
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

ADELUS: A Performance-Portable
Dense LU Solver for Distributed-
Memory Hardware-Accelerated
Systems

Vinh Dang, Joseph Kotu lsk i , and S ivasankaran
Ra jamanickam

 By

1

WACCPD@SC20 – Nov 13, 2020

SAND2020-12737C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Agenda

 Introduction
 Kokkos and Kokkos Kernels
 Method of Moments for Linear Electromagnetics
 Parallel LU Solver Implementation
 Experimental Results
 Conclusions and Future Work

2

Introduction

 Solving a dense linear equations system A*X=B is one of
the most fundamental problems in numerous applications:
physics, mathematics, and engineering
 Our application of interest: method of moments in

electromagnetics

 Despite its high computational complexity, a direct solver
(LU factorization) often provides more robust results than
iterative solvers for extremely ill-conditioned system
matrices

 A distributed-memory, dense LU solver capable of
utilizing hardware accelerators available on top
supercomputers is in need

 Performance-portability is important since future
generation exascale HPC architectures are continuously
evolving with significantly different architectures and
programming models

3

Near-field and radiation pattern
analysis of integrated windscreen
antenna
(Source: FEKO)

The Aurora supercomputer
(Source: Intel)

ADELUS’s Objectives

 A performance-portable dense LU solver for current and
next generation distributed-memory hardware-accelerated
HPC platforms

 Using LU factorization with partial pivoting for
real/complex dense linear systems in distributed-memory
using MPI

 Using torus-wrap mapping scheme for workload
distribution

 Leveraging Kokkos and Kokkos Kernels to provide
performance portability

 Integrating with a real-world application production code
and achieving PFLOPS performance

4

Naval vessel with helicopter on deck
(Source: FEKO)

The El Capitan supercomputer
(Source: Hewlett Packard Enterprise)

Kokkos and Kokkos Kernels

5

Kokkos Overview6

 Kokkos is a productive, portable, performant, shared-memory
programming model.
 is a C++ library, not a new language or language extension.
 supports clear, concise, thread-scalable parallel patterns.
 lets you write algorithms once and run on many architectures

e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...
 minimizes the amount of architecture-specific implementation

details users must know.
 solves the data layout problem by using multi-dimensional arrays

with architecture-dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ATPESC18.pdf

An Abstraction Layer to Prevent Rewriting an Entire Code7

Christian Trott, “Kokkos: Capabil i t ies Overview”. https://github.com/kokkos/kokkos-
tutorials/blob/master/KokkosCapabil i t ies.pdf

LAMMPS Trilinos Sierra Albany GEMMA

Kokkos Data Management and Execution8

Christian Trott, “Kokkos: Capabil i t ies Overview”. https://github.com/kokkos/kokkos-
tutorials/blob/master/KokkosCapabil i t ies.pdf
Intel. Developer Guide for Intel Math Kernel Library for Linux. https://software.intel.com/en-us/node/528573

Execution Policies Patterns

https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf

Kokkos Kernels9

 KokkosKernels is a library for node-level, performance-
portable, computational kernels for sparse/dense linear
algebra and graph operations, using the Kokkos shared-
memory parallel programming model.
 KK is available publicly both as part of Trilinos and as

part of the Kokkos ecosystem
 Building block of a solver, linear algebra library that

uses MPI and threads for parallelism, or it can be used
stand-alone in an application.

 Generic implementations for various scalar types and
data layouts

 Interfaces to Intel, NVIDIA and other vendor provided
kernels available in order to leverage their high-
performance libraries

 Several new kernels are being added as needed by the
applications

 E.g.: Distance-2 Coloring, Deterministic coloring, dense linear
system solver, …

 Expand the scope of BLAS to hierarchical
implementations.

 Download at https://github.com/kokkos/kokkos-kernels

https://github.com/kokkos/kokkos-kernels

Method of Moments for
Linear Electromagnetics

10

Maxwell’s Equations in the Frequency Domain11

Wave Equations:

Maxwell’s Equations:

Instead of solving Maxwell’s equations
in 3D space via the wave equations,
we solve them on the boundary
between regions.

Vector and Scalar Potentials:

Lorenz gauge condition:

For a linear homogeneous, unbounded
medium:

Free-Space Green’s
Function:

Obs.
pt.

Integral Equations (Boundary Element Method – BEM)12

where,

Example of an electric field integral equation (EFIE) for
metallic scatterer:Through the equivalence principle, we consider the current on an

objects boundary instead of the field around and inside the
object. Enforcing the boundary condition at the surface:

results in the following integral equation:

Method of Moments (MoM)13

Numerical solution of integral equation:

Discretize the
scatterer Expand unknown in a set of basis functions:

Test integral equation with basis functions.

