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ABSTRACT

The aim of this project was to advance single cell RNA-Seq methods toward the establishment of a
platform that may be used to simultaneously interrogate the gene expression profiles of mammalian
host cells and bacterial pathogens. Existing genetic sequencing methods that measure bulk groups of
cells do not account for the heterogeneity of cell-microbe interactions that occur within a complex
environment, have limited efficiency, and cannot simultaneously interrogate bacterial sequences. In
order to overcome these challenges, separate biochemistry workflows were developed based on a
Not-So-Random hexamer priming strategy or libraries of targeted molecular probes. Computational
tools were developed to facilitate these methods, and feasibility was demonstrated for single-cell
RNA-Seq for both bacterial and mammalian transcriptomes. This work supports cross-agency
national priorities on addressing the threat of biological pathogens, and understanding the role of
the microbiome in modulating immunity and susceptibility to infection.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition
DNA Deoxyribonucleic acid
cDNA Complementary DNA
dsDNA Double-stranded DNA
RNA Ribonucleic acid
rRNA Ribosomal RNA
tRNA Transfer RNA
mRNA Messenger RNA
RNA-Seq RNA sequencing
scRNA-Seq single-cell RNA-Seq
DualRNA-Seq dual single-cell RNA-seq
NSR primers Not-So-Random primers
BSA Bovine serum albumin
PEG Polyethylene glycol
MDP Markov Decision Process
DULQ distribution uniformity, lower quartile
PCR Polymerase Chain Reaction




1. INTRODUCTION

The microbiome is a diverse population of trillions of microorganisms that coexist and interact with
the human body and its environment. Recent advances in genomic techniques have led to the
discovery of microbiomes dynamically mediating susceptibility to infections, therapeutic efficacy,
and progression of diseases including neurological disorders such as Parkinson’s disease and autism
2. In 2016 the White House announced a National Microbiome Initiative leading a group of 21
government agencies (including DOD, NIH and FDA) to form a Strategic Plan whose aims include
“supporting interdisciplinary research” and “developing platform technologies” to advance
microbiome research towards healthcare, food security, and environmental restoration *.

The goal of this project was to develop methods for single-cell RNA-seq (scRNA-seq) for
simultaneous transcriptional profiling of both a bacterium and a mammalian cell, known hereafter as
“dual single-cell RNA-seq", or simply DualRNA-seq. The major challenge for DualRNA-seq is the
highly skewed ratios of bacterial to mammalian RNA when a single mammalian cell is lysed with a
single, much smaller, bacterial cell. Bulk RNA isolated from host/pathogen co-cultures will have 10-
1000 times more host RNA than pathogen RNA. To see transcriptional changes in both organisms,
previous work has 1.) used enormous amounts of sequencing until the pathogen’s transcriptome can
be resolved; or 2.) depleted the host RNA, usually by negative selection against the poly-A tails of
eukaryotic transcripts. Neither strategy is amenable to single cell experiments. Preparing RNAseq
from single cells already requires high sequencing depth and a single library preparation, so
DualRNA-seq methods are too costly or technically infeasible.

Additionally, the mRNA desired for DualRNA-seq is less than 10% of both the bacterial or
mammalian RNA pools, with the rest of the pools made up of the highly abundant rfRNA and tRNA
(Figure 1). Typically, rtRNA is depleted by passing total RNA through columns that selectively bind
rRNA. For mammalian RNA, the poly-A tails can be used to select mRNA directly. However,
neither of these techniques can be applied to single cells. Previously the study of combined host and
microbe transcriptomes was only possible by extraction of RNA from bulk samples, which averages
interactions between cells across time and population heterogeneity, completely obscuring
information needed to understand stability or progression of signatures that differentiate commensal
(ie. microbiome) versus pathogenic activity. Single-cell dual RNA-Seq of host and pathogen cells has
been proposed as a solution for retaining information linked to heterogeneity and increasing the
limit of detection for rare pathogen transcripts °. The recent development of barcoding strategies
combined with droplet-based microfluidics has enabled high-throughput processing of tens of
thousands of single cells for RNA-Seq 6, 7. However, these emerging research solutions and
commercially available systems (ie. 10x Chromium) fundamentally rely on barcoding off of poly-
adenylated messenger RNA molecules from eukaryotic cells, and therefore cannot effectively
capture RNA from bacteria 8. Furthermore, droplet-based microfluidic solutions are not compatible
with maintaining cell viability after partitioning, and do not allow additional characterization of
chemistries using combined techniques (eg. imaging).
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Figure 1: Low amounts of bacterial RNA and an overabundance of tRNA complicate DualRNA-Seq. °

This project developed two methods to address the above problems. Our proposed innovation was
to adapt a very recently published isothermal RNA-Seq library preparation protocol employing a
subset of random hexamer primers (Not-So-Random primers) to avoid ribosomal RNA
amplification. This approach has been demonstrated to allow total RNA-Seq (including long non-
coding RNA and enhancer RNA) from mammalian cells 9. We hypothesized that this method would
also allow amplification of the entire transcriptomes from both species of a cell-bacterium pair,
which is unprecedented. Due to its isothermal nature, this protocol is compatible with easily
fabricated open microwell formats that allow microfiltration strategies we have previously developed
10 to selectively capture viable single cell-microbe pairings. We improved computational methods to
develop pools of Not-So-Random (NSR) primers to selectively amplify mRNA from both bacteria
and the host cells while avoiding rRNA and tRNA. We also developed Splintlock-seq, a gene
expression profiling technique that used molecular probes to target only the genes of interest in a
sample. Both methods can address the small ratio of bacterial to mammalian mRNA by increasing
the amount of probes or NSR primers that target the bacterial genes.

