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Abstract: Critical infrastructure such as power generation and water distribution systems have become a priority 
target in cyber warfare because of their recent computerization and introduction to the internet. As a result, 
Supervisory Control and Data Acquisition (SCADA) system security has become a hot topic in academic and 
industrial research. Among these topics, Remote Attestation is a security method intended to detect the 
presence of fileless malware in remote devices as they continue to operate. This allows for the detection of 
malware in the absence of long-term storage artifacts before symptoms of compromise begin to appear. In 
general, a trusted device (the verifier) makes a request for evidence of innocence from the untrusted device (the 
prover). In software-based schemes, the verifier can then measure the delay between its request and the 
prover’s response. If this delay is greater than the known computational time of the evidence gathering 
algorithm performed by the prover, then evidence may have been forged. Multi-hop networks often introduce 
too much network jitter to allow accurate measurement of prover response time, which limits the effectiveness 
of software based Remote Attestation in a real-world setting. In this work, we introduce a companion device 
that the verifier can trust to perform a subset of attestation, thereby removing any network jitter. This device is 
a Field Programmable Gate Array (FPGA) that is physically connected to the prover. We provide a communication 
protocol between the verifier, prover, and companion. To evaluate our scheme, we simulate it in a common 
SCADA network environment under normal and heavy traffic loads. Our simulations are performed in the 
discrete event network simulator NS-3, and we perform statistical analysis over our results to show that our 
scheme allows for tight timing constraints to be placed on the prover such that the verifier can more easily 
determine the validity of the evidence that it receives.
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1. Introduction
Supervisory Control and Data Acquisitions (SCADA) networks that control critical infrastructure such as power 
grid, manufacturing, and water distribution systems have become high value target in cyber warfare because of 
their recent computerization.  Farwell & Rohozinski (2011) discuss the dangers and implications of the Stuxnet 
worm that targeted the Iranian nuclear program.  Ten et al. (2018) cover the complexity of the Ukrainian power 
distribution attack.  Both attacks offer examples of what can happen to a SCADA system that is compromised 
without detection.

Traditional forensic methods are often able to detect evidence of malware on a computing system by powering 
the system down and investigating the device’s persistent storage for malware artifacts.  They can fail because 
of two major issues in SCADA systems.  The first is that many SCADA devices cannot be powered off regularly 
because they have real time, mission critical tasks.  The second is that fileless malware does not leave artifacts 
in persistent storage because it exists completely in volatile memory (RAM).  As a result, SCADA system operators 
need a more robust way to check a SCADA device for fileless malware.

Surveys published by Abera et al (2016b), Arias et al. (2018) and Steiner & Lupu (2016) over Remote Attestation 
define it as a security service that allows a trusted device (the verifier) to check a remote device (the prover) for 
malware.  In general, the service begins when the verifier issues a challenge to the prover.  The challenge should 
incorporate some randomness and is usually a request for system state information.  When the prover receives 
the request, it checks the challenge’s validity and then computes a response.  The response is sent back to the 
verifier and is then checked for evidence of malware.  
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If a device is compromised, malware must be assumed to be in possession of all resources available to the device, 
including secret keys.  As a result, Remote Attestation schemes need a root of trust in the prover to know that 
any evidence provided is not forged.  According to Abera et al (2016b), Arias et al (2018) and Steiner & Lupu 
(2016), Remote Attestation schemes can be categorized into one of three roots of trust.  (1) Hardware based 
methods provide a security co-design that ensures system state information will be accurately recorded.  (2) 
Software based designs typically compare the prover’s delay with the expected computational time of the 
response calculation algorithm to determine if malware has interfered. (3) Hybrid schemes typically utilize pre-
existing security co-processors like the Intel Software Guard Extension (SGX) or the ARM Trustzone. 

Hardware based schemes offer excellent security for SCADA systems, but may not apply to existing devices 
because they expect to be implemented in future manufacturing.  Similarly, current hybrid schemes can offer 
protection to specific devices, but no current hybrid scheme can be applied.  Under current hybrid schemes, 
SCADA system operators would be constrained to a small group of devices and may be forced replace several 
devices.  Software based schemes are applicable to any device because they rely on timing constraints and not 
hardware.  This leads to a variety of security vulnerabilities, however.  For example, if the prover and verifier are 
multiple hops away from each other in the network (which is often the case) the delay between them may vary 
regularly depending on the network traffic. Because of a longer delay under heavy traffic conditions, the verifier 
may infer that that the prover is compromised even though the prover may be innocent.  To complicate the 
issue, malware may be able to predict a challenge, and either remove itself before system state information is 
collected or precompute a forged system state.  According to Steiner & Lupu (2016), tighter timing constraints 
must be placed on the prover’s response time, and randomness must be introduced into the challenge to 
prevent precomputation and Time of Check Time of Use (TOCTOU) attacks.  