Rao-Wilton-Glisson
(RWG) basis functions

Parallel LU Solver
Implementation

14

ADELUS Interface and Storage15

 Dense matrix and RHS vectors that are block-mapped to the MPI processes

 ADELUS is called by MPI processes with the matrix portions packed with RHS
vectors (column-major order) as their inputs

 ADELUS data container is implemented by the Kokkos View for portability
In the host memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::HostSpace>
 A("A",my_rows,my_cols+my_rhs);

In the CUDA device memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::CudaSpace>
 A("A",my_rows,my_cols+my_rhs);

 Total number of MPI processes = 6
 Number of processes for a row = 3
 Number of right-hand sides = 2

Torus-Wrap Mapping16

 Advantage: each process has nearly the
same workload and the process idle time is
minimized

 Column indices assigned to a MPI process
constitute a linear sequence with step size
Pc

 Row indices are in a sequence separated
by Pr

 No need to redistribute the block-mapped
matrix for torus-wrapped solver
 A block-mapped system can be solved by a

solver assuming a torus-wrapped system.

 Solution vectors are corrected afterwards
by straightforward permutations

 Total number of MPI processes: 6
(P=6)

 Number of processes for a row: 3
(Pc=3)

 Number of right-hand sides: 2

Np=N/Pc

Mp=N/Pr

P=Pc Pr

LU Factorization and Forward Solve

 Right-looking variant of the LU factorization with partial pivoting
 Kokkos Kernels BLAS interfaces are used for local matrices in

each MPI process
 Calls to optimized vendor library BLAS routines: multi-threaded CPU

(IBM's ESSL BLAS), massively parallel GPU architectures (cuBLAS)

 CUDA-aware MPI: simple communication patterns: point-to-point
communication and collective communication

 4 steps per iteration:
1. Find the pivot: each process finds its own local maximum entry in

the current column and then exchanges for the global pivot value.
2. Scale the current column with the pivot value and generate and

communicate column update vector from the column
3. Exchange pivot row and diagonal row
4. Update the current column, and if saving enough columns, to

update Z via gemm

17

KokkosBlas::iamax()
KokkosBlas::scal()
KokkosBlas::copy()
KokkosBlas::gemm()

MPI_Send()
MPI_Recv()
MPI_Irecv()
MPI_Allreduce()
MPI_Bcast()

Backward Solve

 Backward Solve
1. The elimination of the RHS is performed

by the process owning the current
column using the Kokkos
parallel_for

2. The results from the elimination step are
broadcasted to all the processes within
the MPI column sub-communicator

3. The KokkosBlas::gemm is then called
to update the RHS

4. To prepare for the next iteration, the
newly-computed RHS vectors are sent to
the processes to the left

18

1 2 3 1 2 3 1

5 6 4 5 6 4

3 1 2 3 1

4 5 6 4

2 3 1

6 4

1

1 1

4 4

1 1

4 4

1 1

4 4

1 1

Matrix RHS

1. elimination

2. MPI_Bcast

3. KokkosBlas::gemm

4. MPI_Send to the left processes

Permutation

 Permutation: to “unwrap the results”
 Solver assumes the torus-wrap mapping

scheme while the input matrix is not torus
-wrapped

 A temporary buffer for global solution
vectors created

 Kokkos parallel_for to fill the correct
locations in the global vectors

 MPI Allreduce to collectively update the
change

19

M
PI

_S
U

M

Experimental Results

20

Experimental Setup

 Summit system at the ORNL (4608 nodes): evaluating performance of
ADELUS with randomly-generated matrices
 Hardware (per node): 2 POWER9 CPUs (22 cores/each), 6 V100 GPUs (16GB

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

 Software environment: GCC 7.4.0, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI
10.3.1

 DPLASMA: IBM XL C/C++ Compiler 16.1.1 instead of GCC 7.4.0
 SLATE: we use GCC 6.4.0 and ESSL 6.1.0, Netlib SCALAPACK 2.0.2

 Sierra system at the LLNL (4320 nodes): demonstrating performance
of ADELUS when integrated into a production electromagnetic
application code, EIGER
 Hardware (per node): 2 POWER9 CPUs (22 cores/each), 4 V100 GPUs (16GB

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

 Software environment: GCC 7.2.1, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI
10.3.0

21

 Single RHS vector and the matrix size
is increased as we increase the
hardware resource

 GPU backend: ADELUS runs with one
MPI rank per GPU.