1.1. No-So-Random Primers

Highly abundant transcripts from rRNA and tRNA genes constitute up to 95% of the RNA in the
cell °. If these transcripts are not removed before sequencing, they can vastly inflate the sequencing
cost needed to quantify the abundance of mRNA. In bulk RNA from eukaryotes, mRNA transcripts
can be enriched by polyT selection; however, prokaryotic mRNAs are not polyadenylated, and the
highly abundant rRNA transcripts must instead be removed by physical capture with silica columns
ot magnetic beads ''"°. Column- and bead-based separations ate not possible in single-cell RNA-seq
studies where libraries are prepared from picograms of RNA in droplets or microwells.
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Some RNA-seq protocols use random hexamers to prime reverse transcription. The hexamers bind
randomly across the transcriptome, so libraries made from total RNA will be dominated by rRNA.
Recently, NSR primers have been used to selectively amplify non-tfRNA sequences '*. An NSR pool
contains only the hexamers that are not found in the rRNA genes, so tRNA transcripts are not
primed for reverse transcription and subsequent amplification. NSR pools are used to selectively
prime reverse transcription in when preparing sequencing libraries. The original NSR pools were
designed to avoid hybridization to tRNA transcripts '*.

This project developed a new computational framework, called OligoRL, to solve combinatorial
oligonucleotide optimization problems such as designing NSR primer pools. The OligoRL
framework improves NSR selection by avoiding the avoid brute-force selection of NSR primers and
instead design pools of hexamers with optimal coverage and uniformity. The oligos in brute-force
pools are scored individually and may not represent the best overall pool when combined. Current
NSR pools are designed only to maximize the number of binding sites in the transcript, leading to
skewed coverage of transcripts.

1.2. Splintlock-seq

Probe-based library preparation techniques are also designed to avoid rRNA. RASL-seq uses SplintR
ligase and pairs of DNA probes to quantitatively profile gene expression . In this approach, pairs of
DNA probes hybridize adjacent to one another on the target mRNA and are ligated together by
SplintR ligase "°. Subsequent amplification and tagging can be accomplished by making use of
known sequences in the probe tails. However, RASL-seq suffers from high levels of noise at low
target RNA concentrations and requires manual probe design. The latter requirement has limited the
scope of RASL-seq studies to a small subset of the transcriptome. Our approach improves upon
RASL-seq library prep by building an automated, computational pipeline capable of designing
thousands of probes to target the entire transcriptome. We also employ padlock probes, whose
architecture improves assay sensitivity as well as specificity and allows for unbiased signal
amplification.

Chorella virus DNA ligase, also known as SplintR ligase, catalyzes the formation of phosphodiester
linkages between adjacent resides of single stranded DNA molecules hybridized on RNA . SplintR
ligase exhibits minimal bias for nucleotide identity at the ligation junction while demonstrating a
high degree of sensitivity to ligation junction mismatches . These qualities have led to the use of
SplintR ligase in highly specific detection assays targeting miRNA isoforms '*, SNPs ', and splice
variants . Assays employing SplintR ligase have demonstrated remarkable sensitivity. One recent
study showed that SplintR ligase could be used in conjunction with qPCR to specifically detect
attogram quantities of a specific miRNA from within 10 ng of total RNA '

A padlock probe is a single stranded, linear DNA oligonucleotide that contains sequence
complementary to a target molecule at the 5’ and 3’ ends, with a constant non-hybridizing backbone
in between. When a padlock probe binds to its target, the two ends hybridize directly adjacent to one
another. The ends can then be ligated together using an enzyme such as SplintR ligase, creating a
circular single-stranded DNA (ssDNA) molecule in the process. Padlock probe-based detection of
nucleic acids exhibits greater targeting specificity and sensitivity than paired probe strategies due to
the cooperative annealing dynamics of the two probe ends. Furthermore, circularized ssDNA
molecules can be efficiently used as template for isothermal, rolling circle amplification with Phi29
DNA polymerase. Phi29 DNA polymerase exhibits very low bias, high fidelity, extremely high
processivity, and strong multiple strand displacement activity *’. By adding a primer targeting the
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padlock backbone, Phi29 DNA polymerase can be used to initiate a rolling circle amplification,
selectively amplifying intramolecular ligation products. This improves signal-to-noise ratios as non-
specific intermolecular ligation products and unreacted probes will not be amplified. The degree to
which rolling circle amplification boosts signal is remarkable. At 30 °C, Phi29 DNA polymerase is
capable of incorporating 2280 nt/min. The enzyme’s average processivity is greater than 70 kb,
indicating that a single 90 nt circularized padlock probe can be used as template to produce a
concatamet containing over 775 copies in a half an hour .

The experimental workflow of the proposed Splintlock-seq library prep is outlined in Figure 2. A
pool of padlock probes generated by our automated design pipeline will be synthesized and
hybridized to isolated total RNA from the condition of interest. If a target mRINA is present, the
ends of a respective padlock probe will be ligated together by SplintR ligase, generating a circularized
ssDNA molecule. Signal amplification and enrichment will then be simultaneously carried out using
Phi29-mediated rolling circle amplification initiated from a primer annealed to the padlock
backbone. In this way, only intramolecular ligation products undergo amplification. The rolling
circle amplification product is then used as template for a low-cycle number PCR with primers that
add custom, dual-indexed Illumina adapters. These adapters enable the pooling of dozens of
individual libraries to further reduce per library sequencing costs. Libraries will then be purified
using AMPure beads and pooled in an equimolar fashion. The pooled libraries are then sequenced
and used for differential gene expression analyses.

== Q_.
(O)—+—

- | —
/

Pot 1

Pot 2

[ step 3:NGS Adapter PCR | [ step 2: Rolling Circle Amp. | [ Step 1: SplintR Ligation |

Figure 2: The Splintlock-seq pipeline.

We also developed an automated computational pipeline for the design of padlock probes. This
pipeline was used to create an initial probe pool targeting all annotated transcripts in the genome.
The probe pool was then assessed for ligation on rRNA and redesigned to remove non-specific

probes.
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2. RESULTS

2.1. Optimization of Biochemistry for Whole Transcriptome Amplification

The initial steps for optimization involved adapting the Smart-seq method * for use with murine
lung epithelial I.LA-4 cells to establish a benchmark for cDNA quantification and amplification.
Establishing this benchmark would allow us to evaluate reaction efficiency while optimizing the
RamDA-seq method, as well as explore different methods for increasing sensitivity. Each Smart-seq
optimization experiment started with LA-4 cell culture and lysis, then continued with reverse
transcription and amplification. After amplification, the samples were cleaned using Ampure XP
beads. Finally, quantification and/or qRT-PCR were performed to evaluate the effects of each
optimization on cDNA yield and amplification.