The primary contribution of this work is the introduction of a hybrid root of trust that combines the timing 
components of a software based approach with the assistance of a companion device connected directly to the 
prover.  Our approach is deployable on existing SCADA hardware of any manufacturer or family and provides 
stronger security guarantees than existing hybrid and software remote attestation schemes.  Our companion 
device allows for the inclusion of cryptographic methods that defend against common attacks such as Denial of 
Service (DoS) and replay attacks.  The timing component mitigates pre-computation attacks, and verifier control 
over the protocol allows randomness to defend against other known attacks in remote attestation schemes.  
Our scheme is designed to be implemented with a low power companion device like the tinyFPGA that is 
powered by the prover.  The low power consumption of the companion helps to mitigate attacks that affect the 
prover’s power supply.  We evaluate our scheme using the NS3 network simulator and give statistical analysis 
of our results.  

The remainder of this paper is organized as follows: Section 2 discusses previous works.  Section 3 gives a 
detailed overview of our proposed scheme.  Section 4 covers the details of our experimentation.  Section 5 gives 
an analysis of our results, and Section 6 concludes the paper.

2. Previous work
Remote Attestation for embedded devices like those found in SCADA networks has been heavily studied in 
recent years.  Early examples like those discussed by Seshadri et al. (2004) and AbuHmed et al. (2009) often used 
timing information.  Known information such as the maximum computational time of the response generation 
algorithm is compared to the delay of the prover’s response.  If the prover’s response is later than expected, 
verifiers may be able to assume that the response is forged.  Schemes that utilize timing information are often 
referred to as software based.

Li et al. (2015) and Steiner & Lupu (2016) offer compelling evidence that software-based schemes have a variety 
of weaknesses.  They discuss common attacks such as pre-computation, memory substitution, and TOCTOU.  
Pre-computation attacks are performed by predicting a challenge, and forging evidence in advance.  Memory 
substitution attacks are performed by scanning a different, honest section of memory.   TOCTOU attacks are 
performed by predicting the time of a challenge, removing malware in advance, and re-installing it after the 
challenge is complete.  A common theme of these attacks is predictability.  If the guilty prover can predict either 
the contents or timing of the challenge, then it can subvert detection.  



Another major pitfall of software-based schemes is their reliance on strict timing information.  Network jitter 
can introduce a great deal of variance in the delay of a response.  Unforeseen events like downloading large 
software updates, data streaming, and increased hosts can all contribute to increased delays that have nothing 
to do with the honesty or guilt of a prover.  Attempts have been made to reduce the effects of network jitter.  
Authors that target swarms of devices such as Kuang et al. (2019) and Ammar et al. (2018) are able to leverage 
the swarm devices’ closeness to each other and their similar hardware and software components to reduce the 
effects of network jitter by allowing swarm devices to attest each other.  It may be possible to reduce the effects 
of network jitter for wireless sensors by estimating network conditions and sending several small challenges 
from the verifier to the prover.  Steiner & Lupu (2019)  argue that Round-Trip Time (RTT) estimates allow them 
to send several challenges from the verifier with a controlled time out.  The prover should be able to respond to 
at least one challenge before the time out of that challenge.   The authors show the success of this approach 
with statistical analysis and argue that they are still able to include randomness in their scheme by forcing each 
challenge to include a different nonce.  Neither of these two approaches are universally applicable, however.  
Not all embedded devices act as links to other devices, so they are not close enough to each other to apply a 
swarm solution.  A group of small challenges may be able to reduce the effects of network jitter on the prover’s 
response, but a malicious prover that receives several challenges can use the extra time between the first and 
last challenge to perform a TOCTOU attack.

As a result, other roots of trust have been proposed in remote attestation.  Hardware based schemes like 
ATRIUM by Zeitouni et al. (2017), C-FLAT by Abera et al. (2016a), and OAT by Sun et al. (2020) propose hardware 
co-designs to be implemented in future embedded systems.  These schemes can offer a greater amount of 
security because they have access to processor resources such as caches and busses, and they can leverage 
memory that is not accessible to the processor of the prover.  This greater security does not come without a 
cost, however.  Their solutions are intended to be applied to future embedded devices, so they are unable to 
protect any devices that have already been manufactured.  Hardware co-designs are by nature unable to update.  
If attacks like Spectre discussed by Koruyeh et al. (2018) or Meltdown discussed by Lipp et al. (2018) were 
discovered in a hardware co-design, then devices with the design could be rendered obsolete.

