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Introduction

 Solving a dense linear equations system A*X=B is one of 
the most fundamental problems in numerous applications: 
physics, mathematics, and engineering
 Our application of interest: method of moments in 

electromagnetics

 Despite its high computational complexity, a direct solver 
(LU factorization) often provides more robust results than 
iterative solvers for extremely ill-conditioned system 
matrices

 A distributed-memory, dense LU solver capable of 
utilizing hardware accelerators available on top 
supercomputers is in need

 Performance-portability is important since future 
generation exascale HPC architectures are continuously 
evolving with significantly different architectures and 
programming models
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ADELUS’s Objectives

 A performance-portable dense LU solver for current and 
next generation distributed-memory hardware-accelerated 
HPC platforms 

 Using LU factorization with partial pivoting for 
real/complex dense linear systems in distributed-memory 
using MPI

 Using torus-wrap mapping scheme for workload 
distribution

 Leveraging Kokkos and Kokkos Kernels to provide 
performance portability

 Integrating with a real-world application production code 
and achieving PFLOPS performance
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Kokkos and Kokkos Kernels
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Kokkos Overview6

 Kokkos is a productive, portable, performant, shared-memory 
programming model.
 is a C++ library, not a new language or language extension.
 supports clear, concise, thread-scalable parallel patterns.
 lets you write algorithms once and run on many architectures

e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...
 minimizes the amount of architecture-specific implementation 

details users must know.
 solves the data layout problem by using multi-dimensional arrays 

with architecture-dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ATPESC18.pdf



An Abstraction Layer to Prevent Rewriting an Entire Code7

Christian Trott, “Kokkos: Capabil i t ies Overview”. https://github.com/kokkos/kokkos-
tutorials/blob/master/KokkosCapabil i t ies.pdf 

LAMMPS Trilinos Sierra Albany GEMMA



Kokkos Data Management and Execution8

Christian Trott, “Kokkos: Capabil i t ies Overview”. https://github.com/kokkos/kokkos-
tutorials/blob/master/KokkosCapabil i t ies.pdf
Intel. Developer Guide for Intel Math Kernel Library for Linux.  https://software.intel.com/en-us/node/528573

Execution Policies Patterns

https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf


Kokkos Kernels9

 KokkosKernels is a library for node-level, performance-
portable, computational kernels for sparse/dense linear 
algebra and graph operations, using the Kokkos shared-
memory parallel programming model. 
 KK is available publicly both as part of Trilinos and as 

part of the Kokkos ecosystem 
 Building block of a solver, linear algebra library that 

uses MPI and threads for parallelism, or it can be used 
stand-alone in an application.

 Generic implementations for various scalar types and 
data layouts

 Interfaces to Intel, NVIDIA and other vendor provided 
kernels available in order to leverage their high-
performance libraries

 Several new kernels are being added as needed by the 
applications

 E.g.: Distance-2 Coloring, Deterministic coloring, dense linear 
system solver, …

 Expand the scope of BLAS to hierarchical 
implementations.

 Download at https://github.com/kokkos/kokkos-kernels

https://github.com/kokkos/kokkos-kernels


Method of Moments for 
Linear Electromagnetics
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Maxwell’s Equations in the Frequency Domain11

Wave Equations:

Maxwell’s Equations:

Instead of solving Maxwell’s equations 
in 3D space via the wave equations, 
we solve them on the boundary 
between regions.

Vector and Scalar Potentials:

Lorenz gauge condition:

For a linear homogeneous, unbounded 
medium:

Free-Space Green’s 
Function:

Obs. 
pt.



Integral Equations (Boundary Element Method – BEM)12

where,

Example of an electric field integral equation (EFIE) for 
metallic scatterer:Through the equivalence principle, we consider the current on an 

objects boundary instead of the field around and inside the 
object. Enforcing the boundary condition at the surface: 

results in the following integral equation:



Method of Moments (MoM)13

Numerical solution of integral equation:

Discretize the 
scatterer Expand unknown in a set of basis functions:

Test integral equation with basis functions.

