
 

 
 
 
 
 
 
 
 
 
 
 

SANDIA REPORT 
SAND20XX-XXXX 
Printed September 2021 
 

Platform for Single-Cell Dual RNA 
Sequencing of Host-Pathogen 
Interactions 

 
 

Ramdane Harouaka, Anna Fisher, Ryan Wyllie, Benjamin David, Paul Jensen 
 
 
 
 
 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 
87185 and Livermore, 
California 94550 

SAND2021-13373



 

2 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National 
Technology & Engineering Solutions of Sandia, LLC. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of 
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency 
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily 
state or reflect those of the United States Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@osti.gov 
 Online ordering: http://www.osti.gov/scitech 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5301 Shawnee Rd 
 Alexandria, VA 22312 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.gov 
 Online order: https://classic.ntis.gov/help/order-methods/ 
 
 

 

  

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/


 

3 

ABSTRACT 

The aim of this project was to advance single cell RNA-Seq methods toward the establishment of a 
platform that may be used to simultaneously interrogate the gene expression profiles of mammalian 
host cells and bacterial pathogens. Existing genetic sequencing methods that measure bulk groups of 
cells do not account for the heterogeneity of cell-microbe interactions that occur within a complex 
environment, have limited efficiency, and cannot simultaneously interrogate bacterial sequences. In 
order to overcome these challenges, separate biochemistry workflows were developed based on a 
Not-So-Random hexamer priming strategy or libraries of targeted molecular probes. Computational 
tools were developed to facilitate these methods, and feasibility was demonstrated for single-cell 
RNA-Seq for both bacterial and mammalian transcriptomes. This work supports cross-agency 
national priorities on addressing the threat of biological pathogens, and understanding the role of 
the microbiome in modulating immunity and susceptibility to infection. 
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ACRONYMS AND DEFINITIONS 

 

Abbreviation Definition 

DNA Deoxyribonucleic acid 

cDNA Complementary DNA 

dsDNA Double-stranded DNA 

RNA Ribonucleic acid 

rRNA Ribosomal RNA 

tRNA Transfer RNA 

mRNA Messenger RNA 

RNA-Seq RNA sequencing 

scRNA-Seq single-cell RNA-Seq 

DualRNA-Seq dual single-cell RNA-seq 

NSR primers Not-So-Random primers 

BSA Bovine serum albumin 

PEG Polyethylene glycol 

MDP Markov Decision Process 

DULQ distribution uniformity, lower quartile  

PCR Polymerase Chain Reaction 

 

  



 

9 

1. INTRODUCTION 

The microbiome is a diverse population of trillions of microorganisms that coexist and interact with 
the human body and its environment. Recent advances in genomic techniques have led to the 
discovery of microbiomes dynamically mediating susceptibility to infections, therapeutic efficacy, 
and progression of diseases including neurological disorders such as Parkinson’s disease and autism 
1-3. In 2016 the White House announced a National Microbiome Initiative leading a group of 21 
government agencies (including DOD, NIH and FDA) to form a Strategic Plan whose aims include 
“supporting interdisciplinary research” and “developing platform technologies” to advance 
microbiome research towards healthcare, food security, and environmental restoration 4. 

The goal of this project was to develop methods for single-cell RNA-seq (scRNA-seq) for 
simultaneous transcriptional profiling of both a bacterium and a mammalian cell, known hereafter as 
“dual single-cell RNA-seq", or simply DualRNA-seq. The major challenge for DualRNA-seq is the 
highly skewed ratios of bacterial to mammalian RNA when a single mammalian cell is lysed with a 
single, much smaller, bacterial cell. Bulk RNA isolated from host/pathogen co-cultures will have 10-
1000 times more host RNA than pathogen RNA. To see transcriptional changes in both organisms, 
previous work has 1.) used enormous amounts of sequencing until the pathogen’s transcriptome can 
be resolved; or 2.) depleted the host RNA, usually by negative selection against the poly-A tails of 
eukaryotic transcripts. Neither strategy is amenable to single cell experiments. Preparing RNAseq 
from single cells already requires high sequencing depth and a single library preparation, so 
DualRNA-seq methods are too costly or technically infeasible. 

Additionally, the mRNA desired for DualRNA-seq is less than 10% of both the bacterial or 
mammalian RNA pools, with the rest of the pools made up of the highly abundant rRNA and tRNA 
(Figure 1). Typically, rRNA is depleted by passing total RNA through columns that selectively bind 
rRNA. For mammalian RNA, the poly-A tails can be used to select mRNA directly. However, 
neither of these techniques can be applied to single cells. Previously the study of combined host and 
microbe transcriptomes was only possible by extraction of RNA from bulk samples, which averages 
interactions between cells across time and population heterogeneity, completely obscuring 
information needed to understand stability or progression of signatures that differentiate commensal 
(ie. microbiome) versus pathogenic activity. Single-cell dual RNA-Seq of host and pathogen cells has 
been proposed as a solution for retaining information linked to heterogeneity and increasing the 
limit of detection for rare pathogen transcripts 5. The recent development of barcoding strategies 
combined with droplet-based microfluidics has enabled high-throughput processing of tens of 
thousands of single cells for RNA-Seq 6, 7. However, these emerging research solutions and 
commercially available systems (ie. 10x Chromium) fundamentally rely on barcoding off of poly-
adenylated messenger RNA molecules from eukaryotic cells, and therefore cannot effectively 
capture RNA from bacteria 8. Furthermore, droplet-based microfluidic solutions are not compatible 
with maintaining cell viability after partitioning, and do not allow additional characterization of 
chemistries using combined techniques (eg. imaging). 
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This project developed two methods to address the above problems. Our proposed innovation was 
to adapt a very recently published isothermal RNA-Seq library preparation protocol employing a 
subset of random hexamer primers (Not-So-Random primers) to avoid ribosomal RNA 
amplification. This approach has been demonstrated to allow total RNA-Seq (including long non-
coding RNA and enhancer RNA) from mammalian cells 9. We hypothesized that this method would 
also allow amplification of the entire transcriptomes from both species of a cell-bacterium pair, 
which is unprecedented. Due to its isothermal nature, this protocol is compatible with easily 
fabricated open microwell formats that allow microfiltration strategies we have previously developed 
10 to selectively capture viable single cell-microbe pairings. We improved computational methods to 
develop pools of Not-So-Random (NSR) primers to selectively amplify mRNA from both bacteria 
and the host cells while avoiding rRNA and tRNA. We also developed Splintlock-seq, a gene 
expression profiling technique that used molecular probes to target only the genes of interest in a 
sample. Both methods can address the small ratio of bacterial to mammalian mRNA by increasing 
the amount of probes or NSR primers that target the bacterial genes. 

