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3 1 Introduction

J Solving a dense linear equations system A*X=B is one of
the most fundamental problems in numerous applications:
physics, mathematics, and engineering

= QOur application of interest: method of moments in
electromagnetics

1 Despite its high computational complexity, a direct solver
(LU factorization) often provides more robust results than
iterative solvers for extremely ill-conditioned system
matrices

A distributed-memory, dense LU solver capable of
utilizing hardware accelerators available on top
supercomputers is in need

 Performance-portability is important since future
generation exascale HPC architectures are continuously
evolving with significantly different architectures and
programming models

Near-field and radiation pattern
analysis of integrated windscreen
antenna
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+ 1 ADELUS’s Objectives

- A performance-portable dense LU solver for current and
next generation distributed-memory hardware-accelerated
HPC platforms

J Using LU factorization with partial pivoting for

real/complex dense linear systems in distributed-memory Naval vessel with helicopter on deck
using MPI (Source: FEKO)

- Using torus-wrap mapping scheme for workload

distribution

 Leveraging Kokkos and Kokkos Kernels to provide —
performance portability ,. fllzmr

J Integrating with a real-world application production code b e

e
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and achieving PFLOPS performance
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Kokkos and Kokkos Kernels




s | Kokkos Overview

Kokkos is a productive, portable, performant, shared-memory
programming model.

1 is a C++ library, not a new language or language extension.

) supports clear, concise, thread-scalable parallel patterns.

1 lets you write algorithms once and run on many architectures
e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...

1 minimizes the amount of architecture-specific implementation
details users must know.

] solves the data layout problem by using multi-dimensional arrays
with architecture-dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial ATPESC18.pdf



7 I An Abstraction Layer to Prevent Rewriting an Entire Code

LAMMPS Trilinos Albany " M M GEMMA

| Kokkos
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Multi-Core Many-Core APU CPU + GPU

L

Christian Trott, “Kokkos: Capabilities Overview”. https://github.com/kokkos/kokkos-
tutorials/blob/master/KokkosCapabilities.pdf



3 ‘ Kokkos Data Management and Execution

Execution Policies Patterns

) parallel_for (N, [=] (const size_t i) {
Parallel Execution /* loop body */

B

) : . " double totallntegral = 0;
viemory Spaces (" vvhere Execution Spaces ( Where ) parallel_reduce (numberOfIntervals,

X [=] (const size_t i, double & valueToUpdate) {
- Multiple-Levels - N-Level valueToUpdate += function(...);

- Logical Space (think UVM vs explicit) - Support Heterogeneous Execution 3
totalIntegral);

Execution Patiers (How)
- Architecture dependent index-maps - parallel_for/reduce/scan, task spawn
- Also needed for subviews - Enable nesting parallel_outer(

TeamPolicy <>(number0fTeams, teamSize, vectorLength),

W Execution Policies KOKKOS_LAMBDA (const member_type & teamMember /[, ...]) {
/* beginning of outer body */

- Access Intent: Stream, Random, ... - Range, Team, Task-Dag parallel_middle(
- Access Behavior: Atomic - Dynamic/ Static Scheduling TeamThreadRange (teamMember , thisTeamsRangeSize),
- Enables special load paths: i.e. texture - Support non-persistent scratch-pads [=] (const int indexWithinBatch[, ...J) {
/* begin middle body */
1 2 3 4 0 1 2 3 parallel_inner (
ThreadVectorRange (teamMember , thisVectorRangeSize), I
1 3 B ] 0 -—-—-—-—--J [=] (comnst int indexVectorRange[, ...]J) {
| - : - /% inner body */
PR N o (L Ol Y[.o....);
i ; ) - 4 /+ end middle body x/
3 7 T I 2 = EER ] (] s J S I
/% end of outer body */
A: Column-major order (Fortran-style) B: Row-major order (C-style) PO, ...1);

et rcai vy trerne e —apameew — <. View”, https://github.com/kokkos/kokkos-
tutorials/blob/master/KokkosCapabilities.pdf
Intel. Developer Guide for Intel Math Kernel Library for Linux. https://software.intel.com/en-us/node/528573



https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf

9 | Kokkos Kernels

KokkosKernels is a library for node-level, performance-
portable, computational kernels for sparse/dense linear
algebra and graph operations, using the Kokkos shared-
memory parallel programming model.