Hybrid schemes designed to bridge the gap between hardware and software have become popular in recent 
years.  Typically, these schemes rely on security co-processors that already exist on modern computing devices 
like those discussed by Maene et al. (2017).  They can leverage access to protected memory that is not accessible 
to the prover, which allows them to utilize cryptographic keys and other secret information.  Hybrid schemes 
have similar shortcomings as hardware schemes, however.  They are generally able to update in the case that a 
vulnerability is found, but they are reliant on specific hardware features.  These features are not consistent 
across all security co-processors.  For instance, the operation and architecture of the Intel SGX are quite different 
from those of ARM Trustzone.  If a vulnerability is found in the security co-processor of a specific device, the 
device can be rendered obsolete and the scheme that relies on it may not be easily ported to a new security co-
processor.  

These issues motivate us to design a hybrid approach that combines the timing components of a software based 
approach with an additional companion device.  Such a scheme could solve the problem of network jitter and 
protect against known attacks with randomness.  We choose this approach because it is easily updated, is not 
reliant on any specific hardware, and would be broadly applicable over a variety of devices while offering a more 
robust defence against fileless malware. 

3. Companion assisted attestation
Our approach to reduce network jitter and allow for tighter timing constraints on the prover response is to 
introduce a new entity into our network: the companion.  This device is an FPGA that communicates with the 
prover via a dedicated line like USB.  The verifier can communicate with the companion through the prover.  A 
detailed overview of our protocol is shown in Figure 1.  



Figure 1: Proposed companion assisted software-based remote attestation protocol

Our protocol begins when the verifier sends a request to the companion for an attestation challenge at a 
specified, random time (T2).  This request is sent with a timestamp (T1), and it is encrypted with the companion’s 
public key (KC).  A signature (SignV) is also generated over the message.  In this way we prevent denial of service 
attacks as well as replay attacks.  Once the prover receives the message, it forwards it on to the companion 
immediately.  If it does not, additional delays may be incurred, and the verifier will suspect it of compromise.  
When the companion receives the message, it checks its authenticity and waits until the appropriate time to 
issue the challenge.  When the challenge is issued, the exact time is recorded, and the companion awaits the 
prover’s response.  When it arrives, the companion bundles the response, the time requested (T2), and the time 
received (T3).  It then encrypts this information with the verifier’s public key (KV), and signs it (SignC).  This 
message is then sent to the prover who immediately passes it to the verifier.  The verifier is then able to examine 
the response given by the prover within the context of the timing information collected by the companion.  

The introduction of the companion device provides a variety of benefits.  First, attestation occurs over a single 
hop on a dedicated line.  This eliminates network delays that allow enough ambiguity for compromised prover 
to forge evidence.  Second, the verifier controls the randomness and timing of the challenge, and neither are 
known to the prover prior to the challenge.  This renders precomputation, memory copy, compression, and 
TOCTOU attacks ineffective.  Third, the companion device is an FPGA, so it is harder to compromise than a device 
with a multi-purpose processor, and it is reprogrammable in the case that some aspect of our protocol is found 
to be vulnerable to attack.  Finally, the companion is only reachable through the prover device by authorized 
entities via public-private key interactions.

4. Experimental setup
We simulated our proposed protocol using the discrete network simulator NS3.  NS3 is open source, and natively 
supports simulations of TCP/IP and UDP communications.  It allows users to define nodes and the links between 
them.  It also allows users to build and install applications onto nodes that define their network behaviour.  NS3 
natively supports TCP/IP and it allows for development of additional protocols.  

4.1 Testing environment

We defined a two-layer SCADA network as discussed by Barbosa, Ramin, & Pras (2012) to be our test network.  
Our top layer, the IT infrastructure, was made up of 4 entities: two host devices, a single server, and a router.  
The second layer, the production infrastructure, was defined to be 5 devices: three Programmable Logic 
Controllers (PLCs), a server, and a human machine interface.  We chose this number of devices so that we could 
model a much larger network by balancing network traffic between different entities.  PLC2 acted as our prover 
device and was connected directly to the companion device.  Our test network can be seen in Figure 2. 