1.1. No-So-Random Primers 

Highly abundant transcripts from rRNA and tRNA genes constitute up to 95% of the RNA in the 
cell 5. If these transcripts are not removed before sequencing, they can vastly inflate the sequencing 
cost needed to quantify the abundance of mRNA. In bulk RNA from eukaryotes, mRNA transcripts 
can be enriched by polyT selection; however, prokaryotic mRNAs are not polyadenylated, and the 
highly abundant rRNA transcripts must instead be removed by physical capture with silica columns 
or magnetic beads 11-13. Column- and bead-based separations are not possible in single-cell RNA-seq 
studies where libraries are prepared from picograms of RNA in droplets or microwells. 

Figure 1:  Low amounts of bacterial RNA and an overabundance of rRNA complicate DualRNA-Seq. 5 
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Some RNA-seq protocols use random hexamers to prime reverse transcription. The hexamers bind 
randomly across the transcriptome, so libraries made from total RNA will be dominated by rRNA. 
Recently, NSR primers have been used to selectively amplify non-rRNA sequences 14. An NSR pool 
contains only the hexamers that are not found in the rRNA genes, so rRNA transcripts are not 
primed for reverse transcription and subsequent amplification. NSR pools are used to selectively 
prime reverse transcription in when preparing sequencing libraries. The original NSR pools were 
designed to avoid hybridization to rRNA transcripts 14. 

This project developed a new computational framework, called OligoRL, to solve combinatorial 
oligonucleotide optimization problems such as designing NSR primer pools. The OligoRL 
framework improves NSR selection by avoiding the avoid brute-force selection of NSR primers and 
instead design pools of hexamers with optimal coverage and uniformity. The oligos in brute-force 
pools are scored individually and may not represent the best overall pool when combined. Current 
NSR pools are designed only to maximize the number of binding sites in the transcript, leading to 
skewed coverage of transcripts. 

1.2. Splintlock-seq 

Probe-based library preparation techniques are also designed to avoid rRNA. RASL-seq uses SplintR 
ligase and pairs of DNA probes to quantitatively profile gene expression 15. In this approach, pairs of 
DNA probes hybridize adjacent to one another on the target mRNA and are ligated together by 
SplintR ligase 15. Subsequent amplification and tagging can be accomplished by making use of 
known sequences in the probe tails. However, RASL-seq suffers from high levels of noise at low 
target RNA concentrations and requires manual probe design. The latter requirement has limited the 
scope of RASL-seq studies to a small subset of the transcriptome. Our approach improves upon 
RASL-seq library prep by building an automated, computational pipeline capable of designing 
thousands of probes to target the entire transcriptome. We also employ padlock probes, whose 
architecture improves assay sensitivity as well as specificity and allows for unbiased signal 
amplification. 

Chorella virus DNA ligase, also known as SplintR ligase, catalyzes the formation of phosphodiester 
linkages between adjacent resides of single stranded DNA molecules hybridized on RNA 16. SplintR 
ligase exhibits minimal bias for nucleotide identity at the ligation junction while demonstrating a 
high degree of sensitivity to ligation junction mismatches 17. These qualities have led to the use of 
SplintR ligase in highly specific detection assays targeting miRNA isoforms 18, SNPs 17, and splice 
variants 19. Assays employing SplintR ligase have demonstrated remarkable sensitivity. One recent 
study showed that SplintR ligase could be used in conjunction with qPCR to specifically detect 
attogram quantities of a specific miRNA from within 10 ng of total RNA 18. 

A padlock probe is a single stranded, linear DNA oligonucleotide that contains sequence 
complementary to a target molecule at the 5’ and 3’ ends, with a constant non-hybridizing backbone 
in between. When a padlock probe binds to its target, the two ends hybridize directly adjacent to one 
another. The ends can then be ligated together using an enzyme such as SplintR ligase, creating a 
circular single-stranded DNA (ssDNA) molecule in the process. Padlock probe-based detection of 
nucleic acids exhibits greater targeting specificity and sensitivity than paired probe strategies due to 
the cooperative annealing dynamics of the two probe ends. Furthermore, circularized ssDNA 
molecules can be efficiently used as template for isothermal, rolling circle amplification with Phi29 
DNA polymerase. Phi29 DNA polymerase exhibits very low bias, high fidelity, extremely high 
processivity, and strong multiple strand displacement activity 20. By adding a primer targeting the 
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padlock backbone, Phi29 DNA polymerase can be used to initiate a rolling circle amplification, 
selectively amplifying intramolecular ligation products. This improves signal-to-noise ratios as non-
specific intermolecular ligation products and unreacted probes will not be amplified. The degree to 

which rolling circle amplification boosts signal is remarkable. At 30 ∘C, Phi29 DNA polymerase is 
capable of incorporating 2280 nt/min. The enzyme’s average processivity is greater than 70 kb, 
indicating that a single 90 nt circularized padlock probe can be used as template to produce a 
concatamer containing over 775 copies in a half an hour 21. 

The experimental workflow of the proposed Splintlock-seq library prep is outlined in Figure 2. A 
pool of padlock probes generated by our automated design pipeline will be synthesized and 
hybridized to isolated total RNA from the condition of interest. If a target mRNA is present, the 
ends of a respective padlock probe will be ligated together by SplintR ligase, generating a circularized 
ssDNA molecule. Signal amplification and enrichment will then be simultaneously carried out using 
Phi29-mediated rolling circle amplification initiated from a primer annealed to the padlock 
backbone. In this way, only intramolecular ligation products undergo amplification. The rolling 
circle amplification product is then used as template for a low-cycle number PCR with primers that 
add custom, dual-indexed Illumina adapters. These adapters enable the pooling of dozens of 
individual libraries to further reduce per library sequencing costs. Libraries will then be purified 
using AMPure beads and pooled in an equimolar fashion. The pooled libraries are then sequenced 
and used for differential gene expression analyses. 

 

Figure 2: The Splintlock-seq pipeline. 