 CPU backend: ADELUS runs with one
MPI rank per node (42 cores)

Randomly-Generated Matrices (1/6)22

1
node

(N N)

2N

2N

3N
4N

3N

4N

4 nodes
(2

processes/row)
9 nodes

(3
processes/row)

16 nodes
(4

processes/row)

Randomly-Generated Matrices (2/6)

 Load Balancing Verification
 Factorization time on 36 MPI processes (36 GPUs) with the matrix size of 6N6N

(167,292 167,292)
 Communication and the update contribute the most to the total time
 Communication time is 1.47x-1.6x the update time

23

Cuda-aware MPI Host pinned memory for MPI

Randomly-Generated Matrices (3/6)

 CPU vs. GPU
 A single GPU is 4.9x faster than a 42-core CPU
 100 GPUs is 3.8x faster than 100 42-core CPUs
 Communication overhead increases as processing larger problems (broadcasting pivot rows and

exchanging rhs vectors among column processes)
 CPU computation is still the dominant component in the total CPU time
 GPU computation is fast that makes the computation overhead the bottleneck

24

CPU execution time GPU execution time with host pinned memory

Randomly-Generated Matrices (4/6)

 ADELUS vs. DPLASMA and SLATE
 Tuning DPLASMA and SLATE for their best performance
 ADELUS (43 TFLOPS) outperforms SLATE (38 TFLOPS) while is slower than DPLASMA (57 TFLOPS)

on 100 CPUs
 ADELUS is 4.57x faster than SLATE on 144 GPUs
 ADELUS can achieve 1,316 TFLOPS (1.3 PFLOPS) with 900 GPUs (the first complex, dense LU solver reachs PFLOPS

performance)

25

CPU performance GPU performance

Randomly-Generated Matrices (5/6)26

where ranks/GPUs = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
 unknowns = 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9N, 10N

 Scalability Analysis
 Scalability is defined as the normalized

FLOPS of multiple MPI processes with
respect to FLOPS of a single MPI
process

 The increase of communication
overhead results in less than ideal
scalability in both CPU and GPU runs

 ADELUS on CPUs scales more closely
to the theoretical ideal scalability than
ADELUS on GPUs

 GPU performance is MPI bound due to
the increase in the communication cost
and its high FLOPS

 Scalability needs further
improvement

Randomly-Generated Matrices (6/6)

 MPI Buffers on Different
Memory Spaces
 Both CudaSpace and

CudaHostPinnedSpace can
attain performance above 1000
TFLOPs

 Using CUDA-aware MPI can
improve the performance by 6%
since we do not need to
explicitly buffer data on host
memory before or after calling
the MPI function

27

Large-Scale EM Simulation with EIGER28

 Couple EIGER with ADELUS
to perform large-scale
electromagnetic simulations
on the LLNL’s Sierra platform

 First time Petaflops
performance with a complex,
dense LU solver: 7.72
Petaflops (16.9% efficiency)
when using 7,600 GPUs on
1,900 nodes on a 2,564,487-
unknown problem

 ADELUS’s performance is
affected by the distribution of
the matrix on the MPI
processes
 Assigning more processes per

row yields higher performance

Kokkos:initialize()

Kokkos::finalize()

Transfer matrix+RHS to GPU

Transfer solution back to CPU

ADELUS C++ wrapper

Adelus::factor()
Adelus::solve()

Call MPI_INIT()

Call MPI_FINALIZE()

Construct matrix and RHS vector

Post-process solution vector

EIGER

Call ADELUS wrapper

Matrix+RHS vec.

Solution vec.

N Nodes (GPUs) Solve time (sec.) TFLOPS Procs/row

226,647 25 (100) 240.5 1291.0 10

1,065,761 310 (1240) 1905.1 1694.5 31

1,322,920 500 (2,000) 6443.9 958.1 20

1,322,920 500 (2,000) 2300.2 2684.1 50

1,322,920 500 (2,000) 2063.6 2991.9 100

2,002,566 1,200 (4,800) 3544.1 6042.6 100

2,564,487 1,900 (7,600) 5825.2 7720.7 80

Conclusions and Future Work

 A parallel, dense, performance-portable, LU solver based on torus-wrap mapping and
LU factorization algorithm

 Obtaining portability through Kokkos and Kokkos Kernels

 ADELUS’s performance on Summit: 1.397 PFLOPS on 900 GPUs

 The GPU execution is 3.8x faster than the CPU execution

 ADELUS integrated into an electromagnetic application (EIGER) achieves 7.720
PFLOPS on 7600 GPUs (a problem of 2.5M unknowns) on Sierra

 Future work:
 Using computation-communication overlapping to improve ADELUS scalability on GPUs
 A hybrid implementation where both CPU and GPU resources are fully utilized to overcome

the limitation of the GPU memory

29

Availability30

Acknowledgment
Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA-0003525.

https://github.com/trilinos/Trilinos/tree/master/packages/adelus

 The driver code used for our ADELUS experiments can be found
in

https://github.com/trilinos/Trilinos/tree/master/packages/adelus/exa
mple

https://github.com/trilinos/Trilinos/tree/master/packages/adelus
https://github.com/trilinos/Trilinos/tree/master/packages/adelus
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example

