation method
to check the correctness of reports generated by different data
race detection tools. This method includes a novel format to
encode ground truth of data races in source code and several
steps to postprocess the generated tool reports in order to
enable different levels of correctness comparison. The test
harness of DataRaceBench has also been improved to support
static tools. Finally, we developed an improved similarity
analysis. The experiment results show that the high-precision
evaluation method is effective to better identify limitations of
selected data race detection tools. The enhanced similarity
analysis also is able to guide us to investigate similar code
regions in DataRaceBench in more detail.

Future work will include collaboration with tool developers
to file bug reports based on the new false positives and false
negatives exposed by DataRaceBench. We will also explore
more advanced similarity analysis algorithms and use them to
guide the addition of new code patterns into DataRaceBench.

REFERENCES

[1]1 S. Thayer, G. L. Gopalakrishnan, I. Briggs, M. Bentley, D. H. Ahn,
I. Laguna, and G. L. Lee, “Archergear: data race equivalencing for
expeditious hpc debugging,” in Proceedings of the 25th ACM SIGPLAN

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

Symposium on Principles and Practice of Parallel Programming, 2020,
pp. 425-426.

S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, I. Laguna, G. L. Lee, and
D. H. Ahn, “Sword: A bounded memory-overhead detector of openmp
data races in production runs,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 1EEE, 2018, pp. 845-854.
A. Schmitz, J. Protze, L. Yu, S. Schwitanski, and M. S. Miiller,
“Dataraceonaccelerator—a micro-benchmark suite for evaluating correct-
ness tools targeting accelerators,” in European Conference on Parallel
Processing. Springer, 2019, pp. 245-257.

U. Bora, S. Das, P. Kureja, S. Joshi, R. Upadrasta, and S. Rajopadhye,
“Llov: A fast static data-race checker for openmp programs,” arXiv
preprint arXiv:1912.12189, 2019.

Y. Gu and J. Mellor-Crummey, “Dynamic data race detection for openmp
programs,” in SCI8: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2018, pp. 767—
7178.

J. Gao, X. Yang, Y. Jiang, H. Liu, W. Ying, and X. Zhang, “Jbench:
a dataset of data races for concurrency testing,” in Proceedings of the
15th International Conference on Mining Software Repositories, 2018,
pp- 6-9.

M. Jasper, M. Mues, M. Schliiter, B. Steffen, and F. Howar, “Rers 2018:
Ctl, 1tl, and reachability,” in International Symposium on Leveraging
Applications of Formal Methods. Springer, 2018, pp. 433-447.

G. Verma, Y. Shi, C. Liao, B. Chapman, and Y. Yan, “Enhanc-
ing dataracebench for evaluating data race detection tools,” in 2020
IEEE/ACM 4th International Workshop on Software Correctness for
HPC Applications (Correctness). 1EEE, 2020, pp. 20-30.

F. Ye, M. Schordan, C. Liao, P.-H. Lin, I. Karlin, and V. Sarkar, “Using
polyhedral analysis to verify openmp applications are data race free,” in
2018 IEEE/ACM 2nd International Workshop on Software Correctness
for HPC Applications (Correctness). 1EEE, 2018, pp. 42-50.

B. Swain, Y. Li, P. Liu, I. Laguna, G. Georgakoudis, and J. Huang,
“Ompracer: A scalable and precise static race detector for openmp
programs,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2020, pp. 1-14.
U. Bora, S. Das, P. Kukreja, S. Joshi, R. Upadrasta, and S. Rajopadhye,
“Llov: A fast static data-race checker for openmp programs,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 17,
no. 4, pp. 1-26, 2020.

“Coderrect,” https://coderrect.com/.
“NAS Parallel Benchmarks 3.0,”
subsetting/NPB3.0-omp-C.

V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones,
and B. Parady, “Specomp: A new benchmark suite for measuring
parallel computer performance,” in International Workshop on OpenMP
Applications and Tools. Springer, 2001, pp. 1-10.

G. Juckeland, O. Hernandez, A. C. Jacob, D. Neilson, V. G. V. Larrea,
S. Wienke, A. Bobyr, W. C. Brantley, S. Chandrasekaran, M. Colgrove
et al., “From describing to prescribing parallelism: Translating the
spec accel openacc suite to openmp target directives,” in International
Conference on High Performance Computing. Springer, 2016, pp. 470—
488.

G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Xu, M.-Y. Park,
E. Kleiman, O. Weiss, A. Wehe, and M. Yahya, “The importance of
run-time error detection,” in Tools for High Performance Computing
2009. Springer, 2010, pp. 145-155.

C. Liao, P-H. Lin, J. Asplund, M. Schordan, and I. Karlin,
“Dataracebench: a benchmark suite for systematic evaluation of data
race detection tools,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2017, pp. 1-14.

Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Magbool, “A
systematic review on code clone detection,” IEEE access, vol. 7, pp.
86 121-86 144, 2019.

G. Zhao and J. Huang, “Deepsim: deep learning code functional similar-
ity,” in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2018, pp. 141-151.

Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
ACM SIGPLAN Notices, vol. 51, no. 6, pp. 266-280, 2016.

Y. David and E. Yahav, “Tracelet-based code search in executables,”
Acm Sigplan Notices, vol. 49, no. 6, pp. 349-360, 2014.

https://github.com/benchmark-

