SAND2021-13776

SANDIA REPORT

SAND2021-13776 Sandia
Printed November 2021 National
Laboratories

All Optical Neural Networks for
Low Power Edge Computing

Raktim Sarma, Michael D. Goldflam, Jayson L. Briscoe

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, ot service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.
Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Auvailable to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandtia, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.cov/help/order-methods

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

ABSTRACT

We developed a simplistic physics-based model of an all-optical neural network that mimics the
encoder part of an autoencoder neural network for image compression. Our approach relies on the
generation of a MATLAB-based model for both data compression and decompression and utilizes
MATLAB?’s built-in autoencoder networks in combination with simple propagation of optical fields
between layers constituting phase elements via Fourier transform. We optimize the phase elements
using the particle swarm optimization technique and using our model, we demonstrate a compression
ratio of 25 % for 28X28-pixel input images containing numeric digits from 0 to 9.

CONTENTS

1. All Optical Neural Network Modelingcccviiiiiiiiiiiiiiiiiiiiicsssnsens 7
L1, AULOCNCOTET ...t 7
1.2. Physics-based network MOdEling.........cocicuviiuiiviiiiiiiiiiiiccee e 8
Appendix A. MATLAB COQC ettt 11

LIST OF FIGURES

Figure 1-1. Schematic representation of an autoencoder reproduced from [2]ccccovvivivinicinicinnnnn. 7
Figure 1-2. Schematic of the simplistic transmissive phase-based network. Three independent
phase layers composed of 28x28 pixels each with independently variable response control the

signal collected on the 14x14 pixel deteCtOrs.. ..o 8
Figure 1-3. (a) Output from our optical encoder/elctronic decoder. (b) Original input image. (c)
Output from the all-electronic AULOENCOAETvviuiiiiciiiiciiieiece e 9
LIST OF TABLES
Table 1-1. Parameters and values chosen for the MATLAB model........ccccoviiiiiniiininiiiiniiiiniicininns 8

This page left blank

ACRONYMS AND DEFINITIONS

Abbreviation

Definition

AONN

All Optical Neural Network

1. ALL OPTICAL NEURAL NETWORK (AONN) MODELING

For a first order examination of the potential for an optical autoencoder, we relied on the generation
of a MATLAB-based model for both data compression and decompression. This model utilized
MATLAB?’s built-in autoencoder networks in combination with simple propagation of optical fields
between All optical neural network (AONN) layers via Fourier transform. The sections below describe
the model and interaction between these two aspects of the AONN model.

1.1. Autoencoder

Autoencoder generation relied on the autoencoder functionality built into MATLAB in combination
with a collection of handwritten digits that are presorted for MATLAB analysis [1]. Generally, an
autoencoder is composed of two coupled feed-forward neural networks which operate serially [2].

Input Output

—r o
LV T~ D
\ - — -— - Jlr
!/ \ -~ - - !/ \

—1 \ — b Code — | /

\ / \ / Ny 7y \ / \ ;L
] \ f 1\ ;] N “~ 7 [T\ PN e B /

_— \ [S e O A / N 4/ =\ \ / _—
. }." | \< . \< >/ | >J’ |] \< L
\ / / \ \ /

A AN N S AN i 2NN S Ly
/ \ / \ / \

- N S A N S ~_ NN]y e

/ \ / \ ad ~Q / \ /
— — A L — I
/ \ /I - ~ \ / \

I N N | —
P T~
L — ~aq4 |
. N J - N J
Encoder Decoder

Figure 1-1. Schematic representation of an autoencoder reproduced from [2].

A schematic representation of a generic autoencoder is shown in Figure 1-1, separated
into two halves defining the encoder and decoder. For this aspect of the LDRD, we followed the steps
itemized below to determine the functionality of our AONN.

1. Train an entirely electronic autoencoder.
2. Ultilize the encoder to calculate the code for a given set of inputs.

3. Determine transmission characteristics of a multilayer optical structure that can reproduce the
code for a given input.

4. Feed the output of the optical network into the electronic decoder and compare to the input.

In this way, we essentially developed an all optical version of the encoder network that operates
passively at zero-power enabling the collection of a smaller number of pixels followed by electronic
decoding/decompression of the collected information to reproduce the uncompressed output.

For the simplistic demonstration here, our input consisted of 28X28 pixel images containing numeric
digits from 0 to 9 with the goal of a 25% compression ratio (Ze. the code consists of /4 the number of
pixels of the input and output). For simplicity, default MATLAB autoencoder parameters were used
during training aside those noted in Table 1-1.

