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ABSTRACT
We developed a simplistic physics-based model of an all-optical neural network that mimics the 
encoder part of an autoencoder neural network for image compression. Our approach relies on the 
generation of a MATLAB-based model for both data compression and decompression and utilizes 
MATLAB’s built-in autoencoder networks in combination with simple propagation of optical fields 
between layers constituting phase elements via Fourier transform. We optimize the phase elements 
using the particle swarm optimization technique and using our model, we demonstrate a compression 
ratio of 25 % for 28×28-pixel input images containing numeric digits from 0 to 9. 
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ACRONYMS AND DEFINITIONS
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AONN All Optical Neural Network
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1. ALL OPTICAL NEURAL NETWORK (AONN) MODELING
For a first order examination of the potential for an optical autoencoder, we relied on the generation 
of a MATLAB-based model for both data compression and decompression. This model utilized 
MATLAB’s built-in autoencoder networks in combination with simple propagation of optical fields 
between All optical neural network (AONN) layers via Fourier transform. The sections below describe 
the model and interaction between these two aspects of the AONN model.

1.1. Autoencoder
Autoencoder generation relied on the autoencoder functionality built into MATLAB in combination 
with a collection of handwritten digits that are presorted for MATLAB analysis [1]. Generally, an 
autoencoder is composed of two coupled feed-forward neural networks which operate serially [2].

                   Figure 1-1. Schematic representation of an autoencoder reproduced from [2].

A schematic representation of a generic autoencoder is shown in                    Figure 1-1, separated 
into two halves defining the encoder and decoder. For this aspect of the LDRD, we followed the steps 
itemized below to determine the functionality of our AONN.

1. Train an entirely electronic autoencoder.

2. Utilize the encoder to calculate the code for a given set of inputs.

3. Determine transmission characteristics of a multilayer optical structure that can reproduce the 
code for a given input.

4. Feed the output of the optical network into the electronic decoder and compare to the input.

In this way, we essentially developed an all optical version of the encoder network that operates 
passively at zero-power enabling the collection of a smaller number of pixels followed by electronic 
decoding/decompression of the collected information to reproduce the uncompressed output.

For the simplistic demonstration here, our input consisted of 28×28 pixel images containing numeric 
digits from 0 to 9 with the goal of a 25% compression ratio (i.e. the code consists of ¼ the number of 
pixels of the input and output). For simplicity, default MATLAB autoencoder parameters were used 
during training aside those noted in                     Table 1-1.
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Parameter Value
EncoderTransferFunction logsig

DecoderTransferFunction purelin

L2WeightRegularization 0.001

SparsityRegularization 4

SparsityProportion 0.15

useGPU True

                    Table 1-1. Parameters and values chosen for the MATLAB model. 

1.2. Physics-Based Network Modeling
With the trained electronic autoencoder in hand, efforts focused on the physics-based encoder 
network. This network takes the form of several transmissive optical elements with arbitrary position-
dependent transmission phase selected such that for a given input, the optical network reproduces the 
output of the electronic autoencoder. This network functions analogously to that described in [3]. For 
the purposes of our proof-of-concept model, we utilized a three layer phase only transmissive structure 
(transmission amplitude of unity), designed for operation at 5 μm, which is schematically show in 
Figure 1-2. 

Figure 1-2. Schematic of the simplistic transmissive phase-based network. Three independent 
phase layers composed of 28×28 pixels each with independently variable response control the 
signal collected on the 14×14 pixel detector.

