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Introduction

The “Workshop on Machine learning in heterogeneous porous materials” was vir-
tually held on October 4-6, 2020 at the University of Utah. The workshop was part of the
AmeriMech Symposium series sponsored by in the National Academies of Sciences, Engi-
neering and Medicine and the U.S. National Committee on Theoretical and Applied Me-
chanics.
The workshop for the first time brought together senior and early career international ex-
perts in the areas of heterogeneous materials, machine learning (ML) and applied mathe-
matics to identify how machine learning can advance materials research.
There is no debate that machine learning has tackled many scientific and engineering prob-
lems in the past decade. The explosion of machine learning methods developed by indus-
try (e.g. Google, Facebook, etc.) have been particularly successful in addressing data rich
problems such as visualization (e.g. facial recognition) where machine learning techniques
are very effective due to their ability to interpolate and fit using big data for training. How-
ever, its role in multi-physics, multi-scale problems which are often data sparse and re-
quire extrapolation (e.g. prediction, forward modeling) is less clear. For prediction and
forward modeling, the underlying governing equations are often critical. Therefore, physics-
informed machine learning approaches that combine the underlying equations and physical
constraints with data-driven approaches are needed for many scientific problems. These
approaches are far less developed by industry and is therefore a key knowledge gap that
academia and national labs can fill. In addition, scientific discoveries, energy resiliency, and
national security require an in-depth understanding of multi-scale, multi-physics and het-
erogeneous processes in order to predict and eventually control system behavior.

Figure 1: ML unites three scientific communities.

The workshop’s goal was to bring three scientific communities of applied mathematics,
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porous media, and material sciences together to:

1. discuss the state-of-the-art in each community

2. promote and accelerate multi-disciplinary collaborative research

3. identify challenges and opportunities

The workshop identified four topic areas (TAs) that would benefit from machine learning
enabled cross-disciplinary research between all three communities. These TAs are:

• TA 1: ML in predicting materials properties, and discovery and design of novel ma-
terials

• TA 2: ML in porous and fractured media and time-dependent phenomena

• TA 3: Multi-scale modeling in heterogeneous porous materials via ML

• TA 4: Discovery of materials constitutive laws and new governing equations

The workshop was attended by 70 participants in total. It featured 6 keynote lectures, four
parallel sessions. The keynote lectures were:

• Combining Graph Theory and Machine Learning to Characterize Fractured Systems
by Dr. Gowri Srinivasan from Los Alamos National Laboratory.

• Data-Driven Learning of Nonlocal models: Bridging Scales with Nonlocality by Dr.
Marta D’Elia from Sandia National Laboratories.

• Applications of Machine Learning Techniques in Fracture Mechanics by Prof. Hua-
jian Gao from Nanyang Technological University.

• Bioinspired AI towards Modeling, Design and Manufacturing of de novo Materials by
Prof. Markus J. Buehler from MIT.

• Generative Design and Additive Manufacturing of Three-Dimensional architected
metamaterials by Dr. Grace X. Gu from University of California, Berkeley.

• Learning Solution Operators In Continuum Mechanics by Prof. Andre Stuart from
Caltech.
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The abstracts and biographical information of the speakers are available in Appendix A.

Each morning and afternoon session started with the keynote speech, followed by break
and discussion session. At the end of the day, a briefing session was held where all the
chairs reported the highlight of their discussion to all the participants.
During the 7 discussion sessions (three in Day 1, three in Day 2 and one in Day 3), fol-
lowing questions were discussed in order to gain consensus state-of-the-art, challenges and
future directions:

1. What is the state-of-the-art in your topic area?

2. What are the existing challenges and opportunities in your topic area?

3. How inclusive is the community associated with this topic area?

4. Where would we like this area to be in ten years?

5. List some of the common science questions in this area that overlaps with other com-
munities (Applied Math, Porous material, Materials Science).

6. How can your community learn from others to overcome some of your existing chal-
lenges?

7. What technical advances must be made to overcome the existing challenges?

8. How can we make our communities more inclusive?

The symposium was also focused in promoting JEDI (Justice, Equity, Diversity, and In-
clusion). To this end, a diverse group of keynote speakers, chairs and participants from
different disciplines and at different stage of their careers were invited to this symposium.
Furthermore, there were some discussion within each sessions with JEDI focus.
The following chapters summarize the discussions within each TA and provide a road-map
for the future research directions within their area of research.