2.1.1.  Lysis Buffer

With the goal of improving RNA stability and cDNA yield, we tested the addition of 1 mg/mL
bovine serum albumin (BSA) to our lysis buffer. BSA has been found to help stabilize RNA and
protect it from degradation”. We found that BSA decreased the efficiency of Ampure XP bead
cleanup and produced a 5-fold decrease in cDNA yield (Figure 3), so we proceeded with lysis
buffers that did not contain BSA for future experiments.

Addition of BSA

60 .
C 11cell
I 1000 cells
250 i
o
£
=
kel
w401
£ 35|88
@
o
=
G3r
<
d
o
@ 20 f
N
©
oo
3
& 10 6.94
5 2 027
No BSA BSA

Figure 3. cDNA yield of Smart-seq samples prepared with and without the addition of BSA to the
lysis buffer. All samples contained LLA-4 lysate.
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2.1.2. Reverse Transcription & PCR Amplification

We tested the addition of two different hydrogels during the reverse transcription and PCR reactions
with the goal of increasing reaction efficiency to improve the sensitivity of Smart-seq. We first tested
the addition of polyethylene glycol (PEG) 8000 to achieve a molecular crowding effect. In the
molecular crowding effect, hydrogel molecules take up space in the aqueous solution, resulting in a
lower effective reaction volume*. We tested PEG concentrations between 0 and 15% (Figure 4) and
found that PEG did increase cDNA yield.

PEG Screening Agarose Screening
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Figure 4. cDNA yield of samples containing concentrations from 0-15% of PEG (left) and
concentrations from 0-0.3% of agarose (right).

Next, we tested the addition of agarose, a hydrogel known to have a molecular confinement effect.
Molecular confinement, in contrast to molecular crowding, is where the hydrogel transforms the
solution into more of a solid state, creating small pores for the reactions to occur in. This pushes the
reacting molecules closer together, increasing reaction efficiency. In addition, agarose has been
found to improve enzyme stability, which also helps increase reaction efficiency™. We tested agarose
concentrations between 0 and 0.3% (Figure 4) and found that agarose increased cDNA yield at

lower concentrations than PEG.

Finally, we tested different combinations of PEG and agarose in the hopes of achieving both
molecular crowding and confinement effects simultaneously (Figure 5). We concluded that adding
PEG and agarose did increase cDNA yield. We ultimately selected the 5% PEG and 0.1% agarose
condition to use in future experiments, as it was a good balance between increasing reaction
efficiency while still being easy to pipette accurately. After performing a replicate experiment with a
ttest (p=0.0253), we concluded that the difference in cDNA yield between samples with PEG and
agarose versus samples with neither was statistically significant (Figure 5).
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PEG + Agarose Screening
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Figure 5. Screening of different combinations of PEG and agarose (left). Comparison of cDNA
yield between samples with 5% PEG and 0.1% agarose and samples with neither PEG nor agarose
(right). The difference in cDNA yield was statistically significant (p=0.0253).

2.1.3. qRT-PCR Validation

To confirm that our optimized method had minimal amplification bias after 18 PCR cycles, we
performed Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) experiments using both
lysate samples and single-cell samples. In both experiments, we included a bulk lysate control that
was produced by performing reverse transcription on purified RNA stock. We normalized the
expression levels of our samples against this control sample for each experiment. Relative expression
levels were calculated by finding the average C(t) value of each sample, taking the reciprocal, and
normalizing against the control sample.

We measured the expression of six different genes: Tubb5, Trim28, Sdha, Tfrc, Tbp, and
Eef1b2. In our experiments, we expected all of these genes to be housekeeping genes in LA-4 cells
except for the Trim28 and Tfrc genes. The Tubb5 gene codes for tubulin, which is involved in
mitosis and the cell cycle. Trim?28 is a transcription mediation factor, while Eef1b2 is a translation
mediation factor. Sdha is involved in cellular respiration, and Tbp codes for the TATA binding
protein. Finally, the Tfrc gene codes for the transferrin receptor, which is involved in the uptake of
iron into the cell. We ran two different qRT-PCR experiments with our Smart-seq samples: one with
lysate samples and one with single-cell samples (Figure 6). The goal of the lysate experiment was to
determine whether our optimized Smart-seq method was resulting in amplification bias, while the
goal of the single-cell experiment was to see if our method could resolve the heterogeneity between
individual cells.
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Figure 6. Gene expression of lysate samples (left) and single cells (right) prepared with our
optimized Smart-seq method. We expected all six of these genes to be housekeeping genes except
for Trim28 and Ttrc.

Lysate experiment included two 1 cell samples taken from lysate stock 1, making them technical
replicates. The third sample was a bulk cDNA sample taken from a purified LA-4 RNA stock,
making it a biological replicate with the other two samples. If minimal amplification bias was
present, we would expect all housekeeping genes to have similar expression levels. We saw similar
expression levels for all genes except Tubb5 and Trim28. The differences in Tubb5 expression levels
are likely related to differences in cell cycle stage at the time of lysis, as tubulin involved in mitosis.
Differences in Trim28 expression were expected, as it is not a housekeeping gene. We concluded
that our optimized Smart-seq method had minimal amplification bias, as we saw less than 10%
technical variation and less than 15% biological variation in our lysate samples.

Single-cell experiment included four samples: one cell selected with a micropipette, one cell sorted
using FACS, ~5 cells selected with a micropipette, and the same bulk cDNA control from the lysate
experiment. We found that our 5 cell sample expression levels more closely matched the bulk cDNA
control, while our single cell samples closely matched each other but deviated from the bulk cDNA
control. We concluded that our optimized Smart-seq method could resolve the heterogeneity
between individual cells, as it was sensitive enough to reveal differences in gene expression found in
different single-cell samples.