Figure 2: Test network architecture

The connections between the IT network and the router, the production network and the router, and PLC2 to 
its sensors are all simple ns3 Carrier Sense Multiple Access (CSMA) busses.  These busses model an ethernet 
connection, although they do not provide simulations for the physical layer.  The data rate of each connection 
was 700 Mbps with a 2 msec delay.  The connection between PLC2 and the companion is a point-to-point 400 
Mbps connection with a 2 msec delay intended to model a USB2 connection. 

To simulate network traffic, we used the tcp_echo_client and tcp_echo_server applications native to NS3.  The 
client simply issues a TCP echo request of programmable size, and the server responds with the same packet.  
To simulate Modbus traffic, we used the source code modbus_tcp_client and modbus_tcp_server provided by 
Sahraei (2013) in their study of integrating Modbus with NS3.  We defined traffic flows to balance overall 
network traffic evenly across the network.  Our goal was to show the overall effects of traffic.  The total traffic 
generated in our IT subnetwork accounts for 1/3 of all traffic in the network.  Similarly, the production network 
accounts for another 1/3.  The communication between S1 and S2 accounts for the final 1/3.  Each flow’s overall 
traffic was controlled by the delay and packet size of the client’s request.  We added randomization to each 
client by calculating a uniform random variable with upper bound (delay + delay/2) and lower bound (delay – 
delay/2).  In all tcp_echo_client/server cases, we set the packet size to 100.  The delays are given in Table 1 with 
each flow.

Table 1: Flow information with protocol and request delay , where T is the total traffic in bytes per second

Client Server Protocol Delay
H1 S1 tcp_echo_client/server 600 / T sec
H2 S1 tcp_echo_client/server 600 / T sec
PLC1 S2 tcp_echo_client/server 900 / T sec
PLC2 S2 tcp_echo_client/server 33.34 msec
PLC3 S2 tcp_echo_client/server 900 / T sec
HMI S2 tcp_echo_client/server 600 / T sec 
PLC2 Sen1 modbus_tcp_client/server 100 msec
PLC2 Sen2 modbus_tcp_client/server 100 msec

We did not allow PLC2 traffic between the corporate networks and the sensors to vary with the overall amount 
of traffic.  This is because PLC2 acts as the prover in our case, and it is intended to model a single device’s traffic.  
The other devices in the network were designed to generate the traffic of a much larger network and are acting 
as several devices.



4.2 Testing cases

To test our proposed protocol, we studied several variables.  We implemented our companion attestation 
protocol as well as a direct attestation, in which the verifier sends a challenge directly to the prover.  To show 
the effects of traffic on both protocols, we defined three traffic cases: a medium, a high, and a burst.  The 
medium case was 15 MBps.  The high case was 66 MBps.  The burst case 100 MBps.  These values were taken 
from traffic analysis done by Maglaras & Jiang (2014).  We also chose to vary the location of the verifier to see 
the effects of distance over a busy network.  The first location is S1 and the second is S2.  Finally, we implemented 
a prover application that could model both honest and dishonest delay behaviour.  We chose to use the prover 
behaviour characteristics studied by Gardner, Garera, and Rubin (2007) shown in Table 2.  They implemented 
an honest device and a compromised device that would perform a memory copy attack and studied the delay 
characteristics of each.  We chose these values to represent our honest and guilty prover because the authors 
perform their attack on a computationally constrained device that is somewhat similar to what might be 
available in a SCADA network.

Table 2: Honest and guilty prover delay behaviour

Prover Type Mean Standard Deviation
Honest 1873.23 s 0.110
Guilty 1876.19 s 0.000232

Our verifier application sends a single 100-byte packet to a programmable destination and awaits a response.  
The companion application awaits a message from the verifier, and then forwards it to the prover.  It then awaits 
a response from the prover to forward back to the verifier.  Table 3 shows the variables we studied in this work.

Table 3: Overview of the variables tested in our scheme.  A test was performed for each combinations of 
variables seen here.

Variable Values
Protocol Direct Attest, Companion Attest
Prover Honesty Honest, Guilty
Verifier Location S1, S2

Traffic Medium, High, Burst

5. Results and analysis
For each combination of variables discussed in Table 3, the random seed of NS3 was set to 1.  We measured the 
prover’s response delay over 100 runs, each with a different NS3 run number.  Figure 3 gives the resulting graphs 
of delays for attestation from S1, and Figure 4 gives the graphs for attestation from S2.