We fixed the distance between layers at 𝑑1 = 𝑑2 = 𝑑3 = 10 𝜇𝑚 and optimized the output of our 
structure on the detector to match the output of the encoder network. Each phase layer of the 
designed structure consists of 784 independent pixels (28×28) where the transmission phase can be 
arbitrarily set. In sum, this results in 2352 independent optimization variables. Image compression 
occurs at the detector. While the spatial extent of the detector is identical to that of the phase layers, 
it contains only 196 pixels (14×14) where each pixel spans the size of four phase layer pixels. This size 
matching is not a requirement. In reality, the detector could be larger or smaller than the phase layers, 
however, that complicates calculation of propagating fields. Optimization via backpropagation would 
be ideal and would more closely parallel the training of a conventional electronic neural network, 
however, due to the short duration of this project, we were unable to implement this for the physics-
based model that includes complex values for both the field and transmission elements. As such, we 
relied on MATLAB’s built-in particle swarm optimization routine for determining the optimum values 
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of each phase element [4]. Additionally, due to our use of this relatively crude optimization approach, 
we limited our optical network training set to only 10 input images. Ultimately, a larger training set 
would be required to create a network with useful capabilities, however, the results shown below point 
to the potential viability of this concept for image compression and reduction. For this model, we 
assumed coherent optical input and utilized Fourier transforms to propagate fields between layers and 
calculated the detector output signal as the mean signal from the four pixels that span a given detector 
pixel with an ultimate goal of matching the detector signal to the output of the encoder network with 
a root mean square error used as the metric. While we utilized this approach, an alternative error 
metric could be employed where the network attempts to minimize the difference between the 
decoder output (given the optical input rather than the electronic input) and the original input digit 
image.

After training our electronic autoencoder and optimizing our optical encoder, we obtained the results 
shown in Figure 1-3. These results point to the successful but imperfect compression and 
decompression of the input images from both the optical and electronic autoencoder. Specifically, 
significant background illumination is present in the images retrieved from optically compressed data, 
compounding the limitations that are already present in this simple implementation of an autoencoder. 

Figure 1-3. (a) Output from our optical encoder/electronic decoder. (b) Original input image. (c) 
Output from the all-electronic autoencoder.

Further improvement in functionality of these types of devices could be obtained via both improved 
design of electronic compression schemes (i.e. more complex autoencoders or alternative compression 
networks) or via implementation of backpropagation optimization for optical element determination. 
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APPENDIX A. MATLAB CODE

function [structure] = buildAONNLayers(x,xDim,yDim,numLayers,xSize,ySize,wavelength,distance)
% figure(5)
% hold on
% plot(x)
structure = [];
structure.wavelength = wavelength;
%structure.Ein = Ein;
structure.x = xDim;
structure.y = yDim;
structure.numLayers = numLayers;
structure.xSize = xSize;
structure.ySize = ySize;
for mm = 1:numLayers
    structure.layers{mm}.distance = distance;
    TArg = reshape(x(1:xSize*ySize),ySize,xSize);
    x(1:xSize*ySize) = [];
    structure.layers{mm}.T = 1.*exp(1i*TArg*2*pi);
    structure.nX = numel(structure.x)/xSize;
    structure.nY = numel(structure.y)/ySize;
    if or(mod(structure.nX,1),mod(structure.nY,1))
        error('nX or nY is not an integer')
    end
    structure.layers{mm}.T = repelem(structure.layers{mm}.T,structure.nY,structure.nX);
    
end

function [error,outputSave] = calculateOutput(structure,trainingSet)
xDim = structure.x;
yDim = structure.y;
outSize = size(trainingSet{1}.output);
nX = structure.nX;
nY = structure.nY;
xSize = structure.xSize;
ySize = structure.ySize;
xSizeOut = outSize(2);
ySizeOut = outSize(1);
nXOut = nX*xSize/xSizeOut;
nYOut = nY*ySize/ySizeOut;

for nn = 1:numel(trainingSet)
    o1 = []; 
    o2 = [];
    Ein = repelem(trainingSet{nn}.input,nY,nX);
    for mm = 1:structure.numLayers
        EinR = Ein.*structure.layers{mm}.T;
        [Ein] = propagateLayer(xDim,yDim,EinR,structure.layers{mm}.distance,structure.wavelength);
    end
    Eout = Ein;
    Eout = Eout.*conj(Eout);
    for ii = 1:ySizeOut
        for jj = 1:xSizeOut
            o1(:,jj)  = mean(Eout(:,((jj-1)*nXOut+1):jj*nXOut),2);
        end
        o2(ii,:) = mean(o1(((ii-1)*nYOut+1):ii*nYOut,:),1);
    end
    output = o2;
    outputSave{nn} = output./max(output(:));
    expectedOutput = trainingSet{nn}.output;
    currError = abs(expectedOutput/max(expectedOutput(:))-outputSave{nn}).^2;
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    %currError = sqrt(currError.*conj(currError));
    error(nn) = mean(currError(:));
end
%error = mean(error);