2.2. RamDA-seq

Though Smart-seq is advantageous due to its full transcriptome coverage, one of its main drawbacks
is that it cannot be used to study bacterial RNA. Smart-seq uses an oligo (dT) to prime for reverse
transcription, which binds to the poly (A) tail of each mRNA strand. However, most bacterial RNA

26

strands do not have poly (A) tails®. To address this problem, the RamDA-seq protocol” uses not-

so-random primers (NSRs), which are hexamers that bind at random points along the RNA strand.
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Reverse transcriptase then binds to the NSRs and produces a cDNA strand, which is nicked by
DNase I and then pulled off and protected by the T4g32 protein®’. We optimized the RamDA-seq
method as it would allow us to be able to sequence both mammalian and bacterial RNA at the same
time, enabling the study of both host and pathogen expression simultaneously.

To ensure that we could perform RamIDA-seq successfully, we performed preliminary experiments
following the original RamDA-seq protocol that included only RNA denaturation and reverse
transcription. However, our samples consistently had cDNA yields of less than 0.5 ng/ul when
quantified with the Qubit fluorometer, which was too low to proceed with the rest of the RamDA-
seq protocol. We then ran a series of experiments changing different aspects of the reverse
transcription reaction in an attempt to produce a higher cDNA yield. We compared T4g32 proteins
purchased from both Roche and New England Biolabs (NEB), since Hayashi et al found T4g32
protein purchased from NEB to be more stable”. We tested increasing the time at 37°C from 30
minutes to either 60 minutes or 120 minutes, as it was shown to increase cDNA amplification”. We
also tested 2x and 0.1x DNase I conditions, as well as the addition of 50% PEG to achieve a
molecular crowding effect. However, all of these test conditions continued to produce low cDNA
yields, even in samples with 100 cells’ worth of lysate.

Our next experiments also included the second-strand synthesis step of the RamIDA-seq protocol.
Performing second-strand synthesis would allow us to more accurately quantify our cDNA yield for
each sample using the Qubit dsDNA HS kit, since the cDNA would be double-stranded. We also
switched from using ILA-4 lysate to using purified LA-4 RNA, to eliminate the possibility of
genomic DNA contamination.

After continuing to see low cDNA yields in our samples even after adding second-strand synthesis,
we performed qRT-PCR to confirm that the cDNA produced with the RamDA-seq protocol was
being amplified sufficiently, and that common housekeeping genes could be detected. We measured
the expression of the Tubb5, Sdha, B2m, and Eef1b2 genes. The Tubb5 gene codes for tubulin,
which is involved in mitosis and the cell cycle. Sdha is involved in cellular respiration, while B2m is
involved in antigen presentation. Finally, Eef1b2 codes for a translation elongation factor. Though
we did see expression of these four genes in some of our samples, we also observed some gene

dropout (Figure 7).
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Figure 7. Relative gene expression of 1 cell LA-4 lysate samples prepared with RamDA-seq
compared to positive control. Positive control sample contained ~50 cells worth of RNA that
underwent the Smart-seq process up to but not including PCR.

To troubleshoot this problem, we ran an experiment to test our oligo (dT's) and NSRs to confirm
that both worked individually and together. We ran samples with only oligo (dT), only NSRs, both
oligo (dT) and NSRs (Figure 8) and compared the cDNA yield of each condition. We ran duplicate
samples of both 1000 cell/ul LA-4 lysate and 20 ng/ul purified LA-4 RNA and concluded that both
the oligo (dT's) and NSRs worked. However, we did see some inconsistencies in cDNA yield, as we
did not see any cDNA yield in our lysate samples containing both oligo (dT) and NSR primers.

As previously mentioned, we again tested increasing amounts of time at 37°C during reverse
transcription. In this experiment, we tested 30, 60, 120, and 240 minutes at 37°C (Figure 8) and
found that while cDNA yield did appear to increase slightly with time, the difference was not
statistically significant when compared with the 30 minute condition (t-test, p>0.05). We decided to
use the 60 minute condition in future experiments in order to maximize amplification without
significantly affecting the length of the experiment.
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Figure 8. Testing both our oligo (dT) primers and our NSR primers to ensure that both can be used

for reverse transcription (left). Testing increasing amounts of time at 37°C during reverse

transcription (right).

After procuring a fresh set of reagents, we tested different concentrations of DNase I and T4g32

protein. We found that decreasing the concentration of both DNase I and T4g32 resulted in

amplification and significantly increased cDNA yield, while increasing DNase I and T4g32

concentrations decreased cDNA yield (Figure 9). We saw approximately an 18-fold increase in
cDNA yield between the 1x DNase/T4g32 and 0.1x DNase/T4g32 conditions.
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Figure 9. Varying concentrations of DNase I and T4g32 protein compared to original RamDA-seq
protocol (1x DNase/1x T4g32 condition).
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Having identified a condition that produced a substantial cDNA yield, we began testing other
combinations of DNase and T4g32 concentrations to improve sensitivity. We found that conditions
with 0.2x DNase had approximately a four-fold increase in cDNA yield compared with samples that
had 0.05x DNase (Figure 10). We considered this condition to be a suitable candidate for further

optimization.
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Figure 10. cDNA yields of samples prepared with different concentrations of DNase I and T4g32.

We then ran preliminary experiments applying our optimized RamIDA-seq method to samples
containing purified Burkholderia RNA to validate that our method will work with bacterial RNA,
despite the not-so-random primers being optimized for use with mouse cells. We found that though
there was a significant difference in cDNA yield between the LA-4 and Burkholderia samples, our
optimized RamDA-seq method was able to produce a substantial cDNA yield when starting from
bacterial RNA (Figure 11). We also prepared samples that contained 10 pg of purified LA-4 RNA
and 10 pg purified Burkholderia thailandensis RNA to test if our method would work with a
combination of mammalian and bacterial RNA. While one of our samples had a dsSDNA
concentration of 4.66 ng/ul, the other had a yield that was too low to detect with a Qubit
fluorometer. We hope to continue optimizing the RamDA-seq method to improve consistency

between samples.
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Figure 11. cDNA yields of LA-4 RNA samples and Burkholderia RNA samples, starting from 20 ng
of purified RNA.