J

J

KK is available publicly both as part of Trilinos and as
part of the Kokkos ecosystem

Building block of a solver, linear algebra library that
uses MPI and threads for parallelism, or it can be used
stand-alone in an application.

Generic implementations for various scalar types and
data layouts

Interfaces to Intel, NVIDIA and other vendor provided
kernels available in order to leverage their high-
performance libraries

Several new kernels are being added as needed by the
applications

E.g.: Distance-2 Coloring, Deterministic coloring, dense linear
system solver, ...
Expand the scope of BLAS to hierarchical
implementations.

Science and Engineering Applications

Trilinos

Kokkos EcoSystem

Kokkos Kernels

7

Kokkos Core I
: -/



https://github.com/kokkos/kokkos-kernels

Method of Moments for
Linear Electromagnetics




1 I Maxwell’'s Equations in the Frequency Domain

Maxwell’'s Equations: Vector and Scalar Potentials:
Faraday : V x E = —jwB E=—jwA -V
Ampere — Maxwell : VxH =J + jwD B=VxA

Electric Gauss: V-D =p
Magnetic Gauss: V-B =0

Lorenz gauge condition:

. V-A=—jweud
Wave Equations:

V2A + WA = —ud Instead of solving Maxwell’s equations

in 3D space via the wave equations,
we solve them on the boundary
between regions.

For a linear homogeneous, unbounded

’ €, 1, T
Free-Space Green’s
Function: —iklr—r]
!
g(r|r’)

- 47|r — 1’|



Example of an electric field integral equation (EFIE) for

Through the equivaIemgtﬁ/{fﬁiﬁ@%@é’%’énsider the current on an
objects boundary instead of the field around and inside the
object. Enforcing the boundary condition at the surface:

n X (Einc + Escat) =0

where,

Escat — jwﬂf ‘JS(I'I)Q'(I“I‘!)\jL




i3 I Method of Moments (MoM)

Numerical solution of integral equation:

1
L{Js} — —1n X Einc

JWH ~
Discretize the

Expand unknown in a set of basis func:tiovrer

Ts(x) = Y Lufa(r) Lopt rel)
siPn TET,

: : : . 0 otherwise

Test integral equation with basis funcuons.

1
fn - L{Jstds = — [ fu - (A X Einc) ds
[5 WJs} jwp Js

Z1=V

—ikr

e

Rao-Wilton-Glisson
(RWG) basis functions

4mtr

Zma=| | Joufn: fo = 220 £V 1]



Parallel LU Solver
Implementation




ADELUS Interface and Storage

1 Dense matrix and RHS vectors that are block-mapped to the MPI processes

1 ADELUS is called by MPI processes with the matrix portions packed with RHS
vectors (column-major order) as their inputs

1 ADELUS data container is implemented by the Kokkos View for portability

In the host memory:
Kokkos: :View<Kokkos: :complex<double>**,K Kokkos: :LayoutLeft, Kokkos: :HostSpace>
A("A",my rows,my cols+my rhs);

In the CUDA device memory:
Kokkos: :View<Kokkos: :complex<double>**,K Kokkos: :LayoutLeft, Kokkos: :CudaSpace>
A("A",my rows,my cols+my rhs);

Block columnid 1

2 3
Block row id
.
= Total number of MPI processes = 6
—_) = Number of processes for a row = 3
. . . = Number of right-hand sides = 2
5 6




16 1 Torus-Wrap Mapping

1 Advantage: each process has nearly the
same workload and the process idle time is
minimized

] Column indices assigned to a MPI process

constitute a linear sequence with step size
P

C

J Row indices are in a sequence separated
by P,

J No need to redistribute the block-mapped
matrix for torus-wrapped solver

= A block-mapped system can be solved by a
solver assuming a torus-wrapped system.

