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ABSTRACT

The Dynamic Networks Experiment 2018 (DNE18) was a collaborative effort between Los
Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), Lawrence Livermore
National Laboratory (LLNL) and Pacific Northwest National Laboratory (PNNL) designed to
evaluate methodologies for multi-modal data ingestion and processing. One component of this
virtual experiment was a quantitative assessment of current capabilities for infrasound data
processing, beginning with the establishment of a baseline for infrasound signal detection. To
produce such baselines, SNL and LANL exploited a common dataset of infrasound data recorded
across a regional network in Utah from December 2010 through February 2011. We utilize two
automated signal detectors, the Adaptive F-Detector (AFD) and the Multivariate Adaptive
Learning Detector (MALD) to produce automated signal detection catalogs and an
analyst-produced catalog. Comparisons indicate that automatic detectors may be able to identify
small amplitude, low SNR events that cannot be identified by analyst review. We document
detector performance in terms of precision and recall, demonstrating that the AFD is more
precise, but the MALD has higher recall. We use a synthetic dataset of signals embedded in pink
noise in order to highlight shortcomings in assessing detection algorithms for low signal to noise
ratio signals which are commonly of interest to the nuclear monitoring community. For
comparisons utilizing the synthetic dataset, the AFD has higher recall while precision is equal for
both detectors. These results indicate that both detectors perform well across a variety of
background noise environments; however, both detectors fail to identify repetitive, short duration
signals arriving from similar backazimuths. These failures represent specific scenarios that could
be targeted for further detector development.
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1. INTRODUCTION

The Dynamic Networks Experiment 2018 (DNE18) was a data-processing experiment designed
to quantitatively assess current capabilities for multi-modal data ingestion and processing for
nuclear explosion monitoring at the local/regional scale [8]. The experiment was a collaboration
between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory
(LLNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories
(SNL), and consisted of the joint processing of three months [12/2010-02/2011] of seismic,
acoustic and radionuclide data from networks within the western US. See [48] for a complete
overview of the experiment. Automated infrasonic data processing was conducted at both the
station (signal detection) and network (event association and location) levels with the goal of
establishing “baseline” performance metrics [14]. This manuscript focuses on the evaluation of
station-level, infrasound signal detection performance.

The automation of infrasonic detectors is motivated by a need to reduce analyst workload as well
as streamline large-scale infrasonic data processing [38]. A variety of automated infrasound
detectors have been presented in the peer-reviewed literature including the progressive
multi-channel correlation (PMCC) algorithm [13], the F-detector implemented in InfraTool [24],
the Adaptive F-Detector (AFD) [5] and the Multivariate Adaptive Learning Detector (MALD) [1].
The AFD is implemented within Infrapy (IP), a Python-based array processing toolkit developed
by LANL that was recently open-sourced in 2020 [9, 17, 33, 46]. The MALD is implemented in
Bloodhound (BH), a Python-based pipeline data processing software developed by SNL [4].

Automated processing techniques have been used to produce bulletins of infrasound events in
multiple regions such as the western United States [37, 45], the state of Alaska [42], the Korean
peninsula [40, 36, 16] and across the European continent [41, 31]. Automatic detections across
the 48 operational stations of the IMS infrasound network are documented by the International
Data Center (IDC) and more recently by [1]. In addition, a number of bulletins have been
produced specifically documenting infrasonically-observed volcanic activity (e.g., [34, 42]).

Despite the existence of large-scale, multi-year detection bulletins, most are produced by a single
automated detector with few direct comparisons between detection algorithms [38] motivating
this comparative study of detectors. Two measures of detector performance are the minimum
signal-to-noise ratio (SNR) for signal detection or the accuracy of the direction of arrivals (DOA)
parameters. These measures can be evaluated using statistical tools such as receiver operating
characteristic (ROC) curves, which quantify the relationship between detection and false-alarm
probability as a function of detection threshold [28]. The development of ROC curves for a
particular detector necessitates a dataset where signals are known, and where signals and noise
span the space of all possible characteristics [38]. One evaluation approach utilizes synthetic
signals and noise, which provides full control of all effects, but is not always representative of
true signal and noise scenarios. The alternative evaluation approach utilizes a catalog of real
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signals detected by an analyst, which is closer to true signal and noise scenarios but assumes a
subjective definition of a ‘signal’ which can be difficult in evaluating low SNR events [38]. A
hybrid approach utilizes synthetic signals constructed using a combination of real signal and
noise sequences. Results from such comparisons can be synthesized by comparing probabilities
of detection (PD) and probabilities of false alarms (PFA) [32]. However, the lack of practical
comparative assessments of infrasound data processing algorithms is likely due to differences in
operational tuning parameters for all algorithms, which makes direct probability comparisons
challenging. Additionally, algorithm assessment is complicated by the lack of a concrete and
consistent baseline of what comprises a true detection (i.e. signal) or a false alarm (i.e. noise), as
infrasound arrays frequently identify consistent signals originating from numerous coherent noise
sources [20, 27] including surf [30], microbaroms [29], thunder [21], volcanoes [30] and
anthropogenic activities such as mining, industrial activity, aircraft or urban noise [39, 35, 31].