Pania Newell The University of Utah
George Karniadakis Brown University
Hari Viswanathan Los Alamos National Laboratory
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Abstract

A hallmark of the scientific process since the time of Newton has been the derivation of
mathematical equations meant to capture relationships between observables. As the field
of mathematical modeling evolved, practitioners specifically emphasized mathematical for-
mulations that were predictive, generalizable, and interpretable. Machine learning’s ability
to interrogate complex processes is particularly useful for the analysis of highly heteroge-
neous, anisotropic materials where idealized descriptions often fail. As we move into this
new era, we anticipate the need to leverage machine learning to aid scientists in extracting
meaningful, but yet sometimes elusive, relationships between observed quantities.

Introduction

The derivation of governing equations for physical systems currently dominates the phys-
ical and engineering sciences. These governing equations are used for predictive physics-
based models to forecast system behavior. Indeed, this is the dominant paradigm for the
modeling and characterization of physical processes, engendering rapid and diverse techno-
logical developments in every application area of the sciences. Until the middle of the 20th

century, many models of natural and engineered systems relied on linear governing equa-
tions that are amenable to analytic solutions. With the invention of the computer and the
rise of scientific computing, nonlinear problems could easily be explored through numeri-
cal simulation using techniques such as finite elements. Scientific computing allows one to
emulate diverse and complex systems that are high-dimensional, multiscale, and potentially
stochastic in nature. In modern times, the rapid evolution of sensor technologies and data-
acquisition software/hardware, broadly defined, has opened new fields of exploration where
governing equations are difficult to generate and/or produce. Biology and neuroscience,
for instance, easily come to mind as application areas where first-principals derivations are
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difficult to achieve, yet data is now becoming abundant and of exceptional quality. The
coarse-grained macroscopic behavior of heterogeneous materials is also often difficult to de-
rive or characterize from known microscopic descriptions. The ability to discover governing
equations directly from data is thus of paramount importance in many modern scientific
and engineering settings as they provide both interpretability and generalizability.

Here we first summarize the state-of-the-art in the area of machine learning (ML) dedi-
cated to deducing governing equations from data, highlighting the importance of three fun-
damental features of such formulations (which we will define below): predictivity, generaliz-
ability, and interpretability. We then explore the current knowledge gaps and challenges to
making this area fully realizable, and we provide some recommendations on where the field
might focus its efforts to enable rapid advancements. We conclude with summary thoughts
on promoting justice, equity, diversity, and inclusion.

State-of-the-art Only recently have mathematical architectures been developed to dis-
cover governing equations directly from data. But in a short time, the diversity of meth-
ods and their capabilities have had an impact across a number of application areas. In all
cases, measurements for which the signal-to-noise ratio is low (e.g. noisy data) represent
significant challenges for any analysis of the underlying signal, including model discovery.
Two machine learning areas have dominated the discovery of parsimonious governing equa-
tions: symbolic regression with genetic programming (GPSR) and sparse regression. These
two areas draw from the broader class of dictionary learning methods and have been em-
ployed in a wide range of applications outside the materials science field. Each is described
below. We anticipate that both of these methods (as well as future methods that evolve
from these) can be adapted in the future to heterogeneous anisotropic multiscale problems
as found in materials science.

An early method for the discovery of governing equations was symbolic regression (SR),
which was pioneered by Lipson and co-workers [5, 62]. SR is a method that aims to model
an input dataset without assuming its form. Instead, candidate models are proposed and
evaluated by the algorithm, and the only assumption is that the data can be modeled by
some algebraic expression. This is in contrast to traditional regression methods in which
model form selection is made first and the regression method then estimates the model pa-
rameters. From a general perspective, SR is an optimization problem that occurs over a
non-numeric domain of mathematical operators (e.g., +, exp, sin, d/dx, etc.) and numeric
domain of model parameters. The SR model is characterized by a variable-length combina-
tion of operators and parameters and, therefore, poses an infinite space of possible model
forms to search. In practice, the mathematical operator domain is limited by a finite set of
operations and a limited model length (i.e., stack size). SR is also computationally expen-
sive, especially when used with genetic programming to search for models.

Genetic programming is the most commonly used model-evolution algorithm for SR, termed
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GPSR. Genetic algorithms (GA) are incredibly flexible and powerful optimization schemes
proposed by Koza [32] that attempt to mimic the evolutionary selection processes observed
in natural systems. Genetic programs are a type of GA in which models are represented
as (nested) variable-length tree structures representing a program instead of a fixed-length
list of operators and values. Within GPSR, genetic programs are used to generate random
perturbations to models which are evaluated against a fitness function(s). This fitness is
used to select models most likely to perform better, and then randomly recombine (i.e.,
crossover) and permute (i.e., mutate) them to generate new candidate models. At the
same time, the candidates with the poorest fitness are evolved out of the population (e.g.,
natural selection). The iterative exploration of the solution space is subject to both ran-
domization and guidance from the particular fitness, crossover, and mutation procedures
implemented.