1 Solution vectors are corrected afterwards
by straightforward permutations

M,=NIP,

P=P _xP.

]
|
Total number of MPI processes: 6
(P=6) ‘
Number of processes for a row: 3
(P.=3)

Niimmhoar Anf rinht hanA cidac: 9D B



7 | LU Factorization and Forward Solve

[ Right-looking variant of the LU factorization with partial pivoting

] Kokkos Kernels BLAS interfaces are used for local matrices in
each MPI process

= (Calls to optimized vendor library BLAS routines: multi-threaded CPU
(IBM's ESSL BLAS), massively parallel GPU architectures (cuBLAS)

J CUDA-aware MPI: simple communication patterns: point-to-point
communication and collective communication

1 4 steps per iteration:

1. Find the pivot: each process finds its own local maximum entry in

the current column and then exchanges for the global pivot value.

2. Scale the current column with the pivot value and generate and
communicate column update vector from the column

3. Exchange pivot row and diagonal row

Update the current column, and if saving enough columns, to
update Z via gemm

KokkosBlas: :iamax ()
KokkosBlas: :scal ()
KokkosBlas: :copy ()
KokkosBlas: :gemm ()
MPI Send()
MPI Recv ()

MPI Irecv()

MPI Allreduce ()

MPI Bcast()

I I Em B



18 1 Backward Solve

] Backward Solve

1.

The elimination of the RHS is performed
by the process owning the current

column using the Kokkos
parallel for

The results from the elimination step are
broadcasted to all the processes within
the MPI column sub-communicator

The KokkosBlas: :gemm is then called
to update the RHS

To prepare for the next iteration, the
newly-computed RHS vectors are sent to
the processes to the left

Matrix RHS

1
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: 3. KokkosBlas::gemi

™ 2. MPI_Bcast |

4. MP1_Send to the left processes



19 I Permutation

J Permutation: to “unwrap the results”

Solver assumes the torus-wrap mapping
scheme while the input matrix is not torus
-wrapped

A temporary buffer for global solution
vectors created

Kokkos parallel for tofill the correct
locations in the global vectors

MPI Allreduce to collectively update the
change

.
. .
. N4
. .
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21 | Experimental Setup

L Summit system at the ORNL (4608 nodes): evaluating performance of
ADELUS with randomly-generated matrices

= Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 6 V100 GPUs (16GB
memory/GPU)

o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

m 1S(())f:tsw1are environment: GCC 7.4.0, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI

= DPLASMA: IBM XL C/C++ Compiler 16.1.1 instead of GCC 7.4.0
= SLATE: we use GCC 6.4.0 and ESSL 6.1.0, Netlib SCALAPACK 2.0.2

] Sierra system at the LLNL (4320 nodes): demonstrating performance
of ADELUS when integrated into a production electromagnetic
application code, EIGER

= Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 4 V100 GPUs (16GB
memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

=  Software environment: GCC 7.2.1, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI
10.3.0

I I Em B



2 I Randomly-Generated Matrices (1/6)

J Single RHS vector and the matrix size
IS increased as we increase the
hardware resource

1 GPU backend: ADELUS runs with one
MPI rank per GPU.

1 CPU backend: ADELUS runs with one
MPI rank per node (42 cores)

AN

3N

v

:lprocesses/row)

(2

9 nodes
(3

pmnesses/mw)
16 nodes
(4

processes/row)




23 I Randomly-Generated Matrices (2/6)

] Load Balancing Verification

= Factorization time on 36 MPI processes (36 GPUs) with the matrix size of 6GN6N

(167,292x167,292)