Figure 3: Graphs of prover response delay with verifier at S1 over NS3 run numbers from 1 to 100.

Figure 4: Graphs of prover response delay with verifier at S2 over NS3 run numbers from 1 to 100.



In each case, the left column of graphs gives the direct attest, while the right gives the companion attest.  The 
rows indicate different traffic levels from medium to burst.  The solid line in each graph represents the resulting 
delays when the prover is guilty.  The dotted line in each graph represents the resulting delays when the prover 
is innocent.

A variety of observations can be made from these graphs.  In the direct attestation case, the prover delay is 
sensitive to traffic changes as well as distance between the prover and verifier.  This allows for a greater degree 
of ambiguity between the guilty prover case and the honest prover case.  When attestation challenges are made 
from S1, the honest prover and the guilty prover trendlines overlap, indicating that false positives may be more 
common.  Conversely, companion attestation has a much weaker reaction to increased traffic in the network 
and a greater distance between the verifier and the prover.  Visual inspection of all companion assisted 
attestation graphs indicate a clear difference between honest and guilty behaviour.  

To confirm the visual inspection of our results, we first performed an Anderson Darling Normality Test as 
discussed by Razali & Wah (2011).  This test allows us to determine whether the distribution of prover responses 
under different circumstances is normal.  Table 3 shows the results as well as the mean and standard deviation 
for each test.

Table 3: Anderson Darling Normality Test p-values, means and standard deviations

P-Value Mean Std. Dev.
Guilty <0.0005 1878.409 0.432

Burst
Honest <0.0005 1875.677 0.804
Guilty <0.0005 1878.573 0.673

High
Honest <0.0005 1875.676 0.796
Guilty <0.0005 1878.562 0.698

S1

Medium
Honest <0.0005 1875.657 0.679
Guilty 0.670819 1879.905 0.269

Burst
Honest 0.286916 1877.573 0.252
Guilty 0.183584 1879.829 0.261

High
Honest 0.310729 1877.558 0.257
Guilty 0.006581 1879.882 0.279

Direct

S2

Medium
Honest 0.359948 1877.627 0.264
Guilty 0.037053 1876.385 0.00281

Burst
Honest 0.517268 1873.403 0.114
Guilty <0.0005 1876.386 0.00300

High
Honest 0.272961 1873.422 0.115
Guilty 0.000577 1876.386 0.00299

S1

Medium
Honest 0.345178 1873.413 0.101
Guilty 0.000840 1876.385 0.00304

Burst
Honest 0.590245 1873.435 0.101
Guilty 0.001228 1876.386 0.00288

High
Honest 0.761777 1873.405 0.126
Guilty 0.0171116 1876.385 0.00299

Companion

S2

Medium
Honest 0.970431 1873.419 0.094

Using an alpha level of 0.05, we can conclude that any sample with a p-value above 0.05 comes from a normal 
distribution.  This indicates that all samples that come from a simulation with an honest prover and a companion 
assisted attest are from a normal distribution.  Furthermore, the mean and standard deviation are very close to 
the true prover behaviour.  From this we can conclude that our scheme closely captures the behaviour of an 
honest prover. 

In the case of the direct attestation from S1, results are poor.  Sample means differ from prover behaviour by 
whole seconds, and standard deviations are substantially larger than prover behaviour.  It is of note that 
attesting from S2 performs somewhat better.  Our results show that each sample from the burst and high traffic 



cases as well as the honest medium case come from a normal distribution.  Their means and standard deviations 
are substantially different from the prover behaviour, however.

6. Conclusion and future work
In this work, we introduce a new device, the companion, into a software based remote attestation scheme.  With 
the addition of this device, we can show promise that network jitter might be greatly reduced, and that a 
software root of trust might be more feasible in real world settings.  We simulated a 2-layer SCADA network 
with both Modbus and TCP traffic in NS3 to evaluate our scheme.  We defined 4 testing variables to give a more 
complete picture of how our scheme compares against a direct software based remote attestation protocol.  
Using visual inspection and statistical analysis, we can show that our protocol closely captures the behaviour of 
an honest prover device.  Using our protocol, security designers and SCADA administrators may be able to 
leverage a software-based root of trust in a SCADA network.

In the future, we will likely investigate the effects of a more realistic, larger SCADA network on our protocol as 
well as additional guilty prover behaviour models.  We will also likely implement our protocol using a real-world 
FPGA as the companion device to research the hardware and power requirements of our scheme.  Finally, we 
will continue to research methods to improve software-based remote attestation schemes.
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