As an example of the application of GPSR to multiscale systems, researchers have applied
GPSR to multiscale constitutive models. In Bomarito et al. [4], GPSR was shown to learn
the symbolic expression of the von Mises yield surface, provided corresponding training
data from simulations of representative volume elements. Extension to learning the evo-
lution equation for state variables (e.g., plastic strain) was also demonstrated. While this
demonstration “learned” an existing model, it demonstrated that GPSR can satisfy an en-
gineering requirement: a means for verification of artificial intelligence (AI) and ML models
and assessment for meaning and insight. More recently, researchers have used GPSR to
learn microstructure-dependent plasticity models for additively-manufactured Inconel 718
[19]. These learned models were automatically parsed within a topology optimization code;
a capability that can be included within various software environments.

Following on from the data-regression approaches mentioned above, the sparse identifi-
cation of nonlinear dynamics (SINDy) method [9] is a SR method that leverages time-
series data to discover the governing equations from a library of candidate models. The
sparse regression procedure extracts the terms which best represent the time-series data.
The SINDy algorithm has been broadly applied to a wide range of systems, including for
reduced-order models of fluid dynamics [39, 40, 41, 23, 17, 11, 10] and plasma dynam-
ics [15, 30], turbulence closures [2, 3, 61], nonlinear optics [67], numerical integration schemes [71],
discrepancy modeling [28, 64], boundary value problems [63], identifying dynamics on Poincare
maps [7, 8], tensor formulations [22], and systems with stochastic dynamics [6, 12]. In the
work on plasmas [15], for instance, a predator-prey type dynamical system that approxi-
mates the underlying dynamics of the three energy state variables was discovered. Impor-
tantly, the model is amenable to a bifurcation analysis that reveals consistency between
the bifurcation structures observed in the data. The integral formulation of SINDy [60, 44]
has also proven to be powerful, enabling the identification of governing equations in a weak
form without recourse to computing derivatives; this approach has recently been used to
discover a hierarchy of fluid and plasma models [55, 24, 1, 56]. The open source software
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package, PySINDy1, has been developed in Python to integrate the various extensions of
SINDy [65]. An attractive feature of SINDy is that it simply solves an over-determined
Ax = b by promoting sparsity and making it modular and amenable to enabling innova-
tions. Moreover, it is exceptionally efficient computationally in comparison with SR, thus
allowing for discovery on data with orders of magnitude less computational time. It can
also be used with neural network (NN) architectures which provide automatic differentia-
tion [49, 21] and learning coordinates and models jointly [13, 29].

In addition to the symbolic (dictionary) methods mentioned above, there is a strong surge
of interest in physics-informed machine learning (PiML) [50] by means of deep neural net-
works (DNNs). This area evolved concurrently with the aforementioned dictionary learning
methods. Interest in DNNs within the scientific community started in part due to their
flexibility and expressiveness (see [59], for a first work in this direction, and [52]). While
first being used as physics-constrained regressors such as physics-informed NNs (PINNs),
their use has morphed into the topic of operator learning, as mentioned below. Given this
trajectory, some anticipate that this line of work will transform what we as a community
mean by “learning governing equations.” In this context, a recent review article [31] sum-
marizes the state of the art of PINNs and DeepONets [42], that we describe below. In
PINNs-type approaches [51, 53, 54], the solution of a known PDE is modeled by a DNN
whose parameters, together with other model parameters, are to be learned. We stress
that, for these approaches, only constitutive relationships and model parameters are “dis-
covered”, whereas the fundamental underlying physics is established a priori (e.g., conser-
vation laws). More recently, building on PINNs and other learning paradigms, new deep
learning tools designed to discover governing relationships, have been considered. Among
these we mention neural-operator-type approaches [35, 36, 37] and DeepONet [42]. This
type of deep learning broadens the concept of “governing equations” to include complex
mathematical forms such as DNNs, and, in doing so, challenges traditional notions of inter-
pretability, as addressed below.