We also developed an automated computational pipeline for the design of padlock probes. This 
pipeline was used to create an initial probe pool targeting all annotated transcripts in the genome. 
The probe pool was then assessed for ligation on rRNA and redesigned to remove non-specific 
probes.  
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2. RESULTS 

2.1. Optimization of Biochemistry for Whole Transcriptome Amplification 

The initial steps for optimization involved adapting the Smart-seq method 22 for use with murine 

lung epithelial LA-4 cells to establish a benchmark for cDNA quantification and amplification. 

Establishing this benchmark would allow us to evaluate reaction efficiency while optimizing the 

RamDA-seq method, as well as explore different methods for increasing sensitivity. Each Smart-seq 

optimization experiment started with LA-4 cell culture and lysis, then continued with reverse 

transcription and amplification. After amplification, the samples were cleaned using Ampure XP 

beads. Finally, quantification and/or qRT-PCR were performed to evaluate the effects of each 

optimization on cDNA yield and amplification. 

 

2.1.1. Lysis Buffer 

With the goal of improving RNA stability and cDNA yield, we tested the addition of 1 mg/mL 

bovine serum albumin (BSA) to our lysis buffer. BSA has been found to help stabilize RNA and 

protect it from degradation23. We found that BSA decreased the efficiency of Ampure XP bead 

cleanup and produced a 5-fold decrease in cDNA yield (Figure 3), so we proceeded with lysis 

buffers that did not contain BSA for future experiments. 

 

 
Figure 3. cDNA yield of Smart-seq samples prepared with and without the addition of BSA to the 

lysis buffer. All samples contained LA-4 lysate. 

 

 



 

14 

2.1.2. Reverse Transcription & PCR Amplification 

We tested the addition of two different hydrogels during the reverse transcription and PCR reactions 

with the goal of increasing reaction efficiency to improve the sensitivity of Smart-seq. We first tested 

the addition of polyethylene glycol (PEG) 8000 to achieve a molecular crowding effect. In the 

molecular crowding effect, hydrogel molecules take up space in the aqueous solution, resulting in a 

lower effective reaction volume24. We tested PEG concentrations between 0 and 15% (Figure 4) and 

found that PEG did increase cDNA yield.  

 

 
Figure 4. cDNA yield of samples containing concentrations from 0-15% of PEG (left) and 

concentrations from 0-0.3% of agarose (right). 

 

Next, we tested the addition of agarose, a hydrogel known to have a molecular confinement effect. 

Molecular confinement, in contrast to molecular crowding, is where the hydrogel transforms the 

solution into more of a solid state, creating small pores for the reactions to occur in. This pushes the 

reacting molecules closer together, increasing reaction efficiency. In addition, agarose has been 

found to improve enzyme stability, which also helps increase reaction efficiency25. We tested agarose 

concentrations between 0 and 0.3% (Figure 4) and found that agarose increased cDNA yield at 

lower concentrations than PEG.  

 

Finally, we tested different combinations of PEG and agarose in the hopes of achieving both 

molecular crowding and confinement effects simultaneously (Figure 5). We concluded that adding 

PEG and agarose did increase cDNA yield. We ultimately selected the 5% PEG and 0.1% agarose 

condition to use in future experiments, as it was a good balance between increasing reaction 

efficiency while still being easy to pipette accurately. After performing a replicate experiment with a 

t-test (p=0.0253), we concluded that the difference in cDNA yield between samples with PEG and 

agarose versus samples with neither was statistically significant (Figure 5).  
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Figure 5. Screening of different combinations of PEG and agarose (left). Comparison of cDNA 

yield between samples with 5% PEG and 0.1% agarose and samples with neither PEG nor agarose 

(right). The difference in cDNA yield was statistically significant (p=0.0253). 

 

2.1.3. qRT-PCR Validation 

To confirm that our optimized method had minimal amplification bias after 18 PCR cycles, we 

performed Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments using both 

lysate samples and single-cell samples. In both experiments, we included a bulk lysate control that 

was produced by performing reverse transcription on purified RNA stock. We normalized the 

expression levels of our samples against this control sample for each experiment. Relative expression 

levels were calculated by finding the average C(t) value of each sample, taking the reciprocal, and 

normalizing against the control sample. 

 

 We measured the expression of six different genes: Tubb5, Trim28, Sdha, Tfrc, Tbp, and 

Eef1b2. In our experiments, we expected all of these genes to be housekeeping genes in LA-4 cells 

except for the Trim28 and Tfrc genes. The Tubb5 gene codes for tubulin, which is involved in 

mitosis and the cell cycle. Trim28 is a transcription mediation factor, while Eef1b2 is a translation 

mediation factor. Sdha is involved in cellular respiration, and Tbp codes for the TATA binding 

protein. Finally, the Tfrc gene codes for the transferrin receptor, which is involved in the uptake of 

iron into the cell. We ran two different qRT-PCR experiments with our Smart-seq samples: one with 

lysate samples and one with single-cell samples (Figure 6). The goal of the lysate experiment was to 

determine whether our optimized Smart-seq method was resulting in amplification bias, while the 

goal of the single-cell experiment was to see if our method could resolve the heterogeneity between 

individual cells. 
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Figure 6. Gene expression of lysate samples (left) and single cells (right) prepared with our 

optimized Smart-seq method. We expected all six of these genes to be housekeeping genes except 

for Trim28 and Tfrc.  

 

Lysate experiment included two 1 cell samples taken from lysate stock 1, making them technical 

replicates. The third sample was a bulk cDNA sample taken from a purified LA-4 RNA stock, 

making it a biological replicate with the other two samples. If minimal amplification bias was 

present, we would expect all housekeeping genes to have similar expression levels. We saw similar 

expression levels for all genes except Tubb5 and Trim28. The differences in Tubb5 expression levels 

are likely related to differences in cell cycle stage at the time of lysis, as tubulin involved in mitosis. 

Differences in Trim28 expression were expected, as it is not a housekeeping gene. We concluded 

that our optimized Smart-seq method had minimal amplification bias, as we saw less than 10% 

technical variation and less than 15% biological variation in our lysate samples. 

 

Single-cell experiment included four samples: one cell selected with a micropipette, one cell sorted 

using FACS, ~5 cells selected with a micropipette, and the same bulk cDNA control from the lysate 

experiment. We found that our 5 cell sample expression levels more closely matched the bulk cDNA 

control, while our single cell samples closely matched each other but deviated from the bulk cDNA 

control. We concluded that our optimized Smart-seq method could resolve the heterogeneity 

between individual cells, as it was sensitive enough to reveal differences in gene expression found in 

different single-cell samples. 