%%
%trainingSet = load('training.mat');
%trainingSet = trainingSet.trainingSet;
clear trainingSet
nIn = 28;
nOut = 14;
nSet = 10;
optimizationType = 'particleswarm'; %'ga' or 'gamultiobj' 'particleswarm'
% for mm = 1:nSet
%     trainingSet{mm}.input = randi(2,nIn)-1;
%     trainingSet{mm}.output = rand(nOut);
% end
load('trainingSet.mat')
nn = randi(numel(trainingSet),nSet,1);
trainingSet = trainingSet(nn);
%%
outSize = size(trainingSet{1}.output);
inSize = size(trainingSet{1}.input);

rng default
dx = 2; %um
wavelength = 5; % um
distance = 10;
dy = dx;
nRep = 2;
numLayer = 3;
xSize = inSize(2);
ySize = inSize(1);
nX = xSize*nRep;
nY = ySize*nRep;
xDim = (-nX/2+dx/2:dx:nX/2-dx/2);
yDim = (-nY/2+dy/2:dy:nY/2-dy/2);
numelOpt = numLayer*((xSize*ySize)+1);
fun = @(x) calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType);

tic

lb0 = [ones(1,xSize*ySize,1)*0];
ub0 = [ones(1,xSize*ySize)];
%%
disp('Starting optimization')
datetime
lb = repmat(lb0,1,numLayer);
ub = repmat(ub0,1,numLayer);
% options = optimoptions('particleswarm');
% options.UseParallel = true;
% options.PlotFcn = 'pswplotbestf';
% options.Display = 'iter';
% options.FunctionTolerance = 1e-10;
%x = particleswarm(fun,numelOpt,lb,ub,options);

options = optimoptions(optimizationType);
options.UseParallel = true;
options.Display = 'iter';
switch optimizationType
    case 'ga'
        options.PlotFcn = 'gaplotbestf';
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        x = ga(fun,numelOpt,[],[],[],[],lb,ub,[],options);
    case 'gamultiobj'
        options.PlotFcn = 'gaplotpareto';
        [x,fval] = gamultiobj(fun,numelOpt,[],[],[],[],lb,ub,options);
        xSave = x;
            case 'particleswarm'
        options.PlotFcn = 'pswplotbestf';
        %options.SwarmSize = 100;
        [x,fval] = particleswarm(fun,numelOpt,lb,ub,options);
        xSave = x;
end

%[x,fval] = gamultiobj(fun,numelOpt,[],[],[],[],lb,ub,options);