We summarize possible ways to embed or discover physics via machine learning in Figure
2. Here, several approaches are listed for decreasing levels of confidence in the knowledge of
the underlying physics and, for each of them, we indicate where physics discovery is possi-
ble and what type of datasets are required. In the top-left box, known physics laws are em-
bedded in the learning process via “strong” constraints, i.e., via equality constraints to the
optimization problem. In the top-middle box, physics constraints are embedded “weakly”,
as part of the cost functional (or loss functional) to be minimized. This approach is typical
in PINNs-type algorithms [25, 48, 47, 57, 69, 70, 74] and in nonlocal-kernel-regression algo-
rithms [75, 76, 77, 78]. Both approaches rely on some underlying physical knowledge in the
form of an equation or a constitutive law. The top-right box represents those approaches
for which physics knowledge is poor or absent. In this case, learning solely relies on data
and, for this reason, it requires even richer datasets. Note that in this category we have

1https://github.com/dynamicslab/pysindy.
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two types of learning: a pure data-regression approach, where given some dataset, a surro-
gate (e.g., a NN) is trained in a least square sense, and an input-output approach, where,
given input-output pairs for a specific system, the surrogate “discovers” new constitutive
input-output relationships. In the latter class, we have both symbolic (dictionary) meth-
ods such as SR and SINDy and operator learning approaches such as neural operators and
DeepONets.

  

EMBEDDING known physics vs DISCOVERING hidden physics

No physics constraints
(possibly discovery)

requirements
large and diverse datasets

possibly some physics knowledge
possibly some system’s properties

Good physics knowledge

Weak physics constraints
(no discovery)

requirements
small and possibly diverse datasets

physical laws
possibly some physics knowledge

Strong physics constraints
(no discovery)

requirements
small and possibly diverse datasets

physical laws
possibly some physics knowledge

Operator Regression
(discovery)
requirements

large and diverse datasets
possibly some physics knowledge

some system’s properties

Data Regression
(no discovery)

requirements
large and diverse datasets

Poor physics knowledge

Figure 2: Different approaches to learn surrogates, from regression to discovering new
physics.

Prediction, Generalization and Interpretability As the use of AI/ML technologies
grows, there is an increasing number of people who believe that AI/ML representations
will surpass model-based prediction capabilities. This enthusiasm has been bolstered by
computer science success stories around DeepMind’s AlphaGo and Tesla’s self-driving car
technologies. Critics of this view normally point to three desired features of models; they
desire models that are predictive, generalizable, and interpretable. In addition, for these
success stories, large training data sets exist whereas they often do not for heterogeneous
materials problems. Since there is still debate about the precise definitions of these terms
(and the debate is sometimes a consequence of the field or subfield of science in which they
are used), we give here conceptual definitions that inform our discussion below. A model is
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considered predictive if it can forecast likely future outcomes. A model is considered gen-
eralizable if the model can adapt to new, previously unseen data (i.e., things outside the
training set).2 A model is considered interpretable if relevant (to the problem at hand) un-
derstanding of the relationships either contained in data or learned by the model can be
inferred [45].

The AI/ML advocates argue that the hallmark of science is not “understanding” per se in
a reductionist sense, but rather “trust” in generalization and predictive capability. When
we are able to more faithfully generalize AI/ML results, might their use with materials
science systems become more ubiquitous? With more generalizable AI/ML methods, dif-
ficult problems such as multi-scale, heterogeneous problems that lack traditional govern-
ing equations may be within reach. We acknowledge that at present, there is a tension be-
tween these two camps: those that stress predictive power while allowing a sacrifice of in-
terpretability, and those that emphasize interpretability over predictive power. Both camps
appear to agree on generalizability; however, they disagree as to whether predictive power
or interpretability most naturally leads to capturing this constraint.

Knowledge gap and challenges

Despite the recent advances in Scientific Machine Learning (SciML), and in particular in
the use of ML techniques such as dictionary learning, to learn governing equations, sev-
eral modeling and computational challenges hinder their general usability in practical con-
texts, including the simulation of porous, heterogeneous materials. We list and discuss
seven challenges, some of which lead directly to recommendations for action. We have
highlighted these directly in this section; several recommended areas for action are further
discussed in the following section.

The first two challenges are 1) the interpretability of the machine-learned surrogates and 2)
their generalization to settings (boundary conditions, environment conditions such as tem-
peratures, body loadings, etc.) that are substantially different from the ones used during
training. These are not necessarily related to the application of interest in this report but
are common gaps in the discovery of new governing equations for several engineering and
scientific applications. Other challenges, strongly related to the simulation of materials,
are 3) addressing the multiscale nature of the physical systems of interest and of the avail-
able data, 4) dealing with the presence of high degrees of heterogeneity at different scales,
and 5) incorporating model or data uncertainty in the learning algorithms. We also briefly
report on two additional challenges that are not directly related to the ML strategy, but
highly affect its outcome, i.e., 6) the need for efficient optimization techniques and 7) the
availability, quality, and fidelity of the dataset, and how to incorporate multi-fidelity/multi-

2We acknowledge that there is overlap between predictive power and generalization, but leave them as
separate but complementary concepts.