 

2.2. RamDA-seq 

Though Smart-seq is advantageous due to its full transcriptome coverage, one of its main drawbacks 

is that it cannot be used to study bacterial RNA. Smart-seq uses an oligo (dT) to prime for reverse 

transcription, which binds to the poly (A) tail of each mRNA strand. However, most bacterial RNA 

strands do not have poly (A) tails26. To address this problem, the RamDA-seq protocol27 uses not-

so-random primers (NSRs), which are hexamers that bind at random points along the RNA strand. 
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Reverse transcriptase then binds to the NSRs and produces a cDNA strand, which is nicked by 

DNase I and then pulled off and protected by the T4g32 protein27. We optimized the RamDA-seq 

method as it would allow us to be able to sequence both mammalian and bacterial RNA at the same 

time, enabling the study of both host and pathogen expression simultaneously. 

 

To ensure that we could perform RamDA-seq successfully, we performed preliminary experiments 

following the original RamDA-seq protocol that included only RNA denaturation and reverse 

transcription. However, our samples consistently had cDNA yields of less than 0.5 ng/µl when 

quantified with the Qubit fluorometer, which was too low to proceed with the rest of the RamDA-

seq protocol. We then ran a series of experiments changing different aspects of the reverse 

transcription reaction in an attempt to produce a higher cDNA yield. We compared T4g32 proteins 

purchased from both Roche and New England Biolabs (NEB), since Hayashi et al found T4g32 

protein purchased from NEB to be more stable27. We tested increasing the time at 37oC from 30 

minutes to either 60 minutes or 120 minutes, as it was shown to increase cDNA amplification27. We 

also tested 2x and 0.1x DNase I conditions, as well as the addition of 50% PEG to achieve a 

molecular crowding effect. However, all of these test conditions continued to produce low cDNA 

yields, even in samples with 100 cells’ worth of lysate.  

 

Our next experiments also included the second-strand synthesis step of the RamDA-seq protocol. 

Performing second-strand synthesis would allow us to more accurately quantify our cDNA yield for 

each sample using the Qubit dsDNA HS kit, since the cDNA would be double-stranded. We also 

switched from using LA-4 lysate to using purified LA-4 RNA, to eliminate the possibility of 

genomic DNA contamination. 

 

After continuing to see low cDNA yields in our samples even after adding second-strand synthesis, 

we performed qRT-PCR to confirm that the cDNA produced with the RamDA-seq protocol was 

being amplified sufficiently, and that common housekeeping genes could be detected. We measured 

the expression of the Tubb5, Sdha, B2m, and Eef1b2 genes. The Tubb5 gene codes for tubulin, 

which is involved in mitosis and the cell cycle. Sdha is involved in cellular respiration, while B2m is 

involved in antigen presentation. Finally, Eef1b2 codes for a translation elongation factor. Though 

we did see expression of these four genes in some of our samples, we also observed some gene 

dropout (Figure 7). 
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Figure 7. Relative gene expression of 1 cell LA-4 lysate samples prepared with RamDA-seq 

compared to positive control. Positive control sample contained ~50 cells worth of RNA that 

underwent the Smart-seq process up to but not including PCR. 

 

To troubleshoot this problem, we ran an experiment to test our oligo (dTs) and NSRs to confirm 

that both worked individually and together. We ran samples with only oligo (dT), only NSRs, both 

oligo (dT) and NSRs (Figure 8) and compared the cDNA yield of each condition. We ran duplicate 

samples of both 1000 cell/µl LA-4 lysate and 20 ng/µl purified LA-4 RNA and concluded that both 

the oligo (dTs) and NSRs worked. However, we did see some inconsistencies in cDNA yield, as we 

did not see any cDNA yield in our lysate samples containing both oligo (dT) and NSR primers. 

  

As previously mentioned, we again tested increasing amounts of time at 37oC during reverse 

transcription. In this experiment, we tested 30, 60, 120, and 240 minutes at 37oC (Figure 8) and 

found that while cDNA yield did appear to increase slightly with time, the difference was not 

statistically significant when compared with the 30 minute condition (t-test, p>0.05). We decided to 

use the 60 minute condition in future experiments in order to maximize amplification without 

significantly affecting the length of the experiment. 



 

19 

 
Figure 8. Testing both our oligo (dT) primers and our NSR primers to ensure that both can be used 

for reverse transcription (left). Testing increasing amounts of time at 37oC during reverse 

transcription (right).  

 

After procuring a fresh set of reagents, we tested different concentrations of DNase I and T4g32 

protein. We found that decreasing the concentration of both DNase I and T4g32 resulted in 

amplification and significantly increased cDNA yield, while increasing DNase I and T4g32 

concentrations decreased cDNA yield (Figure 9). We saw approximately an 18-fold increase in 

cDNA yield between the 1x DNase/T4g32 and 0.1x DNase/T4g32 conditions.   

 

 
Figure 9. Varying concentrations of DNase I and T4g32 protein compared to original RamDA-seq 

protocol (1x DNase/1x T4g32 condition). 
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Having identified a condition that produced a substantial cDNA yield, we began testing other 

combinations of DNase and T4g32 concentrations to improve sensitivity. We found that conditions 

with 0.2x DNase had approximately a four-fold increase in cDNA yield compared with samples that 

had 0.05x DNase (Figure 10). We considered this condition to be a suitable candidate for further 

optimization. 

 

 
Figure 10. cDNA yields of samples prepared with different concentrations of DNase I and T4g32. 

 

We then ran preliminary experiments applying our optimized RamDA-seq method to samples 

containing purified Burkholderia RNA to validate that our method will work with bacterial RNA, 

despite the not-so-random primers being optimized for use with mouse cells. We found that though 

there was a significant difference in cDNA yield between the LA-4 and Burkholderia samples, our 

optimized RamDA-seq method was able to produce a substantial cDNA yield when starting from 

bacterial RNA (Figure 11). We also prepared samples that contained 10 pg of purified LA-4 RNA 

and 10 pg purified Burkholderia thailandensis RNA to test if our method would work with a 

combination of mammalian and bacterial RNA. While one of our samples had a dsDNA 

concentration of 4.66 ng/µl, the other had a yield that was too low to detect with a Qubit 

fluorometer. We hope to continue optimizing the RamDA-seq method to improve consistency 

between samples. 
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Figure 11. cDNA yields of LA-4 RNA samples and Burkholderia RNA samples, starting from 20 ng 

of purified RNA. 