[38] addresses these challenges by comparing Estimated Receiver Operating Curves (EROC) in
order to compare the performance of PMCC and AFD taking a series of analyst detections as true
detections. The authors note that while several tuning parameters are common to the two
detectors, parameter differences make direct EROC comparisons difficult. An alternative method,
presented in [1], compares the overall numbers of detections and their distributions in terms of
each algorithms false alarm rate. In this manuscript, we present a hybrid methodology that
utilizes the metrics of precision and recall to address this complex issue of assessing infrasound
data processing algorithms, beginning with detection catalog comparisons. This study documents
a series of automatic processing results from DNE18 supplemented by an analyst catalog and a
series of synthetic waveforms. These diverse sets of test data provide an opportunity for a hybrid
evaluation of the infrasonic detection algorithms. The dataset which is shared also provides a
known baseline for others in the infrasound community to evaluate and compare the performance
of subsequent infrasonic detectors. We provide these results as a reference point for continued
detector comparisons within the infrasound research community.
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2. DETECTOR OVERVIEW

The AFD as implemented within Infrapy (IP) [46] was developed to reduce false alarms from
correlated or persistent noise across an array of interest [5]. The standard F detector provides a
measure of the single channel SNR and utilizes Fisher statistics to identify signals of interest. It is
based on calculating the signal power and the total power across an array [43]. The null
hypothesis of this statistical test assumes that no coherent signal of interest is present. In the case
that a signal of interest is present in the data, the F-ratio, derived from the power across the array,
increases. An assumption within this method is that all the noise across the array is incoherent,
while the signals are coherent. This assumption sometimes fails for infrasound data, which often
contains coherent sources of background noise at a variety of spatial scales. Coherent noise
elevates background F-values, resulting in false alarms unassociated with a signal of interest.
AFD accounts for these elevated F-values by increasing the value of the F-statistic required to
declare a detection. This adaptation is accomplished through the application of a C-value, which
effectively reduces the detection threshold (p-value) and decreases the number of noise-related
detections by constantly re-mapping the conventional F-statistic based on moving estimates of the
background noise. [6] and [5] provide a detailed theoretical description of the Adaptive
F-Detector. An overview of parameter tuning necessary to optimize detection of sources within
the western US and Korean peninsula can be found in [40] and [38]. [39] and [18] discuss the
application of the AFD to infrasonic signal detection using a variety of observational data.

Automatic detection processing in Bloodhound (BH) utilizes a multivariate adaptive learning
detector (MALD) which is detailed in depth in both [4] and [1]. Similar to the AFD, the goal of
the detector is to identify long-range infrasonic signals from explosive sources, while
simultaneously reducing false alarms (FA) such as smaller local events or known coherent noise
sources as discussed above. MALD accomplishes these design goals through a multi-step
processing methodology where three distinct time windows are used to adaptively alter detection
thresholds in order to account for the changing background noise environment. MALD utilizes
semblance (S) to estimate the ratio of the power of the stacked beam to the average power of the
individual traces producing values from 0 to 1. Across each moving time window, distributions of
the maximum semblance value max (S), corresponding backazimuth estimate (φ ), and variance of
the backazimuth θ 2(φ), are fit using Kernel Density Estimation (KDE). These measures provide
the ability to convert test statistics for semblance and backazimuth to p-values while avoiding
assumptions about the statistical properties of the background noise. The inclusion of
backazimuth variance in the detector was motivated by signals that were missed by the AFD due
to decorrelation at long range (an issue highlighted by [23] but clearly exhibit a stable estimate of
backazimuth over time (refer to Figure 10 in [2]). This detector is similar in principle to the basis
of the Hough Transform detectors of [12] and [7] combining coherence and backazimuth
constraints. The p-value is the probability of obtaining a result that is equal to, or more extreme
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than, what is observed in the data given the KDE. Sets of p-values for signal coherence and
backazimuth variation are then combined using Fisher’s method to produce ensemble p-values:

χ
2 =−2

i=1

∑
k

lnpi (2.1)

where χ2 is estimated for each time window by resampling the estimates of θ 2(φ). k corresponds
to the number of transforms for a given data type and p corresponds to the p-value related to that
transform. The p-value is then used to determine the presence or absence of a detection based on
both signal semblance and backazimuth estimates.