Rao-Wilton-Glisson 
(RWG) basis functions



Parallel LU Solver 
Implementation
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ADELUS Interface and Storage15

 Dense matrix and RHS vectors that are block-mapped to the MPI processes

 ADELUS is called by MPI processes with the matrix portions packed with RHS 
vectors (column-major order) as their inputs

 ADELUS data container is implemented by the Kokkos View for portability
In the host memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::HostSpace> 
                                       A("A",my_rows,my_cols+my_rhs);

In the CUDA device memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::CudaSpace> 
                                       A("A",my_rows,my_cols+my_rhs);

 Total number of MPI processes = 6
 Number of processes for a row = 3
 Number of right-hand sides = 2



Torus-Wrap Mapping16

 Advantage: each process has nearly the 
same workload and the process idle time is 
minimized

 Column indices assigned to a MPI process 
constitute a linear sequence with step size 
Pc 

 Row indices are in a sequence separated 
by Pr 

 No need to redistribute the block-mapped 
matrix for torus-wrapped solver
 A block-mapped system can be solved by a 

solver assuming a torus-wrapped system. 

 Solution vectors are corrected afterwards 
by straightforward permutations

 Total number of MPI processes: 6 
(P=6)

 Number of processes for a row: 3 
(Pc=3)

 Number of right-hand sides: 2

Np=N/Pc

Mp=N/Pr

P=Pc Pr



LU Factorization and Forward Solve

 Right-looking variant of the LU factorization with partial pivoting
 Kokkos Kernels BLAS interfaces are used for local matrices in 

each MPI process
 Calls to optimized vendor library BLAS routines: multi-threaded CPU 

(IBM's ESSL BLAS), massively parallel GPU architectures (cuBLAS)

 CUDA-aware MPI: simple communication patterns: point-to-point 
communication and collective communication

 4 steps per iteration:
1. Find the pivot: each process finds its own local maximum entry in 

the current column and then exchanges for the global pivot value.
2. Scale the current column with the pivot value and generate and 

communicate column update vector from the column
3. Exchange pivot row and diagonal row
4. Update the current column, and if saving enough columns, to 

update Z via gemm
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KokkosBlas::iamax()
KokkosBlas::scal()
KokkosBlas::copy()
KokkosBlas::gemm()

MPI_Send()
MPI_Recv()
MPI_Irecv()
MPI_Allreduce()
MPI_Bcast()



Backward Solve

 Backward Solve
1. The elimination of the RHS is performed 

by the process owning the current 
column using the Kokkos 
parallel_for

2. The results from the elimination step are 
broadcasted to all the processes within 
the MPI column sub-communicator

3. The KokkosBlas::gemm is then called 
to update the RHS

4. To prepare for the next iteration, the 
newly-computed RHS vectors are sent to 
the processes to the left
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Permutation

 Permutation: to “unwrap the results”
 Solver assumes the torus-wrap mapping 

scheme while the input matrix is not torus
-wrapped

 A temporary buffer for global solution 
vectors created

 Kokkos parallel_for to fill the correct 
locations in the global vectors

 MPI Allreduce to collectively update the 
change
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Experimental Results
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Experimental Setup

 Summit system at the ORNL (4608 nodes): evaluating performance of 
ADELUS with randomly-generated matrices
 Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 6 V100 GPUs (16GB 

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network 

 Software environment: GCC 7.4.0, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 
10.3.1

 DPLASMA: IBM XL C/C++ Compiler 16.1.1 instead of GCC 7.4.0
 SLATE: we use GCC 6.4.0 and ESSL 6.1.0, Netlib SCALAPACK 2.0.2

 Sierra system at the LLNL (4320 nodes): demonstrating performance 
of ADELUS when integrated into a production electromagnetic 
application code, EIGER
 Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 4 V100 GPUs (16GB 

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network 

 Software environment: GCC 7.2.1, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 
10.3.0
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 Single RHS vector and the matrix size 
is increased as we increase the 
hardware resource

 GPU backend: ADELUS runs with one 
MPI rank per GPU.