 

2.3. The OligoRL Framework 

OligoRL formulates the oligo design problem as a Markov Decision Process (MDP) 28. The MDP 

describes how an agent in a state 𝑠𝑖 selects an action 𝑎𝑖 that moves the agent to a new state 𝑠𝑖+1. 

The transition between states is accompanied by a reward 𝑟𝑖. The agent’s goal is to select actions that 

maximize the sum of all the rewards. Our problem is to build an oligo of length 𝐿 by selecting 
degenerate base codes at each position. The oligo codes are selected sequentially beginning at the 

5’ end. An agent in state 𝑠𝑖 has selected the first 𝑖 − 1 oligo codes, so the agent begins at state 𝑠1, 

when zero oligo codes have been selected, and finishes at state 𝑠𝐿+1. The state defines not only how 
many but also which codes have been selected. An agent that has selected codes ACG is in a 
different state than an agent that has selected codes ACT. 

Once in state 𝑠𝑖, the agent selects the code to place at position 𝑖. This selection corresponds to the 

action 𝑎𝑖, which is drawn from the set of possible codes 𝐴(𝑠𝑖). The set of allowed codes is state-

dependent—the codes selected for the prior positions 1 … 𝑖 − 1 can change the codes available to 

the agent at position 𝑖. Each available code 𝑎𝑖 ∈ 𝐴(𝑠𝑖) has an associated reward 𝑟𝑖(𝑎𝑖). This reward 

depends on the entire oligo up to and including position 𝑖. The final reward 𝑟𝐿(𝑎𝐿) is based on the 
entire oligo. 

We do not make any assumptions about the reward functions. For example, the reward for an oligo 
can be based on aligning the oligo to a genome and counting the number or quality of the hits. It is 
also possible to set all but the final rewards to zero, delaying the reward calculation until the entire 
oligo has been selected. Furthermore, the reward function can be applied to either a single oligo or 
an entire oligo pool. The flexibility of the reward function underlies the generality of our approach, 
but it also requires us to solve the oligo selection problem by simulation. 

We use a rollout algorithm to choose the best code at each position. Rollout is a reinforcement 
learning (RL) technique used to solve large MDPs by simulating trajectories using a computer model 
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29, 30. In state 𝑠𝑖 we begin by considering the first code 𝑎1 ∈ 𝐴(𝑠𝑖). We simulate ahead to the end of 
the oligo, choosing codes randomly and summing the rewards. By averaging the rewards from many 

random trajectories, all beginning with action 𝑎1, we can estimate the average reward the agent will 

experience when code 𝑎1 is selected. We compute this reward-to-go estimate for all other actions 

available at state 𝑠𝑖. The action we ultimately choose in state 𝑠𝑖 corresponds to the maximum reward 

from the rollout simulations. After the code is selected, we move to the next position (state 𝑠𝑖+1) 
and repeat the rollout process starting at the new state. 

We used OligoRL to design pools of Not-So-Random (NSR) primers. Using OligoRL, we found 
smaller NSR pools with increased uniformity across all mRNAs in a representative organism. This 
final example demonstrates “black-box" reward functions that map the NSR primers to 
transcriptomes and calculate the uniformity of an NSR pool. Neither of these reward functions can 
be expressed as algebraic constraints on the OligoRL problem. 

Our goal is to find an optimal pool of Not-So-Random (NSR) primers that 1.) avoid rRNA, tRNA, 
or transcripts from any unwanted genes, 2.) bind to every gene in a target set at least once, 
3.) uniformly cover the transcripts from targeted genes, and 4.) use the smallest number of oligos 
necessary to meet objectives 1–3. 

Current workflows for designing NSR hexamer primers start with a pool of all 4,906 possible 
hexamers and remove hexamers that appear in the undesired transcripts. The remaining hexamers 
are aligned to the rest of the transcriptome. We developed a multifaceted reward function that 
scores NSR primer pools using five criteria: 

 

1. Specificity. Each NSR primer is compared to hexamers in rRNA and tRNA genes, sequencing 
adapters, and the other NSR primers. Any NSR candidate that contains these sequences 
receives a reward of zero. 

2. Gene count. The agent receives a reward for any gene hit at least once by an oligo in the pool. 

3. Total hits. The agent is rewarded for maximizing the total number of hits across the 
transcriptome. 

4. Intergene uniformity. The agent is rewarded for placing the same number of hits on each gene. 

5. Intragene uniformity. The agent is rewarded for uniformly distributing hits across the length of 
each gene. 

Inter- and intragene uniformity are quantified by the distribution uniformity, lower quartile (DULQ) 
score (Figure 12A) 31: 

DULQ =
mean(lower quartile)

mean(sample)
. 

The DULQ is bounded between zero (all hits at a single location) and one (perfect uniformity). Only 
genes with at least one hit are used to calculate the DULQ. The total reward is the weighted sum of 
the individual criteria: 
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reward = 𝛽gene {gene count}

 +𝛽hits {total hits}

 +𝛽inter {intergene uniformity}

 +𝛽intra {intragene uniformity}.

 

Users can change the weights to emphasize certain criteria when designing primer pools. 

We tested the performance of our RL-guided NSR primer design program, called NSR-RL, by 
designing primer pools using varying weights in the reward function. We compared the NSR-RL 
pools to primer pools designed using a standard brute-force approach. Both pools targeted the 
1.76 Mb Streptococcus mutans transcriptome. Changing the reward function weights prioritizes different 
design criteria. For example, if we are only interested in designing a pool that hits every gene at least 
once, we can do so by zeroing out the other terms in the reward function. NSR-RL can design a 
pool that hits every gene using only 10 oligos. A brute-force approach requires 453 oligos to hit 
every gene. 

 

Figure 12: NSR-RL creates hexamer pools using a multivariate reward function. A. Intergene 
uniformity measures the distribution of the hits per gene. Intragene uniformity measures the 

distribution of hits across the length of each gene. Both uniformity scores range from [0,1]. NSR 
hexamer libraries produced by NSR-RL were compared to a pool of 453 hexamers produced by a 
standard brute-force approach. The libraries were compared across four criteria: the number of 
unique genes hit at least once (B), the total number of hits (C), intergene uniformity (D), and 
intragene uniformity (E). The dashed black lines show the performance of the brute-force pool, and 
the solid red lines show the performance of the NSR-RL pool as each hexamer is added to the pool. 
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NSR-RL hit every target with increased intergene uniformity and equivalent intragene uniformity 
with only 100 oligos. F. NSR-RL’s runtime was measured for pools designed to target bacteria with 
transcriptomes between 0.17 Mb and 9.2 Mb in size. G. Quantifying intragene uniformity requires 
calculating the gaps between all hits on each transcript. Consequently, the runtime of NSR-RL 
decreases when intragene uniformity is removed from the reward function by setting the associated 

weight βintra = 0. 