Both detectors were developed for use with arrays, whether seismic or infrasonic and utilize FK
processing techniques to extract information (DOA, power, trace velocity). Each employ a
distinct methodology to adaptively account for coherent background noise. BH builds a
KDE-based background noise distribution while IP utilizes an F-distributed background noise
estimate. BH includes the additional constraint that the backazimuth should be stable over some
time interval. Differences in background noise thresholds may lead to discrepancies in the
detection capabilities of each method.
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3. INSTRUMENT DEPLOYMENT AND DETAILS

The infrasonic dataset used in this study consists of array data from six co-located
seismo-acoustic stations (Figure 3-1) installed in the state of Utah by the University of Utah (UU)
and Southern Methodist University (SMU) between 2006-2010 [49]. Each array consists of 4
acoustic elements; one center element with three additional elements equally spaced around the
center at 100 m range. Infrasound sensors are each fit with multiple porous hoses to reduce wind
noise [44]. Data were sampled at 100 samples per second. Acoustic sensors at NOQ are
Chaparral Physics Model 2.0 microphones [37] with a flat frequency range of 0.1 to >100 Hz [6].
NOQ is equipped with a RefTek digitizer. BRP, FSU, HWU, LCM, and WMU are equipped with
Inter-Mountain Lab (IML) sensors and Q330 digitizers. The frequency response for the IML
sensors is flat from 2 to 30 Hz [22, 25]. Data is available from IRIS using the network code ‘YJ’
[26].
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Figure 3-1. UU/SMU seismo-acoustic network used for DNE18 processing.
Blue triangles indicate infrasound arrays utilized within this study.
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4. VIRTUAL EXPERIMENT DETECTION RESULTS

Data from all six arrays were processed for the three-month time period as discussed in
introduction to the virtual experiment. Parameters for the two detectors were defined to present as
equal of a detector comparison as possible, but we highlight that the differences between the
implementation of the detectors make a direct parameter comparison difficult. The parameters
used for detection processing are included in Table 4-1. Parameters were set based on experience
developed from prior infrasonic analyses in the Utah region [3, 18, 38, 39]. However, we note that
all these publications focus on parameter optimization for the AFD. [1] notes that parameter
optimization for MALD has not yet been rigorously studied, and published work focuses on
parameters that worked well for test signals based on manual tuning. Therefore, we utilized a set
of parameters intended to serve as a baseline for the detector comparisons. Based on our results,
future work is needed to further examine and optimize these parameters. A p-value of .001 was
used for detection at FSU, HWU, LCM and WMU while a p-value of .01 was used at BRP and
NOQ. Lower p-value thresholds were implemented at stations where analyst inspection of
automated results identified many false alarms due to multiple detections of persistent signals
likely originating from anthropogenic sources. Lowering the p-value thresholds led to fewer false
alarms.

Table 4-2 summarizes the total number of detections at each array from the three months based on
each detector, while Figure 4-1 visually present detection results. As seen in Figure 4-1a, BH
detects significantly more events at all stations except NOQ, where IP detects 224% more events.
An examination of detection statistics by backazimuth is presented in Figure 4-1b and offers
insight into the differences in signals identified by each detector. At BRP, both BH and IP identify
signals originating from 30-350°and 220-260°; a significant portion (40%) of BH detections
occur between 220-260°while only 10% of IP detections originate from that direction. Similarly,
at WMU detections originate from 0-45°, 85-135°and 220-260°, but BH detections
disproportionately originate from 0-45°.

An example of these repeating signals identified by BH is shown in Figure 4-2a, where the
recurring source originates from 0°, is low frequency and has a duration from 20 to 30 sec.
Repeating signals identified by both detectors originate from 135°, both higher in frequency and
longer in duration. At HWU, BH identifies detections from 290-345°and 45-135°that are not
detected by IP as seen in Figure 4-2b where signals are short in duration and low in frequency
(<1Hz). These results suggest that BH may be detecting a recurring source that is presumed to be
noise by IP. The opposite relationship between detectors is found for NOQ, where both detectors
identify significant signals from 270-315°and 110-140°; IP detections are disproportionately from
110-140°, suggesting that IP is identifying a recurrent source that is presumed to be noise by BH.
These discrepancies are likely related to the background noise distributions utilized for each
respective detector and indicate further comparisons may be necessary. At present, these
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Table 4-1. Parameters used for automatic processing.
Parameter Value
Filter band (Hz) 1-5
Time window (s) 30
Overlap (%) 50
p-value 0.001,0.01
Semblance Threshold (BH) 0.5
Adaptive window for AFD (s) 1800

Table 4-2. Number of automatic detections at each array for IP and BH.
Array InfraPy Bloodhound
BRP 11541 25143
FSU 3121 3276
HWU 6747 22589
LCM 9500 16458
NOQ 3584 1106
WMU 6913 13840

Figure 4-1. (a) Full experiment automatic detection results from Bloodhound
(green) and Infrapy (blue). (b) Full experiment detection results as a function
of backazimuth at each station within the network.
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recurring sources, or clutter, are of unknown origin. Further investigation and identification may
assist with continued detector improvements.
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Figure 4-2. Example detections from two arrays (a) WMU and (b) HWU where
panels represent (top to bottom) F-value or power across the beam, sig-
nal backazimuth, spectral density of signals and beamed amplitude (in Pa).
Green windows represent BH detection onset time with a 30 s error window.
Blue windows represent IP detection onset time with a 30 s error window.
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5. ANALYST DETECTION CATALOG