9



modality data into training NNs.

A summary of the discussion that follows can be found, for the case of subsurface trans-
port through porous media, in Figure 3. This specific application was chosen as an out-
standing representative of all of scenarios considered in this report. The complexity of
the subsurface environment and the difficulty in accessing such an environment, are such
that dealing with multiscale effects, heterogeneity of the medium, and uncertainty in the
measurements and in the models is a nontrivial task. In this figure, we list three possi-
ble learning approaches for increasing levels of abstraction of the resulting surrogate, S,
and we highlight their properties in terms of interpretability and generalization capability.
Specifically, Sq represents a surrogate for a quantity q in the form of, e.g., , a NN, a GP, a
polynomial expansion, or a symbolic expression composed from a dictionary. The models
listed here are by no means a fully representative set of state-of-the-art methods, but pro-
vide valuable examples of possible approaches characterized by different degrees of inter-
pretability and generalizability. In the first column the solutions of known PDEs, such as
Darcy and advection-dispersion equations, are modeled as surrogates together with other
model parameter fields (e.g., permeability). Representatives of this technique are PINNs-
type approaches [25, 69]. Clearly, the resulting surrogate is a solution of a PDE whose
terms have an understood physical interpretation. On the opposite side of the spectrum
of physics knowledge, we have the approach illustrated in the last column where the re-
sulting model is an operator (or map) from some of the system’s inputs to the solution,
the pressure in this case. Among this class of techniques, we mention neural-operator-type
approaches as well as symbolic (dictionary) methods. In this case, the interpretability de-
pends on the method: as explained above, neural-operator-type approaches are harder to
interpret whereas the interpretability of the components of a symbolic method is more
straightforward.

Interpretability By interpretability, many scientists mean the ability of identifying in
the resulting surrogate model a physical behavior such as diffusion, advection, reaction,
etc. While this is particularly straightforward when learning coefficients of a known PDE,
it is much less intuitive when learning, e.g., NNs, as surrogates of a solution operator. In
fact, while equations are highly interpretable, the architecture of a NN is not directly con-
nected to a physical phenomenon. When little is known about the physics of the system at
hand, the lack of interpretability affects the extent of trust in the ML surrogate.

The idea of interpretability stated above is not incorrect, but incomplete. We hold that
the lens through which one should view interpretability is decision-making. For purposes
of example, consider the following. The actions supporting decision-making often involve
directly or implicitly enumerating all possible outcomes that come as a consequence of a
particular choice. Prior to the modern age, this enumeration step often involved specula-
tion and extrapolation built upon a combination of historical pattern analysis and human
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High degrees of heterogeneity

Uncertainty in models and data

Learning PDE 
model parameters

Learning surrogates as 
input-output maps

Learning constitutive laws
or closure terms

Somewhat interpretable
More likely to generalize

Highly interpretable
May or may not generalize

Learning
approach

Properties

Resulting 
Model

Good physics knowledge

Image Courtesy of Dr. Barb Dutrow.

Poor physics knowledge
→  increasing levels of abstraction →  

 

Notation

Interpretation is method-dependent 
May or may not generalize

Figure 3: For subsurface flow, we list three possible learning approaches, their correspond-
ing surrogates, and their properties. ML techniques are listed for increasing levels of ab-
straction and physics knowledge.

experience. The decision-maker’s level of trust in the predictions was in part determined
by their trust in the person from whom they were receiving their information and upon the
resonance or dissonance of those predictions with the decision-maker’s own experiences and
intuitions. In the modern age, both simulation science and data science have augmented
the outcome prediction step. Although the use of mathematical and statistical predic-
tors based upon a combination of first-principle modeling and data-driven science is now
ubiquitous and has often replaced human intuition as the generator of possible future out-
comes, how the decision-maker engages with these tools has not changed – it is predicated
on trust. As AI/ML tools move to the forefront of options used by decision-makers to cre-
ate data-driven outcome predictions, it is important to develop strategies and tools that
enable explainable AI/ML: tools that encourage and support trust-building.