 

Rather than minimize the number of oligos, we can use NSR-RL to design a fixed-size pool with 
improved coverage or uniformity. We used NSR-RL to design a pool containing 100 oligos with 
nonzero weights for all four criteria in the reward function. The resulting pool exceeded the 
performance of the compressed brute-force pool (Figure 12B-E). The NSR-RL pool hit every gene 
in the S. mutans transcriptome after only 22 oligos. The NSR-RL pool also placed an average of 
993 hits per oligo while the brute-force pool placed an average of 910 hits per oligo. Note that it is 
impossible to generate more total hits than the brute-force designed pool since the brute-force pool 
includes all hexamers that are not found in the rRNA or other “unallowable” genes. While the NSR-
RL pools contain fewer total hits, the hits are distributed more evenly across the transcriptome as 
measured by intergene uniformity. Interestingly, we observed that the intergene uniformity score 
quickly approached a maximum but then oscillated near this value as new oligos were added to the 
pool. The oscillations indicate that NSR-RL added new oligos that improved the scores of other 
terms at the expense of intergene uniformity, and vice-versa. The NSR-RL pool’s intragene 
uniformity matched the performance of the brute-force pool. Users can tune the reward function’s 
weights to produce NSR primer pools that prioritize either the number of genes hit, total hits, or 
uniformity. In addition, users can easily add terms to the reward function or create a custom reward 
to design specialized pools. 

NSR-RL’s runtime increases linearly with the size of the problem. We generated NSR pools 
containing 30 hexamers for an assortment of bacterial transcriptomes ranging between 0.17–9.2 Mb 
in size. We observed that the algorithm’s runtime scaled linearly with each species’ transcriptome 
size (Figure 12F). The NSR-RL runtime also increases linearly with the number of oligos in the final 
pool. The amount of computation required depends heavily on the structure of the reward function. 
In particular, calculating the intragene uniformity score requires measuring the hit positions of every 
simulated oligo and calculating the gap distances between each hit position along the length of every 
gene. Pools designed with reward functions that include intragene uniformity took approximately 
50% longer to generate (Figure 12G). We implemented a bypass to skip these calculations if the user 

is not interested in intragene uniformity, i.e. when the user sets 𝛽intra = 0. 

 

2.4. Splintlock-seq 

Proof of concept experiments using a single synthesized padlock probe and a single RNA target 
were conducted to determine the feasibility of the approach and to begin biochemical optimization. 
Protocols for SplintR ligation and rolling circle amplification were developed which resulted in 
template-specific signal generation. 

An automated, computational pipeline for the design of padlock probes was built using the R 
programming language (Figure 13). The padlock probe architecture consists of a common 60 nt 
backbone with 15 nt sequences at the 5’ and 3’ ends that hybridize to a 30 nt stretch on the target 
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mRNA. Briefly, a Genbank file is read into the program from the NCBI and sequences for rRNA, 
tRNA, and mRNA are extracted. The reverse compliment sequence of each mRNA is hashed into 
30-mers to generate all possible candidate padlock probe target sequences. If the respective 30-mer 
is unique across the annotated transcriptome, it is next filtered against a database containing all 15-
mer sequences found in the reverse compliment of rRNA and tRNA transcripts using a fuzzy 
matching algorithm. If both of the 15-mer halves of a given 30-mer cannot be matched to any 
rRNA/tRNA 15-mer given a specified mismatch tolerance, the candidate sequence passes the filter. 
An analogous fuzzy matching filter is then utilized to ensure there is no interaction between padlock 
probe ends and the common padlock probe backbone. The candidate 30-mer is then filtered with a 
set of user-specified criteria to ensure it is compatible with the Splintlock-seq experimental pipeline. 
These filters select for 30-mer sequences with no predicted secondary structures, a lack of 
polynucleotide tracts, and favorable annealing characteristics. Next, candidate sequences are binned 
according to their binding position on the target transcript and a greedy multi-objective optimization 
algorithm is utilized to select for the “best” probe in each bin. In this way, an initial pool of 12,007 
probes targeting 99% (1882/1900) of the annotated ORFs in the genome of S. mutans, with a 
median coverage of 6 probes per ORF, was designed. 

 

Figure 13: Computational pipeline for identifying Splintlock-seq padlock probes across an entire 
genome. 
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The initial pool of candidate probes was synthesized using CustomArray electrochemical DNA 
microarray technology. Due to the low per oligo yields typically associated with massively parallel 
synthesis platforms, an experimental pipeline outlined by Murgha et al. 31 was utilized to amplify the 
pool in a strand specific manner and generate an ssDNA oligo pool with sufficient quantity for 
Splintlock-seq experiments. SplintR ligation and rolling circle amplification reactions were re-
optimized using the new padlock pool on total RNA. Conditions were identified in which RNA-
specific signal could be reliably generated at levels over 1000-fold higher than no-RNA conditions. 
In order to assess the specificity of the padlock probe pool for mRNA, Splintlock-seq library preps 
were performed with total RNA, rRNA-depleted RNA, a synthetic mix of rRNA generated by IVT, 
or no RNA serving as template. Libraries were prepped, pooled, and sent off for next generation 
sequencing on an Illumina NovaSeq 6000. Over 496 million reads were obtained, demultiplexed, and 
aligned to the S. mutans genome in a strand specific manner. Read indices were then mapped to 
probe sites and analyzed for relative read abundance by template group (Figure 14). Over 12,000 
probes were designed and synthesized to specifically target mRNA and avoid ligation on rRNA or 
tRNA. However, a group of 900 probes demonstrated highly efficient ligation on the synthetic 
rRNA mix or without any template. These probes were removed before further characterization of 
the Splintlock-seq library prep using a second round of sequencing. The second set of probes 
showed a reduced number of high-abundance probes that bound to rRNA transcripts. 