23. The OligoRL Framework

OligoRL formulates the oligo design problem as a Markov Decision Process (MDP) **. The MDP
describes how an agent in a state S; selects an action a; that moves the agent to a new state S;41.
The transition between states is accompanied by a reward 7;. The agent’s goal is to select actions that
maximize the sum of all the rewards. Our problem is to build an oligo of length L by selecting
degenerate base codes at each position. The oligo codes are selected sequentially beginning at the

5” end. An agent in state S; has selected the first i — 1 oligo codes, so the agent begins at state Sy,
when zero oligo codes have been selected, and finishes at state Sy 11. The state defines not only how
many but also which codes have been selected. An agent that has selected codes ACG is in a
different state than an agent that has selected codes ACT.

Once in state Sj, the agent selects the code to place at position i. This selection corresponds to the
action a;, which is drawn from the set of possible codes A(S;). The set of allowed codes is state-
dependent—the codes selected for the prior positions 1 ...7 — 1 can change the codes available to
the agent at position i. Each available code a; € A(s;) has an associated reward 73(a;). This reward
depends on the entire oligo up to and including position i. The final reward 17 (a;) is based on the
entire oligo.

We do not make any assumptions about the reward functions. For example, the reward for an oligo
can be based on aligning the oligo to a genome and counting the number or quality of the hits. It is
also possible to set all but the final rewards to zero, delaying the reward calculation until the entire
oligo has been selected. Furthermore, the reward function can be applied to either a single oligo or
an entire oligo pool. The flexibility of the reward function underlies the generality of our approach,
but it also requires us to solve the oligo selection problem by simulation.

We use a rollout algorithm to choose the best code at each position. Rollout is a reinforcement
learning (RL) technique used to solve large MDPs by simulating trajectories using a computer model
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#% In state s; we begin by considering the first code a; € A(s;). We simulate ahead to the end of
the oligo, choosing codes randomly and summing the rewards. By averaging the rewards from many
random trajectories, all beginning with action a;, we can estimate the average reward the agent will
experience when code @, is selected. We compute this reward-to-go estimate for all other actions
available at state s;. The action we ultimately choose in state S; corresponds to the maximum reward
from the rollout simulations. After the code is selected, we move to the next position (state S;41)
and repeat the rollout process starting at the new state.

We used OligoRL to design pools of Not-So-Random (NSR) primers. Using OligoRL, we found
smaller NSR pools with increased uniformity across all mRNAs in a representative organism. This
final example demonstrates “black-box" reward functions that map the NSR primers to
transcriptomes and calculate the uniformity of an NSR pool. Neither of these reward functions can
be expressed as algebraic constraints on the OligoRL problem.

Our goal is to find an optimal pool of Not-So-Random (NSR) primers that 1.) avoid rRNA, tRNA,
or transcripts from any unwanted genes, 2.) bind to every gene in a target set at least once,

3.) uniformly cover the transcripts from targeted genes, and 4.) use the smallest number of oligos
necessary to meet objectives 1-3.

Current workflows for designing NSR hexamer primers start with a pool of all 4,906 possible
hexamers and remove hexamers that appear in the undesired transcripts. The remaining hexamers
are aligned to the rest of the transcriptome. We developed a multifaceted reward function that
scores NSR primer pools using five criteria:

1. Specificity. Each NSR primer is compared to hexamers in rRNA and tRNA genes, sequencing
adapters, and the other NSR primers. Any NSR candidate that contains these sequences
receives a reward of zero.

2. Gene count. The agent receives a reward for any gene hit at least once by an oligo in the pool.

3. Total hits. The agent is rewarded for maximizing the total number of hits across the
transcriptome.

4. Intergene uniformity. The agent is rewarded for placing the same number of hits on each gene.

5. Intragene uniformity. The agent is rewarded for uniformly distributing hits across the length of
each gene.

Inter- and intragene uniformity are quantified by the distribution uniformity, lower quartile (DULQ)
score (Figure 12A) ":

mean(lower quartile
DULQ = ( q )

mean(sample)

The DULQ) is bounded between zero (all hits at a single location) and one (perfect uniformity). Only
genes with at least one hit are used to calculate the DULQ. The total reward is the weighted sum of
the individual criteria:
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reward = fgene {gene count}

+Phits {total hits}
+Linter {intergene uniformity}
+Bintra {intragene uniformity}.

Users can change the weights to emphasize certain criteria when designing primer pools.

We tested the performance of our RL-guided NSR primer design program, called NSR-RL, by
designing primer pools using varying weights in the reward function. We compared the NSR-RL
pools to primer pools designed using a standard brute-force approach. Both pools targeted the

1.76 Mb Streptococcus mutans transcriptome. Changing the reward function weights prioritizes different
design criteria. For example, if we are only interested in designing a pool that hits every gene at least
once, we can do so by zeroing out the other terms in the reward function. NSR-RL can design a
pool that hits every gene using only 10 oligos. A brute-force approach requires 453 oligos to hit
every gene.
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Figure 12: NSR-RL creates hexamer pools using a multivariate reward function. A. Intergene
uniformity measures the distribution of the hits per gene. Intragene uniformity measures the
distribution of hits across the length of each gene. Both uniformity scores range from [0,1]. NSR
hexamer libraries produced by NSR-RL were compared to a pool of 453 hexamers produced by a
standard brute-force approach. The libraries were compared across four criteria: the number of
unique genes hit at least once (B), the total number of hits (C), intergene uniformity (D), and
intragene uniformity (E). The dashed black lines show the performance of the brute-force pool, and
the solid red lines show the performance of the NSR-RL pool as each hexamer is added to the pool.
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NSR-RL hit every target with increased intergene uniformity and equivalent intragene uniformity
with only 100 oligos. F. NSR-RL’s runtime was measured for pools designed to target bacteria with
transcriptomes between 0.17 Mb and 9.2 Mb in size. G. Quantifying intragene uniformity requires
calculating the gaps between all hits on each transcript. Consequently, the runtime of NSR-RL
decreases when intragene uniformity is removed from the reward function by setting the associated
weight Bingra = 0.