There are a variety of ways by which decision-makers build trust in the tools that they
use. In the case of simulation science, the most common trust enabler is an agreement
on what are first principles and on how those first principle components are assembled to
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yield a prediction. Many decision-makers struggling with the use of AI/ML in outcome
prediction either explicitly or implicitly assume that this strategy is the only strategy for
interpretability. However, this bottom-up approach to interpreting predictions is not the
sole standard for interpretability. There are many systems for which, although we might
vaguely understand the various first-principle building blocks that are being used, the com-
plexity of the assembling of the system makes it impossible for us to create a cause-and-
effect chain in our minds that justifies our trust3.

An alternative way by which we gain experience and trust in complex systems is through
interrogation. Through an understanding of the purposes of the model and the assump-
tions upon which it was built, we build our trust in its predictions by presenting it with
scenarios for which we believe we understand what the prediction should be. We build con-
fidence in the model each time the model, under known circumstances, reacts as we antic-
ipate. Once this base level of trust is established, we begin to interactively interrogate the
model with situations for which we may or may not have a complete idea as to what the
prediction might be; however, we want to see and reason about the outcomes provided by
our AI/ML recommender system. Like in the social context, this interactive session allows
the decision-maker to build trust in their tools while at the same time building an appreci-
ation of its biases and limitations.

Recommendation: We believe that research into interactive visualization and interroga-
tion tools may play an important role in enabling explainable AI/ML for material systems.
For example, the authors in [73] introduced the use of AI/ML tools for uncovering inter-
pretable shared “hidden” structures across data spaces for design space analysis and ex-
ploration. Their work demonstrated how AI/ML tools could be used within an interactive
framework (dSpaceX) to first build trust in the tools themselves, and then later to interro-
gate new topological optimization designs. Similarly, the authors in [38] introduced NLIZE
– a perturbation-driven visual interrogation tool for analyzing and interpreting natural lan-
guage inference models. They introduced a visualization system that, through a tight yet
flexible integration between visualization elements and the underlying model, allows a user
to interrogate the model by perturbing the input, internal state, and prediction while ob-
serving changes in other parts of the pipeline. They used the natural language inference
problem as an example to illustrate how a perturbation-driven paradigm can help domain
experts assess the potential limitation of a model, probe its inner states, and interpret and
form hypotheses about fundamental model mechanisms such as attention.

Generalization ML algorithms are particularly effective in “interpolation” tasks, i.e., in
generating surrogates that well-represent the dataset used during training. However, sim-

3Although one might claim that an understanding of Newton’s laws of motion combined with an un-
derstanding of thermodynamics aids someone in appreciating how an automobile transmission works, it
would be an exaggeration to say that a person has built trust in the performance of their transmission due
to this knowledge.
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ple interpolation that only predicts the regime captured by available data is not sufficient
for reliable predictions. A predictive surrogate must extrapolate (or generalize) to regimes
that are different from the ones used for training. Ideally, a reliable surrogate would only
embed the material’s constitutive behavior and be independent of the system’s inputs such
as environment conditions, boundary and initial conditions, loadings, etc. Even more desir-
able would be a surrogate that generalizes beyond a specific material (i.e., a surrogate for
subsurface transport that provides reliable predictions regardless of the composition of the
subsurface, as long as the system’s inputs are available). Several SciML algorithms learn
surrogates for the state of the system rather than for the constitutive behavior; this ap-
proach may lead to surrogates that are tied to specific inputs such as boundary conditions
or that only represent solutions that belong to the training set. Recent works focused on
learning constitutive laws or, more in general, a surrogate for the solution operator itself,
are more likely to be independent of the system’s inputs and, hence, to generalize better.

Finally, one has to keep in mind that with higher levels of generalization and abstraction,
the price to pay might be interpretability. This is the case of e.g., neural operators, i.e.,
NNs that reproduce the system’s behavior, where the surrogate is a NN itself and little can
be said about its connection to a physical phenomenon, as anticipated above.

Recommendation: A particularly complex task is the prediction of emergent phenom-
ena; most of the current SciML algorithms are still not able to capture anomalies that may
arise in a system and that are not accounted for in the training set, such as bifurcations.
This indicates an area of future research.