In order to support the interpretation of the detection results, an analyst detection catalog was
produced for two hours of data on 2011-01-05 at 07:00 and 17:00 UTC, corresponding to 12:00
am local time and 10:00 am local time. These hours were chosen to provide insight into the
significant discrepancy in detection numbers for the two detectors, as well as producing a
comparison of detection capabilities at midday and midnight (local time) consistent with different
noise conditions. Analyst (A) detections were identified using FK processing on the array beam
and a singular broad bandpass filter band of 0.5-5 Hz that mimicked automatic processing. The
use of a single broad frequency band may cause the analyst to miss identification of narrowband
signals. Following guidelines for complementary seismic analyst detection [48], a detection was
declared when the analyst identified either: (a) a significant increase in beam amplitude,
corresponding to an increase in F-value (equivalent to beam power); or (b) a consistent ( 10 sec)
backazimuth trend. Table 5-1 includes the total number of detections at each array for the day and
night hours, while Figure 5-1 visually compares overall hourly detection results. Mirroring
automatic detector results, there are few analyst detections at the arrays during the first hour
(07:00 UTC), but numerous analyst detections during the second hour (17:00 UTC). At FSU, IP
detections exceed both BH and analyst detections. At NOQ, analyst detections exceed automatic
detections, followed by IP detections. At the remaining four arrays, BH detections greatly exceed
both IP and analyst detections.

Detections were compared in the time domain to determine if the different methods identified the
same source based on a combination of temporal onset, detector window error and backazimuth
estimates. Following [15], a positive detection, or a true positive, was declared when both the
automatic detector temporal error window (30 sec) and the automatic detector backazimuth
estimate (± 5 °of error) overlapped with the analyst estimate. The 30 sec error window is
determined based on the window length used for automatic processing. Figure 5-2 shows a
schematic of this process. An example of these comparisons is presented in Figure 5-3, where the
beamed waveform, back-azimuth estimates and F-value estimates for two, ten minute section of
data in the Hour 2 time period are presented. We highlight six distinct scenarios within the time
series, corresponding to differing relationships between each detection onset time and
corresponding 30 sec error windows. Recurring BH-only detections, examples of false positive
detections, are visible in Figure 5-3b which correspond to signals originating from a backazimuth
of 220°and 260°. Signals are consistently low SNR.

Hourly results from automatic detector comparisons with the analyst detection set are presented
in Figure 5-4. For the first hour (07:00 UTC), results vary across the network. At BRP, BH
detects 30 events while IP and the analyst each detected 1 event. There is 1 event that was
detected by all three methods. At LCM, BH detects 12 events while IP detects 6 and the analyst
detects 3. Two events are detected by all three methods, while 3 events are detected by IP and BH.
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Table 5-1. Number of detections for hour 1 (HR1) and hour 2 (HR2) at each
array for each of the detection methods (IP = Infrapy, BH = Bloodhound, A =
Analyst).

IP HR1 IP HR2 BH HR1 BH HR2 A HR1 A HR2
BRP 1 19 30 24 1 18
FSU 0 10 0 8 0 7
HWU 0 7 1 20 0 10
LCM 6 9 12 13 3 14
NOQ 0 3 0 2 2 2
WMU 0 5 0 25 0 11

Figure 5-1. Hourly detections for hours 7:00 and 17:00 at each array within
the network for IP (blue), BH (green) and the analyst (red).
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Figure 5-2. An illustration of the procedure to identify positive detections
based on detector onset and temporal error windows. Dashed lines indicate
the onset of each respective automated detector based on the provided am-
plitude (or signal correlation) threshold, while shaded regions illustrate the
extent of the error window, given the detector onset time and the automated
processing parameters. The overlap between the two shaded regions indi-
cates a positive detection. Derived through personal communication with J.
Carmichael (LANL).
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Figure 5-3. Example detection results compared using data from (a) LCM and
(b) HWU. Top panel: F-value estimates from FK-processing. Middle Panel:
back-azimuth estimates from FK processing. Bottom Panel: beamed signal
waveforms. Red windows indicate analyst detection onset time and a 30 s
window. Green windows indicate BH detection onset and a 30 s window.
Green dots indicate BH detection backazimuth estimate. Blue windows indi-
cate IP detection onset time + 30s window. Blue dots indicate IP detection
backazimuth estimate. Six distinct detection comparisons are illustrated by
the red numbers where: (1) indicates overlapping IP, BH and analyst detec-
tions; (2) indicates overlapping IP and BH detections; (3) indicates overlap-
ping BH and analyst detections; (4) indicates an analyst detection only; (5)
indicates a BH detection only; and (6) indicates an overlapping IP and analyst
detection.
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For the second hour, general trends can be identified (see Figure 5-4b). While a number of events
are detected by all three methods at each station, a significant number of detections from each
individual method do not overlap. For example, at HWU, BH detects 20 distinct signals, while IP
detects 8 distinct signals and the analyst identified 11 distinct signals. There are only 3 common
detections between IP, BH and the analyst; examples of these common detections are labeled with
the number 1 in Figure 5-3. Signals are high amplitude with a consistent backazimuth trend. As
seen in the example figures, signals identified by all three methods have F-values around 10 while
signals confirmed by the analyst but missed by the detectors (labeled with number 4) have
F-values ranging from 2-8. Additionally, signals confirmed by the analyst but missed by the
detectors are generally shorter in duration. Signals identified by both detectors but not the analyst
(labeled with number 2) are very low in amplitude and have little to no increase in amplitude
above the background noise.