 CPU backend: ADELUS runs with one 
MPI rank per node (42 cores)

Randomly-Generated Matrices (1/6)22
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Randomly-Generated Matrices (2/6)

 Load Balancing Verification
 Factorization time on 36 MPI processes (36 GPUs) with the matrix size of 6N6N 

(167,292 167,292)
 Communication and the update contribute the most to the total time
 Communication time is 1.47x-1.6x  the update time
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Cuda-aware MPI Host pinned memory for MPI



Randomly-Generated Matrices (3/6)

 CPU vs. GPU
 A single GPU is 4.9x faster than a 42-core CPU
 100 GPUs is 3.8x faster than 100 42-core CPUs
 Communication overhead increases as processing larger problems (broadcasting pivot rows and 

exchanging rhs vectors among column processes)
 CPU computation is still the dominant component in the total CPU time
 GPU computation is fast that makes the computation overhead the bottleneck
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CPU execution time GPU execution time with host pinned memory



Randomly-Generated Matrices (4/6)

 ADELUS vs. DPLASMA and SLATE
 Tuning DPLASMA and SLATE for their best performance
 ADELUS (43 TFLOPS) outperforms SLATE (38 TFLOPS) while is slower than DPLASMA (57 TFLOPS) 

on 100 CPUs 
 ADELUS is 4.57x faster than SLATE on 144 GPUs
 ADELUS can achieve 1,316 TFLOPS (1.3 PFLOPS) with 900 GPUs (the first complex, dense LU solver reachs PFLOPS 

performance)
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Randomly-Generated Matrices (5/6)26

where ranks/GPUs = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
            unknowns = 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9N, 10N

 Scalability Analysis
 Scalability is defined as the normalized 

FLOPS of multiple MPI processes with 
respect to FLOPS of a single MPI 
process 

 The increase of communication 
overhead results in less than ideal 
scalability in both CPU and GPU runs

 ADELUS on CPUs scales more closely 
to the theoretical ideal scalability than 
ADELUS on GPUs

  GPU performance is MPI bound due to  
the increase in the communication cost 
and  its high FLOPS

 Scalability needs further 
improvement



Randomly-Generated Matrices (6/6)

 MPI Buffers on Different 
Memory Spaces
 Both CudaSpace and 

CudaHostPinnedSpace can 
attain performance above 1000 
TFLOPs

 Using CUDA-aware MPI can 
improve the performance by 6% 
since we do not need to 
explicitly buffer data on host 
memory before or after calling 
the MPI function
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Large-Scale EM Simulation with EIGER28

 Couple EIGER with ADELUS 
to perform large-scale 
electromagnetic simulations 
on the LLNL’s Sierra platform

 First time Petaflops 
performance with a complex, 
dense LU solver: 7.72 
Petaflops (16.9% efficiency ) 
when using 7,600 GPUs on 
1,900 nodes on a 2,564,487-
unknown problem

 ADELUS’s performance is 
affected by the distribution of 
the matrix on the MPI 
processes
 Assigning more processes per 

row yields higher performance

Kokkos:initialize()

Kokkos::finalize()

Transfer matrix+RHS to GPU

Transfer solution back to CPU

ADELUS C++ wrapper

Adelus::factor()
Adelus::solve()

Call MPI_INIT()

Call MPI_FINALIZE()

Construct matrix and RHS vector

Post-process solution vector

EIGER

Call ADELUS wrapper

Matrix+RHS vec.

Solution vec.

N Nodes (GPUs) Solve time (sec.) TFLOPS Procs/row

226,647 25 (100) 240.5 1291.0 10

1,065,761 310 (1240) 1905.1 1694.5 31

1,322,920 500 (2,000) 6443.9 958.1 20

1,322,920 500 (2,000) 2300.2 2684.1 50

1,322,920 500 (2,000) 2063.6 2991.9 100

2,002,566 1,200 (4,800) 3544.1 6042.6 100

2,564,487 1,900 (7,600) 5825.2 7720.7 80



Conclusions and Future Work

 A parallel, dense, performance-portable, LU solver based on torus-wrap mapping and 
LU factorization algorithm

 Obtaining portability through Kokkos and Kokkos Kernels

 ADELUS’s performance on Summit: 1.397 PFLOPS on 900 GPUs

 The GPU execution is 3.8x faster than the CPU execution 

  ADELUS integrated into an electromagnetic application (EIGER) achieves 7.720 
PFLOPS on 7600 GPUs (a problem of 2.5M unknowns) on Sierra

 Future work:
 Using computation-communication overlapping to improve ADELUS scalability on GPUs
 A hybrid implementation where both CPU and GPU resources are fully utilized to overcome 

the limitation of the GPU memory
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https://github.com/trilinos/Trilinos/tree/master/packages/adelus

 The driver code used for our ADELUS experiments can be found 
in

https://github.com/trilinos/Trilinos/tree/master/packages/adelus/exa
mple

https://github.com/trilinos/Trilinos/tree/master/packages/adelus
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