Parameter Value

EncoderTransferFunction logsig

DecoderTransferFunction purelin
L2WeightRegularization 0.001

SparsityRegularization 4
SparsityProportion 0.15
useGPU True

Table 1-1. Parameters and values chosen for the MATLAB model.

1.2. Physics-Based Network Modeling

With the trained electronic autoencoder in hand, efforts focused on the physics-based encoder
network. This network takes the form of several transmissive optical elements with arbitrary position-
dependent transmission phase selected such that for a given input, the optical network reproduces the
output of the electronic autoencoder. This network functions analogously to that described in [3]. For
the purposes of our proof-of-concept model, we utilized a three layer phase only transmissive structure
(transmission amplitude of unity), designed for operation at 5 um, which is schematically show in
Figure 1-2.

Phase Layers
A

IR

4—d1—b4—d2—>4—d3—>

Detector

Figure 1-2. Schematic of the simplistic transmissive phase-based network. Three independent
phase layers composed of 28x28 pixels each with independently variable response control the
signal collected on the 14x14 pixel detector.

We fixed the distance between layers at d; = dy = d3 = 10 um and optimized the output of our
structure on the detector to match the output of the encoder network. Each phase layer of the
designed structure consists of 784 independent pixels (28X28) where the transmission phase can be
arbitrarily set. In sum, this results in 2352 independent optimization variables. Image compression
occurs at the detector. While the spatial extent of the detector is identical to that of the phase layers,
it contains only 196 pixels (14X14) where each pixel spans the size of four phase layer pixels. This size
matching is not a requirement. In reality, the detector could be larger or smaller than the phase layers,
however, that complicates calculation of propagating fields. Optimization via backpropagation would
be ideal and would more closely parallel the training of a conventional electronic neural network,
however, due to the short duration of this project, we were unable to implement this for the physics-
based model that includes complex values for both the field and transmission elements. As such, we
relied on MATLAB’s built-in particle swarm optimization routine for determining the optimum values

of each phase element [4]. Additionally, due to our use of this relatively crude optimization approach,
we limited our optical network training set to only 10 input images. Ultimately, a larger training set
would be required to create a network with useful capabilities, however, the results shown below point
to the potential viability of this concept for image compression and reduction. For this model, we
assumed coherent optical input and utilized Fourier transforms to propagate fields between layers and
calculated the detector output signal as the mean signal from the four pixels that span a given detector
pixel with an ultimate goal of matching the detector signal to the output of the encoder network with
a root mean square error used as the metric. While we utilized this approach, an alternative error
metric could be employed where the network attempts to minimize the difference between the
decoder output (given the optical input rather than the electronic input) and the original input digit
image.

After training our electronic autoencoder and optimizing our optical encoder, we obtained the results
shown in Figure 1-3. These results point to the successful but imperfect compression and
decompression of the input images from both the optical and electronic autoencoder. Specifically,
significant background illumination is present in the images retrieved from optically compressed data,
compounding the limitations that are already present in this simple implementation of an autoencoder.

'‘FHAREEEEEHER
HEAREECEHEEHEAS

Figure 1-3. (a) Output from our optical encoder/electronic decoder. (b) Original input image. (c)
Output from the all-electronic autoencoder.

Further improvement in functionality of these types of devices could be obtained via both improved
design of electronic compression schemes (z.e. more complex autoencoders or alternative compression
networks) or via implementation of backpropagation optimization for optical element determination.

REFERENCES

(1] https://www.mathworks.com/help/deeplearning/ref/trainautoencoder.html
(2] https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

[3] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi and A. Ozcan, All-optical
deep neural networks, Science, 1004-1008, (2018),

machine learning wusing diffractive
http://dx.doi.org/10.1126/science.aat8084.
[4] "MATLAB and Optimization Toolbox Release 2017b," (The MathWorks, Inc., Natick,

Massachusetts, United States).