Detection results from each method can be evaluated in terms of detector recall and precision [48],
where detector recall is defined as the proportion of true objects found from all true samples,

recall =
#o f truepositives
alltruesamples

(5.1)

and detector precision is defined as the proportion of true objects from all found objects,

precision =
#o f truepositives

#o f truepositives+#o f f alsepositives
(5.2)

In these equations, true samples are signals identified by the analyst, true positives are automatic
detections that were also identified by the analyst and false positives are automatic detections that
were not identified by the analyst. Recall can be interpreted as the percentage of total relevant
events correctly identified by each detector, while precision can be interpreted as the percentage
of detections that are relevant. For comparisons, precision can be seen as a measure of detection
quality while recall is a measure of detection quantity.

Detector recall and precision values for each hour are presented in Table 5-2. Metrics are
incomplete for the first hour due to the low number of detections. For the second hour, metrics
vary across the network. Recall is higher for BH at all stations except NOQ, while precision is
higher for IP at all stations except FSU and NOQ where values are equal. Following the
definitions above, these results indicate that BH identifies more analyst detections with the
trade-off of a high number of false noise-related detections, while IP identifies fewer analyst
detections with fewer false noise-related detections.

Evaluation of detections utilizing these terms inherently assumes that an overlap with an analyst
detection is a true positive while any other detection is a false positive; however, the significant
overlap between signals that were detected by both IP and BH but not the analyst, the light blue
components of Figure 5-4, suggests that definition of “true positive” should be revisited. When
true positive detections are considered to be either detections that overlap with analyst detections
or events that were detected by both IP and BH, but not the analyst, precision and recall values for
both IP and BH increase, as illustrated in Table 5-3. While overall values, expressed as
percentages, increase, relationships between the two detectors remain the same. Recall is higher
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Figure 5-4. Comparisons between automatic and analyst detection catalogs
for Hour 1 (07:00 UTC) (a) and Hour 2 (17:00 UTC) (b). Values inside circles in-
dicate the number of detections in each subset where blue are IP detections,
green are BH detections and red are analyst detections.
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for BH at all stations except NOQ and FSU where recall values are equal. Precision is higher for
IP at all stations except FSU and NOQ.

Hourly noise estimates presented in Figure 5-5 as averaged Power Spectral Density (PSD) curves
[47] for the two data hours illustrate that differences in detection numbers across these two
example hours are likely related to noise across the arrays. For all stations except NOQ, array
noise within the band of interest, 1-5 Hz, is higher during the second hour. The first hour of data
represents 12:00 am local time while the second hour of data represents 10:00 am local time. The
discrepancies in both background noise and detection numbers suggest that detections within this
example dataset may be driven by anthropogenic sources related to activity during the workday,
similar to observations noted within [37] and [39]. Additional comparisons of hourly detections
across the full three month dataset would further explore these conclusions.
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Table 5-2. Recall and precision rates for each method.
IP recall IP Precision BH Recall BH Precision

HR 1 BRP 100% 100% 100% 3%
FSU - - - -
HWU - - - -
LCM 67% 33% 67% 17%
NOQ - - - -
WMU - - - -

HR2 BRP 67% 63% 78% 56%
FSU 43% 30% 43% 38%
HWU 36% 50% 45% 25%
LCM 36% 50% 50% 47%
NOQ 50% 33% 50% 50%
WMU 45% 100% 64% 28%

Table 5-3. Updated recall and precision rates that include signals detected by
both IP and BH as true positives.

IP Recall IP Precision BH Recall BH Precision
HR 1 BRP 100% 100% 100% 3%

FSU - - - -
HWU - - - -
LCM 83% 83% 83% 42%
NOQ - - - -
WMU - - - -

HR2 BRP 68% 68% 79% 63%
FSU 64% 70% 64% 88%
HWU 46% 75% 54% 35%
LCM 55% 100% 65% 93%
NOQ 100% 75% 67% 100%
WMU 45% 100% 64% 28%
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Figure 5-5. Average noise levels at each array for the two hours used for anal-
ysis on 2011-01-05. Solid black line indicates the IMS High Noise Model from
[10] while dashed black line indicates the IMS Low Noise Model.
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6. SYNTHETIC COMPARISONS

Given the conclusion that the majority of signals within the Western US region are due to
anthropogenic sources, we construct a day-long (24 hr.) dataset consisting of 40 synthetic signals
spaced approximately 30 minutes apart. This dataset provides the ability to control the signal
type, duration and background noise level, ideally producing a more complete comparison of
detector performance across a variety of noise conditions. Synthetic signals are constructed with a
sampling rate of 20 Hz for a four-element microbarometer array with the station coordinates of
BRP, where array elements are separated by 200 m. The synthetic data is comprised of both short
(10-30 sec) and long (60-90 sec) duration signals, with both broad (0.5-5 Hz, for example) and
narrow (0.5-0.7 Hz, for example) frequency bands. Each signal has a specified amplitude and
direction of arrival (DOA). Signals are time-shifted according to the input parameters and the
station location. Thus, when beamforming, the DOA and apparent velocity will correspond to the
input parameters. Uncorrelated random pink noise, corresponding to a noise source with equal
power across each octave, is added to each trace separately. This method was used to produce
synthetic signals for benchmarking infrasound detectors based on the Hough-transform [7] and
CLEAN beamforming [19].