Multiscale nature, heterogeneity, and stochasticity Modeling and simulation of de-
terministic, homogeneous physical systems characterized by a single time and length scale
have experienced significant progress. In the absence of multiscale effects, uncertainties (in
the model and data), and heterogeneities, we are now in the position of delivering accurate,
efficient, and predictive simulation tools in the area of materials science. In this context,
ML is useful when some model parameters are unknown or uncertain. However, in the
presence of multiscale effects, heterogeneities, and uncertainties, current PDE-based models
may be insufficient to appropriately capture the system’s behavior. Thus, current SciML
algorithms may fail to be predictive because they were designed and tested on a single-
scale, homogeneous toy problem whose physical behavior is well-known and understood.
In the presence of heterogeneities and when the small scale behavior affects the system’s
global behavior, there is the need for new surrogates that are able to capture the effects of
the small scales at the continuum level. A typical example of this situation is subsurface
modeling where high degrees of heterogeneity and small scale effects that cannot be cap-
tured at large scales compromise the ability to describe the system using classical models.
In this case, standard PDE-based ML algorithms may fail to be predictive by addressing
one scale at a time. In such cases, a way to circumvent this challenge is to learn a NN as
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a surrogate of the solution map; this approach exploits the ability of NNs to capture com-
plex behavior thanks to their compositional nonlinearity. On the other hand, high degrees
of heterogeneities, especially at the small scales, cannot be accurately detected due to diffi-
culties in measuring material properties at very fine scales or in reaching specific locations
(e.g., deep subsurface layers). When this is the case, heterogeneity can be treated as un-
certainty; as such, material properties and system’s input are treated as random fields for
which prior statistical information is available. Paper [43] represents the first work in this
direction.

Recommendation: There is the need for additional ML tools that can learn models while
embedding prior stochastic information and deliver probability distributions, rather than
deterministic surrogates. In this context, as for any other uncertainty-quantification algo-
rithm, a ML learning tool might suffer from the so-called curse of dimensionality. This cre-
ates the need for new tools that can embed uncertainty while featuring a cost that scales
linearly (or sub-linearly) with the number of parameters.

Efficient optimization algorithms The latest successes in ML, in general, and deep
learning, in particular, are in large part due to the recent advances in optimization algo-
rithms, including stochastic gradient descent. However, the stochastic nature of such algo-
rithms in combination with the non-convexity of the optimization problems in deep learn-
ing makes ML predictions uncertain even when the underlying physical system is determin-
istic (e.g., a system with fully known governing equations and parameters). In addition,
ML predictions might strongly depend on hyper-parameters; this fact further complicates
their interpretability.

Data availability, quality, and fidelity As of now, the literature does not offer ML
algorithms that are able to handle multiscale, multi-source, multi-resolution data in an effi-
cient and automatic way.

Recommendation: Two additional obstacles are the ability to deal with datasets that
are large in size, unstructured, and non-regular and the ability to use datasets that are
small, sparse, and irregular in sampling. The former is particularly problematic when learn-
ing PDEs, as the solution is expected to feature some degree of smoothness. This indicates
an area where further research investment is needed.

Recommendations to advance the field in ten years

We envisage a day when the field of mathematical modeling regularly uses AI/ML tools
to aid in finding and/or refining new governing equations for complex, multiscale hetero-
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geneous systems. To arrive at such a place in the future, we hold that several foundations
areas must be addressed, as summarized below.

Advancing the understanding of generation and limitations of training data In
comparison with many current applications where an abundance of data is available, such
as computer vision problems, the problems considered here have limited data and/or mea-
surement availability. Relevant problems in the field require dataset curation for complex,
time-dependent problems. Large datasets cause slower training, while small datasets may
not sufficiently capture key features. Multi-fidelity or multi-modality data presents chal-
lenges in how to incorporate or weight different types and sources of data. In data con-
strained modeling, knowledge of the underlying physics may be used to restrict the solu-
tion to within a given space. In all cases, data is absolutely the most important asset for
leveraging the various approaches advocated.

Developing a theory of the rigorous mathematics behind ML There is also a call
to develop a better understanding of the mathematical theory behind machine learning
tools so we can design trustworthy computational capabilities. In particular, there are com-
munity members that stress that the success of the finite element method was not merely
its applicability, but the hand-in-glove nature of theory and application that developed
along its evolutionary path. There is a need to increase our confidence in ML models anal-
ogous to the theoretical understanding of FEM methods, where rigorous theory guarantees
and implementations convergence. Such developments are necessary in order to provide rig-
orous bounds and uncertainty in modeling efforts.