10

https://www.mathworks.com/help/deeplearning/ref/trainautoencoder.html
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
http://dx.doi.org/10.1126/science.aat8084

APPENDIX A. MATLAB CODE

function [structure] = build AONNLayers(x,xDim,yDim,numLayers,xSize,ySize,wavelength,distance)
% figure(5)
% hold on
% plot(x)
structure = [];
structure.wavelength = wavelength;
Y%structure.Ein = Ein;
structure.x = xDim,;
structure.y = yDim;
structure.numLayers = numLayers;
structure.xSize = xSize;
structure.ySize = ySize;
for mm = 1:numLayers
structure.layers {mm}.distance = distance;
TArg = reshape(x(1:xSize*ySize),ySize,xSize);
x(1:xSize*ySize) = [];
structure.layers{mm}.T = 1. *exp(1i*TArg*2*pi);
structure.nX = numel(structure.x)/xSize;
structure.nY = numel(structure.y)/ySize;
if or(mod(structure.nX,1),mod(structure.nY,1))
error('nX or nY is not an integer')
end
structure.layers {mm}.T = repelem(structure.layers {mm}.T,structure.nY ,structure.nX);

end

function [error,outputSave] = calculateOutput(structure,trainingSet)
xDim = structure.x;

yDim = structure.y;

outSize = size(trainingSet{1}.output);
nX = structure.nX;

nY = structure.nY;

xSize = structure.xSize;

ySize = structure.ySize;

xSizeOut = outSize(2);

ySizeOut = outSize(1);

nXOut = nX*xSize/xSizeOut;

nYOut = nY*ySize/ySizeOut;

for nn = 1:numel(trainingSet)

ol =[];
02=[];
Ein = repelem(trainingSet{nn}.input,nY,nX);
for mm = 1:structure.numLayers

EinR = Ein.*structure.layers {mm}.T;

[Ein] = propagateLayer(xDim,yDim,EinR structure.layers {mm}.distance,structure.wavelength);
end
Eout = Ein;
Eout = Eout.*conj(Eout);
for ii = 1:ySizeOut

for jj = 1:xSizeOut

0l(:,jj) =mean(Eout(:,((jj-1)*nXOut+1):jj*nXOut),2);

end

02(ii,:) = mean(o1(((ii-1)*nYOut+1):1i*nY Out,:),1);
end
output = 02;

outputSave {nn} = output./max(output(:));
expectedOutput = trainingSet{nn}.output;
currError = abs(expectedOutput/max(expectedOutput(:))-outputSave {nn}).”2;

11

%currError = sqrt(currError.*conj(currError));
error(nn) = mean(currError(:));

end

Y%error = mean(error);

%%

YtrainingSet = load('training.mat');
YtrainingSet = trainingSet.trainingSet;
clear trainingSet

nln = 28;
nOut = 14;
nSet = 10;

optimizationType = 'particleswarm'; %'ga’ or 'gamultiobj' 'particleswarm'
% for mm = 1:nSet

% trainingSet{mm}.input = randi(2,nIn)-1;
% trainingSet{mm}.output = rand(nOut);
% end

load('trainingSet.mat')

nn = randi(numel(trainingSet),nSet,1);
trainingSet = trainingSet(nn);

%%

outSize = size(trainingSet{1}.output);

inSize = size(trainingSet{1}.input);

rng default

dx =2; %um

wavelength = 5; % um

distance = 10;

dy = dx;

nRep =2;

numLayer = 3;

xSize = inSize(2);

ySize = inSize(1);

nX = xSize*nRep;

nY = ySize*nRep;

xDim = (-nX/2+dx/2:dx:nX/2-dx/2);

yDim = (-nY/2+dy/2:dy:nY/2-dy/2);
numelOpt = numLayer*((xSize*ySize)+1);
fun = @(x) calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType);

tic

b0 = [ones(1,xSize*ySize,1)*0];

ub0 = [ones(1,xSize*ySize)];

%%

disp('Starting optimization')

datetime

b = repmat(1b0,1,numLayer);

ub = repmat(ub0,1,numLayer);

% options = optimoptions('particleswarm');
% options.UseParallel = true;

% options.PlotFcn = 'pswplotbestf';

% options.Display = "iter";

% options.FunctionTolerance = 1e-10;

%x = particleswarm(fun,numelOpt,lb,ub,options);

options = optimoptions(optimizationType);
options.UseParallel = true;
options.Display = "iter';
switch optimizationType
case 'ga’
options.PlotFcn = 'gaplotbestf';

12

x = ga(fun,numelOpt,[1,[],[],[],1b,ub,[],options);
case 'gamultiobj'
options.PlotFcn = 'gaplotpareto';
[x,fval] = gamultiobj(fun,numelOpt,[],[],[],[],Ib,ub,options);
xSave = X;
case 'particleswarm’
options.PlotFcn = 'pswplotbestf’;
Y%options.SwarmSize = 100;
[x,fval] = particleswarm(fun,numelOpt,lb,ub,options);
xSave = X;
end

%[x,fval] = gamultiobj(fun,numelOpt,[],[1,[1.[],Ib,ub,options);