We produce four distinct synthetic datasets with background noise levels of 0.01, 0.02, 0.05 and
0.1 Pa, referred to as relative noise levels 1, 2, 5, and 10, respectively, in order to explore detector
performance in a variety of noise environments. These noise levels correspond to the amount of
pink noise added to the background of each trace and alter the SNR of synthetic signals within the
dataset based on the input amplitude (Figure 6-1a).

Figure 6-1b illustrates that an increase in background noise level corresponds to a decrease in
SNR as characterized in the frequency domain. Detection utilizing data with relative background
noise levels 1+2 represents detection under low noise environments where SNRs range from
10-60 dB/Hz relative to 20 µ Pa, while detection utilizing data with relative background noise
levels of 5+10 represents detection in high noise environments where SNR drops below 10 dB/Hz
relative to 20 µ Pa.

Processing parameters mirrored those utilized on the real data. A summary of results, in the form
of number of detections identified through automated processing utilizing p-values of 0.01 is
presented in Figure 6-2. These results summarize the total number of signals identified at each
noise level, as well as determine if the two automated detectors consistently identify the same
synthetic signals and evaluate the ability of each detector to identify short and long period signals.
There are several significant conclusions that can be drawn from these comparisons. First, as seen
in Figure 6-2a, IP identifies more signals than BH across all four relative noise levels. For
example, when comparing detections identified from the dataset with a relative noise level of 5, IP
identifies 34 detections while BH identifies 26 detections. This corresponds to IP identifying well
above 80% of synthetic signals (dashed black line in Figure 6-2) and BH identifying well below.
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Second, one would expect that automatic detectors would identify more signals during periods of
low noise; however, results indicate that there is no direct relationship between relative noise level
and overall detection numbers for either IP or BH. IP identifies the most signals at the highest
noise level, while BH identifies the least signals at the highest noise level and the most signals at a
relative noise level of 2 and 5. We presume this lack of correlation is related to the high SNR
values of signals, even across the noise level of 10, SNR values remain between 1-10.

Due to lower number of BH detections, we increased the p-value for BH detection to 0.03. This
parameter change significantly increased the number of BH detections to numbers comparable to
IP detections, and brings successful detection above 80% for noise levels 1, 2 and 5. Overall BH
detection numbers are still low for noise level 10, which indicates that optimization of algorithms
or processing parameters is needed to successfully identify low SNR signals or signals in known
high-noise environments. Additional processing could also utilize high noise levels to determine
at which level IP detection ability begins to fail. The higher number of signals identified by IP
over BH contrasts with results utilizing real data, indicates that higher detection numbers from
BH may be related to the identification of persistent noise sources over true signals.

In Figure 6-2b we compare detector success rates for short duration (31 total) synthetic signals,
and in Figure 6-2c we compare success rates for long duration (9 total) synthetic signals. Short
duration success rates mirror overall detections results, where IP consistently identifies above
80% of signals. The use of a p-value of 0.03 significantly improves BH detection, raising
successful short duration signal detection to above 80% of signals at noise levels of 2 and 5. The
use of the 0.03 p-value additionally increases the number of long duration signals identified by
BH, producing detection numbers equal to IP across the four noise levels. These results indicate
that both detectors successfully identify long duration signals, and variability in detection
numbers is driven by the successful detection of short duration, impulsive signals. Additionally,
we note that the difference in overall number of successfully identified signals from IP and BH is
likely due to the different way in which each algorithm uses p-value thresholds for identifying
detections. The p-value in BH is an ensemble value and is used to determine the presence or
absence of a detection based on both signal semblance and backazimuth estimates. The p-value in
IP is used to threshold detections based on a modified F-distribution, given the background noise
estimations. While both detectors utilize an adaptive mechanism to account for coherent noise,
comparisons indicate that processing parameters are not equal across the two detectors and it may
be difficult to produce a direct comparison between methodologies.