Rather than minimize the number of oligos, we can use NSR-RL to design a fixed-size pool with
improved coverage or uniformity. We used NSR-RL to design a pool containing 100 oligos with
nonzero weights for all four criteria in the reward function. The resulting pool exceeded the
performance of the compressed brute-force pool (Figure 12B-E). The NSR-RL pool hit every gene
in the S. mutans transcriptome after only 22 oligos. The NSR-RL pool also placed an average of

993 hits per oligo while the brute-force pool placed an average of 910 hits per oligo. Note that it is
impossible to generate more total hits than the brute-force designed pool since the brute-force pool
includes all hexamers that are not found in the tfRNA or other “unallowable” genes. While the NSR-
RL pools contain fewer total hits, the hits are distributed more evenly across the transcriptome as
measured by intergene uniformity. Interestingly, we observed that the intergene uniformity score
quickly approached a maximum but then oscillated near this value as new oligos were added to the
pool. The oscillations indicate that NSR-RL added new oligos that improved the scores of other
terms at the expense of intergene uniformity, and vice-versa. The NSR-RL pool’s intragene
uniformity matched the performance of the brute-force pool. Users can tune the reward function’s
weights to produce NSR primer pools that prioritize either the number of genes hit, total hits, or
uniformity. In addition, users can easily add terms to the reward function or create a custom reward
to design specialized pools.

NSR-RL’s runtime increases linearly with the size of the problem. We generated NSR pools
containing 30 hexamers for an assortment of bacterial transcriptomes ranging between 0.17-9.2 Mb
in size. We observed that the algorithm’s runtime scaled linearly with each species’ transcriptome
size (Figure 12F). The NSR-RL runtime also increases linearly with the number of oligos in the final
pool. The amount of computation required depends heavily on the structure of the reward function.
In particular, calculating the intragene uniformity score requires measuring the hit positions of every
simulated oligo and calculating the gap distances between each hit position along the length of every
gene. Pools designed with reward functions that include intragene uniformity took approximately
50% longer to generate (Figure 12G). We implemented a bypass to skip these calculations if the user
is not interested in intragene uniformity, i.e. when the user sets Sintra = 0.

24. Splintlock-seq

Proof of concept experiments using a single synthesized padlock probe and a single RNA target
were conducted to determine the feasibility of the approach and to begin biochemical optimization.
Protocols for SplintR ligation and rolling circle amplification were developed which resulted in
template-specific signal generation.

An automated, computational pipeline for the design of padlock probes was built using the R
programming language (Figure 13). The padlock probe architecture consists of a common 60 nt
backbone with 15 nt sequences at the 5’ and 3’ ends that hybridize to a 30 nt stretch on the target
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mRNA. Briefly, a Genbank file is read into the program from the NCBI and sequences for rRNA,
tRNA, and mRNA are extracted. The reverse compliment sequence of each mRNA is hashed into
30-mers to generate all possible candidate padlock probe target sequences. If the respective 30-mer
is unique across the annotated transcriptome, it is next filtered against a database containing all 15-
mer sequences found in the reverse compliment of rfRNA and tRNA transcripts using a fuzzy
matching algorithm. If both of the 15-mer halves of a given 30-mer cannot be matched to any
tRNA/RNA 15-mer given a specified mismatch tolerance, the candidate sequence passes the filter.
An analogous fuzzy matching filter is then utilized to ensure there is no interaction between padlock
probe ends and the common padlock probe backbone. The candidate 30-mer is then filtered with a
set of user-specified criteria to ensure it is compatible with the Splintlock-seq experimental pipeline.
These filters select for 30-mer sequences with no predicted secondary structures, a lack of
polynucleotide tracts, and favorable annealing characteristics. Next, candidate sequences are binned
according to their binding position on the target transcript and a greedy multi-objective optimization
algorithm is utilized to select for the “best” probe in each bin. In this way, an initial pool of 12,007
probes targeting 99% (1882/1900) of the annotated ORFs in the genome of S. mutans, with a
median coverage of 6 probes per ORF, was designed.

Gene X MRNA

rRNA/IRNA k-mers

T Thresholding

Tw Difference

Secondary Structures
Padlock Backbone Interaction

Figure 13: Computational pipeline for identifying Splintlock-seq padlock probes across an entire
genome.

25



The initial pool of candidate probes was synthesized using CustomArray electrochemical DNA
microarray technology. Due to the low per oligo yields typically associated with massively parallel
synthesis platforms, an experimental pipeline outlined by Murgha et al. *' was utilized to amplify the
pool in a strand specific manner and generate an ssDNA oligo pool with sufficient quantity for
Splintlock-seq experiments. SplintR ligation and rolling circle amplification reactions were re-
optimized using the new padlock pool on total RNA. Conditions were identified in which RNA-
specific signal could be reliably generated at levels over 1000-fold higher than no-RNA conditions.
In order to assess the specificity of the padlock probe pool for mRNA, Splintlock-seq library preps
were performed with total RNA, rRNA-depleted RNA, a synthetic mix of rRNA generated by IVT,
or no RNA serving as template. Libraries were prepped, pooled, and sent off for next generation
sequencing on an [llumina NovaSeq 6000. Over 496 million reads were obtained, demultiplexed, and
aligned to the S. mutans genome in a strand specific manner. Read indices were then mapped to
probe sites and analyzed for relative read abundance by template group (Figure 14). Over 12,000
probes were designed and synthesized to specifically target mRNA and avoid ligation on rRNA or
tRNA. However, a group of 900 probes demonstrated highly efficient ligation on the synthetic
rRNA mix or without any template. These probes were removed before further characterization of
the Splintlock-seq library prep using a second round of sequencing. The second set of probes
showed a reduced number of high-abundance probes that bound to tfRNA transcripts.