%%
Yo{
%x = xSave(l,:);
[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength);
difference = [];
figure(5)
clf
for mm = 1:numLayer
figure(5)
subplot(2,numLayer,mm)
imagesc(abs(structure.layers {mm}.T));
caxis([0,1])
axis off
axis image
subplot(2,numLayer,mm+numLayer)
imagesc(wrapTo2Pi(angle(structure.layers {mm}.T)));
caxis([0,2*pi])
axis off
axis image
end
f= gcf;
f.Color =[0,0,0];
[error,output] = calculateOutput(structure,trainingSet);
figure(6)
clf
if nSet<=10
for mm = 1:nSet
figure(6)
subplot(3,numel(trainingSet),mm)
imagesc(trainingSet {mm}.input)
caxis([0,1])
al = gca;
al XTickLabel = [];
al.YTickLabel =[];
Y%axis off
axis image
subplot(3,numel(trainingSet),mm+numel(trainingSet))
imagesc(trainingSet {mm}.output/max(trainingSet {mm}.output(:)))
caxis([0,1])
%axis off
axis image
caxis([0,1])
al = gca;
al.XTickLabel = [];
al.YTickLabel = [];
subplot(3,numel(trainingSet),mm+numel(trainingSet)*2)
imagesc(output{mm})

13

difference(:,:,mm) = (output{mm}-
trainingSet{mm}.output/max(trainingSet{mm}.output(:)));%./(trainingSet{mm} .output/max(trainingSet{mm}.output(:)));

currDifference = difference(:,:;,mm);

caxis([0,1])

Y%axis off

caxis([0,1])

al = gca;

al.XTickLabel =[];

al.YTickLabel = [];

axis image

colormap hot

figure(7)

subplot(2,numel(trainingSet)/2,mm)

imagesc(abs(difference(:,:,mm)))

caxis([0,0.157)

al = gca;

al.XTickLabel = [];

al.YTickLabel = [];

axis image

colormap hot

title(round(mean(abs(currDifference(:))),3))

end

colormap hot

f=gcf;

f.Color =10.5,0.5,0.5];

end

Yo}

%%

load('encoder.mat')

Y%load('testimages.mat')

metric = 'immse';

XTest=1[];

for mm = 1:numel(trainingSet)
XTest(:,mm) = trainingSet{mm}.input(:);

end

featl = encode(autoenc,trainingSet);

feat2 = decode(autoenc,featl);

feat2 = feat2(nn);

[structure] = build AONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength,distance);
[error,output] = calculateOutput(structure,trainingSet);
outl =[];
nStart = 1;
numPlot = 10;
qualityE = [];
qualityO = [];
for mm = 1:numPlot
outl(:,mm) = output{mm}(:);

end
out2 = decode(autoenc,outl);
figure(10)

for mm = 1:numPlot
subplot(3,numPlot,mm)
imshow(out2 {mm})
switch lower(metric)
case 'immse’
qualityO(mm) = immse(out2 {mm},trainingSet{mm}.input);
case "psnr'
qualityO(mm) = psnr(out2 {mm},trainingSet{mm}.input);
case 'ssim'
qualityO(mm) = ssim(out2 {mm},trainingSet{mm}.input);

14

end
end
for mm = 1:numPlot
subplot(3,numPlot,mm+numPlot)
imshow(trainingSet{mm}.input)
end
for mm = 1:numPlot
subplot(3,numPlot,mm+numPlot*2)
imshow(feat2 {mm})
switch lower(metric)
case 'immse’
qualityE(mm) = immse(feat2 {mm}trainingSet{mm}.input);
case 'psnr'
qualityE(mm) = psnr(feat2 {mm},trainingSet{mm}.input);
case 'ssim'
qualityE(mm) = ssim(feat2 {mm},trainingSet{mm}.input);
end
end
quality = [qualityE;qualityO];
cle
disp(quality)
colormap hot
%%
featl = encode(autoenc,XTest);
featl = featl(:,nn);
figure(11)
for mm = 1:numPlot
subplot(2,numPlot,mm)
imshow(reshape(out1(:,mm),nOut,nOut))
end
for mm = 1:numPlot
subplot(2,numPlot,mm-+numPlot)
imshow(reshape(feat1(:,mm),nOut,nOut))
end
colormap hot
disp('Done')
%%
function [error] = calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType)
[structure] = build AONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength,distance);
error = calculateOutput(structure,trainingSet);
if or(strcmp(optimizationType,'ga'"),stremp(optimizationType,'particleswarm'))
error = mean(error(:));
end
end
%%
Y%trainingSet = load('training.mat');
YtrainingSet = trainingSet.trainingSet;
clear trainingSet

nln = 28;
nOut = 14;
nSet = 10;

optimizationType = 'particleswarm'; %'ga’ or 'gamultiobj' 'particleswarm'
% for mm = 1:nSet