Overall detection numbers are supplemented by an evaluation of how often each detector
identifies the same signal of interest; presented as Venn diagrams across p-values and noise levels
in Figure 6-3. In this figure, blue indicates synthetic signals only identified by IP, green indicates
synthetic signals only identified by BH and cyan indicates synthetic signals identified by both, as
a function of noise level and p-value used for detection. The top row of Figure 6-3 compares
detection datasets produced with a p-value of 0.01 across the four relative noise levels while the
bottom row compares BH detection with a p-value of 0.03 and IP detection with a p-value of 0.01.
As expected from direct detection numbers, IP detection with a p-value of 0.01 and BH detection
with a p-value of 0.03 produce the most comparable results. In this case, each detector
successfully identifies between 26-33 of the same signals across all four noise levels. Notably, the
signals missed by both BH and IP are short duration consecutive signals that arrive within 60
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Figure 6-1. (a) Example windowed signal (black) and noise (red) comparisons
across the four relative noise levels, (b) Event signal to noise ratios (SNR)
across all four levels. SNR decreases as relative noise level increases.

Figure 6-2. (a) Total number of detections (b) number of short duration de-
tections, (c) number of long duration detections identified by each detector
for each noise level, as a function of automatic detector and p-value (0.01,
0.03).
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seconds and from the same direction as another synthetic signal. Examination of duration of
detections suggests that both detectors envelope the repeating signals in a single long duration
detection, indicating that both IP and BH may not perform well for identifying repeating short
duration signals without additional parameter tuning or algorithm development.
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Figure 6-3. Comparisons of day-long synthetic data detection catalogs uti-
lizing a p-value of 0.01 (top), and a combination of 0.01 and 0.03 (bottom)
across the four relative noise levels (left to right: 1, 2, 5 and 10). Values
inside circles indicate the number of detections.
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7. RECALL AND PRECISION FOR THE SYNTHETIC DATASET

We further utilize these comparisons to evaluate detector performance in terms of recall and
precision. Results are presented in Table 7-1 and offer an interesting comparison between the
detectors. Both precision and recall are higher for IP, regardless of noise level. IP recall remains
at 90% across all four noise levels, while altering the p-value to 0.03 improves BH recall from
55-65% to 62-85%. BH recall rates are best for detection across noise levels 2 and 5, utilizing a
p-value of 0.03. BH recall declines significantly for detection across noise level 10, indicating
that processing with the parameters utilized throughout this manuscript will not successfully
identify short duration signals of interest in environments where either low signal amplitudes or
high background noise reduce SNRs to less than 5.

BH precision remains at 100% across both p-values and all four noise levels, indicating that the
detector does not falsely identify any noise as signals. IP precision rates are consistently 100%;
however, at the highest noise levels IP falsely identifies noise as signals, which decreases the
detector precision from 100% to 97%. Based on SNR calculations shown in Figure 6-1, this result
indicates IP will perform well in high (SNR<5) noise environments, with a trade-off in increased
false alarms. In contrast, BH will detect fewer signals, given the lower recall rates, but
simultaneously identify fewer false signals. This result is significant for future work evaluating
detection catalogs produced for both low SNR signals and high noise environments.
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Table 7-1. Precision and recall for synthetic data processing.
IP Recall IP Precision BH Recall BH Precision

0.01 NS LVL 1 90% 100% 57.5% 100%
NS LVL 2 90% 100% 65% 100%
NS LVL 5 90% 100% 62.5% 100%
NS LVL 10 90% 97% 55% 100%

0.03 NS LVL 1 - - 80% 100%
NS LVL 2 - - 85% 100%
NS LVL 5 - - 85% 100%
NS LVL 10 - - 62.5% 100%
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8. DISCUSSION AND CONCLUDING REMARKS

We utilize two detection datasets, one from observational data recorded by a network of
infrasound arrays in the western US (Figure 3-1), and one from a set of synthetic signals
embedded in realistic background noise at a single station to help assess methodologies for
comparing outputs from different automatic infrasound detectors. Previous work [1, 38] notes the
difficulty in directly comparing results from signal detectors. Here, we utilize a combination of
overall detection numbers and precision and recall rates in order to estimate detector performance
across a variety of noise environments. Results represent the first step towards developing
procedures for assessing infrasound data processing algorithms across the full pipeline of signal
detection, association and eventual event localization [11, 33, 37].

Comparisons between automatic and analyst detections produced during DNE18 identify several
important trends. First, defining events identified by both automatic detectors but not analyst
review as true positives increase both precision and recall rates across the network. This result
suggests that automatic detectors may be able to identify small amplitude, low SNR events that
cannot be identified by analyst review, and that ensembles of detectors can potentially be used to
provide a form of ground-truth. When examining general detector characteristics for the DNE18
results, IP is more precise (avg. precision of 86.5% compared to BH avg. precision of 70%) while
BH has only slightly better recall (avg. recall of 67% vs IP avg. recall of 64.5%). In practical
terms, IP produces a higher quality detection dataset with fewer false alarms while BH is able to
overall detect more signals at the cost of introducing a larger number of false alarms into the
detection dataset. These results should naturally lead towards event catalog comparisons and a
better understanding of consistent nuisance sources, such as anthropogenic noise, with the goal of
eliminating “clutter” across event bulletins [40].