%%
%{
%x = xSave(1,:);
[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength);
difference = [];
figure(5)
clf
for mm = 1:numLayer
    figure(5)
    subplot(2,numLayer,mm)
    imagesc(abs(structure.layers{mm}.T));
    caxis([0,1])
    axis off
    axis image
    subplot(2,numLayer,mm+numLayer)
    imagesc(wrapTo2Pi(angle(structure.layers{mm}.T)));
    caxis([0,2*pi])
    axis off
    axis image
end
f = gcf;
f.Color = [0,0,0];
[error,output] = calculateOutput(structure,trainingSet);
figure(6)
clf
if nSet<=10
for mm = 1:nSet
    figure(6)
    subplot(3,numel(trainingSet),mm)
    imagesc(trainingSet{mm}.input)
    caxis([0,1])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];
    %axis off
    axis image
    subplot(3,numel(trainingSet),mm+numel(trainingSet))
    imagesc(trainingSet{mm}.output/max(trainingSet{mm}.output(:)))
    caxis([0,1])
    %axis off
    axis image
    caxis([0,1])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];
    subplot(3,numel(trainingSet),mm+numel(trainingSet)*2)
    imagesc(output{mm})
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    difference(:,:,mm) = (output{mm}-
trainingSet{mm}.output/max(trainingSet{mm}.output(:)));%./(trainingSet{mm}.output/max(trainingSet{mm}.output(:)));
    currDifference = difference(:,:,mm);
    caxis([0,1])
    %axis off
    caxis([0,1])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];
    axis image
    colormap hot
    figure(7)
    subplot(2,numel(trainingSet)/2,mm)
    imagesc(abs(difference(:,:,mm)))
    caxis([0,0.15])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];
    axis image
        colormap hot

    title(round(mean(abs(currDifference(:))),3))
end
colormap hot
f = gcf;
f.Color = [0.5,0.5,0.5];
end
%}
%%
load('encoder.mat')
%load('testImages.mat')
metric = 'immse';
XTest = [];
for mm = 1:numel(trainingSet)
   XTest(:,mm) = trainingSet{mm}.input(:);
end
feat1 = encode(autoenc,trainingSet);
feat2 = decode(autoenc,feat1);
feat2 = feat2(nn);

[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength,distance);
[error,output] = calculateOutput(structure,trainingSet);
out1 = [];
nStart = 1;
numPlot = 10;
qualityE = [];
qualityO = [];
for mm = 1:numPlot
    out1(:,mm) = output{mm}(:);
end
out2 = decode(autoenc,out1);
figure(10)
for mm = 1:numPlot
    subplot(3,numPlot,mm)
    imshow(out2{mm})
    switch lower(metric)
        case 'immse'
            qualityO(mm) = immse(out2{mm},trainingSet{mm}.input);
        case 'psnr'
            qualityO(mm) = psnr(out2{mm},trainingSet{mm}.input);
        case 'ssim'
            qualityO(mm) = ssim(out2{mm},trainingSet{mm}.input);
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    end
end
for mm = 1:numPlot
    subplot(3,numPlot,mm+numPlot)
    imshow(trainingSet{mm}.input)
end
for mm = 1:numPlot
    subplot(3,numPlot,mm+numPlot*2)
    imshow(feat2{mm})
    switch lower(metric)
        case 'immse'
            qualityE(mm) = immse(feat2{mm},trainingSet{mm}.input);
        case 'psnr'
            qualityE(mm) = psnr(feat2{mm},trainingSet{mm}.input);
        case 'ssim'
            qualityE(mm) = ssim(feat2{mm},trainingSet{mm}.input);
    end
end
quality = [qualityE;qualityO];
clc
disp(quality)
colormap hot
%%
feat1 = encode(autoenc,XTest);
feat1 = feat1(:,nn);
figure(11)
for mm = 1:numPlot
    subplot(2,numPlot,mm)
    imshow(reshape(out1(:,mm),nOut,nOut))
end
for mm = 1:numPlot
    subplot(2,numPlot,mm+numPlot)
    imshow(reshape(feat1(:,mm),nOut,nOut))
end
    colormap hot
disp('Done')
%%
function [error] = calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType)
[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength,distance);
error = calculateOutput(structure,trainingSet);
if or(strcmp(optimizationType,'ga'),strcmp(optimizationType,'particleswarm'))
    error = mean(error(:));
end
end
%%
%trainingSet = load('training.mat');
%trainingSet = trainingSet.trainingSet;
clear trainingSet
nIn = 28;
nOut = 14;
nSet = 10;
optimizationType = 'particleswarm'; %'ga' or 'gamultiobj' 'particleswarm'
% for mm = 1:nSet
%     trainingSet{mm}.input = randi(2,nIn)-1;
%     trainingSet{mm}.output = rand(nOut);
% end
load('trainingSet.mat')
nn = randi(numel(trainingSet),nSet,1);
trainingSet = trainingSet(nn);
%%
outSize = size(trainingSet{1}.output);
inSize = size(trainingSet{1}.input);
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rng default
dx = 2; %um
wavelength = 5; % um
distance = 10;
dy = dx;
nRep = 2;
numLayer = 3;
xSize = inSize(2);
ySize = inSize(1);
nX = xSize*nRep;
nY = ySize*nRep;
xDim = (-nX/2+dx/2:dx:nX/2-dx/2);
yDim = (-nY/2+dy/2:dy:nY/2-dy/2);
numelOpt = numLayer*((xSize*ySize)+1);
fun = @(x) calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType);