% trainingSet{mm}.input = randi(2,nIn)-1;
% trainingSet{mm}.output = rand(nOut);
% end

load('trainingSet.mat')

nn = randi(numel(trainingSet),nSet,1);
trainingSet = trainingSet(nn);

%%

outSize = size(trainingSet{1}.output);

inSize = size(trainingSet{1}.input);

15

rng default

dx =2; %um

wavelength = 5; % um

distance = 10;

dy = dx;

nRep =2;

numLayer = 3;

xSize = inSize(2);

ySize = inSize(1);

nX = xSize*nRep;

nY = ySize*nRep;

xDim = (-nX/2+dx/2:dx:nX/2-dx/2);

yDim = (-nY/2+dy/2:dy:nY/2-dy/2);
numelOpt = numLayer*((xSize*ySize)+1);
fun = @(x) calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType);

tic

1b0 = [ones(1,xSize*ySize,1)*0];

ub0 = [ones(1,xSize*ySize)];

%%

disp('Starting optimization')

datetime

1b = repmat(1b0,1,numLayer);

ub = repmat(ub0,1,numLayer);

% options = optimoptions('particleswarm');
% options.UseParallel = true;

% options.PlotFcn = 'pswplotbestf';

% options.Display = "iter';

% options.FunctionTolerance = le-10;

%x = particleswarm(fun,numelOpt,lb,ub,options);

options = optimoptions(optimizationType);
options.UseParallel = true;
options.Display = "iter';
switch optimizationType
case 'ga’
options.PlotFcn = 'gaplotbestf’;
x = ga(fun,numelOpt,[1,[1,[],[],1b,ub,[],options);
case 'gamultiobj'
options.PlotFen = 'gaplotpareto';
[x,fval] = gamultiobj(fun,numelOpt,[]1,[],[],[],1b,ub,options);
xSave = X;
case 'particleswarm’
options.PlotFcn = 'pswplotbestf';
Y%options.SwarmSize = 100;
[x,fval] = particleswarm(fun,numelOpt,lb,ub,options);
xSave = x;
end

%[x,fval] = gamultiobj(fun,numelOpt,[],[],[1,[],Ib,ub,options);

%%
%{
%x = xSave(l,:);
[structure] = build AONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength);
difference = [];
figure(5)
clf
for mm = l:numLayer
figure(5)

16

subplot(2,numLayer,mm)
imagesc(abs(structure.layers {mm}.T));
caxis([0,1])
axis off
axis image
subplot(2,numLayer,mm+numLayer)
imagesc(wrapTo2Pi(angle(structure.layers {mm}.T)));
caxis([0,2*pi])
axis off
axis image
end
f=gcf;
f.Color =[0,0,0];
[error,output] = calculateOutput(structure,trainingSet);
figure(6)
clf
if nSet<=10
for mm = 1:nSet
figure(6)
subplot(3,numel(trainingSet),mm)
imagesc(trainingSet {mm}.input)
caxis([0,1])
al = gca;
al.XTickLabel =[];
al.YTickLabel =[];
%axis off
axis image
subplot(3,numel(trainingSet),mm+numel(trainingSet))
imagesc(trainingSet {mm}.output/max(trainingSet {mm}.output(:)))
caxis([0,1])
Y%axis off
axis image
caxis([0,1])
al = gca;
al.XTickLabel = [];
al.YTickLabel = [];
subplot(3,numel(trainingSet), mm+numel(trainingSet)*2)
imagesc(output{mm})
difference(:,:;,mm) = (output{mm}-
trainingSet {mm} .output/max(trainingSet{mm}.output(:)));%./(trainingSet {mm } .output/max(trainingSet {mm}.output(:)));
currDifference = difference(:,:,mm);
caxis([0,1])
%axis off
caxis([0,1])
al = gca;
al XTickLabel = [];
al.YTickLabel = [];
axis image
colormap hot
figure(7)
subplot(2,numel(trainingSet)/2,mm)
imagesc(abs(difference(:,:,mm)))
caxis([0,0.15])
al = gca;
al XTickLabel = [];
al.YTickLabel =[];
axis image
colormap hot