B e

logsp(count, rRNA IVT) logso(count, no RNA)

logso(count, rRNA-depleted)
log1o(Count, rRNA-depleted)

logo(count, total RNA) logsg(count, total RNA)

Figure 14: Probe counts averaged by gene show significant off-target effects when rRNA is present.
These probes were removed from future Splintlock-seq pools.
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3. DISCUSSION

This project demonstrated the feasibility of applying single-cell RN A-seq as a tool for amplifying
and analyzing both mammalian and bacterial trancriptomes. The Smart-seq method was optimized
for use with LA-4 cells and established benchmarks for cDNA quantification and amplification. We
observed a technical variation between single cell samples of only 9.18% and a biological variation of
12.11% across a panel of selected housekeeping and reference genes. We also made significant
progress optimizing the RamIDA-seq method for use with purified LA-4 and Burkholderia RNA. We
selected the 0.1x DNAse/0.1x T4¢32 and 0.2x DNAse/0.2x T4g32 condition as candidates for
further optimization and will continue optimizing these conditions towards increasing sensitivity and
decreasing amplification bias. While both of these conditions produced promising results, the
success rate of the process was between 60-70%, indicating that further optimization would be
desirable. As a future direcion, we hope to improve the consistency of the RamDA-seq method and
apply it to single LA-4 and Burkholderia cells to study each cell’s gene expression and better
understand the interactions between them.

OligoRL uses true “black-box" reward functions. The quality of a candidate oligo pool can be
measured using simple algebraic expressions (like degeneracy of the pool) or complex calculations
performed by external software packages (such as genome-wide sequence aligners). NSR-RL has a
complex, multifactorial reward function, and calculating rewards makes up the majority of the
algorithm’s runtime. Researchers with computationally intensive reward functions may consider
approximating the reward with a simpler function. Performing more rollout simulations with a less
accurate reward may yield better solutions than fewer simulations with better reward estimates.

OligoRL works best when finding optimal solutions from a large set of valid solutions. When the
pool of valid solutions shrinks, the nature of the design problem shifts from finding optimal
solutions to finding valid solutions that satisfy the problem’s constraints. Rollout, and therefore
OligoRL, performs better at optimization than constraint satisfaction. When valid solutions are
difficult to find, OligoRL explores many dead-end solutions with poor rewards. For example,
instructing NSR-RL maximize total hits leads to states where there are only a few valid hexamers
left. In this scenario, OligoRL randomly samples many hexamers but often fails to find the few valid
ones. The invalid simulations do not provide useful information to the agent since all invalid actions
appear equally poor. Conversely, when nearly all solutions are valid, OligoRL quickly determines
good actions for each state since every simulation provides information about an action.

NSR-RL finds sets of oligos with differing degeneracy. Some wet-lab protocols suggest oligo pools
with equimolar concentrations, so experimenters should be careful to mix the oligos in proportion
to their degeneracy. The added mixing complexity is a trade-off for the savings gained when using
these tools.

Our iterative approach to Splintlock-seq development identified and removed several probes with
affinity toward rRNA transcripts. Our results highlight the difficulty of a purely bioinformatic
approach to identifying “good” probes that target only mRNA. Future work should combine both a
bioinformatic pipeline and experimental profiling to identify the optimal probe set.
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Similarly, the reaction conditions for a Splintlock-seq experiment could be improved. Several factors
affect the library prep, and a multifactorial design is required to assess the quality of the final
libraries. Our experience shows that library quality is nonlinear with respect to input factors, so
simple first-order linear models may not be adequate.

The Splintlock-seq computational pipeline was tested using the transcriptome of S. wutans. We also
used the pipeline to generate probe sets for S. sobrinus and Burkholderia thailandensis. For both other
species, our pipeline was able to final probe sets that hit neatly every gene while missing rRNA
sequences. We do not anticipate any difficulty applying these methods to other bacteria of interest.
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4, METHODS

Cell Culture

LA-4 cells, which are a murine lung epithelial cell line, were cultured in F-12K medium with
15% fetal bovine serum and 1% penicillin-streptomycin at 37°C in 5% CO.. Single cells were either
picked up with a micropipette under a microscope or sorted using fluorescence-activated cell sorting
(FACS). Premade lysate was prepared by centrifuging a cell suspension of known concentration at
150 g for 5 minutes and resuspending the pellet in lysis buffer. Lysis buffer was composed of 0.3%
NP-40 surfactant in DI water.

Smart-seq

Premade lysate was diluted from 1000 cells/ul down to 1 cell/ul for our optimization experiments.
Either premade lysate or a single cell was added to each tube of a set of strip tubes. 1 ul oligo dT
primer and 1 ul 40 mM dNTPs were added to each tube, and the samples were denatured at 72°C
for 3 minutes and 42°C for 2 minutes. 6 ul of reverse transcription mix, containing 2 ul 5x Maxima
Buffer, 0.25 ul RNase OUT, 0.75 pl template-switching oligo (TSO), 0.5 ul Maxima -H Reverse
Transcriptase, and 2.5 pl nuclease-free water, was added to each sample. The reverse transcription
reaction started at 42°C for 90 min, then continued with 10 cycles of (50°C for 2 min, 42°C for 2
min) and ended with a final inactivation step of 70°C for 15 min. 10 ul of PCR mix, containing 4 ul
5x GC Buffer, 0.4 ul ANTPs, 2 ul 1 uM IS PCR Oligo, 0.2 pl Phusion polymerase, and 3.4 pul RNase-
free water, was added to each sample™. Each sample was cleaned using Ampure XP beads following
the Smart-seq2 protocol™, using a bead to sample ratio of 0.8:1. cDNA yield was quantified using
cither a 2100 Agilent Bioanalyzer with the High Sensitivity DNA kit or a Qubit 2.0 Fluorometer
with the High Sensitivity dsDNA kit.

RamDA-seq

RamDA-seq biochemistry processes and whole transcriptome amplification were adapted from the
protocol established by Hayashi et al °. 1 ul of either purified RNA or premade lysate was added to
each tube of a set of strip tubes and denatured at 70°C for 90 seconds. 2 pl of reverse transcription
mix, containing 0.6 ul 5x PrimeScript Buffer, 0.2 ul DNase I, 0.06 ul 10 uM Oligo (dT), 0.8 pl 10 uM
I*-NSR primers, 0.2 pl 1 mg/mL NEB (or Roche) T4g32 protein, and 0.15 ul PrimeScript enzyme
mix, was added to each sample. The reverse transcription reaction started at 25°C for 10 min,
continued at 30°C for 10 min, 37°C for 30 min, and 50°C for 5 min, then ended with a final
inactivation step of 94°C for 5 min. 2 ul of second-strand synthesis mix, containing 0.5 pl 10x
NEBuffer2, 0.5 ul 10 mM dN'TPs (2.5 mM each), 0.4 ul 100 uM 2*-NSR primers, 0.45 ul RNase-
free water, and 0.15 pl Klenow Fragment, was added to each sample. The second-strand synthesis
reaction started with 16°C for 60 min and ended with 70°C for 10 min. Each sample was cleaned
using Ampure XP beads following the Smart-seq2 protocol™ using a bead to sample ratio of 1:1.
Each sample’s cDNA yield was quantified using either a NanoDrop 1000 instrument or a Qubit
fluorometer with the High Sensitivity dsDNA Kkit.
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qRT-PCR