Developing standardized benchmark datasets Many fields have standard bench-
marks used to compare and build confidence in results from numerical methods. For ma-
chine learning, an early standard benchmark was the MNIST handwritten digit database
[33]. More sophisticated data sets, including the ImageNet challenge [16], and the Penn
Machine Learning Benchmark for classification [46], have provided a platform for the proper
evaluation of methods. Many more benchmarking suites are currently being established
for new machine learning applications, such as the Open Graph Benchmarks for machine
learning on graphs [26]. Benchmark problems allow comparisons between methods by pro-
viding a standard database. Currently, no such benchmark databases exist for discover-
ing governing equations. This puts the onus on researchers to have to spend time and re-
sources developing their own datasets and does not allow for standardized comparisons be-
tween methods. We suggest that there is a need for a rigorous hierarchy of challenge prob-
lems to be developed for heterogeneous, anisotropic materials. The benchmark problems
should cover the range of regimes from data-rich to data-poor, include applications with
and without knowledge of the underlying physics, and range from toy problems to very
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complex problems.

Recommendations to promote JEDI (Justice, Equity, Diversity,
and Inclusion)

When discussing justice, equity, diversity, and inclusion, we start by noting that a diverse
group addressing a problem is always more successful. This is especially true in the con-
text of ML for heterogeneous materials, where a wide range of knowledge and perspec-
tives across fields is needed to understand the underlying physics and to implement effi-
cient ML models. We have found that the ML communities in which we participate are
strongly lacking in all forms of diversity. Less than 14% of AI papers on arXiv were writ-
ten by women [68], and a 2018 report estimated that just 12% of AI researchers are women
[14].

In the context of ML, with its strong applications in industry, it is especially hard to re-
tain early career, and later career scientists. In fact, the combination of benefits, salary,
and lack of control over location can make careers in academic research less appealing than
industry positions. These problems particularly confound the issues of recruiting and re-
taining a diverse staff or faculty. We note that female faculty members are 33% more likely
to have full-time working spouses than male faculty members, greatly increasing the pres-
sure on female faculty members [27]. This pressure can make higher salaries and benefits
of industrial careers more appealing. One recommendation is to pay specific attention to
benefits that can aid early career researchers with families, such as the childcare support
provided with some NIH grants [18]. Childcare support can increase accessibility of work-
shops, conferences, and meetings. Many postdocs report being discouraged from taking, or
not having access, to maternity leave (one study found 44% of externally funded postdocs
have no access to leave for birth parents [34].) The issue is compounded for those in his-
torically underrepresented groups, who are more likely to be discouraged from taking any
parental leave [34]. When parental leave is available, the decrease in academic output due
to leave can increase the pressure to move to a career viewed more compatible with having
a family [79].

This pressure has been compounded by the care-taking responsibilities necessitated by the
COVID-19 pandemic, reducing the number of publications by female authors in 2021 com-
pared to 2019 [58, 72, 20]. This reduction in publishing can and will have long-term im-
pacts on the careers of female researchers. Simultaneously, the COVID-19 pandemic has in-
creased the prevalence of flexible work environments, remote work, and virtual and hybrid
collaborations and conferences. In particular, virtual conferences have increased the par-
ticipation of students and women significantly [66]. Those who have family obligations or
have limited ability to travel due to disabilities or funding can participate in virtual confer-
ences while in-person conferences may be inaccessible. We encourage the field to examine
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the role of virtual and hybrid work and events in increasing inclusivity within the field. As
the field begins to come out of the COVID-19 pandemic and adopt new modes of work, we
encourage consideration of the lessons learned from the pandemic to be continued forward.

Acknowledgments

Sandia National Laboratories is a multi-mission laboratory managed and operated by Na-
tional Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525. This report, SAND2021-XXXX,
describes objective technical results and analysis. Any subjective views or opinions that
might be expressed in the paper do not necessarily represent the views of the U.S. Depart-
ment of Energy or the United States Government.

Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract
DE-AC05-76RL01830.

References

[1] E Paulo Alves and Frederico Fiuza. “Data-driven discovery of reduced plasma physics
models from fully-kinetic simulations”. In: arXiv preprint arXiv:2011.01927 (2020).

[2] S Beetham and J Capecelatro. “Formulating turbulence closures using sparse re-
gression with embedded form invariance”. In: Physical Review Fluids 5.8 (2020),
p. 084611.

[3] Sarah Beetham, Rodney O Fox, and Jesse Capecelatro. “Sparse identification of mul-
tiphase turbulence closures for coupled fluid–particle flows”. In: Journal of Fluid Me-
chanics 914 (2021).

[4] GF Bomarito et al. “Development of interpretable, data-driven plasticity models with
symbolic regression”. In: Computers & Structures 252 (2021), p. 106557.

[5] Josh Bongard and Hod Lipson. “Automated reverse engineering of nonlinear dynam-
ical systems”. In: Proceedings of the National Academy of Sciences 104.24 (2007),
pp. 9943–9948.
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