Interpretation of detector results are complimented by processing of a day-long synthetic dataset
with 40 signals embedded in realistic background noise. Automatic detection with a variety of
p-values and noise levels complements the analyst-centric approach taken. Use of a pure synthetic
dataset provides a controlled experiment to assess the number of signals identified by automated
detectors but lacks insight into the performance of detectors under realistic noise environments.
Our hybrid approach combines embedding synthetic signals with realistic pink noise across four
relative noise levels, corresponding to detection of signals with SNRs ranging from 70-1.

The IP detector with a p-value of 0.01 and BH detector with a p-value of 0.03 produce the most
comparable results, successfully identifying between 26-33 of the same signals across all four
noise levels. Estimates of detector recall and precision document that both precision and recall
rates are higher than rates from the real dataset, which is to be expected from a purely synthetic
dataset. IP has overall higher recall rates while precision rates are equal for both detectors. BH
recall is best for detection across noise levels 2 and 5, suggesting that detector performance is
reduced at higher noise environments where lower signal amplitudes reduce SNRs to below 10. In
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general, both detectors fail to identify repetitive, short duration signals that simulate multiple
arrivals from a similar source; instead, both methodologies associate the repeating signals as a
singular, long duration detection. Similarly, BH fails to identify both short duration, narrowband
and low amplitude signals across the four noise levels, which is likely driven by backazimuth
variance across the detection window, leading to missed detections. These failures represent
specific signal types and scenarios that could be targeted for further detector development.

We conclude that differences in detection numbers are likely related to how each detector uses the
p-value threshold for processing, as BH performance improved as the p-value was increased and
could ideally improve more significantly with further parameter optimization. Based on results
from the synthetic dataset, additional processing of the DNE18 dataset utilizing a p-value of 0.03
may provide a more realistic comparison between the two detectors. However, a change in the
p-value would increase the large number of repeating or clutter detections identified by BH.
Discrepancies in detection backazimuths indicate that there are likely difference in the ways that
each detector builds and evaluates the background noise distribution, however such evaluation is
beyond the scope of this study. Despite the trade-off, high rates of precision and recall for both
processing pipelines indicate that the utilization of both IP and BH as automated infrasound event
processing algorithms is promising for large datasets.

The failure of each detector to identify short-duration, repetitive signals originating from a similar
source motivates targeted algorithm improvements. The general consistency of results across
noise levels indicates that both IP and BH perform well under a variety of noise environments.
However, it is important to note that this interpretation is based on analyst picks from only two
hours, and the day-long synthetic dataset which could be expanded upon. We note that the use of
correlated signals and uncorrelated pink noise within the synthetic dataset represents an idealized
scenario designed for the success of a power-based detector, such as the original F-detector or the
Adaptive F-Detector. In addition, based on the design of the Multivariance Adaptive Learning
Detector, we expect it to miss signals where the window over which the variance in the
backazimuth is small. This expectation is substantiated by results indicating IP identifies more
synthetic signals than BH across all four noise levels. Results could be refined with more
extensive analyst review or longer synthetic datasets that combine purely synthetic signals with a
variety of coherent and incoherent background noise sources such as microbaroms, wind turbines,
or high incoherent wind noise. At present, there are few methods to introduce realistic noise into
synthetics. These limitations motivated the use of both realistic and synthetic signals as a means
of developing comparisons across ideal and not-ideal noise environments. The datasets within
this manuscript are intended to serve as a benchmark for further improvements to automatic
infrasonic signal detectors. We have documented limitations of current infrasound detection
algorithms and intend to use lessons from this study as a path forward towards improved
automated detection capability.

Finally, we note that an implicit assumption in this assessment is that the analyst has superiority
over the algorithm, which may not always be the case. The impact of this assumption is partly
addressed by defining additional true events within our catalogs as those identified by both IP and
BH. These results demonstrate that multiple detector comparisons illuminate additional ‘true’
signals, resulting in increases in detector precision and recall. We suggest that reliance on analyst
review as ‘Ground Truth’ may be inappropriate for evaluating detector performance with regards
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to low SNR signals and a hybrid approach utilizing both an analyst and independent detection
catalogs may enhance results.

Our results utilizing catalogs produced by both real and synthetic signals indicate that
establishing a direct comparison between different signal detectors is difficult, particularly when
each detector utilizes a unique set of processing parameters. Our comparisons utilized parameters
substantiated by earlier work within the study region, but it is possible that a better combination
exists. The synthetic dataset represents a first step towards developing a standard for tuning
automated detector parameters; however, such extensive tuning was beyond the scope of this
paper. We suggest that to investigate this problem, many parameters should be tested, and the
resulting accuracies compared. An automated grid search of tuning parameters may illuminate
further optimal combinations for the processing of regional networks such as the UU infrasound
network. We additionally suggest that future detector comparisons focus first on optimizing
parameters for each individual detector across the dataset of interest, and then establishing
comparisons following the methodologies established within this study.
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9. DATA AND RESOURCES

Infrasonic waveform data utilized during DNE18 is available from IRIS using the network code
‘YJ’ [26]. Data from NOQ is part of the University of Utah seismic network and is available
using the station code ‘UU’.
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