10 ul SYBR Green PCR Master Mix (Applied Biosystems) was added to each well of a 96-well plate.
0.4 ul of 10 uM forward primer and 0.4 pl of 10 uM reverse primer (Appendix A) were then added
to each well, along with 8.2 ul of RNase-free water. Finally, 1 ul of sample was added to each well.
The plate was then incubated at 95°C for 10 min, followed by 40 cycles of 95°C for 15 seconds, 60°C
for 1 min, and a plate read, and ending with a 5 second melt curve step starting at 65°C and
increasing to 95°C in increments of 0.5°C.

Computational Methods

OligoRL and all simulation codes are available as a Julia package at http://jensenlab.net/tools.
Simulations were run using Julia version 1.2.8 on a 16-core 3.2 GHz AMD Threadripper processor
with 48 Gb of RAM.

The rollout algorithm used in OligoRL can be parallelized at either the action or simulation level.
For example, when simulating the reward for a single base, each simulation can be executed in
parallel by a separate thread. This study used Julia’s multithreading tools to perform parallel
computations on a multicore processor. The code can also be configured for a cluster computing
environment where parallel simulations execute on separate machines.

The Splintlock-seq probe design pipeline was written in the R programming language using the
Bioconductor library. All sequencing data analysis was performed using custom R scripts using
bowtie® for sequence alighment.

NSR-RL Algorithm

NSR-RL designs Not-So-Random primer pools for RNA-seq library preparation and other
multiplex genomic assays. Users supply two sequence files containing 1.) “targeted” transcripts that
should be targeted by the NSR primers, and 2.) “unallowed” transcripts to avoid, e.g. transcripts
from rRNA and tRNA genes. The user also specifies the number of NSR primers to create and the
length of the primers (the default is hexamers).

NSR-RL builds oligos using rollout with dynamic action spaces. Candidate oligos are assigned a
reward of zero if they hit any unallowed transcript. Palindromic candidates are also assigned a
reward of zero since palindromic reverse transcription primers may self-anneal during amplification.
Non-palindromic candidate oligos that miss the unallowed transcripts are scored by the multifaceted
reward function. The first three terms in the reward are calculated by counting the number of times
the oligo hits each targeted sequence. First, the gene count term is the number of genes that are hit
at least once. Second, the total hits term is sum of all hits across the transcriptome. Third, the
intergene uniformity score is calculated using the DULQ score of all of the hit counts. Calculating
the fourth term in the reward, intragene uniformity, requires the gaps between hits to calculate the
DULQ for each transcript. Transcripts with a more uniform gap distance distribution will score
higher than transcripts with different sized gaps. The overall intragene uniformity score is the
average DULQ across all transcripts. We multiply the inter- and intragene uniformity scores by the
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number of targets, Neargets, to place these rewards on a similar scale as the other terms. The target
count and uniformity terms range from 0 to Ngargets, While the total hits is term is unbounded. Each

term in the reward function has an associated weight 8, and the weights can be changed to tune the

pools empirically.

After NSR-RL finishes an oligo, the oligo and its reverse complement are added to the list of
unallowed sequences to prevent avoid repeats or selecting oligos that could form dimers when the
libraries are amplified.

NSR-RL was benchmarked by creating 100 degenerate hexamers targeting the transcriptome of the
1076 Mb transcriptome of Streptococcus mutans strain UA159 (Figure 12B—E). Unless otherwise
specified, the reward weights were Bgene = 1, Bhits = 107, Binter = 1, and Binera = 1. To
compare NSR-RL runtime with transcriptome size (Figure 12F), 30 degenerate hexamers were

designed to target the transcriptomes of 25 species of bacteria.

Splintlock-seq

A pool of padlock probes generated by our automated design pipeline was synthesized and
hybridized to isolated total RNA from the condition of interest. If a target mRINA is present, the
ends of a respective padlock probe was ligated together by SplintR ligase, generating a circularized
ssDNA molecule. Signal amplification and enrichment was then simultaneously carried out using
Phi29-mediated rolling circle amplification initiated from a primer annealed to the padlock
backbone. In this way, only intramolecular ligation products undergo amplification. The rolling
circle amplification product is then used as template for a low-cycle number PCR with primers that
add custom, dual-indexed Illumina adapters. These adapters enable the pooling of dozens of
individual libraries to further reduce per library sequencing costs. Libraries were purified using
AMPure beads and pooled in an equimolar fashion. The pooled libraries were sequenced on a
NovaSeq 6000 instrument at the Biotechnology Core Facility at the University of Illinois.
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APPENDIX A. QRT-PCR PRIMER SEQUENCES

Gene Sequence

Tubb5 CAGTCTGAGACCGGCCCAG

Trim 28 ACCAGCTCAGGCTTGGAGGT

Sdha GCTTACCTGCGTTTCCCCTC

B2m CAGTCGTCAGCATGGCTCG

Eef1b2 CCTTCGCCATGGGATTCG

Tbp CCCCCTCTGCACTGAAATCA

Tfrc TGCTAATGAGACCCACAGATACTGG
Reverse Primers

Gene Sequence

Tubb5 TGTGCACGATTTCCCTCATG

Trim 28 ACACGGCAGATAGTGGCACTG

Sdha CTGGCGCAACTCAATCCCT

B2m AGCATACAGGCCGGTCAGTG

Eeflb2 CGCCAGGTAATCGTTGAGCA

Tbp GTAGCAGCACAGAGCAAGCAA

Tfrc AGCTCATATTATTTGGATTGTGGCA
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