 

Figure 14: Probe counts averaged by gene show significant off-target effects when rRNA is present. 
These probes were removed from future Splintlock-seq pools. 
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3. DISCUSSION 

This project demonstrated the feasibility of applying single-cell RNA-seq as a tool for amplifying 

and analyzing both mammalian and bacterial trancriptomes. The Smart-seq method was optimized 

for use with LA-4 cells and established benchmarks for cDNA quantification and amplification. We 

observed a technical variation between single cell samples of only 9.18% and a biological variation of 

12.11% across a panel of selected housekeeping and reference genes. We also made significant 

progress optimizing the RamDA-seq method for use with purified LA-4 and Burkholderia RNA. We 

selected the 0.1x DNAse/0.1x T4g32 and 0.2x DNAse/0.2x T4g32 condition as candidates for 

further optimization and will continue optimizing these conditions towards increasing sensitivity and 

decreasing amplification bias. While both of these conditions produced promising results, the 

success rate of the process was between 60-70%, indicating that further optimization would be 

desirable. As a future direcion, we hope to improve the consistency of the RamDA-seq method and 

apply it to single LA-4 and Burkholderia cells to study each cell’s gene expression and better 

understand the interactions between them.  

OligoRL uses true “black-box" reward functions. The quality of a candidate oligo pool can be 

measured using simple algebraic expressions (like degeneracy of the pool) or complex calculations 

performed by external software packages (such as genome-wide sequence aligners). NSR-RL has a 

complex, multifactorial reward function, and calculating rewards makes up the majority of the 

algorithm’s runtime. Researchers with computationally intensive reward functions may consider 

approximating the reward with a simpler function. Performing more rollout simulations with a less 

accurate reward may yield better solutions than fewer simulations with better reward estimates. 

OligoRL works best when finding optimal solutions from a large set of valid solutions. When the 

pool of valid solutions shrinks, the nature of the design problem shifts from finding optimal 

solutions to finding valid solutions that satisfy the problem’s constraints. Rollout, and therefore 

OligoRL, performs better at optimization than constraint satisfaction. When valid solutions are 

difficult to find, OligoRL explores many dead-end solutions with poor rewards. For example, 

instructing NSR-RL maximize total hits leads to states where there are only a few valid hexamers 

left. In this scenario, OligoRL randomly samples many hexamers but often fails to find the few valid 

ones. The invalid simulations do not provide useful information to the agent since all invalid actions 

appear equally poor. Conversely, when nearly all solutions are valid, OligoRL quickly determines 

good actions for each state since every simulation provides information about an action. 

NSR-RL finds sets of oligos with differing degeneracy. Some wet-lab protocols suggest oligo pools 

with equimolar concentrations, so experimenters should be careful to mix the oligos in proportion 

to their degeneracy. The added mixing complexity is a trade-off for the savings gained when using 

these tools. 

Our iterative approach to Splintlock-seq development identified and removed several probes with 

affinity toward rRNA transcripts. Our results highlight the difficulty of a purely bioinformatic 

approach to identifying “good” probes that target only mRNA. Future work should combine both a 

bioinformatic pipeline and experimental profiling to identify the optimal probe set. 
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Similarly, the reaction conditions for a Splintlock-seq experiment could be improved. Several factors 

affect the library prep, and a multifactorial design is required to assess the quality of the final 

libraries. Our experience shows that library quality is nonlinear with respect to input factors, so 

simple first-order linear models may not be adequate. 

The Splintlock-seq computational pipeline was tested using the transcriptome of S. mutans. We also 

used the pipeline to generate probe sets for S. sobrinus and Burkholderia thailandensis. For both other 

species, our pipeline was able to final probe sets that hit nearly every gene while missing rRNA 

sequences. We do not anticipate any difficulty applying these methods to other bacteria of interest. 
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4. METHODS 

 

Cell Culture 

LA-4 cells, which are a murine lung epithelial cell line, were cultured in F-12K medium with 

15% fetal bovine serum and 1% penicillin-streptomycin at 37oC in 5% CO2. Single cells were either 

picked up with a micropipette under a microscope or sorted using fluorescence-activated cell sorting 

(FACS). Premade lysate was prepared by centrifuging a cell suspension of known concentration at 

150 g for 5 minutes and resuspending the pellet in lysis buffer. Lysis buffer was composed of 0.3% 

NP-40 surfactant in DI water. 

 

Smart-seq 

Premade lysate was diluted from 1000 cells/µl down to 1 cell/µl for our optimization experiments. 

Either premade lysate or a single cell was added to each tube of a set of strip tubes. 1 µl oligo dT 

primer and 1 µl 40 mM dNTPs were added to each tube, and the samples were denatured at 72oC 

for 3 minutes and 42oC for 2 minutes. 6 µl of reverse transcription mix, containing 2 µl 5x Maxima 

Buffer, 0.25 µl RNase OUT, 0.75 µl template-switching oligo (TSO), 0.5 µl Maxima -H Reverse 

Transcriptase, and 2.5 µl nuclease-free water, was added to each sample. The reverse transcription 

reaction started at 42oC for 90 min, then continued with 10 cycles of (50oC for 2 min, 42oC for 2 

min) and ended with a final inactivation step of 70cC for 15 min. 10 µl of PCR mix, containing 4 µl 

5x GC Buffer, 0.4 µl dNTPs, 2 µl 1 µM IS PCR Oligo, 0.2 µl Phusion polymerase, and 3.4 µl RNase-

free water, was added to each sample32. Each sample was cleaned using Ampure XP beads following 

the Smart-seq2 protocol32, using a bead to sample ratio of 0.8:1. cDNA yield was quantified using 

either a 2100 Agilent Bioanalyzer with the High Sensitivity DNA kit or a Qubit 2.0 Fluorometer 

with the High Sensitivity dsDNA kit.  

 

RamDA-seq 

RamDA-seq biochemistry processes and whole transcriptome amplification were adapted from the 

protocol established by Hayashi et al 9. 1 µl of either purified RNA or premade lysate was added to 

each tube of a set of strip tubes and denatured at 70oC for 90 seconds. 2 µl of reverse transcription 

mix, containing 0.6 µl 5x PrimeScript Buffer, 0.2 µl DNase I, 0.06 µl 10 µM Oligo (dT), 0.8 µl 10 µM 

1st-NSR primers, 0.2 µl 1 mg/mL NEB (or Roche) T4g32 protein, and 0.15 µl PrimeScript enzyme 

mix, was added to each sample. The reverse transcription reaction started at 25oC for 10 min, 

continued at 30oC for 10 min, 37oC for 30 min, and 50oC for 5 min, then ended with a final 

inactivation step of 94cC for 5 min. 2 µl of second-strand synthesis mix, containing 0.5 µl 10x 

NEBuffer2, 0.5 µl 10 mM dNTPs (2.5 mM each), 0.4 µl 100 µM 2nd-NSR primers, 0.45 µl RNase-

free water, and 0.15 µl Klenow Fragment, was added to each sample. The second-strand synthesis 

reaction started with 16oC for 60 min and ended with 70oC for 10 min. Each sample was cleaned 

using Ampure XP beads following the Smart-seq2 protocol32 using a bead to sample ratio of 1:1. 