tic

lb0 = [ones(1,xSize*ySize,1)*0];
ub0 = [ones(1,xSize*ySize)];
%%
disp('Starting optimization')
datetime
lb = repmat(lb0,1,numLayer);
ub = repmat(ub0,1,numLayer);
% options = optimoptions('particleswarm');
% options.UseParallel = true;
% options.PlotFcn = 'pswplotbestf';
% options.Display = 'iter';
% options.FunctionTolerance = 1e-10;
%x = particleswarm(fun,numelOpt,lb,ub,options);

options = optimoptions(optimizationType);
options.UseParallel = true;
options.Display = 'iter';
switch optimizationType
    case 'ga'
        options.PlotFcn = 'gaplotbestf';
        x = ga(fun,numelOpt,[],[],[],[],lb,ub,[],options);
    case 'gamultiobj'
        options.PlotFcn = 'gaplotpareto';
        [x,fval] = gamultiobj(fun,numelOpt,[],[],[],[],lb,ub,options);
        xSave = x;
            case 'particleswarm'
        options.PlotFcn = 'pswplotbestf';
        %options.SwarmSize = 100;
        [x,fval] = particleswarm(fun,numelOpt,lb,ub,options);
        xSave = x;
end

%[x,fval] = gamultiobj(fun,numelOpt,[],[],[],[],lb,ub,options);

%%
%{
%x = xSave(1,:);
[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength);
difference = [];
figure(5)
clf
for mm = 1:numLayer
    figure(5)
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    subplot(2,numLayer,mm)
    imagesc(abs(structure.layers{mm}.T));
    caxis([0,1])
    axis off
    axis image
    subplot(2,numLayer,mm+numLayer)
    imagesc(wrapTo2Pi(angle(structure.layers{mm}.T)));
    caxis([0,2*pi])
    axis off
    axis image
end
f = gcf;
f.Color = [0,0,0];
[error,output] = calculateOutput(structure,trainingSet);
figure(6)
clf
if nSet<=10
for mm = 1:nSet
    figure(6)
    subplot(3,numel(trainingSet),mm)
    imagesc(trainingSet{mm}.input)
    caxis([0,1])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];    
    %axis off
    axis image
    subplot(3,numel(trainingSet),mm+numel(trainingSet))
    imagesc(trainingSet{mm}.output/max(trainingSet{mm}.output(:)))
    caxis([0,1])
    %axis off
    axis image
    caxis([0,1])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];    
    subplot(3,numel(trainingSet),mm+numel(trainingSet)*2)
    imagesc(output{mm})
    difference(:,:,mm) = (output{mm}-
trainingSet{mm}.output/max(trainingSet{mm}.output(:)));%./(trainingSet{mm}.output/max(trainingSet{mm}.output(:)));
    currDifference = difference(:,:,mm);
    caxis([0,1])
    %axis off
    caxis([0,1])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];
    axis image
    colormap hot
    figure(7)
    subplot(2,numel(trainingSet)/2,mm)
    imagesc(abs(difference(:,:,mm)))
    caxis([0,0.15])
    a1 = gca;
    a1.XTickLabel = [];
    a1.YTickLabel = [];
    axis image
        colormap hot