= Communication and the update contribute the most to the total time
= Communication time is 1.47x-1.6x the update time

1 3 5 7 8 11

13

15 17 19 21 23 25 27 29 31 33 35
MP! Processes

M Local pivot ® Msg passing Copying m Update
Cuda-aware MPI

180
160
140

“ 120

£
£ 100
5 80
[a's
60
40
20
0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 135
MPI Processes

M Local pivot M Msg passing M Host pinned mem copying ™ Copying M Update

Host pinned memory for MPI



24 ‘ Randomly-Generated Matrices (3/06)

J CPU vs. GPU
= Asingle GPU is 4.9x faster than a 42-core CPU
= 100 GPUs is 3.8x faster than 100 42-core CPUs

= Communication overhead increases as processing larger problems (broadcasting pivot rows and
exchanging rhs vectors among column processes

= CPU computation is still the dominant component in the total CPU time
=  GPU computation is fast that makes the computation overhead the bottleneck

POWERS9 CPUs, Double Complex (N=27882) V100 GPUs, Double Complex ([N=27882)
1400 1368 1400
1200 1135 1200
g 1056 ’g
a 1000 903 a 1000
Q Q
£ 800 759 £ 800
E 600 oL E 600
= 483 ® Comm. 5 361 ® Comm.
@ 400 358 @ 400 311
a C . a C .
i3 236 = Come i3 13 187 221 243 275 = Come
200 113 200 60 92 I I I I I
0 . 0 — - . .
1 4 9 16 25 36 49 64 81 100 1 4 9 16 25 36 49 64 81 100
rank, ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, GPU, GPUs, GPUs, GPUs, GPUs, GPUs, GPUs, GPUs, GPUs, GPUs,
N 2N 3N 4N 5N BN 7N 8N SN 10N N 2N 3N 4N 1) BM TN 8N SN 10N
Ranks, Unknowns GPUs, Unknowns

CPU execution time GPU execution time with host pinned memory



Randomly-Generated Matrices (4/6)

Tuning DPLASMA and SLATE for their best performance

m ADELU(S: (43 TFLOPS) outperforms SLATE (38 TFLOPS) while is slower than DPLASMA (57 TFLOPS)
on 100 CPUs

= ADELUS is 4.57x faster than SLATE on 144 GPUs

d ADELUS vs. DPLASMA and SLATE '
i
= ADELUS can achieve 1,316 TFLOPS (1.3 PFLOPS) with 900 GPUs (the first complex, dense LU solver reachs PFLOPS |

performance)
Power9 CPUs, Double Complex (N=27882) V100 GPUs, Double Complex (N=27882)
6.0E+04 57 TFLOPS 1.0E+07
1316 TFLOPS
5.0E+04 1.0E+06 233 TFLOPS
43 TFLOPS
4.0E+04
v 1.0E+05
4 38 TFLOPS %
Q 3.08+04 @
g -8-ADELUS © 1.0E+04 S1TFLOPS
-=-ADELUS
2.0E+04 -B-SLATE SLATE
-
—+-DPLASMA L.OE+03
1.0E+04
1.0E+02
1.0E+02 PSR S NS FFSTSS S
GO B N Y B B NN N VY
irank, 4 9 16 25 36 49 64 81 100 G QU7 gV QU QI ! 7 o N & \5" RO d: & \55
N  ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, " 5.6 gbwb@{j@%b@ N e c e

D};CP‘ My
W @ o2 aC 8 C WO o
JN 3N 4N SN BN 7N 8N 9N 10N o 0 a0

Ranks, Unknowns GPUs, Unknowns

CPU performance GPU performance



26 I Randomly-Generated Matrices (5/6)

JScalability Analysis

= Scalability is defined as the normalized
FLOPS of multiple MPI processes with
respect to FLOPS of a single MPI
process

= The increase of communication
overhead results in less than ideal
scalability in both CPU and GPU runs

= ADELUS on CPUs scales more closely
to the theoretical ideal scalability than
ADELUS on GPUs