Each sample’s cDNA yield was quantified using either a NanoDrop 1000 instrument or a Qubit 

fluorometer with the High Sensitivity dsDNA kit. 
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qRT-PCR 

10 µl SYBR Green PCR Master Mix (Applied Biosystems) was added to each well of a 96-well plate. 

0.4 µl of 10 µM forward primer and 0.4 µl of 10 µM reverse primer (Appendix A) were then added 

to each well, along with 8.2 µl of RNase-free water. Finally, 1 µl of sample was added to each well. 

The plate was then incubated at 95oC for 10 min, followed by 40 cycles of 95oC for 15 seconds, 60oC 

for 1 min, and a plate read, and ending with a 5 second melt curve step starting at 65oC and 

increasing to 95oC in increments of 0.5oC. 

 

Computational Methods 

OligoRL and all simulation codes are available as a Julia package at http://jensenlab.net/tools. 

Simulations were run using Julia version 1.2.8 on a 16-core 3.2 GHz AMD Threadripper processor 

with 48 Gb of RAM. 

The rollout algorithm used in OligoRL can be parallelized at either the action or simulation level. 

For example, when simulating the reward for a single base, each simulation can be executed in 

parallel by a separate thread. This study used Julia’s multithreading tools to perform parallel 

computations on a multicore processor. The code can also be configured for a cluster computing 

environment where parallel simulations execute on separate machines. 

The Splintlock-seq probe design pipeline was written in the R programming language using the 

Bioconductor library. All sequencing data analysis was performed using custom R scripts using 

bowtie33 for sequence alignment. 

 

NSR-RL Algorithm 

NSR-RL designs Not-So-Random primer pools for RNA-seq library preparation and other 

multiplex genomic assays. Users supply two sequence files containing 1.) “targeted” transcripts that 

should be targeted by the NSR primers, and 2.) “unallowed” transcripts to avoid, e.g. transcripts 

from rRNA and tRNA genes. The user also specifies the number of NSR primers to create and the 

length of the primers (the default is hexamers). 

NSR-RL builds oligos using rollout with dynamic action spaces. Candidate oligos are assigned a 

reward of zero if they hit any unallowed transcript. Palindromic candidates are also assigned a 

reward of zero since palindromic reverse transcription primers may self-anneal during amplification. 

Non-palindromic candidate oligos that miss the unallowed transcripts are scored by the multifaceted 

reward function. The first three terms in the reward are calculated by counting the number of times 

the oligo hits each targeted sequence. First, the gene count term is the number of genes that are hit 

at least once. Second, the total hits term is sum of all hits across the transcriptome. Third, the 

intergene uniformity score is calculated using the DULQ score of all of the hit counts. Calculating 

the fourth term in the reward, intragene uniformity, requires the gaps between hits to calculate the 

DULQ for each transcript. Transcripts with a more uniform gap distance distribution will score 

higher than transcripts with different sized gaps. The overall intragene uniformity score is the 

average DULQ across all transcripts. We multiply the inter- and intragene uniformity scores by the 
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number of targets, 𝑛targets, to place these rewards on a similar scale as the other terms. The target 

count and uniformity terms range from 0 to 𝑛targets, while the total hits is term is unbounded. Each 

term in the reward function has an associated weight 𝛽, and the weights can be changed to tune the 

pools empirically. 

After NSR-RL finishes an oligo, the oligo and its reverse complement are added to the list of 

unallowed sequences to prevent avoid repeats or selecting oligos that could form dimers when the 

libraries are amplified. 

NSR-RL was benchmarked by creating 100 degenerate hexamers targeting the transcriptome of the 

1076 Mb transcriptome of Streptococcus mutans strain UA159 (Figure 12B–E). Unless otherwise 

specified, the reward weights were 𝛽gene = 1, 𝛽hits = 10−4, 𝛽inter = 1, and 𝛽intra = 1. To 

compare NSR-RL runtime with transcriptome size (Figure 12F), 30 degenerate hexamers were 

designed to target the transcriptomes of 25 species of bacteria. 

 

Splintlock-seq 

A pool of padlock probes generated by our automated design pipeline was synthesized and 

hybridized to isolated total RNA from the condition of interest. If a target mRNA is present, the 

ends of a respective padlock probe was ligated together by SplintR ligase, generating a circularized 

ssDNA molecule. Signal amplification and enrichment was then simultaneously carried out using 

Phi29-mediated rolling circle amplification initiated from a primer annealed to the padlock 

backbone. In this way, only intramolecular ligation products undergo amplification. The rolling 

circle amplification product is then used as template for a low-cycle number PCR with primers that 

add custom, dual-indexed Illumina adapters. These adapters enable the pooling of dozens of 

individual libraries to further reduce per library sequencing costs. Libraries were purified using 

AMPure beads and pooled in an equimolar fashion. The pooled libraries were sequenced on a 

NovaSeq 6000 instrument at the Biotechnology Core Facility at the University of Illinois. 
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APPENDIX A. QRT-PCR PRIMER SEQUENCES 

Gene Sequence 

Tubb5 CAGTCTGAGACCGGCCCAG 

Trim 28 ACCAGCTCAGGCTTGGAGGT 

Sdha GCTTACCTGCGTTTCCCCTC 

B2m CAGTCGTCAGCATGGCTCG 

Eef1b2 CCTTCGCCATGGGATTCG 

Tbp CCCCCTCTGCACTGAAATCA 

Tfrc TGCTAATGAGACCCACAGATACTGG 

 

Reverse Primers 

Gene Sequence 

Tubb5 TGTGCACGATTTCCCTCATG 

Trim 28 ACACGGCAGATAGTGGCACTG 

Sdha CTGGCGCAACTCAATCCCT 

B2m AGCATACAGGCCGGTCAGTG 

Eef1b2 CGCCAGGTAATCGTTGAGCA 

Tbp GTAGCAGCACAGAGCAAGCAA 

Tfrc AGCTCATATTATTTGGATTGTGGCA 
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