    title(round(mean(abs(currDifference(:))),3))
end
colormap hot
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f = gcf;
f.Color = [0.5,0.5,0.5];
end
%}
%%
load('encoder.mat')
for nn = 77
%    x = xSave(nn,:);
    [structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength);
    [error,output] = calculateOutput(structure,trainingSet);
    out1 = [];
    nStart = 5;
    numPlot = 10;
    for mm = 1:numPlot
        out1(:,mm) = output{mm}(:);
    end
    out2 = decode(autoenc,out1);
    figure(10)
    for mm = 1:numPlot
        subplot(2,numPlot,mm)
        imshow(out2{mm})
    end
    for mm = 1:numPlot
        subplot(2,numPlot,mm+numPlot)
        imshow(trainingSet{mm}.input)
    end
    %disp(nn)
    %pause
end
5
%%
function [error] = calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType)
[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength,distance);
error = calculateOutput(structure,trainingSet);
if or(strcmp(optimizationType,'ga'),strcmp(optimizationType,'particleswarm'))
    error = mean(error(:));
end
end
function [Eout] = propagateLayer(x,y,Ein,distance,wavelength)
kz = @(kval,kx,ky) sqrt(kval.^2-kx.^2-ky.^2);
k = 2*pi/wavelength;

nPointsX = numel(x)-1;
nPointsY = numel(y)-1;
dx = x(2)-x(1);
dy = y(2)-y(1);
Fx = 1/max(x-min(x));
Fy = 1/max(y-min(y));
fx = 2*pi*Fx*(-ceil(nPointsX/2):floor(nPointsX/2));
fy = 2*pi*Fy*(-ceil(nPointsY/2):floor(nPointsY/2));
[fxg,fyg] = ndgrid(fx,fy);

currFFT = fftshift((fft2(Ein)));
kzCurr = kz(k,fxg,fyg);
currPropFFT = currFFT.*exp(1i*kzCurr*distance);
Eout = (ifft2(currPropFFT));
%%
XTrain = digitTrainCellArrayData;
% nums = randi(5000,1,5000);
% XTest = XTrain(nums(4501:end));
% save('testImages.mat','XTest')
% XTrain = XTrain(nums(1:4500));
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%%
hiddenSize = 14^2;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
                'EncoderTransferFunction','logsig',...
        'DecoderTransferFunction','purelin',...
        'L2WeightRegularization',0.001,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.15,...
        'useGPU',true);

XTest = digitTestCellArrayData;
xReconstructed = predict(autoenc,XTest);

%%
% h1 = 20*20;
% a1 = trainAutoencoder(XTrain,h1,...
%         'L2WeightRegularization',0.001,...
%         'SparsityRegularization',4,...
%         'SparsityProportion',0.15,...
%         'useGPU',true);
% feat1 = encode(autoenc,XTest);
% h2 = 14*14;
% a2 = trainAutoencoder(feat1,h2,...
%         'L2WeightRegularization',0.001,...
%         'SparsityRegularization',4,...
%         'SparsityProportion',0.15,...
%         'useGPU',true);
%%
feat1 = encode(autoenc,XTest);
feat2 = decode(autoenc,feat1);
%%
figure(2);
nn = randi(numel(XTest),20,1);
for i = 1:20
subplot(4,5,i);
imshow(xReconstructed{nn(i)});
end
figure(3);
for i = 1:20
subplot(4,5,i);
imshow(XTest{nn(i)});
end
figure(4);
for i = 1:20
subplot(4,5,i);
imshow(reshape(feat1(:,i),sqrt(hiddenSize),sqrt(hiddenSize)));
end
%%
numSet = numel(XTest);
clear trainingSet
for mm = 1:numel(XTest)
    trainingSet{mm}.input = XTest{mm};
    trainingSet{mm}.output = reshape(feat1(:,mm),14,14);
    mm
end
save('trainingSet.mat','trainingSet')
save('encoder.mat','autoenc')

%%
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