= GPU performance is MPI bound due to
the increase in the communication cost
and its high FLOPS

= Scalability needs further
Improvement

120
100
80

Scalability (V100 GPUs vs. POWER9 CPUs - Double Complex) i
i
60 |

—8-ADELUS-GPU

ADELUS-CPU
40

Normalized FLOPS

<l-Theoretical

20

0
1rank, 4ranks, 9ranks, 16 25 36 49 64 81 100
N 2N 3N ranks, ranks, ranks, ranks, ranks, ranks, ranks,
4N SN 6N 7N 8N 9N 10N

Ranks, Unknowns

= FLOPS(m ranks/GPUs, nxN unknowns)
FLOPS(1 rank/GPU, 1*N unknowns)

where ranks/GPUs = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
unknowns = 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9N, 10N



27 I Randomly-Generated Matrices (6/6)

DMPI BUfferS on Different CudaSpace vs CudaHostPinnedSpace

Memory Spaces . Double Complex (N=27882)

= Both CudaSpace and . 1397 TFLOPS
CudaHostPinnedSpace can 1.26+06 1316 TFLOPS
attain performance above 1000  , ioewos
TFLOPs é 8.0E+05

= Using CUDA-aware MPI can oo ~&-CudatosPinned
: 4.0E+05 pace
improve the performance by 6% -B-Cudaspace

2.0E+05

1.0E+02
S
T ,,;l)

since we do not need to
explicitly buffer data on host SRS RS SRS SO S SS

. QT QYT QY QY QO T Y P P P P P P
memory before or after calling Rt S SRR RO
the MPI funCtIOn GPUs, Unknowns



22 | Large-Scale EM Simulation with EIGER

EIGER ADELUS C++ wrapper
: Call MPI_INIT Kokkos:initialize
0 Couple EIGER with ADELUS INITO 0
to perform large-scale Construct matrix and RHS vector Transfer matrix+RHS to GPU
electromagnetic simulations Matrix+RHS vec.
on the LLNL’s Sierra platform Adelus::factor()
Adelus::solve()
 First time Petaflops : Solution vec.
performance with a complex, Post-process solution vector Transfer solution back to CPU

dense LU solver: 7.72 Call MPI_FINALIZE() Kokkos::finalize()
Petaflops (16.9% efficiency )
when using 7,600 GPUs on

1,900 nodes on a 2,564,487 - 226,647 25 (100) 240.5 1291.0 10

unknown problem 1,065,761 310 (1240) 1905.1 1694.5 31
) ADELUS’s performance is 1,322,920 500 (2,000) 6443.9 958.1 20

affected _by the distribution of 1,322,920 500 (2,000) 2300.2 2684.1 50

the matrix on the MPI

processes 1,322,920 500 (2,000) 2063.6 2991.9 100

= Assigning more processes per 2,002,566 1,200 (4,800) 3544.1 6042.6 100

row ylelds hlgher performance 2,564,487 1,900 (7,600) 5825.2 7720.7 80



29 | Conclusions and Future Work

- A parallel, dense, performance-portable, LU solver based on torus-wrap mapping and
LU factorization algorithm

L Obtaining portability through Kokkos and Kokkos Kernels
- ADELUS'’s performance on Summit: 1.397 PFLOPS on 900 GPUs
 The GPU execution is 3.8x faster than the CPU execution

. ADELUS integrated into an electromagnetic application (EIGER) achieves 7.720
PFLOPS on 7600 GPUs (a problem of 2.5M unknowns) on Sierra

J Future work:
= Using computation-communication overlapping to improve ADELUS scalability on GPUs

= A hybrid implementation where both CPU and GPU resources are fully utilized to overcome
the limitation of the GPU memory



30 Availability

https://github.com/trilinos/Trilinos/tree/master/packages/adelus

dThe driver code used for our ADELUS experiments can be found

In
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/exa
mple
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