title(round(mean(abs(currDifference(:))),3))

end
colormap hot

17

f= gcf;
f.Color =10.5,0.5,0.5];

end

%o}

%%
load(‘encoder.mat')
fornn =77

% x =xSave(nn,:);
[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength);
[error,output] = calculateOutput(structure,trainingSet);
outl =[]J;
nStart=5;
numPlot = 10;
for mm = 1:numPlot
outl(:,mm) = output{mm}(:);

end
out2 = decode(autoenc,outl);
figure(10)

for mm = 1:numPlot
subplot(2,numPlot,mm)
imshow(out2 {mm})
end
for mm = 1:numPlot
subplot(2,numPlot,mm-+numPlot)
imshow(trainingSet{mm}.input)
end
%disp(nn)
Y%pause
end
5
%%
function [error] = calcError(x,xDim,yDim,numLayer,xSize,ySize,trainingSet,wavelength,distance,optimizationType)
[structure] = buildAONNLayers(x,xDim,yDim,numLayer,xSize,ySize,wavelength,distance);
error = calculateOutput(structure,trainingSet);
if or(stremp(optimizationType,'ga’),strcmp(optimizationType,'particleswarm'))
error = mean(error(:));
end
end
function [Eout] = propagateLayer(x,y,Ein,distance,wavelength)
kz = @(kval,kx,ky) sqrt(kval.*2-kx."2-ky."2);
k = 2*pi/wavelength;

nPointsX = numel(x)-1;

nPointsY = numel(y)-1;

dx =x(2)-x(1);

dy =y(2)-y(1);

Fx = 1/max(x-min(x));

Fy = l/max(y-min(y));

fx = 2*pi*Fx*(-ceil(nPointsX/2):floor(nPointsX/2));
fy = 2*pi*Fy*(-ceil(nPoints Y/2):floor(nPointsY/2));
[fxg,tyg] = ndgrid(fx,fy);

currFFT = ftshift((fft2(Ein)));

kzCurr = kz(k,fxg,fyg);

currPropFFT = currFFT.*exp(1i*kzCurr*distance);
Eout = (ifft2(currPropFFT));

%%

XTrain = digitTrainCellArrayData;

% nums = randi(5000,1,5000);

% XTest = XTrain(nums(4501:end));

% save('testimages.mat',"XTest")

% XTrain = XTrain(nums(1:4500));

18

%%

hiddenSize = 142,

autoenc = trainAutoencoder(XTrain,hiddenSize,...

'EncoderTransferFunction','logsig',...

'DecoderTransferFunction','purelin’,...
'L2WeightRegularization',0.001,...
'SparsityRegularization',4,...
'SparsityProportion',0.15,...
'useGPU' true);

XTest = digitTestCellArrayData;
xReconstructed = predict(autoenc,XTest);

%%

% h1 =20%*20;

% al = trainAutoencoder(XTrain,hl,...
% 'L2WeightRegularization',0.001,...
% 'SparsityRegularization',4,...

% 'SparsityProportion',0.15,...

% 'useGPU' true);

% featl = encode(autoenc,XTest);

% h2 = 14*14;

% a2 = trainAutoencoder(featl,h2,...
% 'L2WeightRegularization',0.001,...
% 'SparsityRegularization',4,...

% 'SparsityProportion',0.15,...

% 'useGPU' true);

%%

featl = encode(autoenc,XTest);

feat2 = decode(autoenc,featl);

%%

figure(2);

nn = randi(numel(XTest),20,1);
fori=1:20

subplot(4,5,1);
imshow(xReconstructed {nn(i)});

end
figure(3);
fori=1:20

subplot(4,5,1);
imshow(XTest{nn(i)});

end
figure(4);
fori=1:20

subplot(4,5,1);

imshow(reshape(feat1(:,i),sqrt(hiddenSize),sqrt(hiddenSize)));

end

%%

numSet = numel(XTest);

clear trainingSet

for mm = 1:numel(XTest)
trainingSet{mm}.input = XTest{mm};
trainingSet{mm}.output = reshape(featl(:,mm),14,14);
mm

end

save('trainingSet.mat','trainingSet')

save('encoder.mat','autoenc')

%%

19

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address
Raktim Sarma 01881 rsarma@sandia.gov
Dale Jackson 06772 dcjacks@sandia.gov
Jayson Briscoe 06775 jlbrisc@sandia.gov
Technical Library 01977 sanddocs@sandia.gov

20

mailto:sanddocs@sandia.gov

21

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

